JPH1140146A - Paste-type electrode - Google Patents

Paste-type electrode

Info

Publication number
JPH1140146A
JPH1140146A JP9191342A JP19134297A JPH1140146A JP H1140146 A JPH1140146 A JP H1140146A JP 9191342 A JP9191342 A JP 9191342A JP 19134297 A JP19134297 A JP 19134297A JP H1140146 A JPH1140146 A JP H1140146A
Authority
JP
Japan
Prior art keywords
positive electrode
notch
paste
notches
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9191342A
Other languages
Japanese (ja)
Inventor
Katsuyuki Hata
勝幸 秦
Tomonori Ishida
智規 石田
Seiji Sugita
征二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP9191342A priority Critical patent/JPH1140146A/en
Publication of JPH1140146A publication Critical patent/JPH1140146A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the flexibility and the property suitable for rolling by providing a three dimensional substrate and an active material mix held in the substrate, forming notch parts in the rim part regions at right angles to the longitudinal direction along the direction of the regions, and making the number of the notches in one side lower than that of the notches in the other side. SOLUTION: Notch parts 23 vertical to the longitudinal direction of rolling are formed at equal intervals in the side of a paste-type nickel positive electrode 21, which forms the outer circumference when being rolled, except for the region where a lead tab 2 is formed. Each notch part 23 has a V shape, and the interval L of the notch bottom parts is controlled to be 0. 1 mm, the depth H of each notch to be 0.05 mm, and the angle α of the notch bottom part to be 30 degrees. Notch parts are formed also in the rear side, and the interval L is controlled to be 0.5 mm and other sizes and the angle are made equal to those of the notches in the front side. Consequently, the number of the notches in the side, which becomes the inner circumference when being rolled, is equivalent to 20% of the number of the notches formed in the side which becomes the outer circumference. As a result, the curving width can be narrowed as compared with a positive electrode having no notch and warping can be avoided, even in the case the paste-filling density is increased for heightening capacity and flexibility is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ペースト式電極に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste type electrode.

【0002】[0002]

【従来の技術】近年、電化製品のポータブル化や、携帯
用パソコン(PC)、携帯電話などの普及に伴って、主電
源である電池の高容量化と、体積効率の向上が要望され
ている。このような機器の主電源として用いられる電池
として、例えば、アルカリ二次電池がある。
2. Description of the Related Art In recent years, as electric appliances have become portable and portable personal computers (PCs) and mobile phones have become widespread, it has been demanded to increase the capacity of a battery as a main power source and to improve the volumetric efficiency. . As a battery used as a main power supply of such a device, for example, there is an alkaline secondary battery.

【0003】このアルカリ二次電池において、前述した
ような要望を満足させるためには、前記二次電池の容量
を規制する電極である正極の容量を向上させる必要があ
る。アルカリ二次電池用正極としては、従来より、焼結
式ニッケル正極が知られている。しかしながら、この焼
結式正極では、基板の占める割合がおよそ30%と高
く、これ以上の高容量化は望めなかった。
[0003] In this alkaline secondary battery, in order to satisfy the above-mentioned demands, it is necessary to improve the capacity of a positive electrode which is an electrode for regulating the capacity of the secondary battery. As a positive electrode for an alkaline secondary battery, a sintered nickel positive electrode has been conventionally known. However, in this sintered positive electrode, the ratio occupied by the substrate was as high as about 30%, and a higher capacity could not be expected.

【0004】そこで、例えばニッケルスポンジ状基板の
ような3次元基板に、活物質を含むペーストを充填する
ことにより形成されるペースト式正極が開発され、現
在、この形式の正極が主流となっている。このペースト
式正極は、基板の占める割合が約10%と低いため、高
容量化の上で有利である。この正極は、例えば、水酸化
ニッケルと導電助剤であるコバルト化合物と結着剤と水
を混練してペースト状とし、得られたペーストを前記3
次元基板に充填して乾燥し、圧延により所望の厚さに成
形することにより作製することができる。
Accordingly, a paste-type positive electrode formed by filling a paste containing an active material into a three-dimensional substrate such as a nickel sponge-like substrate has been developed, and this type of positive electrode is currently the mainstream. . This paste-type positive electrode is advantageous in increasing the capacity since the ratio occupied by the substrate is as low as about 10%. The positive electrode is formed into a paste by kneading, for example, nickel hydroxide, a cobalt compound as a conductive additive, a binder, and water.
It can be manufactured by filling a three-dimensional substrate, drying, and forming into a desired thickness by rolling.

【0005】このようなペースト式正極の高容量化を図
るには、前記3次元基板に充填するペースト量を増加さ
せる必要がある。しかしながら、ペースト充填量の増加
させると、正極厚さ及びペースト充填密度が増加するた
め、正極の柔軟性が低下するという問題点が生じる。そ
の結果、前記正極と負極をその間にセパレータを介在さ
せながら捲回することにより渦巻き形電極群を作製する
と、前記正極、特に巻き始め部に大きなクラックが不均
一に生じ、得られた電極群の径が大きくなり、缶へ収納
できないことがある。また、捲回時に捲きずれを生じた
り、あるいはクラックにより破断した3次元基板がセパ
レータを貫通し、負極と接することにより内部短絡を生
じるという問題点がある。
In order to increase the capacity of such a paste-type positive electrode, it is necessary to increase the amount of paste filled in the three-dimensional substrate. However, when the paste filling amount is increased, the thickness of the positive electrode and the paste filling density are increased, which causes a problem that the flexibility of the positive electrode is reduced. As a result, when the spiral electrode group is manufactured by winding the positive electrode and the negative electrode with a separator interposed therebetween, large cracks are generated non-uniformly in the positive electrode, particularly in the winding start portion, and the obtained electrode group The diameter increases, and it may not be stored in the can. Further, there is a problem that a three-dimensional substrate broken during winding or broken due to cracks penetrates through the separator and comes into contact with the negative electrode, thereby causing an internal short circuit.

【0006】[0006]

【発明が解決しようとする課題】本発明は、表面に溝部
を形成することにより柔軟性及び捲回性が向上されたペ
ースト式電極を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a paste-type electrode having improved flexibility and winding properties by forming grooves on the surface.

【0007】[0007]

【課題を解決するための手段】本発明によると、3次元
基板と、前記基板に保持された活物質合剤とを備え、少
なくとも長手方向と直交する端部領域に、長手方向と直
交する方向に沿う溝部を有し、一方の面の溝部の数が他
方の面の溝部の数に比べて少ないペースト式電極が提供
される。
According to the present invention, there is provided a three-dimensional substrate, and an active material mixture held on the substrate, wherein at least an end region perpendicular to the longitudinal direction has a direction perpendicular to the longitudinal direction. Is provided, and the number of grooves on one surface is smaller than the number of grooves on the other surface.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るペースト式電極は、3次元基板と、前記基
板に保持された活物質合剤とを備え、表面のうち少なく
とも長手方向と直交する端部領域に、長手方向と直交す
る方向に沿う溝部を有し、一方の面の溝部の数が他方の
面の溝部の数に比べて少ないことを特徴とするものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The paste-type electrode according to the present invention includes a three-dimensional substrate and an active material mixture held on the substrate, and at least in an end region of the surface orthogonal to the longitudinal direction, along a direction orthogonal to the longitudinal direction. It has a groove, and the number of grooves on one surface is smaller than the number of grooves on the other surface.

