JPH0773874A - Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode - Google Patents

Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode

Info

Publication number
JPH0773874A
JPH0773874A JP6142947A JP14294794A JPH0773874A JP H0773874 A JPH0773874 A JP H0773874A JP 6142947 A JP6142947 A JP 6142947A JP 14294794 A JP14294794 A JP 14294794A JP H0773874 A JPH0773874 A JP H0773874A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
weight
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6142947A
Other languages
Japanese (ja)
Other versions
JP3260972B2 (en
Inventor
Kazunari Kinoshita
一成 木下
Kazufumi Okawa
和史 大川
Takashi Takano
隆 高野
Toshihisa Hiroshima
敏久 広島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14294794A priority Critical patent/JP3260972B2/en
Publication of JPH0773874A publication Critical patent/JPH0773874A/en
Application granted granted Critical
Publication of JP3260972B2 publication Critical patent/JP3260972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase discharge capacity and to lengthen cycle life by containing stylene-butadiene copolymer, a polymer, carbon black in a hydrogen storage alloy mixture to be applied to a punched metal, and by forming a water repellent layer on the surface of an electrode. CONSTITUTION:A mixture of hydrogen storage alloy powder, stylene-butadiene copolymer whose weight ratio is 30-100 to 100 serving as a binder, a polymer which gives hydrophilic nature to an electrode, and carbon black which gives hydrophobic nature to the electrode is supported in a conductive punched metal serving as a current collector to form a hydrogen storage alloy electrode. A water repellent agent is applied to the surface of the electrode to give the water repellent nature. A ratio of the stylene-butadiene copolymer added to the mixture is preferably 0.3-2.0 pts.wt. to 100 pts.wt. of the hydrogen storage alloy powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金電極、お
よび同電極を用いた密閉型ニッケル−水素蓄電池の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage alloy electrode and an improvement of a sealed nickel-hydrogen storage battery using the electrode.

【0002】[0002]

【従来の技術】従来からよく利用されている密閉型アル
カリ蓄電池として、ニッケルーカドミウム蓄電池がよく
知られている。近年、この電池よりも高いエネルギー密
度を有する電池系として、低圧力において水素を可逆的
に吸蔵・放出することが可能な水素吸蔵合金を負極に利
用したニッケルー水素蓄電池が開発されている。ニッケ
ルー水素蓄電池の負極である水素吸蔵合金電極として
は、これまで以下のものが提案されている。 (1)水素吸蔵合金粉末を導電材粉末とともに焼結して
電極とする方法。 (2)水素吸蔵合金粉末を発泡ニッケルのような三次元
金属多孔体に充填して電極とする方法。 (3)水素吸蔵合金粉末をポリテトラフルオロエチレン
のような高分子結着剤によって導電性支持体のパンチン
グメタルに保持させて電極とする方法。
2. Description of the Related Art Nickel-cadmium storage batteries are well known as sealed alkaline storage batteries that have been widely used in the past. In recent years, as a battery system having a higher energy density than this battery, a nickel-hydrogen storage battery using a hydrogen storage alloy capable of reversibly storing and releasing hydrogen at low pressure as a negative electrode has been developed. The following have been proposed so far as a hydrogen storage alloy electrode that is a negative electrode of a nickel-hydrogen storage battery. (1) A method of sintering a hydrogen storage alloy powder together with a conductive material powder to form an electrode. (2) A method of filling a hydrogen-absorbing alloy powder into a three-dimensional metal porous body such as foamed nickel to form an electrode. (3) A method in which a hydrogen storage alloy powder is held by a punching metal of a conductive support with a polymer binder such as polytetrafluoroethylene to form an electrode.

【0003】ところで、水素吸蔵合金電極を用いた密閉
型アルカリ蓄電池は、ニッケルーカドミウム蓄電池と同
様に、負極の容量を正極の容量より大きくし、過充電時
に正極から発生する酸素ガスを負極で消費することによ
り、電池内圧を下げる方法を採用している。ところが、
水素吸蔵合金電極を用いたアルカリ蓄電池は、ニッケル
ーカドミウム蓄電池と異なり、正極からの酸素ガスの発
生に加え、負極から発生する水素ガスの蓄積により、過
度の内圧上昇が起こる。そこで、電極表面に撥水層を設
け、さらに電極内部に親水性部分を設けることが提案さ
れている。
By the way, in a sealed alkaline storage battery using a hydrogen storage alloy electrode, like the nickel-cadmium storage battery, the capacity of the negative electrode is made larger than the capacity of the positive electrode, and oxygen gas generated from the positive electrode during overcharge is consumed by the negative electrode. By doing so, a method of lowering the internal pressure of the battery is adopted. However,
Unlike the nickel-cadmium storage battery, the alkaline storage battery using the hydrogen storage alloy electrode has an excessive increase in internal pressure due to the storage of hydrogen gas generated from the negative electrode in addition to the generation of oxygen gas from the positive electrode. Therefore, it has been proposed to provide a water repellent layer on the electrode surface and further provide a hydrophilic portion inside the electrode.

【0004】また、パンチングメタルを導電性支持体と
する電極をセパレータで隔離した正極とともに渦巻き状
に捲回する際、パンチングメタルの孔と孔の中心を結ぶ
直線の間隔が大きいと、電極は曲面状に曲がらず多角形
状に曲がるため、電極にクラックが生じやすくなる。そ
して、クラックが生じると、これがセパレータを突き破
って正極と接触して局部的な短絡が生じる。こうして、
正負極間にリーク電流が流れる電池不良が発生する。そ
こで、パンチングメタルの穿孔パターンを、隣接する3
つの孔が正三角形を構成するようにし、その正三角形の
一辺と平行に捲回する方法が提案されている(特開平1
ー141554号公報)。
Further, when spirally winding an electrode using a punching metal as a conductive support together with a positive electrode separated by a separator, if the distance between the holes of the punching metal and the straight line connecting the centers of the holes is large, the electrode has a curved surface. Since it does not bend like a polygon but bends in a polygonal shape, cracks are likely to occur in the electrode. When a crack occurs, it breaks through the separator and comes into contact with the positive electrode, causing a local short circuit. Thus
A battery failure occurs in which a leak current flows between the positive and negative electrodes. Therefore, the perforation pattern of punching metal is set to 3
A method has been proposed in which two holes form an equilateral triangle and the winding is performed in parallel with one side of the equilateral triangle (Japanese Patent Laid-Open No. HEI-1).
-141554).

【0005】[0005]

【発明が解決しようとする課題】前記(1)の焼結方法
は、焼結時に水素吸蔵合金表面が酸化されて不働態化
し、電極の導電率が下がり、放電電圧の低下を招くとい
う不都合がある。また、(2)の方法は、三次元多孔体
が高価であることに加えて、電極容量に寄与しない部分
が多くなるため、電極容量を十分大きくできないという
課題がある。前記(3)の方法は、水素吸蔵合金粉末を
パンチングメタルに強固に保持させるためには、多量の
高分子結着剤の添加を必要とする。しかし、結着剤を多
量に添加すると、電極の導電性が低下して放電電圧が低
下し、また電極容量を十分大きくすることができないと
いう課題がある。また、充電時の電池の内圧上昇を防止
するために、撥水層を電極表面に設け、かつ内部に親水
性部分を設ける方法は、それだけでは1時間率あるいは
それ以上の急速充電の用途には十分対応できないという
課題がある。さらに、前記のパンチングメタルの構成
は、電極捲回時の曲がり具合を真円に近づけることはで
きるが、短絡による不良率を大幅に削減することはでき
ない。
The above-mentioned sintering method (1) has a disadvantage that the surface of the hydrogen storage alloy is oxidized and passivated during sintering, the conductivity of the electrode is lowered, and the discharge voltage is lowered. is there. In addition, the method (2) has a problem that the electrode capacity cannot be sufficiently increased because the three-dimensional porous body is expensive and a large number of portions do not contribute to the electrode capacity. The method (3) requires the addition of a large amount of polymer binder in order to firmly hold the hydrogen storage alloy powder on the punching metal. However, when a large amount of the binder is added, there are problems that the conductivity of the electrode is lowered, the discharge voltage is lowered, and the electrode capacity cannot be sufficiently increased. Further, in order to prevent the internal pressure of the battery from rising during charging, a method of providing a water repellent layer on the surface of the electrode and providing a hydrophilic portion inside is not enough for the purpose of rapid charging for 1 hour or more. There is a problem that it cannot fully respond. Further, although the punching metal structure described above can bring the degree of bending when the electrode is wound close to a perfect circle, it cannot significantly reduce the defective rate due to a short circuit.

【0006】本発明は、上記(3)の電極を改良して、
放電容量が大きく、かつ充放電サイクル寿命に優れ、急
速充電時における電池内圧の過度の上昇のない水素吸蔵
合金電極を提供することを目的とする。また、本発明
は、渦巻き状に捲回した際に短絡による不良が極めて少
ない水素吸蔵合金電極を提供することを目的とする。本
発明はまた、急速充電性能が改善された、高容量で信頼
性の高い密閉型ニッケルー水素蓄電池を提供することを
目的とする。
The present invention improves the electrode of the above (3),
An object of the present invention is to provide a hydrogen storage alloy electrode having a large discharge capacity, an excellent charge / discharge cycle life, and an excessive increase in battery internal pressure during rapid charging. Another object of the present invention is to provide a hydrogen storage alloy electrode which has very few defects due to short circuit when wound in a spiral shape. Another object of the present invention is to provide a high capacity and highly reliable sealed nickel-metal hydride storage battery with improved rapid charging performance.

【0007】[0007]

【課題を解決するための手段】本発明の水素吸蔵合金電
極は、水素吸蔵合金粉末と、結着剤としての、スチレン
とブタジエンの重量比が100対30〜100であるス
チレンーブタジエン共重合体と、電極中に親水性を付与
する高分子物質と、電極に疎水性を付与するカーボンブ
ラックとを含む混合物、前記混合物を支持し集電体とし
て働く導電性支持体のパンチングメタル、および電極表
面に撥水性を付与する撥水剤を含むものである。
The hydrogen storage alloy electrode of the present invention comprises a hydrogen storage alloy powder and a styrene-butadiene copolymer in which the weight ratio of styrene and butadiene as a binder is 100: 30 to 100. And a mixture containing a polymer substance that imparts hydrophilicity to the electrode and carbon black that imparts hydrophobicity to the electrode, a punching metal of a conductive support that supports the mixture and acts as a current collector, and an electrode surface It also contains a water repellent that imparts water repellency to the.

