JP2010156990A - オーディオ情報生成方法 - Google Patents

オーディオ情報生成方法 Download PDF

Info

Publication number
JP2010156990A
JP2010156990A JP2010030139A JP2010030139A JP2010156990A JP 2010156990 A JP2010156990 A JP 2010156990A JP 2010030139 A JP2010030139 A JP 2010030139A JP 2010030139 A JP2010030139 A JP 2010030139A JP 2010156990 A JP2010156990 A JP 2010156990A
Authority
JP
Japan
Prior art keywords
spectral
signal
spectral components
zero
subband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010030139A
Other languages
English (en)
Other versions
JP5063717B2 (ja
Inventor
Michael Mead Truman
トゥルーマン、マイケル・ミード
Grant Allen Davidson
デイビッドソン、グラント・アレン
Matthew Conrad Fellers
フェラーズ、マシュー・コンラッド
Mark Stuart Vinton
ビントン、マーク・スチュアート
Matthew Aubrey Watson
ワトソン、マシュー・オーブリー
Charles Quito Robinson
ロビンソン、チャールズ・キトー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolby Laboratories Licensing Corp
Original Assignee
Dolby Laboratories Licensing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dolby Laboratories Licensing Corp filed Critical Dolby Laboratories Licensing Corp
Publication of JP2010156990A publication Critical patent/JP2010156990A/ja
Application granted granted Critical
Publication of JP5063717B2 publication Critical patent/JP5063717B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • G10L19/035Scalar quantisation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stereophonic System (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Adornments (AREA)
  • Optical Communication System (AREA)
  • Optical Filters (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Stereo-Broadcasting Methods (AREA)

Abstract

【課題】零値量子化スペクトル成分に関連した低下を回避若しくは低減することにより、オーディオコーディングシステムから得られたオーディオ信号の知覚品質を改良する。
【解決手段】量子化のようなオーディオコーディング処理は、符号化オーディオ信号のスペクトル成分を零に設定させ、信号内にスペクトルホールを生成する。これらのスぺクトルホールは、オーディオコーディングシステムにより再生されるオーディオ信号の知覚品質を劣化させる。改良されたデコーダは、スペクトルホールを合成スペクトル成分で充填することにより劣化を回避若しくは低減させる。改良されたエンコーダを用いて、デコーダに更なる改良を実現してもよい。
【選択図】図9