【0009】本発明に係る電極をアルカリ二次電池用ペ
ースト式正極に適用した例を説明する。前記正極は、例
えば、活物質として水酸化ニッケルを主成分とする粒
子、導電剤、結着剤及び水を含むペーストを調製し、前
記ペーストを3次元基板に帯状タブ形成領域を除いて充
填した後、これを乾燥し、圧延し、例えばカッター付き
ローラで前述したような溝部を両面に形成することによ
り作製することができる。
An example in which the electrode according to the present invention is applied to a paste-type positive electrode for an alkaline secondary battery will be described. For the positive electrode, for example, a paste containing nickel hydroxide as a main component as an active material, a conductive agent, a binder and water was prepared, and the paste was filled in a three-dimensional substrate except for a band-shaped tab forming region. Thereafter, it can be manufactured by drying and rolling, and forming the above-described grooves on both surfaces with a roller with a cutter, for example.

【0010】前記水酸化ニッケル粒子としては、例え
ば、水酸化ニッケルからなる粒子、亜鉛および/または
コバルトが共沈された水酸化ニッケル粒子等を挙げるこ
とができる。後者の水酸化ニッケル粒子を含む正極は、
高温状態における充電効率を更に向上することが可能に
なる。
Examples of the nickel hydroxide particles include nickel hydroxide particles and nickel hydroxide particles in which zinc and / or cobalt are coprecipitated. The positive electrode containing the latter nickel hydroxide particles,
It is possible to further improve the charging efficiency in a high temperature state.

【0011】アルカリ二次電池の充放電効率を向上する
観点から、前記水酸化ニッケルは、X線粉末回折法によ
る(101)面のピーク半価幅を0.8゜/2θ(Cu
−Kα)以上にすることが好ましい。前記ピーク半価幅
のより好ましい範囲は、0.9〜1.0゜である。
From the viewpoint of improving the charge / discharge efficiency of the alkaline secondary battery, the nickel hydroxide has a peak half-value width of the (101) plane determined by an X-ray powder diffraction method of 0.8 ° / 2θ (Cu
-Kα) or more. A more preferable range of the peak half width is 0.9 to 1.0 °.

【0012】前記水酸化ニッケルを主成分とする粒子
は、平均粒径が5〜30μm、タップ密度が1.8g/
cm3 以上、比表面積が1〜20m2 /gであることが
好ましい。
The particles mainly composed of nickel hydroxide have an average particle diameter of 5 to 30 μm and a tap density of 1.8 g / g.
cm 3 or more and a specific surface area of 1 to 20 m 2 / g.

【0013】前記水酸化ニッケルを主成分とする粒子
は、球状もしくはそれに類似した形状を有することが好
ましい。前記導電剤としては、例えば、金属コバルト、
水酸化コバルト(Co(OH)2 )、一酸化コバルト
(CoO)等を挙げることができる。中でも、水酸化コ
バルト、一酸化コバルトが好適である。但し、この導電
剤は、微量の三酸化二コバルト、四酸化三コバルトを含
むことを許容する。また、前記導電剤は、前記正極中に
粒子の形態で存在していても良いし、前記水酸化ニッケ
ルを主成分とする粒子の表面に層の形態で存在していて
も良い。
It is preferable that the particles mainly composed of nickel hydroxide have a spherical shape or a shape similar thereto. As the conductive agent, for example, metal cobalt,
Cobalt hydroxide (Co (OH) 2 ), cobalt monoxide (CoO), and the like can be given. Among them, cobalt hydroxide and cobalt monoxide are preferred. However, this conductive agent is allowed to contain trace amounts of dicobalt trioxide and tricobalt tetroxide. Further, the conductive agent may be present in the form of particles in the positive electrode, or may be present in the form of a layer on the surface of the particles containing nickel hydroxide as a main component.

【0014】前記結着剤としては、例えばカルボキシメ
チルセルロース、ポリアクリル酸塩、フッ素樹脂等を挙
げることができる。前記3次元基板は、例えば、ニッケ
ル、鉄から形成することができる。前記3次元基板とし
ては、例えば、ニッケルスポンジ状基板、ニッケル繊維
状基板、ニッケルフェルト状基板等を挙げることができ
る。中でも、ニッケルスポンジ状基板は、電極強度が高
いため、本願発明のような溝部を形成すると柔軟性を大
幅に改善することが可能になる。
Examples of the binder include carboxymethylcellulose, polyacrylate, and fluororesin. The three-dimensional substrate can be formed of, for example, nickel or iron. Examples of the three-dimensional substrate include a nickel sponge-like substrate, a nickel fibrous substrate, and a nickel felt-like substrate. Above all, the nickel sponge-like substrate has a high electrode strength, so that forming a groove as in the present invention can greatly improve the flexibility.

【0015】溝部は、前記正極の表面のうち少なくとも
巻き始め端部領域に前記正極の長手方向と直交する方向
に沿うように形成されている。ここで、正極の長手方向
と直交する方向に沿うように溝部を形成することには、
前記正極の長手方向と垂直に溝部を形成することの他
に、溝部と前記正極の長手方向とのなす角が90゜±1
0゜になるように溝部を形成することを意味する。この
ような方向に溝部を形成することによって、前記正極を
長手方向を直交する端部のうち溝部形成端部を巻き始め
端部にし、負極及びセパレータと共に渦巻き状に捲回し
た際に優先的に前記溝部に沿って細かいクラックを生じ
させることができ、前記正極の巻き始め端部に基板が破
断するような大きなクラックや、不均一なクラックが生
じるのを回避することができる。
[0015] The groove is formed at least in a winding start end region on the surface of the positive electrode so as to extend along a direction orthogonal to the longitudinal direction of the positive electrode. Here, to form the groove portion along a direction orthogonal to the longitudinal direction of the positive electrode,
In addition to forming the groove perpendicular to the longitudinal direction of the positive electrode, the angle between the groove and the longitudinal direction of the positive electrode is 90 ° ± 1.
This means that the groove is formed so as to be 0 °. By forming the groove in such a direction, the positive electrode is formed into a groove-forming end of the ends orthogonal to the longitudinal direction as a winding start end, and preferentially when spirally wound together with the negative electrode and the separator. Fine cracks can be generated along the groove, and large cracks such as breakage of the substrate at the winding start end of the positive electrode and uneven cracks can be avoided.