【0008】本発明の好ましい態様において、前記スチ
レンーブタジエン共重合体の前記混合物中における添加
割合は、水素吸蔵合金粉末100重量部に対して0.3
〜2.0重量部である。本発明の他の態様において、前
記パンチングメタルは、その孔径が1.0mm以上2.
5mm以下であり、隣接する3つの孔の中心を結んで形
成される三角形の頂角が両底角より小さくなる条件を満
たす二等辺三角形を形成する穿孔パターンで穿孔され、
穿孔部の端部には、少なくとも1組の相対向する端部に
無地部(穿孔しない部分)を有するものである。
In a preferred embodiment of the present invention, the addition ratio of the styrene-butadiene copolymer in the mixture is 0.3 based on 100 parts by weight of the hydrogen storage alloy powder.
~ 2.0 parts by weight. In another aspect of the present invention, the punching metal has a hole diameter of 1.0 mm or more.2.
5 mm or less, perforated in a perforation pattern that forms an isosceles triangle that satisfies the condition that the apex angle of a triangle formed by connecting the centers of three adjacent holes is smaller than both base angles,
At least one pair of end portions of the perforated portion have plain portions (portions not to be perforated) at opposing ends.

【0009】さらに、前記電極中に親水性を付与する高
分子物質は、カルボキシメチルセルロースのナトリウム
塩であり、前記混合物における添加割合が、水素吸蔵合
金粉末100重量部に対して0.05〜2.0重量部で
あることが好ましい。前記カーボンブラックの前記混合
物中における好ましい添加割合は、水素吸蔵合金粉末1
00重量部に対して0.05〜1.5重量部である。前
記撥水剤は、ポリテトラフルオロエチレンまたはテトラ
フルオロエチレンとヘキサフルオロプロピレンとの共重
合体であり、その電極表面への着量が単位表面積当たり
0.1〜1.0mg/cm2であることが好ましい。
Furthermore, the polymer substance that imparts hydrophilicity to the electrode is sodium salt of carboxymethyl cellulose, and the addition ratio in the mixture is 0.05 to 2. per 100 parts by weight of the hydrogen storage alloy powder. It is preferably 0 part by weight. The preferable addition ratio of the carbon black in the mixture is 1
It is 0.05 to 1.5 parts by weight with respect to 00 parts by weight. The water-repellent agent is polytetrafluoroethylene or a copolymer of tetrafluoroethylene and hexafluoropropylene, and the amount deposited on the electrode surface is 0.1 to 1.0 mg / cm 2 per unit surface area. Is preferred.

【0010】本発明はまた、上記の水素吸蔵合金電極か
らなる負極とセパレータとニッケル正極からなる電極
群、アルカリ電解液、および、安全弁を備え前記電極群
と電解液を収容する密閉電池ケースからなる密閉型ニッ
ケルー水素蓄電池を提供する。さらに、好ましい態様に
おいては、前記水素吸蔵合金電極は、セパレータによっ
て隔離された正極とともに、前記パンチングメタルの隣
接する3つの孔の中心を結んで形成される二等辺三角形
の底辺と平行な方向に、渦巻き状に捲回されて円筒形の
ロールに構成される。そして、前記三角形の底辺は円筒
形ロールの軸に垂直な面内にあり、パンチングメタルの
端部の無地部は円筒形ロールの軸方向の端部に対応する
部分にある。
The present invention also comprises an electrode group consisting of the negative electrode comprising the above hydrogen storage alloy electrode, a separator and a nickel positive electrode, an alkaline electrolyte, and a sealed battery case containing a safety valve and containing the electrode group and the electrolyte solution. A sealed nickel-metal hydride storage battery is provided. Furthermore, in a preferred aspect, the hydrogen storage alloy electrode is, in a direction parallel to the base of an isosceles triangle formed by connecting the centers of three adjacent holes of the punching metal together with the positive electrode separated by a separator, It is wound in a spiral shape to form a cylindrical roll. The base of the triangle lies in a plane perpendicular to the axis of the cylindrical roll, and the plain portion at the end of the punching metal is at the portion corresponding to the axial end of the cylindrical roll.

【0011】[0011]

【作用】本発明の水素吸蔵合金電極は、パンチングメタ
ルに塗着する水素吸蔵合金粉末を主とする混合物中に、
結着剤としてスチレンーブタジエン共重合体、親水性を
付与する高分子物質、疎水性を付与するカーボンブラッ
クを含み、かつ電極表面に撥水層を形成する撥水剤を備
えることにより、充放電の繰返しによる電池容量の低下
が少なく、優れたサイクル寿命を有する。また、電極内
部に親水性と疎水性が共存することにより、発生ガスの
吸収速度が早く、電池内圧の過度の上昇を起こさない。
本発明者らは、各種熱可塑性樹脂やエラストマーを検討
した結果、特にスチレンとブタジエンとの特定比率のス
チレンーブタジエン共重合体は、少量の添加量でも十分
な機械的強度を付与し、充放電による水素吸蔵合金粉末
の膨張、収縮にも対応できる電極を与えることを見出し
た。
The hydrogen storage alloy electrode of the present invention comprises a mixture of hydrogen storage alloy powder mainly applied to a punching metal,
Charge / discharge by including a water-repellent agent that forms a water-repellent layer on the electrode surface, including a styrene-butadiene copolymer as a binder, a polymer substance that imparts hydrophilicity, and carbon black that imparts hydrophobicity The battery capacity does not decrease much due to the repetition of, and has an excellent cycle life. In addition, since the hydrophilicity and the hydrophobicity coexist inside the electrode, the absorption rate of the generated gas is high and the internal pressure of the battery is not excessively increased.
As a result of studying various thermoplastic resins and elastomers, the inventors have found that a styrene-butadiene copolymer having a specific ratio of styrene and butadiene provides sufficient mechanical strength even with a small amount of addition and charge / discharge. It was found that an electrode which can cope with expansion and contraction of the hydrogen storage alloy powder by the method is provided.

【0012】すなわち、スチレンーブタジエン共重合体
は、乾燥段階での加熱により三次元的な架橋反応が進行
して硬化することにより、支持体に塗着された水素吸蔵
合金を主とする混合物を固化する。この加熱が過度にな
ると、架橋反応が進行しすぎて堅くなったり脆くなった
りして結合剤としての好ましい機能を失う。この乾燥段
階での加熱は、必ずしも一様ではないが、例えば90℃
〜110℃で30分〜15分の加熱が適当である。この
スチレンーブタジエン共重合体におけるスチレンとブタ
ジエンとの重量比率は、スチレン100に対してブタジ
エン30〜100が好ましい。ブタジエンが前記の比率
より少ないと、電極の柔軟性が低下し、充放電の繰返し
による電極の体積変化する力が大きくなるため、合金粉
末と合金粉末間あるいは合金粉末とパンチングメタルと
の間の結着力が低下し、放電容量の低下が起こる。ま
た、ブタジエンが前記の比率より多くなると、合金粉末
の脱落は防げるが、体積膨張による合金粉末間の接触抵
抗が増大し、放電容量の低下が起こる。また、スチレン
ーブタジエン共重合体の添加割合は、水素吸蔵合金粉末
100重量部に対して0.3〜2.0重量部の範囲が適
当である。スチレンーブタジエン共重合体の添加割合が
前記より少ないと、水素吸蔵合金粉末を含む混合物をパ
ンチングメタルに十分結着することができず、電極を作
製できないか、作製できても電極強度が非常に弱くな
り、水素吸蔵合金粉末が容易に脱落してしまう。また、
スチレンーブタジエン共重合体の添加割合が前記より多
くなると、電極強度は強くなるが、水素吸蔵合金粉末の
前記共重合体で覆われる部分が多くなってガス吸収速度
が遅くなり、電池内圧が上昇する。そのため、漏液を生
じ、寿命が劣化する。
That is, the styrene-butadiene copolymer is a mixture mainly composed of a hydrogen storage alloy, which is applied to the support, as the three-dimensional crosslinking reaction proceeds by heating in the drying stage to cure the mixture. Solidify. If this heating becomes excessive, the crosslinking reaction will proceed too much, resulting in hardening or brittleness, and lose its desirable function as a binder. The heating in this drying step is not necessarily uniform, but is, for example, 90 ° C.
Heating at ˜110 ° C. for 30 minutes to 15 minutes is suitable. The weight ratio of styrene and butadiene in this styrene-butadiene copolymer is preferably butadiene 30 to 100 relative to 100 of styrene. If the content of butadiene is less than the above-mentioned ratio, the flexibility of the electrode is lowered and the force of volume change of the electrode due to repeated charging / discharging becomes large. The adhesion force is reduced, and the discharge capacity is reduced. On the other hand, if the amount of butadiene is more than the above range, the alloy powder can be prevented from falling off, but the contact resistance between the alloy powders due to volume expansion increases, and the discharge capacity decreases. Further, the addition ratio of the styrene-butadiene copolymer is appropriately in the range of 0.3 to 2.0 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. If the addition ratio of the styrene-butadiene copolymer is less than the above, the mixture containing the hydrogen storage alloy powder cannot be sufficiently bound to the punching metal, and the electrode cannot be prepared, or even if it is prepared, the electrode strength is very high. It becomes weak and the hydrogen storage alloy powder easily falls off. Also,
If the addition ratio of the styrene-butadiene copolymer is higher than the above, the electrode strength will be stronger, but the portion of the hydrogen storage alloy powder covered by the copolymer will be larger and the gas absorption rate will be slower, increasing the battery internal pressure. To do. Therefore, liquid leakage occurs and the service life is deteriorated.