Description

本発明は一般にオーディオコーディングシステムに関し、更に詳しくはオーディオコーディングシステムから得られたオーディオ信号の知覚品質の改良に関する。
オーディオコーディングシステムは、オーディオ信号を伝送又は記憶に適するエンコード信号へ符号化し、続いてこのエンコード信号を受信又は検索して、再生 のための原オーディオ信号のバージョンを得るように復号するために用いられる。知覚オーディオコーディングシステムのなす試みは、オーディオ信号を原オー ディオ信号よりも情報容量要求が低いエンコード信号へ符号化し、続いてこのエンコード信号を復号して、原オーディオ信号から知覚的に区別できる出力を与え ることである。知覚オーディオコーディングシステムの一例はAdvanced Television Standards Committee (ASTC)A52 document(1944)に説明されており、これはDolby AC−3と称されている。他の例はBosi et al.,”ISO/IEC MPEG−2 Advanced Audio Coding,”J.AES,vol.45,no.10,October 1997,pp.789−814に説明されており、これはアドバンスド オーディオ コーディング(Advanced Audio Coading: AAC)と称されている。これらの2つのコーディングシステム及び他の多くの知覚コーディングシステムは、オーディオ信号へ解析フィルタバ ンクを施して、グループ又は周波数帯に配置されたスペクトル成分を得る。帯域幅は普通は変動し、また通常は人間の聴覚系の所謂臨界帯域に比例する。
知覚コーディングシステムは、オーディオ信号の情報容量要求を低減する一方、オーディオ品質の本質的な又は知覚的な測定を保存して、オーディオ信号のエン コード表現を、小さな帯域幅を用いる通信チャンネルを通じて搬送でき、或いは小さなスペースを用いる記録媒体に保存できるように用いることができる。情報 容量要求はスペクトル成分を量子化することにより低減される。量子化は量子化信号へ雑音を注入するが、知覚オーディオコーディングシステムは、一般に音響 心理学的モデルを用いて、量子化雑音の幅を制御して信号中のスペクトル成分により聞き取れないようにマスク又はレンダリングする試みをなしている。
所定の帯域内のスペクトル成分はしばしば同じ量子化解像度へ量子化されて、音響心理学的モデルを用いて可聴レベルの量子化雑音を伴わないことが可能な最も 大きな最小量子化解像度又は最も小さな信号対雑音比(SNR)を定める。この技術は狭細帯域については良好に働くが、広い帯域については、情報容量要求が コーディングシステムに比較的に粗い量子化解像度を用いることを強いる際には、良好には働かない。広帯域における大きな値のスペクトル成分は、通常は、所 望の解像度を有する非零値へ量子化されるが、この帯域内の小さな値のスペクトル成分は、最小量子化レベルよりも小さな振幅を有するならば零へ量子化され る。一つの帯域における零へ量子化されるスペクトル成分の数は、帯域幅が大きくなるにつれて、帯域内のスペクトル成分の最大値と最小値との間の差異が大きくなるにつれて、また最小量子化レベルが大きくなるにつれて、一般に増加する。
残念ながら、エンコード信号における多くの量子化対零(QTZ)スペクトル成分の存在は、結果的な量子化雑音が信号内のスペクトル成分により聞き取れない 又は音響心理学的的にマスクされているとみなすのに充分に低く保たれている場合でさえも、オーディオ信号の知覚品質を劣化させてしまう。この劣化は少なく とも3つの原因を有する。第1の原因は、音響心理学的マスキングのレベルが、量子化解像度を定めるのに用いた音響心理学的モデルにより予期されたものより も低いので量子化雑音は聞き取れないものにはならないことである。第2の原因は多くのQTZスペクトル成分の形成が、符号化オーディオ信号のエネルギ又は パワーを原オーディオ信号のエネルギ又はパワーと比較して聴覚的に低減させることである。第3の理由は、直交ミラーフィルタ(Quadrature Mirror Filter: QMF)のような歪打ち消しフィルタバンク、又は時間ドメイン折り返し打ち消し(TDAC)変換として知られる特定変更ディスクリートコサ イン変換(DCT)及び変更逆ディスクリートコサイン変換(IDCT)(これらはPrincen et al.,”Subband/Transform Coding Using Filter Bank Designs Based on Time Domain Aliasing Cancellation,”ICASSP 1987 Conf.Proc., May 1987,pp.2161−64に説明されている)を用いるコーディング処理に関係している。
QMFのような歪打ち消しフィルタバンク又はTDAC変換を用いるコーディングシステムは、エンコード処理に解析フィルタバンクを用い、これはエンコード 信号に歪又は擬似成分をもたらすのであるが、復号化処理においては合成フィルタバンクを用い、これは理論的には少なくとも歪を打ち消せる。しかしながら、 実際には歪を打ち消す合成フィルタバンクの能力は、1つ又は複数のスペクトル成分の値がエンコード処理中に大きく変化するならば、相当に損なわれる。この 理由のために、スペクトル成分値における変化が、解析フィルタバンクにより導入された歪を打ち消す合成フィルタバンクの能力を損なうので、量子化雑音が聞 き取れない場合でさえも、QTZスペクトル成分は復号オーディオ信号の知覚品質を劣化させる。
公知のコーディングシステムに用いられる技術は、これらの問題に部分的な解決を与える。Dolby AC−3及びAAA変換コーディングシステムは、例えば、デコーダにおける特定のQTZスペクトル成分についての雑音を置換することにより原オーディオ信 号の信号レベルを保持するエンコード信号から出力信号を生成する若干の能力を有する。これらのシステムの両方において、エンコーダはエンコード信号に周波 数帯域についてのパワーの指標を与え、デコーダは、このパワー指標を用いて、周波数帯域についてのQTZスペクトル成分についての雑音の適正なレベルを置 き換える。Dolby AC−3エンコーダーは、雑音の適正レベルを生成するのに用いることができる短時間パワースペクトルの粗い見積もりを与える。一つの帯域における全てのス ペクトル成分が零に設定されているとき、デコーダーは、短時間パワースペクトルの粗い見積もりにおいて示されたのと概ね同じパワーを有する雑音で帯域を充 填する。AACコーディングシステムは、所定の帯域についてのパワーを陽に送信する知覚雑音置換(Perceptual Noise Substitution:PNS)と称される技術を用いる。デコーダーはこの情報を用いて、このパワーに整合する雑音を加える。両方のシステムは、それ らの帯域が非零スペクトル成分を持たないときにのみ雑音を加える。
残念ながら、これらのシステムはQTZ及び非零スペクトル成分の混合を包含する帯域における知覚パワーレベルには助けにはならない。表1は、原オーディオ 信号、エンコード信号へ組み立てられる各スペクトル成分の3−ビット量子化表示、エンコード信号からデコーダにより獲得された対応スペクトル成分について のスペクトル成分の仮想帯域を示す。エンコード信号における量子化帯域は、QTZ及び非零スペクトル成分の組み合わせを有する。
Figure 2010156990
表の第1欄は、単独の帯域へ分類される原オーディオ信号におけるスペクトル信号を表す符号なし二進数のセットを示す。第2欄は3つのビットへ量子化された スペクトル成分の代表を示す。この例のために、各スペクトル成分の3ビット解像度よりも下位の部分は切捨てにより除去してある。量子化スペクトル成分はデ コーダへ送信されて、続いて零ビットを添えることにより逆量子化されて原スペクトル成分長を復帰させる。逆量子化スペクトル成分は第3欄に示してある。ス ペクトル成分の殆どは零に量子化されているので、逆量子化スペクトル成分の帯域は原スペクトル成分の帯域よりも小さいエネルギを包含し、且つそのエネルギ は幾つかの非零スペクトル成分に集中している。このエネルギにおける減少は、上述した復号信号の知覚品質を劣化させる。
発明の開示
本発明の目的は、零値量子化スペクトル成分に関連した低下を回避若しくは低減することにより、オーディオコーディングシステムから得られたオーディオ信号の知覚品質を改良することである。
本発明の1つの局面によれば、入力信号を受け取ることによりオーディオ情報が与えられ、そこから1セットのサブバンド信号が獲得され、その各々はオーディ オ信号のスペクトル内容を表す1つ又は複数のスペクトル成分を有し、;1つ又は複数のスペクトル成分が非零値を有し、且つ閾値に対応する最小量子化レベル を有する量子化器により量子化されると共に、複数のスペクトル成分が零値を有する特定のサブバンド信号をサブバンド信号のセット内で同定し、;特定のサブ バンド信号における各零値スペクトル成分に対応し、且つ閾値以下のスケーリングエンベロープに応じた大きさにされた合成スペクトル成分を生成し、;特定の サブバンド信号における対応する零値スペクトル成分についての合成スペクトル成分を置換することによりサブバンド信号の変更されたセットを生成し、;合成 フィルタバンクをサブバンド信号の変更されたセットへ適用することによりオーディオ情報を生成する。
本発明の他の局面によれば、出力信号は、好ましくはエンコード出力信号であり、サブバンド信号のセットを生成することにより与えられ、その信号の各々は、 解析フィルタバンクをオーディオ情報へ適用することにより獲得された情報を量子化することによりオーディオ信号のスペクトル内容を表す1つ又は複数のスペ クトル成分を有し、;1つ又は複数のスペクトル成分が非零値を有し、且つ閾値に対応する最小量子化レベルを有する量子化器により量子化されると共に、複数 のスペクトル成分が零値を有する特定のサブバンド信号をサブバンド信号のセット内で同定し、;オーディオ信号のスペクトル内容からスケーリング制御情報を 導出し、スケーリング制御情報は合成スペクトル成分のスケーリングを制御し、その合成スペクトル成分は合成されて、出力信号に応答してオーディオ情報を生 成するレシーバーにおいて零値を有するスペクトル成分を構成し;スケーリング制御情報及びサブバンド信号のセットを表す情報を組み立てることにより出力信 号を生成する。
本発明の様々な特徴及びその好ましい実施形態は以下の説明と添付図面を参照することにより良く理解されよう。各図において同様な参照符号は同様な要素を示す。以下の説明及び添付図面の内容は単なる例示であるので、本発明の目的の限定を表すものと理解すべきではない。
図1aはオーディオエンコーダーの模式的なブロック図である。 図1bはオーディオデコーダーの模式的なブロック図である。 図2aは量子化関数のグラフ表示である。 図2bは量子化関数のグラフ表示である。 図2cは量子化関数のグラフ表示である。 図3は仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図4は幾つかのスペクトル成分が零に設定された仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図5は零値スペクトル成分を構成する合成スペクトル成分を有する仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図6は解析フィルタバンクにおけるフィルタに応答する仮想周波数をグラフで示す模式図である。 図7は図6に示すスペクトル漏洩のロールオフに近似するスケーリングエンベロープをグラフで示す模式図である。 図8は適合可能なフィルタの出力から導かれるスケーリングエンベロープをグラフで示す模式図である。 図9は図6に示すスペクトル漏洩のロールオフに近似するスケーリングエンベロープにより重み付けされた合成スペクトル成分を有する仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図10は仮想音響心理学的マスキング閾値をグラフで示す模式図である。 図11は音響心理学的マスキング閾値に近似するスケーリングエンベロープにより重み付けされた合成スペクトル成分を有する仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図12は仮想サブバンド信号をグラフで示す模式図である。 図13は幾つかのスペクトル成分が零に設定された仮想サブバンド信号をグラフで示す模式図である。 図14は仮想的な一時的音響心理学的マスキング閾値をグラフで示す模式図である。 図15は一時的音響心理学的マスキング閾値に近似するスケーリングエンベロープにより重み付けされた合成スペクトル成分を有する仮想サブバンド信号をグラフで示す模式図である。 図16はスペクトル複製により生成された合成スペクトル成分を有する仮想オーディオ信号のスペクトルをグラフで示す模式図である。 図17はエンコーダー又はデコーダーにおける本発明の様々な局面を実施するために使用し得る装置の模式的なブロック図である。
本発明を実施する形態
A.概観
本発明の様々な局面は、図1a及び図1bに示すようなデバイスを含む広範な信号処理方法及びデバイスへ組み入れられる。幾つかの局面は復号化方法又はデバ イスのみで実行される処理により達成され得る。他の局面は符号化と復号化との方法又はデバイスの双方において実行される共働処理を必要とする。本発明の様 々な局面を実行するために用いられる処理の説明は、それらの処理を実行するのに使用し得る以下の代表的なデバイスの概観に従って与えられる。
1.エンコーダ
図1aは分割バンドオーディオエンコーダの一実施形態を示し、ここでは解析フィルタバンク12が経路11からオーディオ信号を表すオーディオ情報を受け取 り、これに応答して、オーディオ信号の周波数サブバンドを表すディジタル情報が与えられる。周波数サブバンドの各々におけるディジタル情報は、それぞれ量 子化器14,15,16により量子化されてエンコーダ17へ進む。このエンコーダ17は、フォーマッタ18へ送られる量子化情報のエンコード表現を生成す る。図示される特定の実施形態においては、量子化器14,15,16における量子化作用はモデル13から受け取られた量子化制御情報に応答するように適合 されており、モデル13は経路11から受け取ったオーディオ情報に応答して量子化制御情報を生成する。フォーマッタ18は量子化情報のエンコード表現及び 量子化制御情報を伝送又は記憶に適する出力信号へ組み立て、この出力信号を経路19に沿って進める。