【0016】前記溝部は、前記正極の両面に形成されて
おり、一方の面に形成された溝部の数が他方の面に形成
された溝部の数に比べて少ない。前記正極においては、
捲回時に内周側に位置する面に形成された溝部の数をこ
の際に外周側に位置する面に形成された溝部の数に比べ
て少なくする。正極の片面にのみ溝部を形成すると、こ
の面のみが延びるため、正極が反ってしまう。正極に反
りが生じると、渦巻き形電極群を作製する際に前記正極
に前記溝部から外れた箇所にクラックが生じたり、製造
時に取り扱いづらくなる等の不都合が生じる。前記正極
において、捲回時に内周側に位置する面に形成された溝
部の数は、外周側に位置する面に形成された溝部の数の
10%以上、100%未満にすることが好ましい。これ
は次のような理由によるものである。内周側の溝部の数
を外周側の溝部の数の10%未満にすると、正極が反り
やすくなる。一方、内周側の溝部の数が多くなるに従っ
て、正極の柔軟性は向上するものの、活物質量及び正極
強度が低減する。内周側の溝部の数が外周側の溝部の数
の50%を越えると、正極容量及び正極強度の低下が顕
在化する恐れがある。内周側の溝部の数は、外周側の溝
部の数の20%以上、かつ50%以下にすることがより
好ましい。
The grooves are formed on both surfaces of the positive electrode, and the number of grooves formed on one surface is smaller than the number of grooves formed on the other surface. In the positive electrode,
At the time of winding, the number of grooves formed on the surface located on the inner peripheral side is made smaller than the number of grooves formed on the surface located on the outer peripheral side. If the groove is formed only on one side of the positive electrode, only this surface extends, and the positive electrode warps. When the positive electrode is warped, there are inconveniences such as cracks occurring in the positive electrode at a position deviating from the groove when the spiral electrode group is manufactured, and difficulty in handling during manufacturing. In the positive electrode, it is preferable that the number of grooves formed on the surface located on the inner peripheral side during winding be 10% or more and less than 100% of the number of grooves formed on the surface located on the outer peripheral side. This is due to the following reasons. When the number of grooves on the inner peripheral side is less than 10% of the number of grooves on the outer peripheral side, the positive electrode is easily warped. On the other hand, as the number of grooves on the inner peripheral side increases, the flexibility of the positive electrode improves, but the amount of active material and the strength of the positive electrode decrease. If the number of grooves on the inner peripheral side exceeds 50% of the number of grooves on the outer peripheral side, a decrease in the positive electrode capacity and the positive electrode strength may become apparent. It is more preferable that the number of grooves on the inner peripheral side be 20% or more and 50% or less of the number of grooves on the outer peripheral side.

【0017】捲回時に外周側に位置する面において、溝
部形成領域は、この面の長手方向と直交する端部(巻き
始め端部)から正極長さの20%以上(正極の長さを1
00%とする)に相当する箇所まで存在していると良
い。外周側の面の溝部形成領域の長さを長手方向と直交
する端部から20%以上にし、この正極と負極をその間
にセパレータを介在させながら、かつ前記溝部形成領域
が巻き始め部になるように渦巻き状に捲回し、電極群を
作製することによって、前記3次元基板の巻き始め部に
不規則なクラックが発生するのを抑制することができ、
絶縁不良の発生率を大幅に低減することができる。な
お、捲回時に内周側に位置する面には、前記正極の反り
を回避できるように溝部が形成されていればよいため、
溝部形成領域が前述したような範囲に満たない場合があ
り得る。
On the surface located on the outer peripheral side at the time of winding, the groove forming region is at least 20% of the length of the positive electrode (the length of the positive electrode is 1%) from the end (winding start end) orthogonal to the longitudinal direction of this surface.
It is preferable that a portion corresponding to (00%) exists. The length of the groove forming region on the outer peripheral surface is set to 20% or more from the end perpendicular to the longitudinal direction, and the positive electrode and the negative electrode are interposed with a separator therebetween so that the groove forming region becomes a winding start portion. By spirally winding the three-dimensional substrate to form an electrode group, it is possible to suppress occurrence of irregular cracks at the beginning of winding of the three-dimensional substrate,
The occurrence rate of insulation failure can be greatly reduced. In addition, on the surface located on the inner peripheral side at the time of winding, a groove may be formed so as to avoid warpage of the positive electrode,
The groove forming region may be less than the range described above.

【0018】捲回時に外周側に位置する正極面に形成さ
れた溝部同士の間隔は、0.1mm〜10mmの範囲にする
ことが好ましい。これは次のような理由によるものであ
る。前記間隔を0.1mm未満にすると、溝部の成形を行
うことが困難になる恐れがある。一方、前記間隔が10
mmを越えると、前記溝部から外れた箇所にクラックが多
数生じ、絶縁不良が多発する恐れがある。溝部の間隔の
より好ましい範囲は、0.5mm〜5mmである。また、前
記溝部の間隔は等間隔でなくてもよく、例えば、長手方
向と直交する端部領域(巻き始め領域)を狭くし、その
他の領域を広くすることができる。なお、捲回時に内周
側に位置する正極面には、前記正極の反りを回避できる
ように溝部が形成されていればよいため、この面の溝部
の間隔は10mmを越える場合がある。
The interval between the grooves formed on the positive electrode surface located on the outer peripheral side during winding is preferably in the range of 0.1 mm to 10 mm. This is due to the following reasons. If the distance is less than 0.1 mm, it may be difficult to form the groove. On the other hand, when the interval is 10
If it exceeds mm, a number of cracks will be generated at locations off the groove, and there is a possibility that insulation failure will frequently occur. A more preferable range of the interval between the groove portions is 0.5 mm to 5 mm. Further, the intervals between the grooves may not be equal, and, for example, an end region (winding start region) perpendicular to the longitudinal direction may be narrowed and other regions may be widened. Note that a groove may be formed on the positive electrode surface located on the inner peripheral side at the time of winding so as to avoid warpage of the positive electrode, and the interval between grooves on this surface may exceed 10 mm.

【0019】内周側及び外周側に位置する面の溝部の深
さは、それぞれ0.01mm〜0.4mmの範囲にすること
が好ましい。これは次のような理由によるものである。
前記深さを0.01mm未満にすると、溝部の成形を行う
ことが困難になる恐れがある。一方、前記溝部の深さが
0.4mmを越えると、正極の強度が低下して正極が折れ
る等の不具合を生じる恐れがある。
The depths of the grooves on the inner and outer peripheral surfaces are preferably in the range of 0.01 mm to 0.4 mm. This is due to the following reasons.
If the depth is less than 0.01 mm, it may be difficult to form the groove. On the other hand, when the depth of the groove portion exceeds 0.4 mm, there is a possibility that the strength of the positive electrode is reduced and the positive electrode is broken or the like.

【0020】前記溝部の形状は、例えば、V字型、鍵
型、半円型などにすることができる。中でも、V字形状
にすることが好ましい。前記溝部の形状をV字型にする
場合、前記溝部の角度(前記溝部を構成する面同士のな
す角)は、45゜以下にすることが好ましい。前記角度
が45゜を越えると、溝部同士の干渉が起こりやすくな
る。また、溝部形成による活物質の削減量が多くなり、
容量低下を招く恐れがある。
The shape of the groove can be, for example, V-shaped, key-shaped, semi-circular, or the like. Especially, it is preferable to make it V-shaped. When the shape of the groove is V-shaped, it is preferable that the angle of the groove (the angle between surfaces forming the groove) is 45 ° or less. If the angle exceeds 45 °, interference between the grooves tends to occur. In addition, the amount of active material reduced due to the formation of the groove increases,
There is a possibility that the capacity may be reduced.