【0013】一般に、水酸化ニッケルを活物質とするニ
ッケル電極を正極、水素吸蔵合金電極を負極に用いた密
閉型アルカリ蓄電池においては、負極近傍で以下の式
(1)(2)に示す反応が起こると考えられる。また、
過充電時には、式(1)(2)の競争反応として式
(3)の反応が起こる。
Generally, in a sealed alkaline storage battery using a nickel electrode having nickel hydroxide as an active material as a positive electrode and a hydrogen storage alloy electrode as a negative electrode, the reactions represented by the following formulas (1) and (2) occur near the negative electrode. Thought to happen. Also,
At the time of overcharge, the reaction of the formula (3) occurs as the competitive reaction of the formulas (1) and (2).

【0014】[0014]

【化1】 [Chemical 1]

【0015】同じく、過充電時に正極においては、式
(4)に示す反応が起こり、正極から酸素ガスが発生す
る。この酸素ガスは、水素吸蔵合金との間で式(5)に
示す反応によって消費される。
Similarly, at the time of overcharge, in the positive electrode, the reaction represented by the formula (4) occurs, and oxygen gas is generated from the positive electrode. This oxygen gas is consumed by the reaction represented by the formula (5) with the hydrogen storage alloy.

【0016】[0016]

【化2】 [Chemical 2]

【0017】すなわち、正極と対向する負極の表面にお
いては、式(4)の反応で正極から発生する酸素ガス
を、式(5)で示す反応によって水素吸蔵合金の表面で
吸収し、水を発生する。以上に示したように、理論的に
は、過充電時にガス発生反応として、電池全体で式
(1)の競争反応である式(3)の水素ガス発生反応、
および、正極で式(4)の酸素ガス発生反応が起こる。
一方、ガス吸収反応としては、水素吸蔵合金近傍で式
(2)の水素ガス吸収反応および負極表面で式(5)の
酸素ガス吸収反応が起こる。
That is, on the surface of the negative electrode facing the positive electrode, oxygen gas generated from the positive electrode by the reaction of the formula (4) is absorbed on the surface of the hydrogen storage alloy by the reaction shown by the formula (5) to generate water. To do. As described above, theoretically, as the gas generation reaction at the time of overcharge, the hydrogen gas generation reaction of the formula (3), which is the competitive reaction of the formula (1) in the whole battery,
And, the oxygen gas generation reaction of the formula (4) occurs at the positive electrode.
On the other hand, as the gas absorption reaction, the hydrogen gas absorption reaction of the formula (2) near the hydrogen storage alloy and the oxygen gas absorption reaction of the formula (5) occur on the surface of the negative electrode.

【0018】本発明においては、水素吸蔵合金粉末を主
とする混合物中の疎水性カーボンブラックが電極中に固
ー気界面を形成して式(5)の酸素ガス吸収速度を早
め、親水性のカルボキシメチルセルロースのナトリウム
塩が電極中に固ー液界面を確保して式(1)の反応によ
る水の消費速度を早める。こうして、過充電時の電池内
圧の上昇を抑制する。ここに用いる炭素粉末は実験の結
果、カーボンブラック系の材料は黒鉛系のものより水素
吸蔵合金粉末への付着性が優れ、塗着用のペーストを調
製したとき、適切な粘度を得ることができることを見出
した。また、カーボンブラック系の炭素粉末には、チャ
ネルブラック、サーマルブラック、ファーネスブラック
があるが、なかでもファーネスブラックは良好な特性を
示した。以下の実施例ではファーネスブラックを用い
た。これらのカーボンブラックの添加割合は、水素吸蔵
合金粉末100重量部に対して0.05〜1.5重量部
が好ましい。これより少ないと、酸素ガスの吸収速度が
遅くなり、電池内圧が高くなる。また、逆に多すぎて
も、水の吸収速度が低下し、電池内圧が高くなる。カー
ボンブラックの好ましい平均粒径は10nm〜60nm
である。同様に親水性付与剤として、種々の糊剤を検討
した結果、カルボキシメチルセルロースのナトリウム塩
が、塗着用のペーストに対し良好な粘性を与えることが
わかった。これの添加割合は、水素吸蔵合金粉末100
重量部に対して0.05〜2.0重量部が好ましい。こ
れより少ないと、水の消費速度が遅く電池内圧が高くな
り、逆に多すぎると、水素ガスの吸収速度が低下して電
池内圧が高くなる。
In the present invention, the hydrophobic carbon black in the mixture mainly composed of the hydrogen-absorbing alloy powder forms a solid-gas interface in the electrode to accelerate the oxygen gas absorption rate of the formula (5) and to make it hydrophilic. The sodium salt of carboxymethyl cellulose ensures a solid-liquid interface in the electrode and accelerates the water consumption rate by the reaction of formula (1). In this way, an increase in the battery internal pressure during overcharge is suppressed. The carbon powder used here is the result of an experiment, and it is shown that the carbon black-based material has better adhesion to the hydrogen-absorbing alloy powder than the graphite-based material, and that when a paste for coating is prepared, an appropriate viscosity can be obtained. I found it. In addition, carbon black-based carbon powder includes channel black, thermal black, and furnace black. Among them, furnace black showed good characteristics. Furnace black was used in the following examples. The addition ratio of these carbon blacks is preferably 0.05 to 1.5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. If it is less than this, the absorption rate of oxygen gas becomes slow and the internal pressure of the battery becomes high. On the contrary, if the amount is too large, the absorption rate of water decreases and the internal pressure of the battery increases. The preferred average particle size of carbon black is 10 nm to 60 nm.
Is. Similarly, as a result of investigating various sizing agents as the hydrophilicity-imparting agent, it was found that the sodium salt of carboxymethylcellulose gives a paste having good viscosity. The addition ratio of this is 100% hydrogen storage alloy powder.
0.05 to 2.0 parts by weight is preferable with respect to parts by weight. If it is less than this, the consumption rate of water is slow and the internal pressure of the battery becomes high. On the contrary, if it is too large, the absorption rate of hydrogen gas is reduced and the internal pressure of the battery becomes high.

【0019】過充電時に正極から発生する酸素ガスは、
主として負極表面で吸収される。よって負極表面近傍で
は、電極内部よりもさらに強力な固−気界面を形成する
必要がある。そこで撥水剤としては、少量で十分な撥水
作用をもたらすポリテトラフルオロエチレン、またはテ
トラフルオロエチレンとヘキサフルオロプロピレンとの
共重合体であるフッ素樹脂が好ましい。この撥水剤の電
極表面の単位面積当たりの着量は、0.1〜1.0mg
/cm2の範囲が好ましい。これより少ないと、酸素ガ
スの吸収速度が遅くなり、多すぎると、水の消費速度が
低下し、いずれも電池内圧が高くなる。
Oxygen gas generated from the positive electrode during overcharge is
Mainly absorbed on the surface of the negative electrode. Therefore, near the surface of the negative electrode, it is necessary to form a solid-gas interface that is stronger than the inside of the electrode. Therefore, as the water repellent, a polytetrafluoroethylene or a fluororesin which is a copolymer of tetrafluoroethylene and hexafluoropropylene, which provides a sufficient water repellency with a small amount, is preferable. The amount of this water repellent deposited on the electrode surface per unit area is 0.1 to 1.0 mg.
The range of / cm 2 is preferable. If it is less than this, the absorption rate of oxygen gas becomes slow, and if it is too much, the consumption rate of water decreases and the internal pressure of the battery becomes high.

【0020】次に、導電性支持体として、上記のよう
に、隣接する3つの孔の中心を結ぶ線によって二等辺三
角形を形成するような穿孔パターンで穿孔されたパンチ
ングメタルを用い、これに水素吸蔵合金粉末を主とする
混合物を塗着して電極を構成し、前記二等辺三角形の底
辺と平行な方向に捲回することにより、電極を真円に近
い曲面を有する渦巻き状に捲回することができ、しかも
電極にクラックを生じないので、正負極間の部分的短絡
による不良が大幅に削減される。さらに、パンチングメ
タルの端部に穿孔されていない無地部を設けることによ
り、水素吸蔵合金粉末の脱落や、電極を捲回したときに
部分的短絡の原因となる鋭利な部分の発生を防止するこ
とができる。
Next, as the conductive support, as described above, a punching metal punched in a punching pattern that forms an isosceles triangle by a line connecting the centers of three adjacent holes is used, and hydrogen is added to the punching metal. The electrode is formed by applying a mixture mainly containing occlusion alloy powder, and is wound in a direction parallel to the base of the isosceles triangle, thereby winding the electrode in a spiral shape having a curved surface close to a perfect circle. Moreover, since cracks do not occur in the electrode, defects due to partial short circuit between the positive and negative electrodes are significantly reduced. Furthermore, by providing an unpunched uncoated portion at the end of the punching metal, it is possible to prevent the hydrogen storage alloy powder from falling off and the generation of a sharp portion that causes a partial short circuit when the electrode is wound. You can