多くのオーディオアプリケーションは、図2aに示す3ビット中間段非対称量子化関数のような一様な線形量子化関数q(x)を使用するが、量子化の特定の形 態が本発明にとって重要なわけではない。使用し得る他の2つの関数の例を図2b及び図2cに示す。これらの例の各々において、量子化関数q(x)は点30 における値から点31における値までの間隔における任意の入力値xについて零に等しい出力を与える。多くのアプリケーションにおいては、点30,31にお ける2つの値は大きさが同じで符号が逆であるが、これは図2bに示すように必要なことではない。説明を簡単にするために、特定の量子化関数q(x)により 零へ量子化された(QTZ)入力値の間隔内の値xは、量子化関数の最小量子化レベルよりも小さいものとする。
本明細書における「エンコーダ」及び「エンコード」のような用語は、情報処理の何らかの特定の形式を意味することを意図したものではない。例えばエンコー ドはしばしば情報容量要求を低減するために用いられるが、本明細書におけるこれらの用語は、その形式の処理を意味する必要はない。エンコーダ17は、所望 の基本的に任意の形式の処理を実行し得る。一つの実施においては、量子化情報は共通の倍率を有するスケーリング因子のグループへ符号化される。Dolby AC−3コーディングシステムにおいては、例えば量子化スペクトル成分が浮動小数点のグループ又は帯域に配置され、各帯域における数が浮動点指数を共有す る。AACコーディングシステムにおいては、Huffmanコーディングようなエントロピーコーディングが用いられている。他の実施においては、エンコー ダ17が省かれて、量子化情報が直接に出力信号へ組み立てられる。エンコードの特定の形式が本発明に重要なわけではない。
モデル13は望ましい基本的に任意の形式の処理を実行し得る。一つの例は、音響心理学的モデルをオーディオ情報へ適用して、オーディオ信号における異なる スペクトル成分の音響心理学的マスキング効果を評価する処理である。様々な変形例が可能である。例えばモデル13は、解析フィルタバンク12の入力において利用可能なオーディオ情報に代わって、或いはそれに加えて、解析フィルタバンク12の出力において利用可能な周波数サブバンド情報に応答して量子化制御 情報を生成してもよい。他の例としては、モデル13を省いて、量子化器14,15,16が適合されていない量子化関数を用いるようにしてもよい。特定のモデリング処理が本発明に重要なわけではない。
2.デコーダ
図1bは分割バンドオーディオデコーダの一つの実施形態を示し、ここではデフォーマッタ22が経路21から入力信号を受け取り、この入力信号は、オーディオ信号の周波数サブバンドを表す量子化ディジタル情報のエンコード表現を搬送する。デフォーマッタ22は入力信号から符号化表示を得て、これをデコーダ23へ進める。デコーダ23はエンコード表現を量子化情報の周波数サブバンドへ復号する。周波数サブバンドの各々における量子化ディジタル情報は、各逆量 子化器25,26,27により逆量子化されて合成フィルタバンク28へ進められ、このフィルタバンク28は経路29に沿ってオーディオ信号を表すオーディオ情報を生成する。図に示す特定の実施では、逆量子化器25,26,27における逆量子化関数はモデル24から受け取られた量子化制御情報に応答するよう に適合されており、そのモデル24は、入力信号からデフォーマッタ22により獲得された制御情報に応答して量子化制御情報を生成する。
本明細書において「デコーダ」及び「復号」のような用語は、任意の特定の形式の情報処理を意味することを意図したものではない。デコーダ23は、必要な若しくは望まれる基本的に任意の形式の処理を実行し得る。上述の符号化処理とは反対の一つの実施においては、共有指数を有する浮動小数点のグループにおける 量子化情報が、指数を共有しない個々の量子化成分へ復号される。他の実施においては、Huffmanデコーディングのようなエントロピーデコーディングが 用いられる。他の実施においては、デコーダ23が省かれて、量子化情報がデフォーマッタ22により直接に獲得される。復号化の特定の形式が本発明に重要なわけではない。
モデル24は望ましい基本的に任意の形式の処理を実行し得る。一つの例は、音響心理学的モデルを入力信号から得られた情報へ適用して、オーディオ信号における異なるスペクトル成分の音響心理学的マスキング効果を評価する処理である。他の例としては、モデル24を省いて、逆量子化器25,26,27がデフォーマッタ22により入力信号から直接に獲得された量子化制御情報に応答するように適合されていない量子化関数を用いてもよく、又は適合された量子化関数を用いるようにしてもよい。特定の処理が本発明に重要なわけではない。
3.フィルタバンク
図1a及び図1bに示すデバイスは3つの周波数サブバンドについての成分を示す。より多くのサブバンドが代表的なアプリケーションに用いられるのであるが、図示を明瞭にするために3つのみを示してある。本発明の原理に重要な特定の個数はない。
解析及び合成フィルタバンクは基本的に任意の方式で実施してもよく、これはワイドレンジのディジタルフィルタ技術、ブロック変換及び小波形変換を含むこと が望ましい。上述したようなエンコーダ及びデコーダを有する一つのオーディオコーディングシステムにおいては、解析フィルタバンク12がTDAC変形 DCTにより実施され、合成フィルタバンク28が上述したTDAC変形IDCTにより実施されるが、特定の実施が本発明の原理に重要なわけではない。
ブロック変換により実施された解析フィルタバンクは、入力信号のブロック又は間隔を、信号の間隔のスペクトル内容を表す一組の変換係数へ分割する。少なくとも一つ以上の隣接する係数のグループは、グループにおける係数の数に釣り合う帯域幅を有する特定の周波数サブバンド内のスペクトル内容を表す。
ブロック変換ではなく、多相フィルタのような何らかの形式のディジタルフィルタにより実施される解析フィルタバンクは、入力信号を一組のサブバンド信号へ 分割する。各サブバンド信号は、特定周波数サブバンド内の入力信号のスペクトル内容の時間に基づく表現である。好ましくはサブバンド信号は十進数にされ、 各サブバンド信号が、時間の単位間隔についてのサブバンド信号におけるサンプルの数に釣り合う帯域幅を有するようにされる。
以下の説明は上述したTDAC変換のようなブロック変換を用いる実施形態を特に参照する。この説明においては、用語「サブバンド信号」は一つ又は複数の変 換係数のグループを意味し、用語「スペクトル成分」は変換係数を意味する。本発明の原理は他の形式の実施形態に適用し得るが、用語「サブバンド信号」は一 般に信号の特定周波数サブバンドのスペクトル内容を表す時間基信号を意味し、用語「スペクトル成分」は一般に時間基サブバンド信号のサンプルを意味するも のと理解されたい。
4.実施
本発明の様々な局面は、汎用コンピュータシステムにおけるソフトウェア、又は汎用コンピュータシステムに見られるような部品に接続されたディジタル信号プロセッサ(DSP)のようなより特殊な部品を含む他の装置におけるソフトウェアを含む広範な手法で実施してもよい。
図17はデバイス70のブロック図であり、このデバイスはオーディオエンコーダ又はオーディオデコーダにおける本発明の様々な局面を実施し得る。DSP72はコンピューティング資源を与える。RAM73は信号処理のためにDSP72により用いられたランダムアクセスメモリ(RAM)である。ROM74は、デバイス 70の操作及び本発明の様々な局面を実行するのに必要なプログラムを保存するためのリードオンリーメモリ(ROM)のような何らか持続記憶形態に相当する。I/Oコントロール75は交信チャンネル76,77により信号を受信及び送信するインターフェース回路系に相当する。アナログ−ディジタル変換器及び ディジタル−アナログ変換器をアナログオーディオ信号を受信及び/又は送信する所望に応じてI/Oコントロール75に含めてもよい。図示の実施形態におい ては、全ての主要なシステム部品はバス71へ接続され、これは1つ以上の物理的バスを表すが、本発明を実施するのにバスアーキテクチュアは必要ない。
汎用コンピュータシステムにおいて実施される形態において、キーボード又はマウス及びディスプレイなどのデバイスをインターフェースするため、及び磁気 テープ又はディスク或いは光学媒体などの記憶媒体を有する記憶デバイスを制御するために付加的部品を含めてもよい。記憶媒体はシステム、ユーティリティー 及びアプリケーションを操作する指示のプログラムを記録するのに用いてもよく、また本発明の様々な局面を実施するプログラムの実施形態を含んでもよい。
本発明の様々な局面を実施するのに必要な機能は、ディスクリート論理部品、1つ又は複数のASIC及び/又はプログラム制御プロセッサを含む広範な手法で実施される部品により実施できる。これらの部品を実施する方式は本発明には重要ではない。
本発明のソフトウェア実施は、超音波から紫外域周波数を含むスペクトルを通じたベースバンド又は個別交信経路のような様々な機械的読み取り媒体、又は磁気 テープ、磁気ディスク、光ディスクを含む基本的に任意の磁気又は光学記録技術を用いる情報を包含するものを含む記憶媒体により支持されてもよい。様々な局面もASIC、汎用集積回路などの処理回路、ROM又はRAMの様々な形態で実施されるプログラムにより制御されるマイクロプロセッサ及び他の技術により 実施できる。
B.デコーダ
本発明の様々な局面は、特殊な処理もエンコーダからの情報も必要としないデコーダで実行してもよい。これらの局面については本欄で説明する。特殊な処理又はエンコーダからの情報を必要とする他の局面については次欄で説明する。
1.スペクトルホール
図3は変換コーディングシステムによりエンコードされる仮想オーディオ信号の間隔のスペクトルのグラフ表示である。スペクトル41は変換係数又はスペクトル成分 の大きさのエンベロープを表す。エンコーディング処理の間、閾値40よりも小さい大きさを有す全てのスペクトル成分は零に量子化される。図2に示される関数q(x)のような量子化関数が用いられるならば、閾値40は最小量子化レベル30,31に対応する。図示の便宜のために閾値40は全周波数範囲に亘って 均一な値で示してある。これは多くのコーディングシステムにおける代表例ではない。各サブバンド信号内でスペクトル成分を均一に量子化する知覚オーディオコーディングシステムにおいては、例えば、閾値40は各周波数サブバンド内では均一であるが、サブバンドごとに変化する。他の実施においては、閾値40は 所定の周波数サブバンド内で変化する。
図4は量子化スペクトル成分により示される仮想オーディオ信号のスペクトルのグラフ表示である。スペクトル42は量子化されたスペクトル成分の大きさのエンベロープを表す。この図及び他の図に示されるスペクトルは、閾値40以上の大きさを有するスペクトル成分の量子化の効果を示さない。量子化信号における QTZスペクトル成分と原信号における対応スペクトル成分との間の差は斜線で示してある。斜線領域は、量子化表示における「スペクトルホール」を示し、これは合成スペクトル成分で充填される。
本発明の一つの実施においては、デコーダは入力信号を受け取り、この信号は図4に示すような量子化サブバンド信号のエンコード表現を運ぶ。デコーダはエンコード表現を復号し、1つ又は複数のスペクトル成分が非零値を有し、且つ複数のスペクトル成分が零値を有するサブバンド信号を同定する。好ましくは全てのサブバンド信号の周波数範囲は、デコーダに対して先験的に既知であるか、或いは入力信号における制御情報により規定されている。デコーダは後述するような処理を用いて零値スペクトル成分に対応する合成スペクトル成分を生成する。合成成 分は閾値40以下のスケーリングエンベロープに従ってスケーリングされ、スケールリングされた合成スペクトル成分はサブバンド信号における零値スペクトル成分の代わりをする。デコーダはエンコーダからの情報を必要とせず、これは、スペクトル成分の量子化に用いられた量子化関数q(x)の最小量子化レベル 30,31が既知であるならば、閾値40のレベルを明白に示す。
2.スケーリング
スケーリングエンベロープは広範な手法で確立される。幾つかの手法を以下に述べる。一つより多くの手法を用いてもよい。例えば、合成スケーリングエンベロープは複数の手法から得られた全てのエンベロープの最大に等しくなるように導かれるか、或いはスケーリングエンベロープについての上部及び/又は下部境界を確立する様々な手法を用いることにより導かれる。その手法はエンコード信号の特性に応答するように適合させるか選択してもよく、周波数の関数として適合させるか選択することができる。
a)均一エンベロープ
オーディオ変換コーディングシステムにおける及び他のフィルタバンク実施を用いるシステムにおけるデコーダには一つの手法が適している。この手法は、閾値40に等しくなるように設定することにより均一エンベロープを確立する。このようなスケーリングエンベロープの例を図5に示し、これは合成スペクトル成分で充填されるスペクトルホールを示すように斜線領域を用いる。スペクトル43は合成スペクトル成分により充填されたスペクトルホールを有するオーディオ信号のスペクトル成分のエンベロープを表す。この図及び後述の図に示した斜線領域の上部境界は、合成スペクトル成分それ自身の実際のレベルを表すものではなく、単に合成成分についてのスケーリングエンベロープを表すのみである。スペクトルホールを充填するのに用いられる合成成分は、スケーリングエンベロープを越えないスペクトルレベルを有する。
b)スペクトル漏洩
スケーリングエンベロープを確立する第2の手法はブロック変換を用いるオーディオコーディングシステムにおけるデコーダに良く適するが、他の形式のフィル タバンクの実施に適合し得る原理に基づいている。この方式は非均一スケーリングエンベロープを与え、これはブロック変換における基本型フィルタ周波数応答のスペクトル漏洩特性に応じて変化する。