【0021】以上説明したようなアルカリ二次電池用ペ
ースト式正極が組み込まれるアルカリ二次電池の一例を
図1を参照して詳細に説明する。有底円筒状の容器1内
には、前述したペースト式正極2と負極4をその間にセ
パレータ3を介在させながら渦巻き状に捲回することに
より作製された電極群5が収納されている。前記負極4
は、前記電極群5の最外周に配置されて前記容器1と電
気的に接触している。アルカリ電解液は、前記容器1内
に収容されている。中央に孔6を有する円形の第1の封
口板7は、前記容器1の上部開口部に配置されている。
リング状の絶縁性ガスケット8は、前記封口板7の周縁
と前記容器1の上部開口部内面の間に配置され、前記上
部開口部を内側に縮径するカシメ加工により前記容器1
に前記封口板7を前記ガスケット8を介して気密に固定
している。正極リード9は、一端が前記正極2に接続、
他端が前記封口板7の下面に接続されている。帽子形状
をなす正極端子10は、前記封口板7上に前記孔6を覆
うように取り付けられている。ゴム製の安全弁11は、
前記封口板7と前記正極端子10で囲まれた空間内に前
記孔6を塞ぐように配置されている。中央に穴を有する
絶縁材料からなる円形の押え板12は、前記正極端子1
0上に前記正極端子10の突起部がその押え板12の前
記穴から突出されるように配置されている。外装チュー
ブ13は、前記押え板12の周縁、前記容器1の側面及
び前記容器1の底部周縁を被覆している。
An example of an alkaline secondary battery incorporating the above-described paste type positive electrode for an alkaline secondary battery will be described in detail with reference to FIG. An electrode group 5 produced by spirally winding the above-mentioned paste-type positive electrode 2 and negative electrode 4 with a separator 3 interposed therebetween is accommodated in a bottomed cylindrical container 1. The negative electrode 4
Are arranged at the outermost periphery of the electrode group 5 and are in electrical contact with the container 1. The alkaline electrolyte is contained in the container 1. A circular first sealing plate 7 having a hole 6 in the center is arranged at the upper opening of the container 1.
The ring-shaped insulating gasket 8 is disposed between the peripheral edge of the sealing plate 7 and the inner surface of the upper opening of the container 1, and the container 1 is formed by caulking to reduce the diameter of the upper opening inward.
The sealing plate 7 is hermetically fixed via the gasket 8. One end of the positive electrode lead 9 is connected to the positive electrode 2,
The other end is connected to the lower surface of the sealing plate 7. The positive electrode terminal 10 having a hat shape is attached on the sealing plate 7 so as to cover the hole 6. The rubber safety valve 11
The hole 6 is disposed in a space surrounded by the sealing plate 7 and the positive electrode terminal 10 so as to close the hole 6. The circular holding plate 12 made of an insulating material having a hole in the center is
The projecting portion of the positive electrode terminal 10 is disposed on the reference numeral 0 so as to project from the hole of the holding plate 12. The outer tube 13 covers the periphery of the holding plate 12, the side surface of the container 1, and the periphery of the bottom of the container 1.

【0022】次に、前記負極4、セパレータ3及びアル
カリ電解液について詳細に説明する。 1)負極 この負極4は、例えば水素を吸蔵、放出する水素吸蔵合
金粒子を含む水素吸蔵合金負極からなる。このような負
極は、前記水素吸蔵合金粉末、導電剤及び結着剤を含む
組成の合剤を集電体である導電性芯体に固定化した構造
を有する。
Next, the negative electrode 4, the separator 3, and the alkaline electrolyte will be described in detail. 1) Negative Electrode The negative electrode 4 is, for example, a hydrogen storage alloy negative electrode including hydrogen storage alloy particles that store and release hydrogen. Such a negative electrode has a structure in which a mixture having a composition including the hydrogen storage alloy powder, a conductive agent and a binder is fixed to a conductive core serving as a current collector.

【0023】前記負極1の合剤中に配合される水素吸蔵
合金としては、例えばLaNi5 、MmNi5 (Mm;
ミッシュメタル)、LmNi5 (Lm;ランタン富化し
たミッシュメタル)、これらの合金のNiの一部をA
l、Mn、Co、Ti、Cu、Zn、Zr、Cr、Bの
様な元素で置換した多元素系のもの、又は、TiNi
系、TiFe系のものを挙げることができる。特に、一
般式LmNiw Cox Mny Alz (原子比w、x、
y、zの合計値は5.00≦w+x+y+z≦5.5で
ある)で表される組成の水素吸蔵合金は充放電サイクル
の進行に伴う微粉化を抑制してサイクル寿命を向上でき
るため、好適である。
Examples of the hydrogen storage alloy compounded in the mixture of the negative electrode 1 include LaNi 5 , MmNi 5 (Mm;
Misch metal), LmNi 5 (Lm; lanthanum-enriched misch metal), and a part of Ni of these alloys is A
l, Mn, Co, Ti, Cu, Zn, Zr, Cr, a multi-element system substituted with elements such as B, or TiNi
And TiFe-based ones. In particular, the general formula LmNi w Co x Mn y Al z ( atomic ratio w, x,
(The total value of y and z is 5.00 ≦ w + x + y + z ≦ 5.5.) A hydrogen storage alloy having a composition represented by the following formula: It is.

【0024】前記導電剤としては、例えばカーボン・ブ
ラック、黒鉛等を挙げることができる。前記結着剤とし
ては、例えばポリアクリル酸ソーダ、ポリアクリル酸カ
リウム等のポリアクリル酸塩、ポリテトラフロロエチレ
ン等のフッ素樹脂、またはカルボキシメチルセルロース
等を挙げることができる。このような結着剤は、前記水
素吸蔵合金に対して0.1〜5重量%配合することが好
ましい。
Examples of the conductive agent include carbon black and graphite. Examples of the binder include polyacrylates such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene, and carboxymethyl cellulose. Such a binder is preferably blended in an amount of 0.1 to 5% by weight based on the hydrogen storage alloy.

【0025】前記導電性芯体としては、例えばパンチド
・メタル、エキスパンド・メタル、金網等の二次元構造
のもの、ニッケルスポンジ状基板、ニッケル繊維状基
板、ニッケルフェルト状基板等の三次元構造のもの、三
次元構造のものと二次元構造のものを組み合わせた複合
基板等を挙げることができる。また、3次元基板を導電
性芯体として用いる場合、前述したペースト式電極で説
明したのと同様な溝部を有する構成にすることができ
る。 2)セパレータ このセパレータ3としては、例えばポリプロピレン、ポ
リエチレン等のポリオレフィン系不織布、ナイロン不織
布、あるいはこれ等の繊維を混繊したもの等を挙げるこ
とができる。又、必要に応じて親水化処理したものが適
用できる。特に繊維表面が親水化処理されたポリプロピ
レン不織布はセパレータ3としては好適である。 3)アルカリ電解液 アルカリ電解液としては、例えば水酸化ナトリウムと水
酸化リチウムの混合水溶液、水酸化カリウムと水酸化リ
チウムの混合水溶液、又は水酸化ナトリウム、水酸化カ
リウム、水酸化リチウムの混合水溶液等を用いることが
できる。
Examples of the conductive core include those having a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and those having a three-dimensional structure such as a nickel sponge-like substrate, a nickel fiber-like substrate, and a nickel felt-like substrate. And a composite substrate combining a three-dimensional structure and a two-dimensional structure. When a three-dimensional substrate is used as the conductive core, a configuration having a groove similar to that described for the paste electrode described above can be employed. 2) Separator Examples of the separator 3 include a polyolefin nonwoven fabric such as polypropylene and polyethylene, a nylon nonwoven fabric, and a mixture of these fibers. Further, those subjected to a hydrophilic treatment as necessary can be applied. In particular, a polypropylene nonwoven fabric whose fiber surface has been hydrophilized is suitable as the separator 3. 3) Alkaline Electrolyte Examples of the alkaline electrolyte include a mixed aqueous solution of sodium hydroxide and lithium hydroxide, a mixed aqueous solution of potassium hydroxide and lithium hydroxide, or a mixed aqueous solution of sodium hydroxide, potassium hydroxide, and lithium hydroxide. Can be used.