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。図1は、長尺帯状のパンチングメタルに水
素吸蔵合金粉末を含む混合物を塗着したものの一部を欠
いて示した平面図である。パンチングメタル1は、長尺
帯状の素材をその長手方向に繰り出して孔あけ加工した
もので、多数の孔2を設けた穿孔部3と穿孔しない無地
部4とが長手方向に平行に配列されている。このパンチ
ングメタル1をXで示す長手方向に送りながら水素吸蔵
合金粉末を含む混合物5をパンチングメタルの両面に塗
着し、乾燥後、プレスし、その後個々の電極6に切断す
る。点線7はその切断部分を表している。切離された電
極6の拡大図を図3に示す。上記のパンチングメタルに
おける穿孔パターンは、図2に示すように、隣接する3
つの孔の中心A、B、Cを結ぶ線で形成される三角形A
BCの頂角∠ABCが他の2つの底角∠BAC、∠BC
Aより小さくなる条件を満たす二等辺三角形を形成する
ようになっている。このような穿孔パターンで穿孔され
たパンチングメタルに、水素吸蔵合金粉末を主とする混
合物を塗着して電極を構成し、前記二等辺三角形の底辺
ACと平行な方向Xの方向に捲回することにより、円筒
形のロールに構成される。そして、前記三角形の底辺は
円筒形ロールの軸に垂直な面内にある。このような構成
とすることにより、電極を真円に近い曲面を有する渦巻
き状に捲回することができ、しかも電極にクラックを生
じないので、正負極間の部分的短絡による不良が大幅に
削減される。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a plan view in which a part of a long strip-shaped punching metal coated with a mixture containing hydrogen storage alloy powder is cut away. The punching metal 1 is a long strip-shaped material that is fed out in the longitudinal direction and is perforated, and a perforated portion 3 provided with a large number of holes 2 and a non-perforated plain portion 4 are arranged in parallel in the longitudinal direction. There is. While feeding the punching metal 1 in the longitudinal direction indicated by X, the mixture 5 containing the hydrogen-absorbing alloy powder is applied to both sides of the punching metal, dried, pressed, and then cut into individual electrodes 6. The dotted line 7 represents the cut portion. An enlarged view of the separated electrode 6 is shown in FIG. As shown in FIG. 2, the perforation pattern of the punching metal has three adjacent holes.
Triangle A formed by the line connecting the centers A, B and C of the two holes
The top angle ∠ABC of BC is the other two bottom angles ∠BAC, ∠BC
An isosceles triangle that satisfies the condition of being smaller than A is formed. A punching metal punched in such a punching pattern is coated with a mixture containing mainly hydrogen storage alloy powder to form an electrode, which is wound in a direction X parallel to the base AC of the isosceles triangle. As a result, a cylindrical roll is formed. The base of the triangle is in the plane perpendicular to the axis of the cylindrical roll. With such a structure, the electrode can be wound in a spiral shape having a curved surface close to a perfect circle, and the electrode does not crack. Therefore, defects due to a partial short circuit between the positive and negative electrodes are significantly reduced. To be done.

【0022】ここにおいて、前記三角形は、頂角の角度
が46゜〜58゜、底角の角度が67゜〜61゜の三角
形であることが好ましい。頂角の角度が46゜より小さ
いと、三角形の底辺の長さは小さくなり、底辺の両端の
孔A、孔C間の間隔が狭くなる。そのためパンチングメ
タルは破断しやすくなる。また通常、パンチングメタル
は、ロールに巻き取られた長尺帯状の素材をその長手方
向に繰り出して孔あけ加工をすることによって作製され
る。そして、そのパンチングメタルをその長手方向に送
りながら、水素吸蔵合金粉末を含む混合物の塗着および
プレス等を施される。また、個々の極板に切断した後の
捲回方向も、上記の送り方向と一致させるように、前記
三角形の底辺を送り方向と平行とされる。そこで、上記
のように、孔Aと孔C間の間隔が狭くなると、水素吸蔵
合金を含む混合物の塗着後にプレスしたとき、パンチン
グメタルはその送り方向に伸びを生じる。このため、塗
着層の均質な電極を得られなくなる。また、頂角の角度
が58゜より大きいと、角張った曲面となって極板を真
円に近い曲面状に捲回することが難しい。
Here, the triangle is preferably a triangle having an apex angle of 46 ° to 58 ° and a base angle of 67 ° to 61 °. When the apex angle is smaller than 46 °, the length of the base of the triangle becomes small and the distance between the holes A and C at both ends of the base becomes narrow. Therefore, the punching metal is easily broken. Further, the punching metal is usually produced by unwinding a long strip-shaped material wound on a roll in the lengthwise direction and punching the material. Then, while feeding the punching metal in the longitudinal direction, the mixture containing the hydrogen storage alloy powder is applied and pressed. Further, the base of the triangle is parallel to the feed direction so that the winding direction after cutting into the individual electrode plates also matches the feed direction. Therefore, as described above, when the distance between the holes A and C becomes narrow, the punching metal expands in the feed direction when pressed after the mixture containing the hydrogen storage alloy is applied. For this reason, it becomes impossible to obtain a uniform electrode of the coating layer. Further, if the apex angle is larger than 58 °, it becomes difficult to wind the electrode plate into a curved surface close to a perfect circle due to an angular curved surface.

【0023】前記パンチングメタルの孔径は、1.0m
m以上2.5mm以下、好ましくは2.0mm以下であ
ることが望ましい。孔径が2.5mmより大きいと、電
極捲回時にパンチングメタルはその孔と孔の中心を結ぶ
(捲回方向に対して垂直な方向)直線上で曲らず、不規
則に変形し、そのため電極表面には部分的に突出する鋭
利な部分が生じて、部分的短絡による不良が発生しやす
くなる。また、孔径が1.0mmより小さい場合は、鋼
板を打ち抜く時に望みの開孔率とするためには、打ち抜
きピン数、打ち抜き回数を増やさなければならない。こ
のためパンチングメタルはコスト高となる。さらに、ピ
ン径が1.0mmより小さい場合、ピン強度が弱く、折
損しやすいので鋼板打ち抜き圧に耐えられなくなる。パ
ンチングメタルの開口率は35〜61%が適当である。
開口率が前記の範囲より小さいと極板中に占めるパンチ
ングメタルの体積が大きくなり、高容量の電極が得られ
ない。また、パンチングメタルの表裏の塗着層間の結着
効果が低下し、塗着層が脱落しやすくなる。開口率を前
記の範囲より大きくすると、パンチングメタル自体の強
度が弱くなり、塗着、プレス等の連続作業ができない。
The hole diameter of the punching metal is 1.0 m.
It is desirable that the thickness is m or more and 2.5 mm or less, preferably 2.0 mm or less. If the hole diameter is larger than 2.5 mm, the punching metal does not bend on the straight line connecting the holes and the center of the holes (perpendicular to the winding direction) at the time of winding the electrode and deforms irregularly. A sharp portion that partially projects occurs on the surface, and a defect due to a partial short circuit is likely to occur. When the hole diameter is smaller than 1.0 mm, the number of punching pins and the number of punching must be increased in order to obtain a desired opening ratio when punching a steel sheet. Therefore, the cost of punching metal is high. Further, if the pin diameter is smaller than 1.0 mm, the pin strength is weak and the pin is easily broken, so that it cannot withstand the steel plate punching pressure. The punching metal has an aperture ratio of 35 to 61%.
If the aperture ratio is smaller than the above range, the volume of punching metal in the electrode plate becomes large, and a high capacity electrode cannot be obtained. Further, the binding effect between the coating layers on the front and back of the punching metal is reduced, and the coating layer is likely to fall off. If the aperture ratio is larger than the above range, the strength of the punching metal itself becomes weak, and continuous work such as coating and pressing cannot be performed.

【0024】パンチングメタルの厚さは、40〜80μ
mが好ましい。これより薄いと強度が不足し、厚いと高
容量の電極を得られない。さらに、パンチングメタルの
端部に穿孔されていない無地部を設けることにより、水
素吸蔵合金粉末の脱落や、電極を捲回したときに部分的
短絡の原因となる鋭利な部分の発生を防止することがで
きる。すなわち、電極は通常長尺のパンチングメタルに
水素吸蔵合金粉末を含む混合物を塗着した後に電極個々
の大きさに切断することにより作製される。しがって、
パンチングメタルに穿孔する際、個々の電極端部に無地
部ができるように穿孔パターンを設定しておかないと、
個々に切断した電極は、図6に示すようになる。孔の部
分で切断されると、塗着されていた水素吸蔵合金粉末
は、切断された孔の部分5aで容易にパンチングメタル
から脱落し、またパンチングメタルの端部には鋭利な部
分ができて電極捲回時に短絡を生じる原因となる。本発
明においては、図3に示すように、個々の電極に切断し
た際、少なくとも相対向する二辺、好ましくは電極の長
手方向の二辺には無地部ができるようにする。こうし
て、電極群を前記のような断面渦巻き状の円筒形ロール
に構成した際、パンチングメタルの端部の無地部は円筒
形ロールの軸方向の端部に対応する部分にあるようにす
る。図4に示すように、四辺ともに無地部ができるよう
にすることがより好ましい。
The punching metal has a thickness of 40 to 80 μm.
m is preferred. If it is thinner than this, strength is insufficient, and if it is thick, a high capacity electrode cannot be obtained. Furthermore, by providing a non-perforated uncoated portion at the end of the punching metal, it is possible to prevent the hydrogen storage alloy powder from falling off and the generation of a sharp portion that causes a partial short circuit when the electrode is wound. You can That is, the electrode is usually produced by coating a long punching metal with a mixture containing the hydrogen storage alloy powder and then cutting the electrode into individual sizes. Therefore,
When punching holes in punching metal, the punching pattern must be set so that there is a plain area at each electrode end.
The individually cut electrodes are as shown in FIG. When cut at the hole, the hydrogen-absorbing alloy powder that has been applied easily falls off from the punching metal at the cut hole 5a, and a sharp portion is formed at the end of the punching metal. This will cause a short circuit when the electrodes are wound. In the present invention, as shown in FIG. 3, when cut into individual electrodes, at least two sides facing each other, preferably two sides in the longitudinal direction of the electrodes, have a plain portion. In this way, when the electrode group is formed into the cylindrical roll having the above-mentioned spiral shape in cross section, the uncoated portion of the end of the punching metal is located at the portion corresponding to the end of the cylindrical roll in the axial direction. As shown in FIG. 4, it is more preferable to form a plain portion on all four sides.