図6に示される応答50は係数の間のスペクトル漏洩を示す変換基本型フィルタについての仮想周波数応答のグラフ表示である。この応答は、通常は基本型フィルタのパスバンドと称される主ローブと、主ローブに近接し、パスバンドの中心から離れるにつれて周波数のレベルが減少する複数の側部ローブとを含む。側部ローブはスペクトルエネルギを示し、これはパスバンドから近接する周波数バンドへ漏洩する。これら側部ローブのレベルが減少するレートは、スペクトル漏洩のロー ルオフ(roll off)のレートと称される。
フィルタのスペクトル漏洩特性は、隣接する周波数サブバンドの間のスペクトル分離に制約を課す。フィルタが大量のスペクトル漏洩を有するならば、隣接する サブバンドにおけるスペクトルレベルは、低量のスペクトル漏洩を有するフィルタについての場合ほどには異なることはない。図7に示されるエンベロープ51は図6に示されるスペクトル漏洩のロールオフを近似する。合成スペクトル成分はそのようなエンベロープへスケーリングされてもよく、或るいはこれに代えて、このエンベロープを他の技法により導かれるスケーリングエンベロープのための下部境界として用いてもよい。
図9におけるスペクトル44は、スペクトル漏洩ロールオフを近似するエンベロープに従ってスケールされた合成スペクトル成分を有する仮想オーディオ信号のスペク トルのグラフ表示である。スペクトルエネルギにより各側面を規定されているスペクトルホールについてのスケーリングエンベロープは、各側について1つの2つの独立のエンベロープの合成である。この合成は2つの個々のエンベロープの大きいほうをとって形成される。
c)フィルタ
スケーリングエンベロープを確立する第3の手法もブロック変換を用いるオーディオコーディングシステムにおけるデコーダに良く適するが、これもまた他の形 式のフィルタバンク実施に適用し得る原理に基づいている。この手法は非均一スケーリングエンベロープを与え、これは周波数ドメインにおける変換係数へ適用される周波数ドメインフィルタの出力から導かれる。このフィルタは予測フィルタ、ローパスフィルタ、又は所望のスケーリングエンベロープを与える基本的に任意の他の形式のフィルタとしてもよい。この方式は通常は上述の2つの方式よりも多くのコンピュータ資源を必要とするが、スケーリングエンベロープを周波数の関数として変化させることを可能とする。
図8は適合可能な周波数ドメインフィルタの出力から導かれた2つのスケーリングエンベロープのグラフ表示である。例えば、スケーリングエンベロープ52は、信号 又はより音のように思われる信号の部分におけるスペクトルホールを充填するのに用いることができ、且つスケーリングエンベロープ53は、信号又はより雑音 のように思われる信号の部分におけるスペクトルホールを充填するのに用いることができる。信号の音及び雑音特性は様々な手法で評価できる。これらの手法の 幾つかを以下に述べる。代替的に、スケーリングエンベロープ52は、オーディオ信号がしばしばより音のようになる低周波数におけるスペクトルホールを充填 するのに用いることができ、且つスケーリングエンベロープ53は、オーディオ信号がしばしばより雑音のようになる高周波数におけるスペクトルホールを充填するのに用いることができる。
d)知覚マスキング
スケーリングエンベロープを確立する第4の手法は、ブロック変換によるフィルタバンク又は他の形式のフィルタを実施するデコーダに適用可能である。この手法は予測された音響心理学的マスキング効果に従って変化する非均一スケーリングエンベロープを与える。
図10は2つの仮想音響心理学的マスキング閾値を示す。閾値61は低周波数スペクトル成分60の音響心理学的マスキング効果を表し、且つ閾値64は高周波数スペクトル成分63の音響心理学的マスキング効果を表す。これらのようなマスキング閾値はスケーリングエンベロープの形状を導くのに使用し得る。
図11におけるスペクトル45は、合成スペクトル成分に代わる仮想オーディオ信号のスペクトルのグラフ表示であり、これは音響心理学的マスキングに基づくエンベ ロープに従ってスケーリングされている。図示の例では、最低周波数スペクトルホールにおけるスケーリングエンベロープはマスキング閾値61の下部部分から導かれた。中央スペクトルホールにおけるスケーリングエンベロープは、マスキング閾値61の上部部分とマスキング閾値64の下部部分との合成である。最高周波数スペクトルホールにおけるスケーリングエンベロープはマスキング閾値64の上部部分から導かれた。
e)調性(Tonality)
スケーリングエンベロープを確立する第5の手法は、完全なオーディオ信号若しくは例えば1つ又は複数のサブバンド信号についての信号の一部の調性の評価に 基づいている。調性はスペクトル平坦性測定の計算を含む多数の手法で評価でき、そのスペクトル平坦性測定は、信号サンプルの幾何学的平均により分割された 信号サンプルの計算平均の規格化指数である。信号を示す1へ接する値は極めて雑音状であり、信号を示す0へ接する値は極めて音状である。SFMはスケーリ ングエンベロープに直接に適合するように使用できる。SFMが零に等しいとき、スペクトルホールの充填に使用される合成成分はない。SFMが1に等しいと き、合成成分の最大許容レベルがスペクトルホールを充填するのに用いられる。しかしながら、一般にはエンコーダはエンコーディングに先立って完全な原オー ディオ信号にアクセスするので良好なSFMを計算する能力がある。QTZスペクトル成分の存在により、デコーダは正確なSFMを計算しない傾向がある。
デコーダは、非零値及び零値スペクトル成分の配置及び分布を解析することにより調性を評価できる。一つの実施においては、長期間の零値スペクトル成分が若 干の大きな非零値成分の間に分布するならば、この配置はスペクトルピークの構造を示唆するので、信号は雑音よりも音のようであると思われる。
他の実施においては、デコーダは予測フィルタを1つ又は複数のサブバンド信号に適用して予測ゲインを決定する。信号は予測ゲインが増大するにつれてより音のようであると思われる。
f)時間スケーリング
図12はエンコードされるべき仮想サブバンド信号のグラフ表示である。線46はスペクトル成分の大きさの時間エンベロープを示す。このサブバンド信号は、共通スペ クトル成分又はブロック変換により実施された解析フィルタバンクから得られたブロックのシーケンスにおける変換係数からなるか、或いはブロック変換以外の ディジタルフィルタ、例えばQMFによる解析フィルタバンク実施の他の形式から得られたサブバンド信号としてもよい。エンコーディング処理の間、閾値40 未満の大きさを有する全てのスペクトル成分は零に量子化される。閾値40は図示の便宜のために全時間間隔に亘って均一な値で示されている。これはブロック 変換により実施されるフィルタバンクを使用する多くのコーディングシステムにおける代表例ではない。
図13は量子化スペクトル成分により表される仮想サブバンド信号のグラフ表示である。線47は量子化されたスペクトル成分の大きさの時間エンベロープを表す。この 図及び他の図に示す線は閾値40以上の大きさを有するスペクトル成分の量子化の効果を示さない。量子化信号におけるQTZスペクトル成分と原信号における 対応スペクトル成分との間の差は斜線で示してある。斜線領域は、合成スペクトル成分で充填される時間間隔内のスペクトルホールを示す。
本発明の一つの実施においては、デコーダは入力信号を受け取り、この信号は図13に示すような量子化サブバンド信号のエンコード表現を運ぶ。デコーダはエンコード表現を復号し、複数のスペクトル成分が零値を有し、且つ先行及び/又は後続 のスペクトル成分が非零値を有するサブバンド信号を同定する。デコーダは後述するような処理を用いて零値スペクトル成分に対応する合成スペクトル成分を生 成する。合成成分はスケーリングエンベロープに従ってスケーリングされている。好ましくはスケールリングエンベロープは人間の聴覚系の時間マスキング特性 を考慮する。
図14は仮想的な時間音響心理学的マスキング閾値を示す。閾値68はスペクトル成分67の時間音響心理学的マスキング効果を表す。スペクトル成分67の左に対する 閾値の部分は、前置時間マスキング特性か、或いはスペクトル成分の発生に先行するマスキングを表す。スペクトル成分67の右に対する閾値の部分は、後置時 間マスキング特性か、或いはスペクトル成分の発生に続くマスキングを表す。後置マスキング効果は一般に前置マスキング効果の持続期間よりも充分に長い持続 期間を有する。このような時間マスキング閾値はスケーリングエンベロープの時間形状を導くのに使用し得る。
図15における線48は時間音響心理学的マスキング効果に基づくエンベロープに従ってスケールされた合成スペクトル成分に代わる仮想サブバンド信号のグラフ表示で ある。例示においては、スケーリングエンベロープは2つの個々のエンベロープの組み合わせである。スペクトルホールの低周波数部分についての個々のエンベ ロープは閾値68の後置マスキング部分から導かれた。スペクトルホールの高周波数部分についての個々のエンベロープは閾値68の前置マスキング部分から導 かれた。
3.合成成分の生成
合成スペクトル成分は広範な手法により生成し得る。2つの手法について以下に述べる。複数の手法を使用し得る。例えば、異なる手法がエンコード信号の特性に応答するか或いは周波数の関数として選択し得る。
第1の手法は雑音状の信号を生成する。擬似信号を生成する基本的に任意の広範な手法を用いてもよい。
第2の手法は1つ又は複数の周波数サブバンドからスペクトル成分を複写するスペクトル移動又はスペクトル複製と称される技術を用いる。低周波数スペクトル 成分は通常は高周波数においてスペクトルホールを充填するために複写され、これは高周波数成分が低周波数成分に対する或る方式にしばしば関係するためである。しかしながら、原理的にはスペクトル成分は高周波数又は低周波数へ複写してもよい。
図16におけるスペクトル49は、スペクトル複製により生成された合成スペクトル成分を有する仮想オーディオ信号のスペクトルのグラフ表示である。スペクトルピー クの一部分は、低周波数及び中間周波数におけるスペクトルホールをそれぞれ充填するように周波数の複数倍に低く及び高く複製される。スペクトルの高端に近 いスペクトル成分の部分は、スペクトルの高端におけるスペクトルホールを充填する周波数に複製して高くされる。例示においては、複製成分は均一スケーリン グエンベロープによりスケールされているが、基本的に任意の形態のスケーリングエンベロープを使用し得る。
C.エンコーダ
上述した本発明の局面は、既存のエンコーダに対して如何なる変更も必要とせずに、デコーダにおいて実行できる。これらの局面は、エンコーダには利用可能で ない付加的な制御情報を与えるようにエンコーダを変更するならば向上させることができる。付加的な制御情報は、デコーダ内で合成スペクトル成分が生成され てスケーリングされる方式に適合するように用いることができる。
1.制御情報
エンコーダは広範なスケーリング制御情報を与えることができ、デコーダは合成スペクトル成分についてのスケーリングエンベロープに適合するように用いることができる。以下に説明する例の各々は全信号及び/又は信号の周波数サブバンドについて与えることができる。
サブバンドが最小量子化レベルよりも相当に低いスペクトル成分を包含するならば、エンコーダは、この状態を示す情報をデコーダへ与える。この情報はデコー ダが2つ又はそれ以上のスケーリングレベルから選択するように使用することができるインデックスの形式としてもよく、或いは情報は平均又は根平均平方 (RMS)パワーのようなスペクトルレベルの或る測定を運んでもよい。このデコーダはこの情報に応答してスケーリングエンベロープに適合できる。
上述したように、デコーダはエンコーダ信号それ自身から評価された音響心理学的マスキング効果に応答してスケーリングエンベロープに適合できるが、エン コーダについては、エンコーディング処理により損なわれる信号の特性にエンコーダがアクセスする際には、これらのマスキング効果の一層良好な評価を与える ことが可能である。これはモデル13を持たせることにより実行可能であり、このモデル13は、エンコーダ信号からは利用可能でない音響心理学的情報を フォーマッタ18へ与える。この種の情報を用いると、デコーダは1つ又は複数の音響心理学的基準に従って合成スペクトル成分を整形するようにスケーリング エンベロープに適合できる。
スケーリングエンベロープは信号又はサブバンド信号の雑音状又は音状品質の或る評価に応答するようにも適合できる。この評価はエンコーダ又はデコーダの何れかにより複数の手法で実行できるが、エンコーダが通常は良好な評価をなせる。この評価の結果はエンコード信号により組み立てられる。一つの評価は上述したSFMである。
SFMの表示もデコーダにより使用でき、合成スペクトル成分の生成のために何れの処理を用いるかを選択させる。SFMが1に近いならば、雑音生成技法を使用できる。SFMが零に近いならば、スペクトル複製技法を使用できる。
エンコーダは非零及びQTZスペクトル成分、例えばこれら2つのパワーの比についてのパワーの或る表示を与えることができる。デコーダは非零スペクトル成分のパワーを計算して、この比又は他の表示をスケーリングエンベロープ充当に適合するように用いる。
2.零スペクトル係数
上述の説明はしばしばQTZ(零に量子化)成分のような零値スペクトル成分を参照したが、これは量子化がエンコード信号における零値成分の共通源のためで ある。これは必須事項ではない。エンコード信号におけるスペクトル成分の値は基本的に任意の処理により零に設定してもよい。例えば、エンコーダは、特定の 周波数より上の各サブバンド信号における最も大きい1つ又は2つのスペクトル成分を同定して、これらサブバンド信号における他の全てのスペクトル成分を零 に設定してもよい。代替的に、エンコーダは、或る閾値未満の特定のサブバンドにおける全てのスペクトル成分を零に設定してもよい。上述した本発明の様々な局面を採用するデコーダは、それらの局面の形成に応答可能な処理には無関係にスペクトルホールを充填する能力がある。