【0026】以上説明したように本発明に係るペースト
式電極は、3次元基板と、前記基板に保持された活物質
合剤とを備え、少なくとも長手方向と直交する端部領域
に、長手方向と直交する方向に沿う溝部を有し、一方の
面の溝部の数が他方の面の溝部の数に比べて少ないこと
を特徴とするものである。このようなペースト式電極
は、高容量化のために活物質が高密度充填されている場
合にも、反りが生じるのを回避しつつ、柔軟性を向上す
ることができる。その結果、前記電極の長手方向と直交
する端部のうち溝部が形成されている端部を巻き始め端
部とし、前記電極と他方極をその間にセパレータを介在
させながら捲回して渦巻き形電極群を作製する際に、前
記電極の巻き始め端部付近に不規則なクラックが生じる
のを抑制ないし防止することができ、電極群が容器に収
納できないという不具合や、絶縁不良発生率を低下させ
ることができる。その結果、高容量の電池を高い歩留ま
りで提供することが可能になる。
As described above, the paste-type electrode according to the present invention includes the three-dimensional substrate and the active material mixture held on the substrate, and has at least an end region orthogonal to the longitudinal direction. It is characterized by having grooves along the direction orthogonal to each other, wherein the number of grooves on one surface is smaller than the number of grooves on the other surface. Such a paste-type electrode can improve flexibility while avoiding warpage even when the active material is densely packed for high capacity. As a result, among the ends orthogonal to the longitudinal direction of the electrode, the end where the groove is formed is set as the winding start end, and the electrode and the other electrode are wound with a separator interposed therebetween to form a spiral electrode group. When manufacturing the electrode, it is possible to suppress or prevent the occurrence of irregular cracks near the winding start end of the electrode, and to reduce the defect that the electrode group cannot be stored in the container and the occurrence rate of insulation failure. Can be. As a result, a high-capacity battery can be provided with a high yield.

【0027】前記ペースト式電極において、捲回時に外
周側に位置する電極面に形成された溝部の間隔を0.1
mm〜10mmの範囲にすることによって、電極群作製時、
前記基板の巻き始め端部付近に大きなクラックが生じる
のを回避することができ、電極群が容器に収納できない
という不具合や、絶縁不良発生率を大幅に低下させるこ
とができる。
In the above paste type electrode, the interval between grooves formed on the electrode surface located on the outer peripheral side at the time of winding is set to 0.1.
By making the range from 10 mm to 10 mm,
It is possible to avoid the occurrence of a large crack in the vicinity of the winding start end of the substrate, and it is possible to significantly reduce the problem that the electrode group cannot be accommodated in the container and the rate of occurrence of insulation failure.

【0028】また、前記電極の両面の溝部の深さを0.
01mm〜0.4mmの範囲にすることによって、クラック
発生率を効果的に低減しつつ、活物質充填量の減少及び
電極強度の低下を抑制することができる。
Further, the depth of the groove on both sides of the electrode is set to 0.
By setting the thickness in the range of 01 mm to 0.4 mm, it is possible to effectively reduce the crack generation rate and to suppress a decrease in the active material filling amount and a decrease in the electrode strength.

【0029】[0029]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1)水酸化ニッケル粉末90部及び一酸化コバ
ルト10部からなる混合物に、カルボキシメチルセルロ
ース0.2部及び水40部を添加し、混練することによ
りペーストを調製した。前記ペーストをスポンジ状ニッ
ケル基板にリードタブ取り付け領域を除いて充填し、乾
燥し、ローラプレスにより加圧成形を施した。次いで、
両面全体にV字型カッター付きロールで図2に示すよう
な溝部を形成し、活物質合剤非保持領域にニッケル製の
リードタブを取り付け、ペースト充填密度が650mAh/
ccで、厚さが0.65mmで、長さが70mmで、容量が1
200mAh のペースト式ニッケル正極を製造した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail. (Example 1) 0.2 parts of carboxymethylcellulose and 40 parts of water were added to a mixture consisting of 90 parts of nickel hydroxide powder and 10 parts of cobalt monoxide, and kneaded to prepare a paste. The paste was filled in a sponge-like nickel substrate except for a lead tab mounting area, dried, and subjected to pressure molding by a roller press. Then
A groove as shown in FIG. 2 was formed on both sides of the roll with a V-shaped cutter, and a lead tab made of nickel was attached to the active material mixture non-holding area, and the paste filling density was 650 mAh /
cc, thickness 0.65mm, length 70mm, capacity 1
A 200 mAh paste-type nickel positive electrode was manufactured.