【0025】[実施例1]市販のMm(ミッシュメタ
ル)、Ni、Co、Mn、Alの所定量を混合し、その
混合物をアーク溶解法により加熱溶解し、これを冷却し
てMmNi3.55Co0.75Mn0.4Al0.3の組成の水素吸
蔵合金を作製した。これを粉砕機により37μm以下の
粒径に粉砕した後、熱アルカリ水溶液中に浸漬処理し、
水洗、乾燥した。なお、ここに用いたMmは、La33
重量%、Ce48重量%、Pr4重量%、Nd14重量
%、その他1重量%からなる希土類元素の混合物であ
る。この水素吸蔵合金粉末100重量部に対して、カル
ボキシメチルセルロースのナトリウム塩(以下CMCと
称する)0.15重量部、平均粒径30nmのカーボン
ブラック(ファーネスブラック)0.30重量部、スチ
レンとブタジエンの重量比が100:68のスチレンー
ブタジエン共重合体(以下SBRと称する)0.8重量
部、および分散媒としての水14重量部を添加し、混練
してペーストを作製した。一方、導電性支持体として、
孔径が1.0mmで、隣接する3つの孔の中心を結ぶ線
によって形成される二等辺三角形の頂角が56゜、底角
が62゜の穿孔パターンで開口率43%に穿孔したパン
チングメタルを作製した。このパンチングメタルはその
素材が厚さ60μmの冷間圧延鋼板で、穿孔後に表面に
約2〜3μmの厚みのニッケルめっきをしてある。
Example 1 Commercially available Mm (Misch metal), Ni, Co, Mn and Al were mixed in predetermined amounts, the mixture was heated and melted by an arc melting method, and this was cooled and MmNi 3.55 Co 0.75 A hydrogen storage alloy having a composition of Mn 0.4 Al 0.3 was prepared. After crushing this to a particle size of 37 μm or less with a crusher, it is immersed in a hot alkaline aqueous solution,
It was washed with water and dried. The Mm used here is La33.
It is a mixture of rare earth elements consisting of 1 wt%, 48 wt% Ce, 4 wt% Pr, 14 wt% Nd, and 1 wt%. With respect to 100 parts by weight of this hydrogen storage alloy powder, 0.15 parts by weight of sodium salt of carboxymethyl cellulose (hereinafter referred to as CMC), 0.30 part by weight of carbon black (furnace black) having an average particle diameter of 30 nm, and styrene and butadiene 0.8 parts by weight of a styrene-butadiene copolymer (hereinafter referred to as SBR) having a weight ratio of 100: 68 and 14 parts by weight of water as a dispersion medium were added and kneaded to prepare a paste. On the other hand, as a conductive support,
A punching metal with a hole diameter of 1.0 mm and an isosceles triangle formed by a line connecting the centers of three adjacent holes with a vertical angle of 56 ° and a base angle of 62 ° was drilled with an aperture ratio of 43%. It was made. This punching metal is a cold-rolled steel plate having a thickness of 60 μm, and has a surface plated with nickel of about 2 to 3 μm after perforation.

【0026】このパンチングメタルの両面に上記のペー
ストを塗着した後、100℃の乾燥炉において20分間
乾燥し、プレスした後、両面にポリテトラフルオロエチ
レン(以下PTFEと称する)の水性デイスパージョン
をスプレー塗布し、電極表面積に対してPTFEの着量
0.5mg/cm2の撥水層を設けた。これを所定の寸
法に切断して電極とした。なお、個々の電極は、そのパ
ンチングメタルの端部に図3に示すように、無地部がで
きるよう切断してある。この電極を電極Aとする。次
に、スチレン100に対してブタジエンの重量比がそれ
ぞれ40、90のSBRを用いて上記と同様にして電極
B、C を得た。また、スチレンとブタジエンの重量比
が100:68のSBRを用い、その添加割合を水素吸
蔵合金粉末100重量部に対してそれぞれ0.4重量
部、2.0重量部とする他は電極Aと同様にして電極
D、Eを得た。
After coating the above-mentioned paste on both sides of this punched metal, it was dried in a drying oven at 100 ° C. for 20 minutes and pressed, and then an aqueous dispersion of polytetrafluoroethylene (hereinafter referred to as PTFE) was formed on both sides. Was spray-coated to form a water-repellent layer having a PTFE coating amount of 0.5 mg / cm 2 on the electrode surface area. This was cut into a predetermined size to form an electrode. It should be noted that each electrode is cut so that a blank portion is formed at the end of the punching metal as shown in FIG. This electrode is called electrode A. Next, electrodes B and C were obtained in the same manner as above using SBR having a weight ratio of butadiene to 100 of styrene of 40 and 90, respectively. Further, SBR having a weight ratio of styrene and butadiene of 100: 68 was used, and the addition ratios thereof were 0.4 parts by weight and 2.0 parts by weight, respectively, with respect to 100 parts by weight of the hydrogen storage alloy powder, and the electrode A was used. Electrodes D and E were obtained in the same manner.

【0027】また、比較例として、スチレン100に対
してブタジエンの重量比が20、120のSBRを用い
て電極Aと同様にして電極F、Gを得た。さらに、スチ
レン100に対してブタジエンの重量比が68のSBR
を用い、その添加割合を水素吸蔵合金粉末100重量部
に対して0.1重量部、3.0重量部とする他は電極A
と同様にして電極H、Iを得た。また、比較例としてS
BRの代りにPTFEを用い、その添加割合を水素吸蔵
合金粉末100重量部に対して0.7重量部とする他は
電極Aと同様にして電極Jを得た。これらの各水素吸蔵
合金電極A〜Jを、活物質に水酸化ニッケル粉末を用い
た非焼結式ニッケル正極およびスルホン化処理したポリ
プロピレンの不織布からなるセパレータと組合せ、水素
吸蔵合金電極のパンチングメタルの穿孔パターンである
二等辺三角形の底辺と平行な方向に捲回して、渦巻き状
の電極群を構成した。この電極群は、円筒形ロールとな
っており、前記パンチングメタルの三角形の底辺は円筒
形ロールの軸に垂直な面内にあり、無地部は円筒形ロー
ルの上下に位置している。
As a comparative example, electrodes F and G were obtained in the same manner as the electrode A using SBR in which the weight ratio of butadiene to styrene was 20 and 120. Further, SBR having a weight ratio of butadiene to styrene of 100 is 68.
Electrode A except that the addition ratio is 0.1 part by weight and 3.0 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.
Electrodes H and I were obtained in the same manner as in. As a comparative example, S
An electrode J was obtained in the same manner as the electrode A, except that PTFE was used instead of BR and the addition ratio was 0.7 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. Each of these hydrogen storage alloy electrodes A to J was combined with a non-sintered nickel positive electrode using nickel hydroxide powder as an active material and a separator made of a sulfonated polypropylene nonwoven fabric to form a punching metal of a hydrogen storage alloy electrode. The spirally wound electrode group was formed by winding in a direction parallel to the base of the isosceles triangle, which is a perforation pattern. This electrode group is a cylindrical roll, the base of the triangle of the punching metal is in a plane perpendicular to the axis of the cylindrical roll, and the plain parts are located above and below the cylindrical roll.

【0028】図5は、上記の電極群を用いたニッケルー
水素蓄電池の構造を示す。電極群10は、水素吸蔵合金
電極からなる負極11、正極12およびセパレータ13
から構成されている。14はニッケルめっきした鋼製電
池ケースであり、その内部には、絶縁板15上に電極群
10を収容している。なお、負極は、その最外周がセパ
レータで覆われず露出していて電池ケース内面に接触
し、電気的導通を保っている。電池ケースの開口部は、
封口板16および絶縁ガスケット17によって気密かつ
液密に封じられている。封口板16には、これに設けた
図示しないガス抜き孔を閉鎖するゴム弁体18、ゴム弁
体18を押さえるキャップ19が組合されて、電池内圧
が所定値を超えると作動する安全弁が構成されている。
正極のリード板20は封口板16に溶接されている。以
上の電極A〜Jを用いて組み立てた電池A〜Jについ
て、1400mAの定電流で1.5時間充電し、1時間
休止後、1400mAの定電流で1.0Vまで放電する
充放電サイクルを繰返して寿命試験をした。放電容量が
初期の60%となった時点で寿命とした。その結果を表
1に示す。
FIG. 5 shows the structure of a nickel-hydrogen storage battery using the above electrode group. The electrode group 10 includes a negative electrode 11, a positive electrode 12, and a separator 13 which are hydrogen storage alloy electrodes.
It consists of Reference numeral 14 is a nickel-plated steel battery case, in which the electrode group 10 is housed on an insulating plate 15. The negative electrode has its outermost periphery exposed without being covered with the separator and contacts the inner surface of the battery case to maintain electrical continuity. The opening of the battery case is
It is hermetically and liquid-tightly sealed by the sealing plate 16 and the insulating gasket 17. A rubber valve body 18 for closing a gas vent hole (not shown) provided in the sealing plate 16 and a cap 19 for pressing the rubber valve body 18 are combined to form a safety valve that operates when the battery internal pressure exceeds a predetermined value. ing.
The positive lead plate 20 is welded to the sealing plate 16. The batteries A to J assembled using the above electrodes A to J were charged and discharged at a constant current of 1400 mA for 1.5 hours, and after resting for 1 hour, discharged to 1.0 V at a constant current of 1400 mA. Life test. The life was defined as the point when the discharge capacity reached 60% of the initial value. The results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】表1から明らかように、SBRにおけるス
チレンとブタジエンの比率およびSBRの添加割合によ
って、充放電が進むにつれて、合金粉末のパンチングメ
タルからの脱落や合金粉末間の接触抵抗の変化を生じ
て、サイクル寿命が大きく異なることがわかる。また、
SBRの添加割合が水素吸蔵合金粉末100重量部に対
して0.1重量部である電池Hにおいては、水素吸蔵合
金粉末のパンチングメタルからの脱落により寿命が短
く、245サイクルであった。SBRの添加割合が水素
吸蔵合金粉末100重量部に対して3.0重量部である
電池Iは、152サイクルであった。これは、電極中の
SBR量が多いため負極の容量が小さく、充放電サイク
ルの進行とともに電池内圧の上昇により電解液が漏洩
し、このため電池容量が低下したことによる。従来から
結着剤として用いられているPTFEを用いた電池J
は、電極群作製時に70%以上の水素吸蔵合金粉末が脱
落したため、第1サイクルの充電ができなかった。
As is clear from Table 1, as the charging / discharging progresses, the alloy powder comes off from the punching metal and the contact resistance between the alloy powders changes depending on the ratio of styrene and butadiene in SBR and the ratio of SBR added. It can be seen that the cycle life is greatly different. Also,
In Battery H in which the addition ratio of SBR was 0.1 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder, the hydrogen storage alloy powder fell out of the punching metal, resulting in a short life and 245 cycles. The battery I in which the addition ratio of SBR was 3.0 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder had 152 cycles. This is because the capacity of the negative electrode was small due to the large amount of SBR in the electrode, and the electrolytic solution leaked due to an increase in the battery internal pressure as the charge / discharge cycle proceeded, and the battery capacity decreased accordingly. Battery J using PTFE which has been conventionally used as a binder
, 70% or more of the hydrogen-absorbing alloy powder fell off during the production of the electrode group, so that the first cycle charging could not be performed.