Claims (13)

  1. オーディオ情報を生成する方法であって、
    量子化サブバンド信号のエンコード表現を運ぶ入力信号を受け取る段階であり、閾値より小さい大きさを有していたスペクトル成分は零値へ量子化されている段階と、
    前記エンコード表現をデコーディングし、且つ特定のサブバンド信号を同定し、その特定のサブバンド信号においては、1つ又は複数のスペクトル成分が非零値を有し、且つ複数のスペクトル成分が零値を有する段階と、
    周波数の関数として適合された又は選択された異なる方式を用いて閾値以下のスケーリングエンベロープを確立する段階と、
    前記スケーリングエンベロープに従ってスケーリングされた前記零値スペクトル成分に対応する合成スペクトル成分を生成する段階と、
    前記特定のサブバンド信号における対応する零値スペクトル成分を合成スペクトル成分で置換することによりサブバンド信号の変更されたセットを生成する段階と、
    前記サブバンド信号の変更されたセットへ合成フィルタバンクを適用することによりオーディオ情報を生成する段階と、を含む方法。
  2. 請求項1に記載の方法において、前記合成フィルタバンクが、隣接するスペクトル成分の間のスペクトル漏洩を有するブロック変換により実施され、且つ前記スケーリングエンベロープが前記ブロック変換のスペクトル漏洩のロールオフのレートに実質的に等しいレートで変化する方法。
  3. 請求項1又は2に記載の方法において、前記合成フィルタバンクがブロック変換により実施され、前記方法は、
    周波数ドメインフィルタをサブバンド信号の前記セットにおける1つ又は複数のスペクトル成分に適用する段階と、
    前記周波数ドメインフィルタの出力からスケーリングエンベロープを導く段階とを更に含む方法。
  4. 請求項3に記載の方法において、前記周波数ドメインフィルタの応答を周波数の関数として変化させる段階を更に含む方法。
  5. 請求項1乃至4の何れか一項に記載の方法において、
    サブバンド信号の前記セットにより示されたオーディオ信号の調性の測定を獲得する段階と、
    前記調性の測定に応答してスケーリングエンベロープを適合させる段階と、を更に含む方法。
  6. 請求項5記載の方法において、前記入力信号から前記調性の測定を獲得する方法。
  7. 請求項5記載の方法において、前記零値スペクトル成分が前記特定のサブバンド信号内に配置されている方式から前記調性の測定が導かれる方法。
  8. 請求項1乃至7の何れか一項に記載の方法において、前記合成フィルタバンクがブロック変換により実施され、前記方法は、
    前記入力信号からサブバンド信号のセットのシーケンスを獲得する段階と、
    前記サブバンド信号のセットのシーケンスにおいて共通のサブバンド信号を同定し、シーケンスにおける各セットについて、1つ又は複数のスペクトル成分が非零値を有し、複数のスペクトル成分が零値を有する段階と、
    非零値を有する共通スペクトル成分を持つセットが先行又は後続するシーケンスにおける複数の隣接するセットにおいて前記共通のサブバンド信号内に共通のスペクトル成分を同定する段階と、
    人間の聴覚系の時間マスキング特性に従ってシーケンスにおけるセットごとに変化するスケーリングエンベロープに従って零値共通スペクトル成分に対応する合成スペクトル成分をスケーリングさせる段階と、
    前記セットにおける対応零値共通スペクトル成分を合成スペクトル成分で置換することによりサブバンド信号の変更されたセットのシーケンスを生成する段階と、
    前記合成フィルタバンクを前記サブバンド信号の変更されたセットのシーケンスへ適用することによりオーディオ情報を生成する段階と、を含む方法。
  9. 請求項1乃至8の何れか一項に記載の方法において、前記合成フィルタバンクがブロック変換により実施され、且つ前記方法が前記サブバンド信号のセットにおける他のスペクトル成分のスペクトル移動により前記合成スペクトル成分を生成する方法。
  10. 請求項1乃至9の何れか一項に記載の方法において、前記スケーリングエンベロープが人間の聴覚系の時間マスキング特性に応じて変化する方法。
  11. 請求項1乃至10の何れか一項に記載の方法において、推定された音響心理学的マスキング効果に応じて変化するように前記スケーリングエンベロープを確立する方法。
  12. オーディオ情報を生成する装置であって、この装置は請求項1乃至11の何れか一項に記載の方法における全ての段階を実行する手段を含む装置。
  13. コンピュータに、請求項1乃至11の何れか一項に記載の方法における全ての段階を実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体。
JP2010030139A 2002-06-17 2010-02-15 オーディオ情報生成方法 Expired - Lifetime JP5063717B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/174,493 US7447631B2 (en) 2002-06-17 2002-06-17 Audio coding system using spectral hole filling
US10/174,493 2002-06-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004514060A Division JP4486496B2 (ja) 2002-06-17 2003-05-30 スペクトルホール充填を用いるオーディオコーディングシステム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012149087A Division JP5345722B2 (ja) 2002-06-17 2012-07-03 オーディオ情報生成方法

Publications (2)

Publication Number Publication Date
JP2010156990A true JP2010156990A (ja) 2010-07-15
JP5063717B2 JP5063717B2 (ja) 2012-10-31

Family

ID=29733607

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2004514060A Expired - Lifetime JP4486496B2 (ja) 2002-06-17 2003-05-30 スペクトルホール充填を用いるオーディオコーディングシステム
JP2010030139A Expired - Lifetime JP5063717B2 (ja) 2002-06-17 2010-02-15 オーディオ情報生成方法
JP2011287052A Expired - Lifetime JP5253565B2 (ja) 2002-06-17 2011-12-28 合成されたスペクトル成分に適合するようにデコードされた信号の特性を使用するオーディオコーディングシステム
JP2011287051A Expired - Lifetime JP5253564B2 (ja) 2002-06-17 2011-12-28 合成されたスペクトル成分に適合するようにデコードされた信号の特性を使用するオーディオコーディングシステム
JP2012149087A Expired - Lifetime JP5345722B2 (ja) 2002-06-17 2012-07-03 オーディオ情報生成方法
JP2013146451A Expired - Lifetime JP5705273B2 (ja) 2002-06-17 2013-07-12 オーディオ情報生成方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004514060A Expired - Lifetime JP4486496B2 (ja) 2002-06-17 2003-05-30 スペクトルホール充填を用いるオーディオコーディングシステム

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2011287052A Expired - Lifetime JP5253565B2 (ja) 2002-06-17 2011-12-28 合成されたスペクトル成分に適合するようにデコードされた信号の特性を使用するオーディオコーディングシステム
JP2011287051A Expired - Lifetime JP5253564B2 (ja) 2002-06-17 2011-12-28 合成されたスペクトル成分に適合するようにデコードされた信号の特性を使用するオーディオコーディングシステム
JP2012149087A Expired - Lifetime JP5345722B2 (ja) 2002-06-17 2012-07-03 オーディオ情報生成方法
JP2013146451A Expired - Lifetime JP5705273B2 (ja) 2002-06-17 2013-07-12 オーディオ情報生成方法

Country Status (20)

Country Link
US (4) US7447631B2 (ja)
EP (6) EP2216777B1 (ja)
JP (6) JP4486496B2 (ja)
KR (5) KR100991450B1 (ja)
CN (1) CN100369109C (ja)
AT (7) ATE473503T1 (ja)
CA (6) CA2489441C (ja)
DE (3) DE60310716T8 (ja)
DK (3) DK1736966T3 (ja)
ES (1) ES2275098T3 (ja)
HK (6) HK1070728A1 (ja)
IL (2) IL165650A (ja)
MX (1) MXPA04012539A (ja)
MY (2) MY136521A (ja)
PL (1) PL208344B1 (ja)
PT (1) PT2216777E (ja)
SG (3) SG10201702049SA (ja)
SI (2) SI2209115T1 (ja)
TW (1) TWI352969B (ja)
WO (1) WO2003107328A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053150A1 (ja) * 2010-10-18 2012-04-26 パナソニック株式会社 音声符号化装置および音声復号化装置
JPWO2012169133A1 (ja) * 2011-06-09 2015-02-23 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
JP2017194705A (ja) * 2012-12-06 2017-10-26 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. 信号を復号するための方法および装置