【0030】図2に示すように、前記正極21の長手方
向に沿う端部(上端部)には、前記リードタブ22が取
り付けられている。前記正極21は、捲回時に外周側に
位置する面(図2においては上面)のうちリードタブ形
成領域を除き、捲回方向(長手方向)に対して垂直な溝
部(ノッチ)23が等間隔を隔てて形成されている。各
ノッチ23は、図3及び図4に示すように、V字型をな
している。ノッチ23同士の間隔(L)は、0.1mmで
ある。また、各ノッチ23の深さ(H)は、0.05mm
である。更に、各ノッチ23の角度αは、30゜であ
る。この正極の裏面(捲回時に内周側に位置する面)全
体に、表面と同様な角度及び深さを有するV字型ノッチ
が等間隔を隔てて形成されている。このノッチ同士の間
隔(L)は、0.5mmである。この捲回時に内周側に位
置する面のノッチ数は、捲回時に外周側に位置するノッ
チ数の20%に相当する。 (実施例2)捲回時に外周側に位置する面のノッチ間隔
を0.3mmにし、捲回時に内周側に位置する面のノッチ
間隔を1.5mmにし、捲回時に内周側に位置する面のノ
ッチ数を捲回時に外周側に位置するノッチ数の20%に
すること以外は、実施例1と同様なペースト式ニッケル
正極を作製した。 (実施例3)捲回時に外周側に位置する面のノッチ間隔
を0.5mmにし、捲回時に内周側に位置する面のノッチ
間隔を2.5mmにし、捲回時に内周側に位置する面のノ
ッチ数を捲回時に外周側に位置するノッチ数の20%に
すること以外は、実施例1と同様なペースト式ニッケル
正極を作製した。 (実施例4)捲回時に外周側に位置する面のノッチ間隔
を1.0mmにし、捲回時に内周側に位置する面のノッチ
間隔を5mmにし、捲回時に内周側に位置する面のノッチ
数を捲回時に外周側に位置するノッチ数の20%にする
こと以外は、実施例1と同様なペースト式ニッケル正極
を作製した。 (実施例5)捲回時に外周側に位置する面のノッチ間隔
を2.5mmにし、捲回時に内周側に位置する面のノッチ
間隔を12.5mmにし、捲回時に内周側に位置する面の
ノッチ数を捲回時に外周側に位置するノッチ数の20%
にすること以外は、実施例1と同様なペースト式ニッケ
ル正極を作製した。 (実施例6)捲回時に外周側に位置する面のノッチ間隔
を5.0mmにし、捲回時に内周側に位置する面のノッチ
間隔を25mmにし、捲回時に内周側に位置する面のノッ
チ数を捲回時に外周側に位置するノッチ数の20%にす
ること以外は、実施例1と同様なペースト式ニッケル正
極を作製した。 (実施例7)捲回時に外周側に位置する面のノッチ間隔
を10mmにし、捲回時に内周側に位置する面のノッチ間
隔を20mmにし、捲回時に内周側に位置する面のノッチ
数を捲回時に外周側に位置するノッチ数の50%にする
こと以外は、実施例1と同様なペースト式ニッケル正極
を作製した。 (実施例8)捲回時に外周側に位置する面のノッチ間隔
を15mmにし、捲回時に内周側に位置する面のノッチ間
隔を30mmにし、捲回時に内周側に位置する面のノッチ
数を捲回時に外周側に位置するノッチ数の50%にする
こと以外は、実施例1と同様なペースト式ニッケル正極
を作製した。 (実施例9)捲回時に外周側に位置する面のノッチ間隔
を17mmにし、捲回時に内周側に位置する面のノッチ間
隔を35mmにし、捲回時に内周側に位置する面のノッチ
数を捲回時に外周側に位置するノッチ数の50%にする
こと以外は、実施例1と同様なペースト式ニッケル正極
を作製した。 (比較例1)両面ともノッチが形成されていないこと以
外は、実施例1と同様なペースト式ニッケル正極を作製
した。
As shown in FIG. 2, the lead tab 22 is attached to an end (upper end) of the positive electrode 21 along the longitudinal direction. The positive electrode 21 has grooves (notches) 23 perpendicular to the winding direction (longitudinal direction) formed at equal intervals except for a lead tab formation region on a surface (upper surface in FIG. 2) located on the outer peripheral side during winding. It is formed apart. Each notch 23 has a V-shape as shown in FIGS. The interval (L) between the notches 23 is 0.1 mm. The depth (H) of each notch 23 is 0.05 mm.
It is. Further, the angle α of each notch 23 is 30 °. V-shaped notches having the same angle and depth as the front surface are formed at equal intervals on the entire back surface (the surface located on the inner peripheral side during winding) of the positive electrode. The distance (L) between the notches is 0.5 mm. The number of notches on the surface located on the inner peripheral side during winding corresponds to 20% of the number of notches located on the outer peripheral side during winding. (Example 2) The notch interval on the surface located on the outer peripheral side during winding is set to 0.3 mm, the notch interval on the surface located on the inner peripheral side during winding is set at 1.5 mm, and the notch interval is set on the inner peripheral side during winding. A paste-type nickel positive electrode was produced in the same manner as in Example 1, except that the number of notches on the surface to be formed was set to 20% of the number of notches located on the outer peripheral side during winding. (Example 3) The notch interval of the surface located on the outer peripheral side during winding is set to 0.5 mm, the notch interval of the surface located on the inner peripheral side during winding is set to 2.5 mm, and the notch interval is set at the inner peripheral side during winding. A paste-type nickel positive electrode was produced in the same manner as in Example 1, except that the number of notches on the surface to be formed was set to 20% of the number of notches located on the outer peripheral side during winding. (Example 4) The notch interval of the surface located on the outer peripheral side during winding is set to 1.0 mm, the notch interval of the surface located on the inner peripheral side during winding is set to 5 mm, and the surface located on the inner peripheral side during winding is set. A paste-type nickel positive electrode was produced in the same manner as in Example 1 except that the number of notches was 20% of the number of notches located on the outer peripheral side during winding. (Example 5) The notch interval of the surface located on the outer peripheral side during winding is set to 2.5 mm, the notch interval of the surface located on the inner peripheral side during winding is set to 12.5 mm, and the notch interval is set on the inner peripheral side during winding. 20% of the number of notches located on the outer peripheral side during winding
A paste-type nickel positive electrode similar to that of Example 1 was prepared except that the above method was adopted. (Example 6) The notch interval of the surface located on the outer peripheral side during winding is set to 5.0 mm, the notch interval of the surface located on the inner peripheral side during winding is set to 25 mm, and the surface located on the inner peripheral side during winding is set. A paste-type nickel positive electrode was produced in the same manner as in Example 1 except that the number of notches was 20% of the number of notches located on the outer peripheral side during winding. (Example 7) The notch interval of the surface located on the outer peripheral side during winding is 10 mm, the notch interval of the surface located on the inner peripheral side during winding is 20 mm, and the notch on the inner peripheral side during winding is set. A paste-type nickel positive electrode similar to that of Example 1 was produced except that the number was set to 50% of the number of notches located on the outer peripheral side at the time of winding. (Embodiment 8) The notch interval of the surface located on the outer peripheral side during winding is 15 mm, the notch interval of the surface located on the inner peripheral side during winding is 30 mm, and the notch interval on the inner peripheral side during winding is set. A paste-type nickel positive electrode similar to that of Example 1 was produced except that the number was set to 50% of the number of notches located on the outer peripheral side at the time of winding. (Example 9) The notch interval of the surface located on the outer peripheral side at the time of winding is set to 17 mm, the notch interval of the surface located at the inner peripheral side at the time of winding is 35 mm, and the notch at the inner peripheral side is set at the time of winding. A paste-type nickel positive electrode similar to that of Example 1 was produced except that the number was set to 50% of the number of notches located on the outer peripheral side at the time of winding. (Comparative Example 1) A paste-type nickel positive electrode was produced in the same manner as in Example 1, except that no notch was formed on both surfaces.

【0031】得られた実施例1〜9及び比較例1の正極
について、絶縁不良評価試験を行った。各正極と厚さが
0.3mmの水素吸蔵合金負極をその間に親水化処理が施
されたポリオレフィン製不織布からなる厚さが0.2mm
のセパレータを介在させながら渦巻き状に捲回すること
により電極群を作製した。得られた電極群をAAサイズ
用の容器内に収納し、アルカリ電解液を収容し、封口す
ることにより試験用ニッケル水素二次電池を組み立て
た。
The obtained positive electrodes of Examples 1 to 9 and Comparative Example 1 were subjected to an insulation failure evaluation test. Each positive electrode and a hydrogen storage alloy negative electrode having a thickness of 0.3 mm are made of a nonwoven fabric made of polyolefin that has been subjected to a hydrophilic treatment between the negative electrodes and has a thickness of 0.2 mm.
The electrode group was manufactured by spirally winding the electrode with the above separator interposed therebetween. The obtained electrode group was accommodated in a container for AA size, an alkaline electrolyte was accommodated, and a nickel-metal hydride secondary battery for test was assembled by sealing.