【0031】[実施例2]実施例1と同様にして粉砕機
で粒径37μm以下に粉砕したMmNi3.55Co0.75
0.4Al0.3の組成をもつ水素吸蔵合金粉末を熱アルカ
リ水溶液に浸漬処理した。この合金粉末100重量部に
対して、CMCを0.15重量部、カーボンブラックを
0.30重量部、スチレンとブタジエンの重量比が10
0:68のSBRを0.8重量部、および分散媒として
の水14重量部を混練してペーストを作製した。このペ
ーストを実施例1と同様のパンチングメタルの両面に塗
着し、乾燥後、プレスし、所定の寸法に切断して電極を
得た。この電極の両面にPTFEの水性デイスパージョ
ンをスプレー塗布し、0.5mg/cm2の撥水層を設
けた。この電極をKとする。
[0031] MmNi pulverized to at most a particle size 37μm in Example 2 pulverizer in the same manner as in Example 1 3.55 Co 0.75 M
A hydrogen storage alloy powder having a composition of n 0.4 Al 0.3 was immersed in a hot alkaline aqueous solution. With respect to 100 parts by weight of this alloy powder, 0.15 parts by weight of CMC, 0.30 parts by weight of carbon black, and the weight ratio of styrene and butadiene are 10 parts by weight.
0.8 parts by weight of 0:68 SBR and 14 parts by weight of water as a dispersion medium were kneaded to prepare a paste. This paste was applied on both sides of a punching metal similar to that in Example 1, dried, pressed, and cut into a predetermined size to obtain an electrode. An aqueous dispersion of PTFE was spray-coated on both surfaces of this electrode to form a water repellent layer of 0.5 mg / cm 2 . This electrode is designated as K.

【0032】この電極を用いて実施例1と同様にしてニ
ッケルー水素電池Kを作製した。また、CMCの添加割
合を水素吸蔵合金粉末100重量部に対して0.05重
量部、2.0重量部および3.0重量部とした他は上記
と同様にして電池L、Mおよび比較例の電池Qを作製し
た。さらに、水素吸蔵合金粉末100重量部に対してC
MCを0.15重量部とし、カーボンブラックをそれぞ
れ0.10重量部、1.5重量部、0.01重量部、
2.5重量部とした他は電池Kと同様にして電池N、P
および比較例の電池R、Sを得た。また、カーボンブラ
ックを添加しない電極、CMCを添加しない電極、撥水
層を設けない電極およびPTFEの着量が1.5mg/
cm2とした他はKと同様の構成の電極を用いてそれぞ
れ電池T、U、VおよびWを作製した。上記の各電池に
ついて、電池ケースの底部に直径1.0mmの穴をあ
け、ここに圧力センサを取り付けて密封し、1400m
Aの定電流で2時間充電したときの電池内圧を測定し
た。その結果を表2に示す。
Using this electrode, a nickel-hydrogen battery K was prepared in the same manner as in Example 1. In addition, batteries L and M and Comparative Examples were performed in the same manner as above except that the addition ratio of CMC was 0.05 parts by weight, 2.0 parts by weight and 3.0 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder. A battery Q was manufactured. Further, C based on 100 parts by weight of the hydrogen storage alloy powder
MC is 0.15 parts by weight, carbon black is 0.10 parts by weight, 1.5 parts by weight, 0.01 parts by weight,
Batteries N and P were the same as battery K except 2.5 parts by weight.
And the batteries R and S of the comparative example were obtained. In addition, the electrode containing no carbon black, the electrode containing no CMC, the electrode having no water-repellent layer, and the coating amount of PTFE of 1.5 mg /
Batteries T, U, V, and W were produced using electrodes having the same configuration as K, except that cm 2 was used. For each of the above batteries, a hole with a diameter of 1.0 mm was made in the bottom of the battery case, a pressure sensor was attached to this hole, and the hole was sealed at 1400 m.
The battery internal pressure was measured when the battery was charged at a constant current of A for 2 hours. The results are shown in Table 2.

【0033】[0033]

【表2】 [Table 2]

【0034】表2の電池KとUの比較から、CMCの添
加効果が明らかである。すなわち、CMCの添加によ
り、電極に親水性が付与され、前記式(1)による水の
消費速度が大きくなり、電池内圧は低くなる。しかし、
CMCの添加割合の大きい電池Qは、水素吸蔵合金近傍
の疎水性が低下し、前記式(2)および式(5)の反応
によるガス吸収速度が低下して電池内圧が上昇する。一
方、電池Kと電池Rの比較から、電極中にカーボンによ
り疎水性を付与することにより、電池内圧が低くなるこ
とが明らかである。しかし、電池Sの結果から、疎水性
カーボンの添加割合が多すぎると、電極中の親水性が低
下するため、電池内圧が高くなる。さらに、電池Kと電
池Vの比較から、電極表面に撥水層を設けることによ
り、酸素ガスの吸収速度が増大し、電池内圧は低くなる
ことがわかる。撥水剤の添加割合が多くなりすぎると、
電池の内部抵抗が高くなり、放電電圧が低下する。ま
た、電池Wのように、電極内部での式(5)の反応を低
下させ、内圧が上昇する。
From the comparison of batteries K and U in Table 2, the effect of adding CMC is clear. That is, the addition of CMC imparts hydrophilicity to the electrode, increases the water consumption rate according to the above formula (1), and lowers the battery internal pressure. But,
In the battery Q in which the proportion of CMC added is large, the hydrophobicity in the vicinity of the hydrogen storage alloy is reduced, the gas absorption rate due to the reactions of the formulas (2) and (5) is reduced, and the internal pressure of the battery is increased. On the other hand, it is clear from the comparison between the battery K and the battery R that the internal pressure of the battery is lowered by imparting hydrophobicity to the electrode by carbon. However, from the result of the battery S, if the addition ratio of the hydrophobic carbon is too large, the hydrophilicity in the electrode is lowered, and the internal pressure of the battery is increased. Further, from the comparison between the battery K and the battery V, it can be seen that by providing the water repellent layer on the electrode surface, the absorption rate of oxygen gas increases and the battery internal pressure decreases. If too much water repellent is added,
The internal resistance of the battery increases and the discharge voltage decreases. Further, like the battery W, the reaction of the formula (5) inside the electrode is lowered, and the internal pressure rises.

【0035】[実施例3]実施例1と同様にして粒径3
7μm以下に粉砕したMmNi3.55Co0.75Mn0 .4
0.3の組成をもつ水素吸蔵合金粉末を熱アルカリ水溶
液に浸漬処理した。この水素吸蔵合金粉末100重量部
に対して、CMCを0.15重量部、カーボンブラック
を0.30重量部、スチレンとブタジエンの重量比が1
00:68のSBRを0.8重量部、および分散媒とし
ての水を14重量部添加し、混練してペーストを作製し
た。このペーストを孔径が1.0mmで隣接する三つの
孔の中心を結ぶ線によって形成される二等辺三角形の頂
角が56゜、底角が62゜、開孔率が43%となるよう
に穿孔された厚み60μmのパンチングメタルに塗着
し、乾燥、プレス後、両面にPTFEの水性ディスパー
ジョンを0.5mg/cm2の割合でスプレー塗布し表
面に撥水層を設けた。これを所定寸法に切断して得た負
極板を用いて実施例1と同様にして電池(a)を作製し
た。
[Embodiment 3] Particle size 3 in the same manner as in Embodiment 1.
MmNi ground to 7μm or less 3.55 Co 0.75 Mn 0 .4 A
A hydrogen storage alloy powder having a composition of 0.3 was immersed in a hot alkaline aqueous solution. With respect to 100 parts by weight of this hydrogen storage alloy powder, 0.15 parts by weight of CMC, 0.30 parts by weight of carbon black, and the weight ratio of styrene and butadiene are 1
0.8 parts by weight of SBR at 00:68 and 14 parts by weight of water as a dispersion medium were added and kneaded to prepare a paste. Perforate this paste so that the apex angle of the isosceles triangle formed by the line connecting the centers of three adjacent holes with a hole diameter of 1.0 mm is 56 °, the base angle is 62 °, and the open area ratio is 43%. It was applied to the punching metal having a thickness of 60 μm, dried and pressed, and then an aqueous dispersion of PTFE was spray-coated on both surfaces at a rate of 0.5 mg / cm 2 to form a water-repellent layer on the surface. A battery (a) was produced in the same manner as in Example 1 using the negative electrode plate obtained by cutting this into a predetermined size.

【0036】また、孔径が1.0mmで隣接する三つの
孔の中心を結ぶ線によって形成される二等辺三角形の頂
角の角度をそれぞれ60゜、70゜とし、開孔率が43
%となるように穿孔された厚み60μmのパンチングメ
タルを支持体として前記と同様にして負極板を製作し
た。これら負極板をそれぞれ用いて比較例による電池
(b)、(c)を作製した。次に、孔径が1.0mmで
隣接する三つの孔の中心を結ぶ線によって形成される二
等辺三角形の頂角が56゜、底角が62゜、開孔率が4
3%となるように、かつ前記三角形の底辺が電極の捲回
方向と垂直となるように穿孔された厚み60μmのパン
チングメタルを用いた他は電池(a)と同様な方法で比
較例による電池(d)を作製した。さらに上記電池
(a)に用いた電極を長手方向の両端部に無地部を設け
ないように切断する他は電池(a)と全く同様にして比
較例による電池(e)を作製した。これらの実施例によ
る電池(a)、および比較例による電池(b)、
(c)、(d)、(e)をそれぞれ1000セル用意
し、電解液を注液する前に各々の正・負極間に250V
の電圧を印加して導通試験を実施し、短絡不良率を求め
た。その結果を表3に示す。
The apex angle of the isosceles triangle formed by a line connecting the centers of three adjacent holes with a diameter of 1.0 mm is 60 ° and 70 °, respectively, and the aperture ratio is 43.
%, A negative electrode plate was manufactured in the same manner as described above, using a punching metal having a thickness of 60 μm and having a thickness of 60% as a support. Batteries (b) and (c) according to a comparative example were produced using each of these negative electrode plates. Next, an isosceles triangle formed by a line connecting the centers of three adjacent holes with a hole diameter of 1.0 mm has an apex angle of 56 °, a base angle of 62 °, and an open area ratio of 4
A battery according to a comparative example in the same manner as the battery (a) except that a punching metal having a thickness of 60 μm, which was perforated so as to have a content of 3% and the base of the triangle was perpendicular to the winding direction of the electrode, was used. (D) was produced. Further, a battery (e) according to a comparative example was produced in exactly the same manner as the battery (a), except that the electrodes used in the battery (a) were cut so that no blank portions were provided at both ends in the longitudinal direction. A battery (a) according to these examples, and a battery (b) according to a comparative example,
Prepare 1000 cells each of (c), (d), and (e), and 250 V between each positive and negative electrodes before injecting the electrolytic solution.
The voltage was applied to conduct a continuity test, and the short-circuit defect rate was obtained. The results are shown in Table 3.

