JP2010151810A - パーティクル計数装置 - Google Patents
パーティクル計数装置 Download PDFInfo
- Publication number
- JP2010151810A JP2010151810A JP2009269332A JP2009269332A JP2010151810A JP 2010151810 A JP2010151810 A JP 2010151810A JP 2009269332 A JP2009269332 A JP 2009269332A JP 2009269332 A JP2009269332 A JP 2009269332A JP 2010151810 A JP2010151810 A JP 2010151810A
- Authority
- JP
- Japan
- Prior art keywords
- target region
- scattered light
- vacuum
- measurement target
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 81
- 238000001514 detection method Methods 0.000 claims abstract description 49
- 230000001678 irradiating effect Effects 0.000 claims abstract description 5
- 238000005259 measurement Methods 0.000 claims description 43
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 37
- 239000007789 gas Substances 0.000 description 28
- 229910052757 nitrogen Inorganic materials 0.000 description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000428 dust Substances 0.000 description 2
- 239000000284 extract Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1429—Signal processing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N2015/1486—Counting the particles
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】真のパーティクルによる散乱光信号と背景光ノイズとを正しく判別することができ、しかも、より小さなパーティクルを検出することができるパーティクル計数装置を提供する。
【解決手段】本発明に係るパーティクル計数装置は、真空状態ないし真空に近い状態の測定対象領域40に光を照射する光照射部と、前記測定対象領域40に光が照射されたときに生じる散乱光を検出する散乱光検出器32と、この散乱光検出器32の検出信号と弁別閾値とを比較して前記測定対象領域40のパーティクルの有無を判別する判別部18と、前記測定対象領域40の真空度を測定する真空計12と、前記測定対象領域40の真空度に応じた弁別閾値を設定する閾値設定部16とを有する。
【選択図】図1
【解決手段】本発明に係るパーティクル計数装置は、真空状態ないし真空に近い状態の測定対象領域40に光を照射する光照射部と、前記測定対象領域40に光が照射されたときに生じる散乱光を検出する散乱光検出器32と、この散乱光検出器32の検出信号と弁別閾値とを比較して前記測定対象領域40のパーティクルの有無を判別する判別部18と、前記測定対象領域40の真空度を測定する真空計12と、前記測定対象領域40の真空度に応じた弁別閾値を設定する閾値設定部16とを有する。
【選択図】図1
Description
本発明は、半導体製造装置等の排気中に含まれる粉塵等のパーティクルの数を計測するパーティクル計数装置に関する。
半導体の製造工程で発生する粉塵などのパーティクルは、製品の性能等を低下させる原因となる。そこで、半導体製造装置には、その製造室内におけるパーティクルの発生数をリアルタイムで計測するパーティクル計数装置が設けられている。
前記パーティクル計数装置は通常、製造室からの排気ダクトに配設されている。パーティクル計数装置は、排気ダクト内の測定対象領域に対してレーザ光を照射する光源、レーザ光が照射されたパーティクルの散乱光を検出する検出部、検出部の検出信号を予め設定された固有の弁別閾値と比較してパーティクルの有無を判別する判別部等を備えている。
前記パーティクル計数装置は通常、製造室からの排気ダクトに配設されている。パーティクル計数装置は、排気ダクト内の測定対象領域に対してレーザ光を照射する光源、レーザ光が照射されたパーティクルの散乱光を検出する検出部、検出部の検出信号を予め設定された固有の弁別閾値と比較してパーティクルの有無を判別する判別部等を備えている。