【0032】得られた実施例1〜9及び比較例1の二次
電池をそれぞれ50個ずつ用意した。各二次電池につい
て、電圧を測定し、内部短絡により電圧が0Vに低下し
た絶縁不良の電池数を測定し、絶縁不良率を求め、その
結果を図5に示す。
Fifty pieces of the obtained secondary batteries of Examples 1 to 9 and Comparative Example 1 were prepared. For each secondary battery, the voltage was measured, the number of defective batteries whose voltage dropped to 0 V due to an internal short circuit was measured, and the defective insulation rate was obtained. The results are shown in FIG.

【0033】図5から明らかなように、実施例1〜9の
正極を備えた二次電池は、比較例1に比べて絶縁不良発
生率を低減できることがわかる。これら二次電池を分解
し、巻き始め部付近の正極表面を観察すると、ノッチに
沿ってクラックが発生し、つまりクラックが均一に形成
されていることがわかった。このことから、実施例1〜
9の正極を備えた二次電池は、不均一なクラックに起因
して発生する捲回時の巻きずれや、バリを抑えることが
できるため、絶縁不良率を低減できることがわかる。ま
た、ノッチ間隔が広くなるに従って絶縁不良率が高くな
る場合があることがわかる。なお、ノッチ幅を0.1mm
未満にすると、ノッチ同士が干渉し、ノッチの成形がや
や困難であった。 (実施例10〜17)前述した実施例1の正極におい
て、ノッチの深さ(H)を0.01mm(実施例10)、
0.03mm(実施例11)、0.1mm(実施例12),
0.2mm(実施例13),0.25mm(実施例14)、
0.3mm(実施例15)、0.4mm(実施例16),
0.45mm(実施例17)と異ならせ、合計8種類の正
極を用意した。
As is apparent from FIG. 5, the secondary batteries provided with the positive electrodes of Examples 1 to 9 can reduce the rate of occurrence of insulation failure as compared with Comparative Example 1. When these secondary batteries were disassembled and the positive electrode surface near the beginning of winding was observed, it was found that cracks occurred along the notches, that is, the cracks were formed uniformly. From this, Examples 1 to
It can be seen that the secondary battery provided with the positive electrode of No. 9 can suppress the winding deviation at the time of winding and the burr generated due to the non-uniform crack, so that the insulation failure rate can be reduced. Also, it can be seen that the insulation failure rate may increase as the notch interval increases. The notch width is 0.1mm
If it is less than 1, notches interfere with each other, and it is somewhat difficult to form the notch. (Examples 10 to 17) In the positive electrode of Example 1 described above, the notch depth (H) was 0.01 mm (Example 10).
0.03 mm (Example 11), 0.1 mm (Example 12),
0.2 mm (Example 13), 0.25 mm (Example 14),
0.3 mm (Example 15), 0.4 mm (Example 16),
A total of eight types of positive electrodes were prepared, different from 0.45 mm (Example 17).

【0034】得られた実施例10〜17の正極につい
て、前述したのと同様な方法により絶縁不良評価試験を
行い、その結果を図6に示す。なお、図6には、前述し
た比較例1及び実施例1の結果を併記する。
With respect to the obtained positive electrodes of Examples 10 to 17, an insulation failure evaluation test was performed by the same method as described above, and the results are shown in FIG. FIG. 6 also shows the results of Comparative Example 1 and Example 1 described above.

【0035】図6から明らかなように、実施例1,10
〜17の正極を備えた二次電池は、比較例1に比べて絶
縁不良率を低減できることがわかる。また、ノッチの深
さが深くなるに従ってノッチに沿ってクラックが均一に
発生し、絶縁不良率が低下する傾向があることがわか
る。しかしながら、ノッチの深さが0.4mmを越える
と、電極群作製時に正極が破断する場合があるため、絶
縁不良率がやや高くなる傾向にあることがわかる。な
お、ノッチの深さを0.01mm未満にすると、目的とす
る形状を有するノッチに成形するのがやや困難であっ
た。
As is clear from FIG.
It can be seen that the secondary batteries having the positive electrodes of Nos. 1 to 17 can reduce the insulation failure rate as compared with Comparative Example 1. Also, it can be seen that as the depth of the notch increases, cracks occur uniformly along the notch, and the insulation failure rate tends to decrease. However, when the depth of the notch exceeds 0.4 mm, the positive electrode may be broken at the time of manufacturing the electrode group, so that the insulation failure rate tends to be slightly higher. If the depth of the notch is less than 0.01 mm, it is somewhat difficult to form a notch having a desired shape.

【0036】次いで、前述した実施例4の正極と、以下
に説明する実施例18及び比較例2の正極について、湾
曲幅(反り具合)の測定を行った。 (実施例18)捲回時に外周側に位置する面のノッチ間
隔を1.0mmにし、捲回時に内周側に位置する面のノッ
チ間隔を20mmにし、捲回時に内周側に位置する面のノ
ッチ数を捲回時に外周側に位置するノッチ数の5%にす
ること以外は、実施例1と同様なペースト式ニッケル正
極を作製した。 (比較例2)捲回時に内周側に位置する面にノッチを形
成しない、つまりこの面のノッチ数を捲回時に外周側に
位置するノッチ数の0%にすること以外は、実施例1と
同様なペースト式ニッケル正極を作製した。
Next, for the positive electrode of Example 4 described above and the positive electrodes of Example 18 and Comparative Example 2 described below, the bending width (degree of warpage) was measured. (Example 18) The notch interval of the surface located on the outer peripheral side during winding is 1.0 mm, the notch interval of the surface located on the inner peripheral side during winding is 20 mm, and the surface located on the inner peripheral side during winding A paste-type nickel positive electrode was produced in the same manner as in Example 1, except that the number of notches was 5% of the number of notches located on the outer peripheral side during winding. (Comparative Example 2) Example 1 except that no notch was formed on the surface located on the inner peripheral side during winding, that is, the number of notches on this surface was set to 0% of the number of notches located on the outer peripheral side during winding. A paste-type nickel positive electrode similar to that described above was produced.

【0037】得られた実施例4,18及び比較例2の正
極を水平な面に捲回時に内周側に位置する面を下にして
それぞれ載置し、この面と各正極との間に形成された隙
間の最大値を湾曲幅として測定し、その結果を下記表1
に示す。
The positive electrodes obtained in Examples 4 and 18 and Comparative Example 2 were placed on a horizontal surface with the surface located on the inner peripheral side facing down when wound, and between the surface and each positive electrode. The maximum value of the formed gap was measured as the bending width, and the result was shown in Table 1 below.
Shown in

【0038】 表1から明らかなように、捲回時に内周側に位置する面
にノッチが存在する実施例4,18の正極は、内周面側
にノッチが形成されていない比較例2の正極に比べて湾
曲幅を低減することができ、反りが生じるのを防止する
ことができる。
[0038] As is clear from Table 1, the positive electrodes of Examples 4 and 18 in which notches are present on the surface located on the inner peripheral side during winding are compared with the positive electrodes of Comparative Example 2 in which notches are not formed on the inner peripheral surface side. Thus, the bending width can be reduced, and the occurrence of warpage can be prevented.