Families Citing this family (141)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742927B2 (en) * 2000-04-18 2010-06-22 France Telecom Spectral enhancing method and device
DE10134471C2 (de) * 2001-02-28 2003-05-22 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Charakterisieren eines Signals und Verfahren und Vorrichtung zum Erzeugen eines indexierten Signals
US7240001B2 (en) 2001-12-14 2007-07-03 Microsoft Corporation Quality improvement techniques in an audio encoder
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
AU2003242903A1 (en) * 2002-07-08 2004-01-23 Koninklijke Philips Electronics N.V. Audio processing
US7889783B2 (en) * 2002-12-06 2011-02-15 Broadcom Corporation Multiple data rate communication system
JP4486646B2 (ja) 2003-05-28 2010-06-23 ドルビー・ラボラトリーズ・ライセンシング・コーポレーション オーディオ信号の感知音量を計算し調整する方法、装置及びコンピュータプログラム
US7461003B1 (en) * 2003-10-22 2008-12-02 Tellabs Operations, Inc. Methods and apparatus for improving the quality of speech signals
US7460990B2 (en) * 2004-01-23 2008-12-02 Microsoft Corporation Efficient coding of digital media spectral data using wide-sense perceptual similarity
CN1926610B (zh) * 2004-03-12 2010-10-06 诺基亚公司 合成单声道音频信号的方法、音频解码器和编码系统
US8417515B2 (en) * 2004-05-14 2013-04-09 Panasonic Corporation Encoding device, decoding device, and method thereof
CN102280109B (zh) * 2004-05-19 2016-04-27 松下电器(美国)知识产权公司 编码装置、解码装置及它们的方法
CN101006496B (zh) * 2004-08-17 2012-03-21 皇家飞利浦电子股份有限公司 可分级音频编码
JP2008513845A (ja) * 2004-09-23 2008-05-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 音声データを処理するシステム及び方法、プログラム要素並びにコンピュータ読み取り可能媒体
JP5101292B2 (ja) 2004-10-26 2012-12-19 ドルビー ラボラトリーズ ライセンシング コーポレイション オーディオ信号の感知音量及び/又は感知スペクトルバランスの計算と調整
US8199933B2 (en) 2004-10-26 2012-06-12 Dolby Laboratories Licensing Corporation Calculating and adjusting the perceived loudness and/or the perceived spectral balance of an audio signal
KR100657916B1 (ko) * 2004-12-01 2006-12-14 삼성전자주식회사 주파수 대역간의 유사도를 이용한 오디오 신호 처리 장치및 방법
KR100707173B1 (ko) * 2004-12-21 2007-04-13 삼성전자주식회사 저비트율 부호화/복호화방법 및 장치
US7562021B2 (en) * 2005-07-15 2009-07-14 Microsoft Corporation Modification of codewords in dictionary used for efficient coding of digital media spectral data
US7630882B2 (en) * 2005-07-15 2009-12-08 Microsoft Corporation Frequency segmentation to obtain bands for efficient coding of digital media
KR100851970B1 (ko) * 2005-07-15 2008-08-12 삼성전자주식회사 오디오 신호의 중요주파수 성분 추출방법 및 장치와 이를이용한 저비트율 오디오 신호 부호화/복호화 방법 및 장치
US7546240B2 (en) 2005-07-15 2009-06-09 Microsoft Corporation Coding with improved time resolution for selected segments via adaptive block transformation of a group of samples from a subband decomposition
US7848584B2 (en) * 2005-09-08 2010-12-07 Monro Donald M Reduced dimension wavelet matching pursuits coding and decoding
US7813573B2 (en) * 2005-09-08 2010-10-12 Monro Donald M Data coding and decoding with replicated matching pursuits
US8121848B2 (en) * 2005-09-08 2012-02-21 Pan Pacific Plasma Llc Bases dictionary for low complexity matching pursuits data coding and decoding
US20070053603A1 (en) * 2005-09-08 2007-03-08 Monro Donald M Low complexity bases matching pursuits data coding and decoding
US8126706B2 (en) * 2005-12-09 2012-02-28 Acoustic Technologies, Inc. Music detector for echo cancellation and noise reduction
JP5185254B2 (ja) 2006-04-04 2013-04-17 ドルビー ラボラトリーズ ライセンシング コーポレイション Mdct領域におけるオーディオ信号音量測定と改良
TWI517562B (zh) 2006-04-04 2016-01-11 杜比實驗室特許公司 用於將多聲道音訊信號之全面感知響度縮放一期望量的方法、裝置及電腦程式
DK1869669T3 (da) * 2006-04-24 2008-12-01 Nero Ag Avanceret audiokodningsapparat
NO345590B1 (no) 2006-04-27 2021-05-03 Dolby Laboratories Licensing Corp Audioforsterkningsregulering ved bruk av spesifikk lydstyrkebasert hørehendelsesdeteksjon
US20070270987A1 (en) * 2006-05-18 2007-11-22 Sharp Kabushiki Kaisha Signal processing method, signal processing apparatus and recording medium
BRPI0717484B1 (pt) 2006-10-20 2019-05-21 Dolby Laboratories Licensing Corporation Método e aparelho para processar um sinal de áudio
US8521314B2 (en) 2006-11-01 2013-08-27 Dolby Laboratories Licensing Corporation Hierarchical control path with constraints for audio dynamics processing
US8639500B2 (en) * 2006-11-17 2014-01-28 Samsung Electronics Co., Ltd. Method, medium, and apparatus with bandwidth extension encoding and/or decoding
KR101379263B1 (ko) * 2007-01-12 2014-03-28 삼성전자주식회사 대역폭 확장 복호화 방법 및 장치
AU2012261547B2 (en) * 2007-03-09 2014-04-17 Skype Speech coding system and method
GB0704622D0 (en) * 2007-03-09 2007-04-18 Skype Ltd Speech coding system and method
KR101411900B1 (ko) * 2007-05-08 2014-06-26 삼성전자주식회사 오디오 신호의 부호화 및 복호화 방법 및 장치
US7774205B2 (en) * 2007-06-15 2010-08-10 Microsoft Corporation Coding of sparse digital media spectral data
US7761290B2 (en) * 2007-06-15 2010-07-20 Microsoft Corporation Flexible frequency and time partitioning in perceptual transform coding of audio
US8046214B2 (en) * 2007-06-22 2011-10-25 Microsoft Corporation Low complexity decoder for complex transform coding of multi-channel sound
US7885819B2 (en) * 2007-06-29 2011-02-08 Microsoft Corporation Bitstream syntax for multi-process audio decoding
ES2377719T3 (es) 2007-07-13 2012-03-30 Dolby Laboratories Licensing Corporation Procesamiento de audio utilizando un análisis de escenas auditivas y oblicuidad espectral.
PT2571024E (pt) * 2007-08-27 2014-12-23 Ericsson Telefon Ab L M Frequência de transição adaptativa entre preenchimento de ruído e extensão da largura de banda
US8370133B2 (en) * 2007-08-27 2013-02-05 Telefonaktiebolaget L M Ericsson (Publ) Method and device for noise filling
US8538763B2 (en) * 2007-09-12 2013-09-17 Dolby Laboratories Licensing Corporation Speech enhancement with noise level estimation adjustment
CN101802910B (zh) * 2007-09-12 2012-11-07 杜比实验室特许公司 利用话音清晰性的语音增强
US8249883B2 (en) 2007-10-26 2012-08-21 Microsoft Corporation Channel extension coding for multi-channel source
US9659568B2 (en) * 2007-12-31 2017-05-23 Lg Electronics Inc. Method and an apparatus for processing an audio signal
MY154452A (en) * 2008-07-11 2015-06-15 Fraunhofer Ges Forschung An apparatus and a method for decoding an encoded audio signal
BR122021003142B1 (pt) 2008-07-11 2021-11-03 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Codificador de áudio, decodificador de áudio, métodos para codificar e decodificar um sinal de áudio, e fluxo de áudio
KR101400484B1 (ko) * 2008-07-11 2014-05-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 시간 워프 활성 신호의 제공 및 이를 이용한 오디오 신호의 인코딩
BRPI0917953B1 (pt) * 2008-08-08 2020-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Aparelho de atenuação de espectro, aparelho de codificação, aparelho terminal de comunicação, aparelho de estação base e método de atenuação de espectro.
US8407046B2 (en) * 2008-09-06 2013-03-26 Huawei Technologies Co., Ltd. Noise-feedback for spectral envelope quantization
WO2010028297A1 (en) 2008-09-06 2010-03-11 GH Innovation, Inc. Selective bandwidth extension
WO2010028292A1 (en) * 2008-09-06 2010-03-11 Huawei Technologies Co., Ltd. Adaptive frequency prediction
US8515747B2 (en) * 2008-09-06 2013-08-20 Huawei Technologies Co., Ltd. Spectrum harmonic/noise sharpness control
WO2010031003A1 (en) 2008-09-15 2010-03-18 Huawei Technologies Co., Ltd. Adding second enhancement layer to celp based core layer
US8577673B2 (en) * 2008-09-15 2013-11-05 Huawei Technologies Co., Ltd. CELP post-processing for music signals
US8364471B2 (en) * 2008-11-04 2013-01-29 Lg Electronics Inc. Apparatus and method for processing a time domain audio signal with a noise filling flag
GB2466201B (en) * 2008-12-10 2012-07-11 Skype Ltd Regeneration of wideband speech
US9947340B2 (en) * 2008-12-10 2018-04-17 Skype Regeneration of wideband speech
GB0822537D0 (en) 2008-12-10 2009-01-14 Skype Ltd Regeneration of wideband speech
TWI716833B (zh) * 2009-02-18 2021-01-21 瑞典商杜比國際公司 用於高頻重建或參數立體聲之複指數調變濾波器組
TWI662788B (zh) 2009-02-18 2019-06-11 瑞典商杜比國際公司 用於高頻重建或參數立體聲之複指數調變濾波器組
KR101078378B1 (ko) * 2009-03-04 2011-10-31 주식회사 코아로직 오디오 부호화기의 양자화 방법 및 장치
WO2010111876A1 (zh) * 2009-03-31 2010-10-07 华为技术有限公司 一种信号去噪的方法和装置及音频解码系统
JP5754899B2 (ja) 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
TWI451403B (zh) * 2009-10-20 2014-09-01 Fraunhofer Ges Forschung 音訊編碼器、音訊解碼器、用以將音訊資訊編碼之方法、用以將音訊資訊解碼之方法及使用區域從屬算術編碼對映規則之電腦程式
US9117458B2 (en) * 2009-11-12 2015-08-25 Lg Electronics Inc. Apparatus for processing an audio signal and method thereof