ところで、検出部が検出する散乱光には、測定対象領域を通過するパーティクルの散乱光だけでなく測定対象領域に背景ガスとして存在する酸素(空気)や窒素等のガス分子による散乱光も含まれる。これは、酸素や窒素等のガス分子も非常に小さいパーティクルであり、光が照射されたときに散乱光を発生するからである。
このようなガス分子の散乱による背景光ノイズが大きいと、真のパーティクルによる散乱光信号と背景光ノイズとを正確に判別することができない。また、測定対象領域に存在するガス分子の数が多いと、測定しようとする最小パーティクルの散乱光強度よりも背景光強度の方が大きくなってしまい、小さなサイズのパーティクルを検出できない。
そこで、多数の検出素子からなる、つまり画素数が大きい検出器で散乱光を検出することにより、背景光ノイズを低減する方法が提案されている(特許文献1参照)。これは、1個の検出素子の検出領域を小さく制限することで背景光ノイズが低減するため、小さいサイズのパーティクルを検出することができる、という原理に基づく。
そこで、多数の検出素子からなる、つまり画素数が大きい検出器で散乱光を検出することにより、背景光ノイズを低減する方法が提案されている(特許文献1参照)。これは、1個の検出素子の検出領域を小さく制限することで背景光ノイズが低減するため、小さいサイズのパーティクルを検出することができる、という原理に基づく。
背景光ノイズの大きさは測定対象領域に存在するガス分子の数に依存して変化する。しかし、従来のパーティクル計数装置では測定対象領域に存在するガス分子の数は考慮されておらず、固有の弁別閾値に基づき真のパーティクルによる散乱光信号と背景光ノイズとを判別していた。
本発明が解決しようとする課題は、真のパーティクルによる散乱光信号と背景光ノイズとを正しく判別することができ、しかも、より小さなパーティクルを検出することができるパーティクル計数装置を提供することである。
本発明が解決しようとする課題は、真のパーティクルによる散乱光信号と背景光ノイズとを正しく判別することができ、しかも、より小さなパーティクルを検出することができるパーティクル計数装置を提供することである。
上記課題を解決するために成された本発明に係るパーティクル計数装置は、
a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出する散乱光検出手段と、
c)前記測定対象領域の真空度を測定する真空度計測手段と、
d)前記測定対象領域の真空度に応じた弁別閾値を設定する閾値設定部と、
e)前記散乱光検出手段の検出信号と前記弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とする。
a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出する散乱光検出手段と、
c)前記測定対象領域の真空度を測定する真空度計測手段と、
d)前記測定対象領域の真空度に応じた弁別閾値を設定する閾値設定部と、
e)前記散乱光検出手段の検出信号と前記弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とする。
又、本発明に係るパーティクル計数装置の別の態様は、
a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出し、電気信号に変換する散乱光検出手段と、
c)前記電気信号の時間平均値に基き前記弁別閾値を設定する閾値設定部と、
d)前記電気信号と弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とする。
a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出し、電気信号に変換する散乱光検出手段と、
c)前記電気信号の時間平均値に基き前記弁別閾値を設定する閾値設定部と、
d)前記電気信号と弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とする。
ここで、前記電気信号の時間平均値としては、測定対象領域を流れてくるパーティクルによる散乱光の電気信号のピーク幅の2倍以上の時間平均値を取ることが望ましい。
散乱光検出手段は、測定対象領域に存在するパーティクルによる散乱光の他、測定対象領域に存在する窒素や酸素等のガス分子による散乱光、つまり背景光ノイズも検出する。測定対象領域に存在する窒素や酸素等のガス分子の数は測定対象領域の真空度を表す圧力に比例し、背景光ノイズの大きさはガス分子の数に比例するため、背景光ノイズの大きさは圧力に比例する。測定対象領域の真空度は真空度計測手段によって測定される。
本発明によれば、測定対象領域の真空度や散乱光の電気信号の時間平均値に応じて設定された弁別閾値に基づきパーティクルの有無を判別する。このため、窒素や酸素等のガス分子によるノイズ信号をパーティクルの散乱光信号として誤検出してしまうことを防止できる。また、高真空であるほど(真空状態に近いほど)背景光ノイズが小さいことから、高真空状態における弁別閾値を小さくすることができ、より小さなパーティクルの検出が可能となる。
以下、図面を参照して本発明の実施形態について詳細に説明する。
図1は、本発明の第1実施例に係るパーティクル計数装置の概略構成図である。パーティクル計数装置1は、検出部10、真空計12、信号処理部13、閾値設定部16、閾値判別部18、カウンタ20等から構成されている。