【0037】[0037]

【表3】 [Table 3]

【0038】本発明の実施例による電池(a)と比較例
による電池(b)、および(c)と比較した場合、前記
三角形の頂角の角度が大きくなるにつれて、短絡不良率
は大きくなることがわかる。これは、隣接する三つの孔
の中心を結ぶ線で形成される三角形の底辺と平行に極板
を捲回した場合に、頂角が小さくなるほど穿孔列のピッ
チが小さくなり、電極群がより真円に近い状態で構成さ
れ、負極板のクラックによる短絡不良が低減されたため
と考えられる。また、端面に無地部を有しない比較例に
よる電池(e)は、実施例による電池(a)と同様なパ
ンチングメタルを使用しているにもかかわらず、短絡不
良率は、最も高い結果となった。これは、負極板の端面
での活物質の脱落およびパンチングメタルの突起がセパ
レーターを貫通し、短絡不良を引き起こしたと考えられ
る。また、比較例による電池(d)は実施例による電池
(a)の穿孔パターンを90°回転させたパターンであ
り、この短絡不良率が実施例による電池(a)の不良率
に比べて大きいことから、二等辺三角形の底辺と垂直な
方向で捲回した場合は、負極板が不規則に折れ曲ったた
めに短絡不良が多くなったと考えられる。以上のよう
に、負極板に使用されるパンチングメタルは、隣接する
三つの孔の中心を結ぶ線分で形成される三角形がその頂
角が両底角より小さい二等辺三角形であり、長手方向の
両端部に無地部を形成し前記二等辺三角形の底辺と平行
に極板群を捲回することで短絡不良を大幅に低減するこ
とができる。
When the battery (a) according to the embodiment of the present invention is compared with the batteries (b) and (c) according to the comparative example, the short-circuit failure rate increases as the apex angle of the triangle increases. I understand. This means that when the electrode plate is wound in parallel with the base of the triangle formed by the line connecting the centers of three adjacent holes, the pitch of the row of holes decreases as the apex angle decreases, and the electrode group becomes more accurate. It is considered that the structure is close to a circle, and short circuit defects due to cracks in the negative electrode plate are reduced. In addition, the battery (e) according to the comparative example, which does not have a plain portion on the end face, has the highest short-circuit defect rate despite using the same punching metal as the battery (a) according to the example. It was It is considered that this is because the active material fell off on the end face of the negative electrode plate and the projections of the punching metal penetrated the separator to cause a short circuit failure. In addition, the battery (d) according to the comparative example is a pattern obtained by rotating the perforation pattern of the battery (a) according to the example by 90 °, and this short circuit defect rate is higher than the defect rate of the battery (a) according to the example. From the above, it is considered that when wound in the direction perpendicular to the base of the isosceles triangle, the negative electrode plate was irregularly bent, resulting in many short circuit defects. As described above, in the punching metal used for the negative electrode plate, the triangle formed by the line segment connecting the centers of the three adjacent holes is an isosceles triangle whose apex angle is smaller than both base angles. Short-circuit defects can be significantly reduced by forming plain parts at both ends and winding the electrode plate group in parallel with the base of the isosceles triangle.

【0039】[0039]

【発明の効果】以上のように本発明によれば、放電容量
が大きく、かつ充放電サイクル寿命に優れ、急速充電時
における電池内圧の過度の上昇のない水素吸蔵合金電極
を得ることができる。また、渦巻き状に捲回した際に、
短絡による不良が極めて少ない水素吸蔵合金電極を得る
ことができる。さらに、本発明によれば、急速充電性能
が改善された、高容量で信頼性の高い密閉型ニッケルー
水素蓄電池を得ることができる。
As described above, according to the present invention, it is possible to obtain a hydrogen storage alloy electrode having a large discharge capacity, an excellent charge / discharge cycle life, and an excessive increase in battery internal pressure during rapid charging. Also, when wound in a spiral,
It is possible to obtain a hydrogen storage alloy electrode having extremely few defects due to a short circuit. Furthermore, according to the present invention, it is possible to obtain a highly reliable and sealed nickel-metal hydride storage battery with improved rapid charging performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例におけるパンチングメタルに水
素吸蔵合金粉末を含む混合物を塗着したものの一部を切
り欠いて示した平面図である。
FIG. 1 is a plan view showing a punching metal according to an embodiment of the present invention, in which a mixture containing a hydrogen storage alloy powder is applied, and a part of the metal is cut away.

【図2】同パンチングメタルの穿孔パターンを示す図で
ある。
FIG. 2 is a view showing a punching pattern of the punching metal.

【図3】同実施例における電極の一部を切り欠いた平面
図である。
FIG. 3 is a plan view in which a part of an electrode in the example is cut away.

【図4】本発明の他の実施例における電極の一部を切り
欠いた平面図である。
FIG. 4 is a plan view in which a part of an electrode according to another embodiment of the present invention is cut away.

【図5】本発明の実施例におけるニッケルー水素蓄電池
の一部を切り欠いた分解斜視図である。
FIG. 5 is an exploded perspective view in which a nickel-hydrogen storage battery according to an embodiment of the present invention is partially cut away.

【図6】比較例におけるパンチングメタルを用いた電極
の一部を切り欠いた平面図である。
FIG. 6 is a plan view in which a part of an electrode using punching metal in a comparative example is cut away.

【符号の説明】[Explanation of symbols]

1 パンチングメタル 2 孔 3 穿孔部 4 無地部 5 混合物 6 電極 7 切断部分 10 電極群 11 負極 12 正極 13 セパレータ 14 電池ケース 15 絶縁板 16 封口板 17 絶縁ガスケット 18 ゴム弁体 19 キャップ 20 正極リード板 1 Punching Metal 2 Hole 3 Perforated Part 4 Plain Part 5 Mixture 6 Electrode 7 Cutting Part 10 Electrode Group 11 Negative Electrode 12 Positive Electrode 13 Separator 14 Battery Case 15 Insulating Plate 16 Sealing Plate 17 Insulating Gasket 18 Rubber Valve 19 Cap 20 Positive Electrode Lead Plate