US9838784B2 (en) 2009-12-02 2017-12-05 Knowles Electronics, Llc Directional audio capture
EP2524371B1 (en) 2010-01-12 2016-12-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder, audio decoder, method for encoding an audio information, method for decoding an audio information and computer program using a hash table describing both significant state values and interval boundaries
KR101964179B1 (ko) * 2010-01-19 2019-04-01 돌비 인터네셔널 에이비 고조파 전위에 기초하여 개선된 서브밴드 블록
TWI557723B (zh) 2010-02-18 2016-11-11 杜比實驗室特許公司 解碼方法及系統
WO2011121955A1 (ja) * 2010-03-30 2011-10-06 パナソニック株式会社 オーディオ装置
JP5850216B2 (ja) 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
US8798290B1 (en) 2010-04-21 2014-08-05 Audience, Inc. Systems and methods for adaptive signal equalization
US9558755B1 (en) 2010-05-20 2017-01-31 Knowles Electronics, Llc Noise suppression assisted automatic speech recognition
WO2011156905A2 (en) * 2010-06-17 2011-12-22 Voiceage Corporation Multi-rate algebraic vector quantization with supplemental coding of missing spectrum sub-bands
US9236063B2 (en) 2010-07-30 2016-01-12 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for dynamic bit allocation
JP6075743B2 (ja) 2010-08-03 2017-02-08 ソニー株式会社 信号処理装置および方法、並びにプログラム
US9208792B2 (en) * 2010-08-17 2015-12-08 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for noise injection
WO2012037515A1 (en) 2010-09-17 2012-03-22 Xiph. Org. Methods and systems for adaptive time-frequency resolution in digital data coding
JP5707842B2 (ja) 2010-10-15 2015-04-30 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
EP3244405B1 (en) * 2011-03-04 2019-06-19 Telefonaktiebolaget LM Ericsson (publ) Audio decoder with post-quantization gain correction
US9009036B2 (en) 2011-03-07 2015-04-14 Xiph.org Foundation Methods and systems for bit allocation and partitioning in gain-shape vector quantization for audio coding
US8838442B2 (en) 2011-03-07 2014-09-16 Xiph.org Foundation Method and system for two-step spreading for tonal artifact avoidance in audio coding
US9015042B2 (en) * 2011-03-07 2015-04-21 Xiph.org Foundation Methods and systems for avoiding partial collapse in multi-block audio coding
EP2975611B1 (en) 2011-03-10 2018-01-10 Telefonaktiebolaget LM Ericsson (publ) Filling of non-coded sub-vectors in transform coded audio signals
DK3067888T3 (en) * 2011-04-15 2017-07-10 ERICSSON TELEFON AB L M (publ) DECODES FOR DIMAGE OF SIGNAL AREAS RECONSTRUCTED WITH LOW ACCURACY
MX2013013261A (es) * 2011-05-13 2014-02-20 Samsung Electronics Co Ltd Asignacion de bits, codificacion y decodificacion de audio.
JP2013007944A (ja) 2011-06-27 2013-01-10 Sony Corp 信号処理装置、信号処理方法、及び、プログラム
US20130006644A1 (en) * 2011-06-30 2013-01-03 Zte Corporation Method and device for spectral band replication, and method and system for audio decoding
JP5997592B2 (ja) 2012-04-27 2016-09-28 株式会社Nttドコモ 音声復号装置
WO2013188562A2 (en) * 2012-06-12 2013-12-19 Audience, Inc. Bandwidth extension via constrained synthesis
EP2717263B1 (en) * 2012-10-05 2016-11-02 Nokia Technologies Oy Method, apparatus, and computer program product for categorical spatial analysis-synthesis on the spectrum of a multichannel audio signal
SG11201505922XA (en) * 2013-01-29 2015-08-28 Fraunhofer Ges Forschung Low-complexity tonality-adaptive audio signal quantization
CN110223704B (zh) 2013-01-29 2023-09-15 弗劳恩霍夫应用研究促进协会 对音频信号的频谱执行噪声填充的装置
EP2981961B1 (en) * 2013-04-05 2017-05-10 Dolby International AB Advanced quantizer
JP6157926B2 (ja) * 2013-05-24 2017-07-05 株式会社東芝 音声処理装置、方法およびプログラム
EP2830055A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Context-based entropy coding of sample values of a spectral envelope
EP2830064A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for decoding and encoding an audio signal using adaptive spectral tile selection
EP2830060A1 (en) * 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Noise filling in multichannel audio coding
JP6531649B2 (ja) 2013-09-19 2019-06-19 ソニー株式会社 符号化装置および方法、復号化装置および方法、並びにプログラム
CN105849801B (zh) 2013-12-27 2020-02-14 索尼公司 解码设备和方法以及程序
EP2919232A1 (en) * 2014-03-14 2015-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Encoder, decoder and method for encoding and decoding
JP6035270B2 (ja) 2014-03-24 2016-11-30 株式会社Nttドコモ 音声復号装置、音声符号化装置、音声復号方法、音声符号化方法、音声復号プログラム、および音声符号化プログラム
RU2572664C2 (ru) * 2014-06-04 2016-01-20 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Устройство активного гашения вибрации
EP2980794A1 (en) 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder and decoder using a frequency domain processor and a time domain processor
EP2980795A1 (en) 2014-07-28 2016-02-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoding and decoding using a frequency domain processor, a time domain processor and a cross processor for initialization of the time domain processor
US9962355B2 (en) 2014-08-08 2018-05-08 Raffaele Migliaccio Mixture of fatty acids and palmitoylethanolamide for use in the treatment of inflammatory and allergic pathologies
DE112015004185T5 (de) 2014-09-12 2017-06-01 Knowles Electronics, Llc Systeme und Verfahren zur Wiederherstellung von Sprachkomponenten
WO2016072628A1 (ko) * 2014-11-07 2016-05-12 삼성전자 주식회사 오디오 신호를 복원하는 방법 및 장치
US9852744B2 (en) * 2014-12-16 2017-12-26 Psyx Research, Inc. System and method for dynamic recovery of audio data
US9668048B2 (en) 2015-01-30 2017-05-30 Knowles Electronics, Llc Contextual switching of microphones
TWI758146B (zh) 2015-03-13 2022-03-11 瑞典商杜比國際公司 解碼具有增強頻譜帶複製元資料在至少一填充元素中的音訊位元流
US10553228B2 (en) * 2015-04-07 2020-02-04 Dolby International Ab Audio coding with range extension
US20170024495A1 (en) * 2015-07-21 2017-01-26 Positive Grid LLC Method of modeling characteristics of a musical instrument
KR102250472B1 (ko) * 2016-03-07 2021-05-12 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 하이브리드 은닉 방법: 오디오 코덱들에서 주파수 및 시간 도메인 패킷 손실 은닉의 결합
DE102016104665A1 (de) 2016-03-14 2017-09-14 Ask Industries Gmbh Verfahren und Vorrichtung zur Aufbereitung eines verlustbehaftet komprimierten Audiosignals
JP2018092012A (ja) * 2016-12-05 2018-06-14 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US11171309B2 (en) * 2016-12-09 2021-11-09 Lg Chem, Ltd. Encapsulating composition
EP3483880A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Temporal noise shaping
WO2019091576A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoders, audio decoders, methods and computer programs adapting an encoding and decoding of least significant bits
WO2019091573A1 (en) 2017-11-10 2019-05-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for encoding and decoding an audio signal using downsampling or interpolation of scale parameters
EP3483879A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Analysis/synthesis windowing function for modulated lapped transformation
EP3483882A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controlling bandwidth in encoders and/or decoders
EP3483878A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio decoder supporting a set of different loss concealment tools
EP3483883A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio coding and decoding with selective postfiltering
EP3483886A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Selecting pitch lag
EP3483884A1 (en) 2017-11-10 2019-05-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Signal filtering
US10950251B2 (en) * 2018-03-05 2021-03-16 Dts, Inc. Coding of harmonic signals in transform-based audio codecs
EP3544005B1 (en) 2018-03-22 2021-12-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio coding with dithered quantization
WO2019207036A1 (en) 2018-04-25 2019-10-31 Dolby International Ab Integration of high frequency audio reconstruction techniques
CN114242089A (zh) 2018-04-25 2022-03-25 杜比国际公司 具有减少后处理延迟的高频重建技术的集成
WO2023117146A1 (en) * 2021-12-23 2023-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for spectrotemporally improved spectral gap filling in audio coding using a filtering
WO2023117145A1 (en) * 2021-12-23 2023-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for spectrotemporally improved spectral gap filling in audio coding using different noise filling methods
WO2023118600A1 (en) * 2021-12-23 2023-06-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for spectrotemporally improved spectral gap filling in audio coding using different noise filling methods
TW202333143A (zh) * 2021-12-23 2023-08-16 弗勞恩霍夫爾協會 在音訊寫碼中使用濾波用於頻譜時間改善頻譜間隙填充之方法及設備