図1及び図2に示すように、検出部10は例えば半導体製造装置の排気管22の途中に設けられている。排気管22内は真空状態ないし真空に近い状態になっており、図2において紙面と垂直な方向に(例えば紙面手前側から裏側に向かって)パーティクルPが流れてくるようになっている。
図1は、本発明の第1実施例に係るパーティクル計数装置の概略構成図である。パーティクル計数装置1は、検出部10、真空計12、信号処理部13、閾値設定部16、閾値判別部18、カウンタ20等から構成されている。
図1及び図2に示すように、検出部10は例えば半導体製造装置の排気管22の途中に設けられている。排気管22内は真空状態ないし真空に近い状態になっており、図2において紙面と垂直な方向に(例えば紙面手前側から裏側に向かって)パーティクルPが流れてくるようになっている。
検出部10は、排気管22の壁面に対向配置される光入射窓24と光出射窓26、前記光入射窓24から光出射窓26に向かってレーザ光を照射する光照射部28、前記レーザ光の照射方向と略直交する方向の排気管22の壁面に設けられた検出窓30、検出窓30を通過した散乱光を検出する散乱光検出器32、検出窓30と散乱光検出器32との間に配置された集光レンズ34、等を備えている。
光照射部28は、半導体レーザ素子等の光源281と、この光源281が照射するレーザ光をシート状の光に変換するレンズ(図示せず)から成る。光照射部28から照射されたシート状の光は光入射窓24から排気管22内に入射し、排気管22内(真空領域)を通過する。これにより排気管22内の矩形シート状の測定対象領域40に光が照射され、当該領域40を流れるパーティクルによって散乱光が発生する。前記測定対象領域40で発生した散乱光のうち検出窓30を通過した散乱光は集光レンズ34によって散乱光検出器32に集光される。
散乱光検出器32が検出した散乱光はそこで電気信号に変換され、この電気信号は信号処理部13に入力される。信号処理部13は、散乱光によるパルス信号を含む散乱光検出器32からの電気信号よりAC成分を抽出して出力する。AC成分は散乱光の電気信号からDC成分を差し引いた値である。DC成分は散乱光検出器32からの電気信号をパーティクルによる散乱光のパルス信号の時間幅よりも十分に長い時定数で積分した値であり、電気信号の時間平均値に相当する。本実施例では、例えば100msecの時間平均をDC成分としている。
信号処理部13から出力されたAC成分は閾値判別部18に入力されて弁別閾値と比較される。閾値判別部18は、AC成分が弁別閾値を超えるとパーティクルが通過したと判定し、判定信号をカウンタ20に与える。これにより、カウンタ20は一定時間内に測定対象領域40を通過したパーティクルの数を計測する。
信号処理部13から出力されたAC成分は閾値判別部18に入力されて弁別閾値と比較される。閾値判別部18は、AC成分が弁別閾値を超えるとパーティクルが通過したと判定し、判定信号をカウンタ20に与える。これにより、カウンタ20は一定時間内に測定対象領域40を通過したパーティクルの数を計測する。
一方、排気管22内の真空度は真空計12によって計測され、この真空度に基づき閾値設定部16は弁別閾値を設定する。閾値設定部16は、真空度の変化に追従する弁別閾値を設定するようにしても良く、一定時間の真空度の平均値に基づいて弁別閾値を設定するようにしても良い。
ここで、散乱光検出器32の検出信号について説明する。散乱光検出器32に入る光には、パーティクルによる散乱光の他、測定対象領域40に存在する酸素や窒素等のガス分子による背景光が含まれる。酸素や窒素などのガスも非常に小さい粒子の集合であるため、パーティクルと同様に光が照射されることによって散乱光が発生するからである。
したがって、散乱光検出器32の検出信号には酸素や窒素等のガスの散乱光成分(背景光)が含まれることになり、これに、パーティクルの散乱光成分が重畳する。
したがって、散乱光検出器32の検出信号には酸素や窒素等のガスの散乱光成分(背景光)が含まれることになり、これに、パーティクルの散乱光成分が重畳する。
例えば光の波長に比べて十分に小さい真空中の孤立パーティクル(半径a )に、偏光していない平面波(強度I0 )が当たるときに、粒子から r の距離での[散乱光の強度Iscat/照射光強度I0] の比は、次のレイリー理論に基づいた式(1)で求められる。
(式(1)において、a:粒子半径、r:散乱粒子からの距離、λ:光の波長、n:粒子の屈折率、θ:入射光と散乱光の角度)
一方、酸素や窒素等のガスによる散乱光強度は、1個のガス分子による散乱光強度(これは式(1)から求められる)にガス分子の数を乗じた値に比例する。測定対象領域40に存在するガス分子の数は真空度を表す圧力に比例するので、ガス分子による背景光強度は圧力に比例することになる。
例えば、多数の窒素分子(直径0.2nmと仮定)による散乱光強度と、パーティクル(直径200nmと仮定)による散乱光強度を比較する。式(1)より、散乱光強度は、粒子径の6乗に比例する。上記の仮定では、粒子径は1000倍(=103)異なるため、散乱光強度は1018倍異なる。たとえば、圧力1atmで検出領域の体積を0.2mlと仮定すると、そこに存在する分子数は、5.357×1018個(=6×1023/22.4×0.2×10-3)となる。つまり、1atmの窒素分子の散乱光は、200nmの1個のパーティクルによる散乱光より大きいことがわかる。