フロントページの続き (72)発明者 広島 敏久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Front page continued (72) Inventor Toshihisa Hiroshima 1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金粉末と、結着剤としての、
スチレンとブタジエンの重量比が100対30〜100
であるスチレンーブタジエン共重合体と、電極中に親水
性を付与する高分子物質と、カーボンブラックとを含む
混合物、前記混合物を支持する導電性支持体のパンチン
グメタル、および電極表面に撥水性を付与する撥水剤を
含む水素吸蔵合金電極。
1. A hydrogen storage alloy powder and a binder,
The weight ratio of styrene to butadiene is 100: 30 to 100
A mixture containing a styrene-butadiene copolymer which is a polymer, a polymer substance that imparts hydrophilicity to the electrode, and carbon black, a punching metal of a conductive support that supports the mixture, and a water repellent surface on the electrode. A hydrogen storage alloy electrode containing a water repellent to be applied.
【請求項2】 スチレンーブタジエン共重合体の前記混
合物中における添加割合が水素吸蔵合金粉末100重量
部に対して0.3〜2.0重量部である請求項1記載の
水素吸蔵合金電極。
2. The hydrogen storage alloy electrode according to claim 1, wherein the addition ratio of the styrene-butadiene copolymer in the mixture is 0.3 to 2.0 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.
【請求項3】 前記パンチングメタルは、その孔径が
1.0mm以上2.5mm以下であり、隣接する3つの
孔の中心を結んで形成される三角形の頂角が両底角より
小さくなる条件を満たす二等辺三角形を形成する穿孔パ
ターンで穿孔され、穿孔部の端部には少なくとも1組の
相対向する無地部を有する請求項1記載の水素吸蔵合金
電極。
3. The punching metal has a hole diameter of 1.0 mm or more and 2.5 mm or less, and a triangle formed by connecting the centers of three adjacent holes has a vertical angle smaller than both base angles. The hydrogen storage alloy electrode according to claim 1, wherein the hydrogen storage alloy electrode is perforated in a perforation pattern forming an isosceles triangle to be filled, and at least one set of facing plain portions is provided at an end of the perforation portion.
【請求項4】 前記三角形の頂角の角度が46゜〜58
゜、底角の角度が67゜〜61゜である請求項3記載の
水素吸蔵合金電極。
4. The apex angle of the triangle is 46 ° to 58.
The hydrogen storage alloy electrode according to claim 3, wherein the angle of the base angle is 67 ° to 61 °.
【請求項5】 前記パンチングメタルは、その厚みが4
0〜80μmであり、穿孔部の開口率が35〜61%で
ある請求項3または4記載の水素吸蔵合金電極。
5. The punching metal has a thickness of 4
The hydrogen storage alloy electrode according to claim 3 or 4, wherein the perforated portion has an aperture ratio of 35 to 61%.
【請求項6】 前記電極中に親水性を付与する高分子物
質が、カルボキシメチルセルロースのナトリウム塩であ
り、前記混合物における添加割合が、水素吸蔵合金粉末
100重量部に対して0.05〜2.0重量部である請
求項1記載の水素吸蔵合金電極。
6. The polymer substance that imparts hydrophilicity to the electrode is a sodium salt of carboxymethyl cellulose, and the addition ratio in the mixture is 0.05 to 2. per 100 parts by weight of the hydrogen storage alloy powder. The hydrogen storage alloy electrode according to claim 1, which is 0 part by weight.
【請求項7】 カーボンブラックの前記混合物中におけ
る添加割合が、水素吸蔵合金粉末100重量部に対して
0.05〜1.5重量部である請求項1記載の水素吸蔵
合金電極。
7. The hydrogen storage alloy electrode according to claim 1, wherein the addition ratio of carbon black in the mixture is 0.05 to 1.5 parts by weight with respect to 100 parts by weight of the hydrogen storage alloy powder.
【請求項8】 前記撥水剤が、ポリテトラフルオロエチ
レンまたはテトラフルオロエチレンとヘキサフルオロプ
ロピレンとの共重合体であり、その電極表面への着量が
単位表面積当たり0.1〜1.0mg/cm2である請
求項1記載の水素吸蔵合金電極。
8. The water-repellent agent is polytetrafluoroethylene or a copolymer of tetrafluoroethylene and hexafluoropropylene, and the amount deposited on the electrode surface is 0.1 to 1.0 mg / unit surface area. The hydrogen storage alloy electrode according to claim 1, which has a cm 2 .
【請求項9】 請求項1〜8のいずれかに記載の水素吸
蔵合金電極からなる負極とセパレータとニッケル正極か
らなる電極群、アルカリ電解液、および、安全弁を備え
前記電極群と電解液を収容する密閉電池ケースからなる
密閉型ニッケルー水素蓄電池。
9. An electrode group consisting of a negative electrode comprising the hydrogen storage alloy electrode according to any one of claims 1 to 8, a separator and a nickel positive electrode, an alkaline electrolyte, and a safety valve, which accommodates the electrode group and the electrolyte solution. A sealed nickel-metal hydride storage battery consisting of a sealed battery case.
【請求項10】 水素吸蔵合金電極からなる負極とニッ
ケル正極と両電極を隔離するセパレータとを断面渦巻き
状の円筒形ロールに捲回した電極群、アルカリ電解液、
および、安全弁を備え前記電極群と電解液を収容する密
閉電池ケースからなり、前記水素吸蔵合金電極は、水素
吸蔵合金粉末を主とする混合物およびこの混合物を支持
する導電性支持体のパンチングメタルを含み、前記パン
チングメタルは、その孔径が1.0mm以上2.5mm
以下であり、隣接する3つの孔の中心を結んで形成され
る三角形の頂角が46゜〜58゜、底角が67゜〜61
゜の条件を満たす二等辺三角形を形成する穿孔パターン
で穿孔され、穿孔部の端部で前記円筒形ロールの軸方向
の端部に対応する部分に無地部を有し、さらに前記三角
形の底辺が前記円筒形ロールの軸に垂直な面内にある密
閉型ニッケルー水素蓄電池。
10. An electrode group in which a negative electrode composed of a hydrogen storage alloy electrode, a nickel positive electrode, and a separator separating the two electrodes are wound on a cylindrical roll having a spiral cross section, an alkaline electrolyte,
And, consisting of a sealed battery case containing a safety valve and containing the electrode group and an electrolytic solution, the hydrogen storage alloy electrode, a mixture mainly composed of hydrogen storage alloy powder and a punching metal of a conductive support for supporting the mixture. Including, the punching metal has a hole diameter of 1.0 mm or more and 2.5 mm
Below, the apex angle of a triangle formed by connecting the centers of three adjacent holes is 46 ° to 58 °, and the base angle is 67 ° to 61 °.
Is punched in a perforation pattern that forms an isosceles triangle that satisfies the condition of °, and has a plain portion at the end of the perforated portion that corresponds to the axial end of the cylindrical roll, and the base of the triangle is A sealed nickel-hydrogen storage battery in a plane perpendicular to the axis of the cylindrical roll.
【請求項11】 前記パンチングメタルは、その厚みが
40〜80μmであり、穿孔部の開口率が35〜61%
である請求項10記載の密閉型ニッケルー水素蓄電池。
11. The punching metal has a thickness of 40 to 80 μm and an aperture ratio of a perforated portion of 35 to 61%.
The sealed nickel-metal hydride storage battery according to claim 10.
JP14294794A 1993-06-30 1994-06-24 Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same Expired - Lifetime JP3260972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14294794A JP3260972B2 (en) 1993-06-30 1994-06-24 Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16212793 1993-06-30
JP5-162127 1993-06-30
JP14294794A JP3260972B2 (en) 1993-06-30 1994-06-24 Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same

Publications (2)

Publication Number Publication Date
JPH0773874A true JPH0773874A (en) 1995-03-17
JP3260972B2 JP3260972B2 (en) 2002-02-25

Family

ID=26474798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14294794A Expired - Lifetime JP3260972B2 (en) 1993-06-30 1994-06-24 Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same

Country Status (1)

Country Link
JP (1) JP3260972B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329979A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11250891A (en) * 1998-03-03 1999-09-17 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
US6242133B1 (en) 1998-06-17 2001-06-05 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP2001297756A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Manufacturing device of pole plate for battery
JP2010161014A (en) * 2009-01-09 2010-07-22 Sanyo Electric Co Ltd Alkaline storage battery and its manufacturing method
JP2011198765A (en) * 2011-05-20 2011-10-06 Dainippon Printing Co Ltd Metal foil sheet
JP2012014870A (en) * 2010-06-29 2012-01-19 Gs Yuasa Corp Hydrogen-occluding alloy electrode and method of manufacturing the same
JP5875095B2 (en) * 2013-07-27 2016-03-02 エクセルギー・パワー・システムズ株式会社 Battery negative electrode material, battery negative electrode and battery
JP2016204745A (en) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 Hydrogen production apparatus and hydrogen production method
US9531011B2 (en) 2012-02-24 2016-12-27 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery
JP2017050244A (en) * 2015-09-04 2017-03-09 プライムアースEvエナジー株式会社 Manufacturing method of small piece of electrode plate, and cutting device for electrode plate
CN110408933A (en) * 2019-07-05 2019-11-05 南京理工大学 It is a kind of to cooperate with the surface catchmented and preparation method with patterning parent/hydrophobic region
US11572272B2 (en) 2014-05-05 2023-02-07 Gkn Sinter Metals Engineering Gmbh Process for producing a hydrogen storage means

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08329979A (en) * 1995-06-02 1996-12-13 Matsushita Electric Ind Co Ltd Alkaline storage battery
JPH11250891A (en) * 1998-03-03 1999-09-17 Toshiba Battery Co Ltd Nickel-hydrogen secondary battery
US6242133B1 (en) 1998-06-17 2001-06-05 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline secondary battery and method of manufacture thereof
JP2001297756A (en) * 2000-04-14 2001-10-26 Matsushita Electric Ind Co Ltd Manufacturing device of pole plate for battery
JP2010161014A (en) * 2009-01-09 2010-07-22 Sanyo Electric Co Ltd Alkaline storage battery and its manufacturing method
JP2012014870A (en) * 2010-06-29 2012-01-19 Gs Yuasa Corp Hydrogen-occluding alloy electrode and method of manufacturing the same
JP2011198765A (en) * 2011-05-20 2011-10-06 Dainippon Printing Co Ltd Metal foil sheet
US9531011B2 (en) 2012-02-24 2016-12-27 Gs Yuasa International Ltd. Electrode plate, wound electrode group, and cylindrical battery
JP5875095B2 (en) * 2013-07-27 2016-03-02 エクセルギー・パワー・システムズ株式会社 Battery negative electrode material, battery negative electrode and battery
US11572272B2 (en) 2014-05-05 2023-02-07 Gkn Sinter Metals Engineering Gmbh Process for producing a hydrogen storage means
JP2016204745A (en) * 2015-04-24 2016-12-08 エクセルギー・パワー・システムズ株式会社 Hydrogen production apparatus and hydrogen production method
JP2017050244A (en) * 2015-09-04 2017-03-09 プライムアースEvエナジー株式会社 Manufacturing method of small piece of electrode plate, and cutting device for electrode plate
CN110408933A (en) * 2019-07-05 2019-11-05 南京理工大学 It is a kind of to cooperate with the surface catchmented and preparation method with patterning parent/hydrophobic region

Also Published As

Publication number Publication date
JP3260972B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US5527638A (en) Hydrogen storage alloy electrode and sealed-type nickel-metal hydride storage battery using the same
US3945847A (en) Coherent manganese dioxide electrodes, process for their production, and electrochemical cells utilizing them
JP3260972B2 (en) Hydrogen storage alloy electrode and sealed nickel-hydrogen storage battery using the same
US4994334A (en) Sealed alkaline storage battery and method of producing negative electrode thereof
WO2007004703A1 (en) Nickel-hydrogen battery
JP4868809B2 (en) Cylindrical alkaline storage battery
JP3527586B2 (en) Manufacturing method of nickel electrode for alkaline storage battery
US3716411A (en) Rechargeable alkaline manganese cell
EP1037297B1 (en) Alkaline storage battery with group of spiral electrodes
JPH05205746A (en) Collector for electrode, and manufacture thereof hydrogen occlusion electrode using this collector, and nickel-hydrogen storage battery
WO2003088403A1 (en) Alkaline storage battery
JP3478030B2 (en) Alkaline storage battery
JP2002367607A (en) Non-sintered electrode for alkali storage battery, and alkali storage battery using the same
JP2006196207A (en) Alkaline storage battery and manufacturing method of its electrode group
JP2002100343A (en) Cylindrical sealed type battery
JP4413294B2 (en) Alkaline secondary battery
JP3938108B2 (en) Non-aqueous electrolyte secondary battery
US5891510A (en) Method for manufacturing a hydrogen storage alloy electrode
JP2002008645A (en) Hydrogen-storing alloy negative electrode and production method thereof
JPH1140146A (en) Paste-type electrode
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
JP2004006298A (en) Alkaline storage battery
JP4067524B2 (en) Negative electrode plate for nickel-hydrogen storage battery, method for producing the same, and nickel-hydrogen storage battery using the same
JPH09320640A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 12

EXPY Cancellation because of completion of term