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273659A (ja) * 1994-02-09 1995-10-20 Sony Corp ディジタル信号処理方法及び装置、並びに記録媒体
JP2000148191A (ja) * 1998-11-06 2000-05-26 Matsushita Electric Ind Co Ltd ディジタルオーディオ信号の符号化装置
JP2001331198A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 音声・楽音信号符号化方法及びこの方法を実行するプログラムを記録した記録媒体
JP2001343998A (ja) * 2000-05-31 2001-12-14 Yamaha Corp ディジタルオーディオデコーダ

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US36478A (en) * 1862-09-16 Improved can or tank for coal-oil
US3995115A (en) 1967-08-25 1976-11-30 Bell Telephone Laboratories, Incorporated Speech privacy system
US3684838A (en) 1968-06-26 1972-08-15 Kahn Res Lab Single channel audio signal transmission system
JPS6011360B2 (ja) 1981-12-15 1985-03-25 ケイディディ株式会社 音声符号化方式
US4667340A (en) 1983-04-13 1987-05-19 Texas Instruments Incorporated Voice messaging system with pitch-congruent baseband coding
US4790016A (en) 1985-11-14 1988-12-06 Gte Laboratories Incorporated Adaptive method and apparatus for coding speech
WO1986003873A1 (en) 1984-12-20 1986-07-03 Gte Laboratories Incorporated Method and apparatus for encoding speech
US4885790A (en) 1985-03-18 1989-12-05 Massachusetts Institute Of Technology Processing of acoustic waveforms
US4935963A (en) 1986-01-24 1990-06-19 Racal Data Communications Inc. Method and apparatus for processing speech signals
JPS62234435A (ja) 1986-04-04 1987-10-14 Kokusai Denshin Denwa Co Ltd <Kdd> 符号化音声の復号化方式
EP0243562B1 (en) 1986-04-30 1992-01-29 International Business Machines Corporation Improved voice coding process and device for implementing said process
US4776014A (en) 1986-09-02 1988-10-04 General Electric Company Method for pitch-aligned high-frequency regeneration in RELP vocoders
US5054072A (en) 1987-04-02 1991-10-01 Massachusetts Institute Of Technology Coding of acoustic waveforms
US5127054A (en) 1988-04-29 1992-06-30 Motorola, Inc. Speech quality improvement for voice coders and synthesizers
JPH02183630A (ja) * 1989-01-10 1990-07-18 Fujitsu Ltd 音声符号化方式
US5109417A (en) 1989-01-27 1992-04-28 Dolby Laboratories Licensing Corporation Low bit rate transform coder, decoder, and encoder/decoder for high-quality audio
US5054075A (en) 1989-09-05 1991-10-01 Motorola, Inc. Subband decoding method and apparatus
CN1062963C (zh) 1990-04-12 2001-03-07 多尔拜实验特许公司 用于产生高质量声音信号的解码器和编码器
DE69210689T2 (de) 1991-01-08 1996-11-21 Dolby Lab Licensing Corp Kodierer/dekodierer für mehrdimensionale schallfelder
JP3134337B2 (ja) * 1991-03-30 2001-02-13 ソニー株式会社 ディジタル信号符号化方法
EP0551705A3 (en) * 1992-01-15 1993-08-18 Ericsson Ge Mobile Communications Inc. Method for subbandcoding using synthetic filler signals for non transmitted subbands
JP2563719B2 (ja) 1992-03-11 1996-12-18 技術研究組合医療福祉機器研究所 音声加工装置と補聴器
JP2693893B2 (ja) 1992-03-30 1997-12-24 松下電器産業株式会社 ステレオ音声符号化方法
JP3127600B2 (ja) * 1992-09-11 2001-01-29 ソニー株式会社 ディジタル信号復号化装置及び方法
JP3508146B2 (ja) * 1992-09-11 2004-03-22 ソニー株式会社 ディジタル信号符号化復号化装置、ディジタル信号符号化装置及びディジタル信号復号化装置
US5402124A (en) * 1992-11-25 1995-03-28 Dolby Laboratories Licensing Corporation Encoder and decoder with improved quantizer using reserved quantizer level for small amplitude signals
US5394466A (en) * 1993-02-16 1995-02-28 Keptel, Inc. Combination telephone network interface and cable television apparatus and cable television module
US5623577A (en) * 1993-07-16 1997-04-22 Dolby Laboratories Licensing Corporation Computationally efficient adaptive bit allocation for encoding method and apparatus with allowance for decoder spectral distortions
JPH07225598A (ja) 1993-09-22 1995-08-22 Massachusetts Inst Of Technol <Mit> 動的に決定された臨界帯域を用いる音響コード化の方法および装置
JP3277682B2 (ja) * 1994-04-22 2002-04-22 ソニー株式会社 情報符号化方法及び装置、情報復号化方法及び装置、並びに情報記録媒体及び情報伝送方法
WO1995032499A1 (fr) * 1994-05-25 1995-11-30 Sony Corporation Procede de codage, procede de decodage, procede de codage-decodage, codeur, decodeur et codeur-decodeur
US5748786A (en) * 1994-09-21 1998-05-05 Ricoh Company, Ltd. Apparatus for compression using reversible embedded wavelets
JP3254953B2 (ja) 1995-02-17 2002-02-12 日本ビクター株式会社 音声高能率符号化装置
DE19509149A1 (de) 1995-03-14 1996-09-19 Donald Dipl Ing Schulz Codierverfahren
JPH08328599A (ja) 1995-06-01 1996-12-13 Mitsubishi Electric Corp Mpegオーディオ復号器
DE69620967T2 (de) * 1995-09-19 2002-11-07 At & T Corp Synthese von Sprachsignalen in Abwesenheit kodierter Parameter
US5692102A (en) * 1995-10-26 1997-11-25 Motorola, Inc. Method device and system for an efficient noise injection process for low bitrate audio compression
US6138051A (en) * 1996-01-23 2000-10-24 Sarnoff Corporation Method and apparatus for evaluating an audio decoder
JP3189660B2 (ja) * 1996-01-30 2001-07-16 ソニー株式会社 信号符号化方法
JP3519859B2 (ja) * 1996-03-26 2004-04-19 三菱電機株式会社 符号器及び復号器
DE19628293C1 (de) * 1996-07-12 1997-12-11 Fraunhofer Ges Forschung Codieren und Decodieren von Audiosignalen unter Verwendung von Intensity-Stereo und Prädiktion
US6092041A (en) * 1996-08-22 2000-07-18 Motorola, Inc. System and method of encoding and decoding a layered bitstream by re-applying psychoacoustic analysis in the decoder
JPH1091199A (ja) * 1996-09-18 1998-04-10 Mitsubishi Electric Corp 記録再生装置
US5924064A (en) 1996-10-07 1999-07-13 Picturetel Corporation Variable length coding using a plurality of region bit allocation patterns
EP0878790A1 (en) 1997-05-15 1998-11-18 Hewlett-Packard Company Voice coding system and method
JP3213582B2 (ja) * 1997-05-29 2001-10-02 シャープ株式会社 画像符号化装置及び画像復号装置
SE512719C2 (sv) 1997-06-10 2000-05-02 Lars Gustaf Liljeryd En metod och anordning för reduktion av dataflöde baserad på harmonisk bandbreddsexpansion
WO1999003096A1 (fr) * 1997-07-11 1999-01-21 Sony Corporation Procede et dispositif de codage et decodage d'informations et support de distribution
DE19730130C2 (de) 1997-07-14 2002-02-28 Fraunhofer Ges Forschung Verfahren zum Codieren eines Audiosignals
WO1999050828A1 (en) * 1998-03-30 1999-10-07 Voxware, Inc. Low-complexity, low-delay, scalable and embedded speech and audio coding with adaptive frame loss concealment
US6115689A (en) * 1998-05-27 2000-09-05 Microsoft Corporation Scalable audio coder and decoder
US6300888B1 (en) * 1998-12-14 2001-10-09 Microsoft Corporation Entrophy code mode switching for frequency-domain audio coding
SE9903553D0 (sv) 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
US6363338B1 (en) * 1999-04-12 2002-03-26 Dolby Laboratories Licensing Corporation Quantization in perceptual audio coders with compensation for synthesis filter noise spreading
CN1158646C (zh) * 1999-04-16 2004-07-21 多尔拜实验特许公司 在音频编码中应用增益自适应量化和变长码
FR2807897B1 (fr) * 2000-04-18 2003-07-18 France Telecom Methode et dispositif d'enrichissement spectral
JP2001324996A (ja) * 2000-05-15 2001-11-22 Japan Music Agency Co Ltd Mp3音楽データ再生方法及び装置
SE0001926D0 (sv) * 2000-05-23 2000-05-23 Lars Liljeryd Improved spectral translation/folding in the subband domain
JP3538122B2 (ja) 2000-06-14 2004-06-14 株式会社ケンウッド 周波数補間装置、周波数補間方法及び記録媒体
SE0004187D0 (sv) 2000-11-15 2000-11-15 Coding Technologies Sweden Ab Enhancing the performance of coding systems that use high frequency reconstruction methods
GB0103245D0 (en) * 2001-02-09 2001-03-28 Radioscape Ltd Method of inserting additional data into a compressed signal
US6963842B2 (en) * 2001-09-05 2005-11-08 Creative Technology Ltd. Efficient system and method for converting between different transform-domain signal representations
US20030187663A1 (en) 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
US7447631B2 (en) 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273659A (ja) * 1994-02-09 1995-10-20 Sony Corp ディジタル信号処理方法及び装置、並びに記録媒体
JP2000148191A (ja) * 1998-11-06 2000-05-26 Matsushita Electric Ind Co Ltd ディジタルオーディオ信号の符号化装置
JP2001331198A (ja) * 2000-05-22 2001-11-30 Nippon Telegr & Teleph Corp <Ntt> 音声・楽音信号符号化方法及びこの方法を実行するプログラムを記録した記録媒体
JP2001343998A (ja) * 2000-05-31 2001-12-14 Yamaha Corp ディジタルオーディオデコーダ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012053150A1 (ja) * 2010-10-18 2012-04-26 パナソニック株式会社 音声符号化装置および音声復号化装置
JPWO2012169133A1 (ja) * 2011-06-09 2015-02-23 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 音声符号化装置、音声復号装置、音声符号化方法及び音声復号方法
JP2017194705A (ja) * 2012-12-06 2017-10-26 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. 信号を復号するための方法および装置
JP2018194870A (ja) * 2012-12-06 2018-12-06 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. 信号を復号するための方法および装置
US10236002B2 (en) 2012-12-06 2019-03-19 Huawei Technologies Co., Ltd. Method and device for decoding signal
US10546589B2 (en) 2012-12-06 2020-01-28 Huawei Technologies Co., Ltd. Method and device for decoding signal
US10971162B2 (en) 2012-12-06 2021-04-06 Huawei Technologies Co., Ltd. Method and device for decoding signal
US11610592B2 (en) 2012-12-06 2023-03-21 Huawei Technologies Co., Ltd. Method and device for decoding signal

Also Published As

Publication number Publication date
DK1514261T3 (da) 2007-03-19
EP1736966A3 (en) 2007-11-07
JP5705273B2 (ja) 2015-04-22
JP2012212167A (ja) 2012-11-01
WO2003107328A1 (en) 2003-12-24
JP2013214103A (ja) 2013-10-17
ATE349754T1 (de) 2007-01-15
KR20050010945A (ko) 2005-01-28
HK1070729A1 (en) 2005-06-24
KR100986152B1 (ko) 2010-10-07
SG10201702049SA (en) 2017-04-27
JP5345722B2 (ja) 2013-11-20
EP2209115A1 (en) 2010-07-21
JP5253564B2 (ja) 2013-07-31
US20090144055A1 (en) 2009-06-04
ATE536615T1 (de) 2011-12-15
CN1662958A (zh) 2005-08-31
ATE470220T1 (de) 2010-06-15
EP1736966A2 (en) 2006-12-27
TW200404273A (en) 2004-03-16
JP2012103718A (ja) 2012-05-31
US20090138267A1 (en) 2009-05-28
CA2736055A1 (en) 2003-12-24
JP2005530205A (ja) 2005-10-06
DE60333316D1 (de) 2010-08-19
ATE529859T1 (de) 2011-11-15
EP1514261A1 (en) 2005-03-16
CA2736060C (en) 2015-02-17
EP2207169B1 (en) 2011-10-19
DK2207169T3 (da) 2012-02-06
CA2736065A1 (en) 2003-12-24
CN100369109C (zh) 2008-02-13
HK1070728A1 (en) 2005-06-24
PL208344B1 (pl) 2011-04-29
MY136521A (en) 2008-10-31
CA2736055C (en) 2015-02-24
DE60310716T2 (de) 2007-10-11
US8032387B2 (en) 2011-10-04
EP2216777A1 (en) 2010-08-11
IL216069A (en) 2015-11-30
CA2735830C (en) 2014-04-08
US7447631B2 (en) 2008-11-04
JP5253565B2 (ja) 2013-07-31
DE60332833D1 (de) 2010-07-15
KR100991448B1 (ko) 2010-11-04
CA2489441C (en) 2012-04-10
EP1514261B1 (en) 2006-12-27
ES2275098T3 (es) 2007-06-01
KR100986153B1 (ko) 2010-10-07
PL372104A1 (en) 2005-07-11
AU2003237295A1 (en) 2003-12-31
MXPA04012539A (es) 2005-04-28
HK1146145A1 (en) 2011-05-13
CA2489441A1 (en) 2003-12-24
PT2216777E (pt) 2012-03-16
EP2216777B1 (en) 2011-12-07
CA2735830A1 (en) 2003-12-24
KR20050010950A (ko) 2005-01-28
DE60310716T8 (de) 2008-01-31
CA2736046A1 (en) 2003-12-24
IL165650A (en) 2010-11-30
KR100986150B1 (ko) 2010-10-07
SI2207169T1 (sl) 2012-05-31
SG177013A1 (en) 2012-01-30
EP2207170B1 (en) 2011-10-19
DE60310716D1 (de) 2007-02-08
EP2209115B1 (en) 2011-09-28
HK1141624A1 (en) 2010-11-12
CA2736065C (en) 2015-02-10
ATE473503T1 (de) 2010-07-15
US8050933B2 (en) 2011-11-01
KR100991450B1 (ko) 2010-11-04
MY159022A (en) 2016-11-30
IL165650A0 (en) 2006-01-15
JP2012078866A (ja) 2012-04-19
HK1146146A1 (en) 2011-05-13
ATE529858T1 (de) 2011-11-15
ATE526661T1 (de) 2011-10-15
EP2207169A1 (en) 2010-07-14
IL216069A0 (en) 2011-12-29
DK1736966T3 (da) 2010-11-01
EP1736966B1 (en) 2010-07-07
CA2736060A1 (en) 2003-12-24
EP2207170A1 (en) 2010-07-14
JP4486496B2 (ja) 2010-06-23
JP5063717B2 (ja) 2012-10-31
HK1141623A1 (en) 2010-11-12
KR20100063141A (ko) 2010-06-10
US20030233234A1 (en) 2003-12-18
SI2209115T1 (sl) 2012-05-31
KR20100086068A (ko) 2010-07-29
US7337118B2 (en) 2008-02-26
US20030233236A1 (en) 2003-12-18
SG2014005300A (en) 2016-10-28
TWI352969B (en) 2011-11-21
KR20100086067A (ko) 2010-07-29

Similar Documents

Publication Publication Date Title
JP5063717B2 (ja) オーディオ情報生成方法
US20080140405A1 (en) Audio coding system using characteristics of a decoded signal to adapt synthesized spectral components
MXPA05000653A (es) Codificacion de audio de baja tasa de transferencia de bitios.
AU2003237295B2 (en) Audio coding system using spectral hole filling

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term