【0039】[0039]

【発明の効果】以上詳述したように本発明に係るペース
ト式電極によれば、高容量化のためにペースト充填密度
が向上された場合においても、反りを回避しつつ、柔軟
性を向上することが可能で、高容量なアルカリ二次電池
を高歩留まりで製造することができる等顕著な効果を奏
する。
As described above in detail, according to the paste-type electrode of the present invention, even when the paste filling density is improved for higher capacity, the flexibility is improved while avoiding warpage. This makes it possible to produce a high-capacity alkaline secondary battery at a high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るペースト式電極が組み込まれるア
ルカリ二次電池の一例を示す部分切欠斜視図。
FIG. 1 is a partially cutaway perspective view showing an example of an alkaline secondary battery into which a paste electrode according to the present invention is incorporated.

【図2】本発明の実施例1〜18のペースト式正極を示
す斜視図。
FIG. 2 is a perspective view showing a paste-type positive electrode of Examples 1 to 18 of the present invention.

【図3】図2の正極を示す部分断面図。FIG. 3 is a partial sectional view showing a positive electrode of FIG. 2;

【図4】図2の正極を示す部分断面図。FIG. 4 is a partial cross-sectional view showing the positive electrode of FIG.

【図5】本発明の実施例1〜9のペースト式正極及び比
較例1のペースト式正極における溝部の間隔と絶縁不良
率との関係を示す特性図。
FIG. 5 is a characteristic diagram showing the relationship between the interval between grooves and the insulation failure rate in the paste-type positive electrodes of Examples 1 to 9 of the present invention and the paste-type positive electrode of Comparative Example 1.

【図6】本発明の実施例10〜17のペースト式正極及
び比較例1のペースト式正極における溝部の深さと絶縁
不良率との関係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the depth of the groove and the insulation failure rate in the paste-type positive electrodes of Examples 10 to 17 of the present invention and the paste-type positive electrode of Comparative Example 1.

【符号の説明】[Explanation of symbols]

1…容器、 2…正極、 4…負極、 5…電極群、 7…封口板。 DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Positive electrode, 4 ... Negative electrode, 5 ... Electrode group, 7 ... Sealing plate.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 3次元基板と、前記基板に保持された活
物質合剤とを備えるペースト式電極であって、 少なくとも長手方向と直交する端部領域に、長手方向と
直交する方向に沿う溝部を有し、一方の面の溝部の数が
他方の面の溝部の数に比べて少ないことを特徴とするペ
ースト式電極。
1. A paste electrode comprising a three-dimensional substrate and an active material mixture held on the substrate, wherein at least an end region orthogonal to the longitudinal direction has a groove along a direction orthogonal to the longitudinal direction. Wherein the number of grooves on one surface is smaller than the number of grooves on the other surface.
【請求項2】 前記他方の面における溝部の間隔は、
0.1mm〜10mmであることを特徴とする請求項1記載
のペースト式電極。
2. The interval between the grooves on the other surface is:
The paste-type electrode according to claim 1, wherein the thickness is from 0.1 mm to 10 mm.
【請求項3】 前記一方の面及び前記他方の面における
溝部の深さは、それぞれ0.01mm〜0.4mmであるこ
とを特徴とする請求項1記載のペースト式電極。
3. The paste electrode according to claim 1, wherein the depth of the groove on the one surface and the other surface is 0.01 mm to 0.4 mm, respectively.
JP9191342A 1997-07-16 1997-07-16 Paste-type electrode Pending JPH1140146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9191342A JPH1140146A (en) 1997-07-16 1997-07-16 Paste-type electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9191342A JPH1140146A (en) 1997-07-16 1997-07-16 Paste-type electrode

Publications (1)

Publication Number Publication Date
JPH1140146A true JPH1140146A (en) 1999-02-12

Family

ID=16272979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9191342A Pending JPH1140146A (en) 1997-07-16 1997-07-16 Paste-type electrode

Country Status (1)

Country Link
JP (1) JPH1140146A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186870A (en) * 1997-09-03 1999-03-30 Japan Storage Battery Co Ltd Electrochemical battery
WO2001006582A1 (en) * 1999-07-21 2001-01-25 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery pole plate and production method for alkaline storage battery pole plate and alkaline storage battery
WO2009157158A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN113839008A (en) * 2020-06-24 2021-12-24 通用汽车环球科技运作有限责任公司 Thick flexible cathodes for lithium ion batteries

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186870A (en) * 1997-09-03 1999-03-30 Japan Storage Battery Co Ltd Electrochemical battery
WO2001006582A1 (en) * 1999-07-21 2001-01-25 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery pole plate and production method for alkaline storage battery pole plate and alkaline storage battery
US6800398B1 (en) 1999-07-21 2004-10-05 Matsushita Electric Industrial Co., Ltd. Alkaline storage battery pole plate and production method for alkaline storage battery pole plate and alkaline storage battery
WO2009157158A1 (en) * 2008-06-23 2009-12-30 パナソニック株式会社 Nonaqueous electrolyte secondary battery
CN113839008A (en) * 2020-06-24 2021-12-24 通用汽车环球科技运作有限责任公司 Thick flexible cathodes for lithium ion batteries
US20210408518A1 (en) * 2020-06-24 2021-12-30 GM Global Technology Operations LLC Thick, flexible cathodes for lithium-ion batteries
US11581521B2 (en) * 2020-06-24 2023-02-14 GM Global Technology Operations LLC Thick, flexible cathodes for lithium-ion batteries

Similar Documents

Publication Publication Date Title
US5965295A (en) Alkaline secondary battery, paste type positive electrode for alkaline secondary battery, method for manufacturing alkaline secondary battery
US20180358609A1 (en) Non-sintered positive electrode for alkaline secondary battery and alkaline secondary battery including non-sintered positive electrode
JPH1140146A (en) Paste-type electrode
JP3557063B2 (en) Non-sintered nickel electrode for alkaline storage batteries
US3347707A (en) Charged secondary cell
JPH09139230A (en) Alkaline secondary battery
JP4413294B2 (en) Alkaline secondary battery
JPH09274932A (en) Manufacture of alkaline secondary battery
JP2002100396A (en) Cylindrical alkaline secondary cell
US12021222B2 (en) Positive electrode for alkali secondary battery, and alkali secondary battery including said positive electrode
JP7197250B2 (en) secondary battery
JP7125218B2 (en) Negative electrode for alkaline secondary battery and alkaline secondary battery
JP2000299104A (en) Manufacture of nickel hydrogen secondary battery
JPH11260360A (en) Positive electrode for alkaline storage battery and alkaline storage battery
JP3393978B2 (en) Alkaline secondary battery
JP2001223000A (en) Alkaline secondary battery
US20220052317A1 (en) Positive electrode for alkali secondary battery, and alkali secondary battery including said positive electrode
JP2001006724A (en) Cylindrical alkaline secondary battery
JP2001176505A (en) Electrode and alkaline secondary battery
JP2002008710A (en) Cylindrical nickel-hydrogen secondary battery
JPH1140183A (en) Battery
JP2001006723A (en) Alkaline secondary battery and manufacture of alkaline secondary battery
JP2024000748A (en) Positive electrode plate for alkaline battery, and alkaline battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP2000277142A (en) Cylindrical alkaline secondary battery