例えば、多数の窒素分子(直径0.2nmと仮定)による散乱光強度と、パーティクル(直径200nmと仮定)による散乱光強度を比較する。式(1)より、散乱光強度は、粒子径の6乗に比例する。上記の仮定では、粒子径は1000倍(=103)異なるため、散乱光強度は1018倍異なる。たとえば、圧力1atmで検出領域の体積を0.2mlと仮定すると、そこに存在する分子数は、5.357×1018個(=6×1023/22.4×0.2×10-3)となる。つまり、1atmの窒素分子の散乱光は、200nmの1個のパーティクルによる散乱光より大きいことがわかる。
ガス分子による散乱光をパーティクルによる散乱光と誤判別しないようにするためには、弁別閾値をガス分子の散乱光強度よりも高く設定する必要がある。一方、パーティクルの直径が小さいほど散乱光強度が小さくなるため、弁別閾値が高いと小さなパーティクルを検出することができない。
測定対象領域40に存在するガスによる背景光強度は測定対象領域40の真空度(圧力)が分かれば一意的に決まる。したがって、測定対象領域40の圧力から一意的に決まる背景光(電圧信号)をパーティクルによる散乱光としてカウントしてしまうことがないような値に弁別閾値を設定すれば、できるだけ小さな直径のパーティクルを検出することが可能となる。
測定対象領域40に存在するガスによる背景光強度は測定対象領域40の真空度(圧力)が分かれば一意的に決まる。したがって、測定対象領域40の圧力から一意的に決まる背景光(電圧信号)をパーティクルによる散乱光としてカウントしてしまうことがないような値に弁別閾値を設定すれば、できるだけ小さな直径のパーティクルを検出することが可能となる。
図3に散乱光の電気信号とAC成分、DC成分、弁別閾値との関係を示す。図3に示すように、散乱光の電気信号からDC成分を差し引いたAC成分は、散乱光によるゆらぎ成分である。DC成分は、測定対象領域40の圧力の変化により変動する背景光成分に相当する。
一般的に光のゆらぎは光強度の平方根に比例するため、背景光のAC成分はガス圧力の平方根に比例する。そこで、本実施例では、閾値設定部16は真空計12により検出される排気管22内の圧力、即ち測定対象領域40内の圧力の平方根に応じた適宜の閾値を設定する。真空度が高い場合(すなわち、圧力が低い場合)は背景光ノイズが小さいため弁別閾値としては低い値が設定される。
一般的に光のゆらぎは光強度の平方根に比例するため、背景光のAC成分はガス圧力の平方根に比例する。そこで、本実施例では、閾値設定部16は真空計12により検出される排気管22内の圧力、即ち測定対象領域40内の圧力の平方根に応じた適宜の閾値を設定する。真空度が高い場合(すなわち、圧力が低い場合)は背景光ノイズが小さいため弁別閾値としては低い値が設定される。
次に、上記パーティクル計数装置を用いて測定対象領域40のパーティクルを計数した実験結果について説明する。
図4は、圧力を変化させて窒素ガスを流速1m/秒で排気管22内に流したときの、弁別閾値とカウンタ20の検出数との関係を示す図である。ここでは、圧力を5通り(42.5Torr, 82.2Torr, 178Torr, 401Torr, 大気圧(760Torr))に変化させた。圧力が高いほど、窒素分子の数が多いことを示す。図4中、横軸は弁別閾値(mV)を、縦軸は60秒間当たりのカウンタ20の検出数を示す。図4に示す「検出数」は窒素ガス分子の散乱光によりカウンタ20が検出した数、つまり、窒素ガス分子をパーティクルとして誤検出した数を表す。
図4は、圧力を変化させて窒素ガスを流速1m/秒で排気管22内に流したときの、弁別閾値とカウンタ20の検出数との関係を示す図である。ここでは、圧力を5通り(42.5Torr, 82.2Torr, 178Torr, 401Torr, 大気圧(760Torr))に変化させた。圧力が高いほど、窒素分子の数が多いことを示す。図4中、横軸は弁別閾値(mV)を、縦軸は60秒間当たりのカウンタ20の検出数を示す。図4に示す「検出数」は窒素ガス分子の散乱光によりカウンタ20が検出した数、つまり、窒素ガス分子をパーティクルとして誤検出した数を表す。
図4から明らかなように弁別閾値が大きくなるにつれて検出個数が低下する。また、弁別閾値が同じであるときは、圧力が低いほど(真空度が高いほど)検出個数が少なくなる。したがって、真空度に基づき適切な弁別閾値を設定すれば、窒素ガスなどのガス分子をパーティクルとして誤検出することを防止できることがわかる。
パーティクルの散乱光を検出し、酸素や窒素等ガスの散乱光を検出しないようにするためには、酸素や窒素等のガスの散乱光による検出個数が10個/60秒以下となるように弁別閾値を設定することが適切である。
パーティクルの散乱光を検出し、酸素や窒素等ガスの散乱光を検出しないようにするためには、酸素や窒素等のガスの散乱光による検出個数が10個/60秒以下となるように弁別閾値を設定することが適切である。
例えば圧力が42.5Torrのときは、弁別閾値が100mV、140mVのときの検出個数はいずれも10個/60秒を上回っているが、弁別閾値が200mV〜1000mVのときの検出個数は0〜3個/60秒である。このことから、圧力が42.5Torrのときは200mVが弁別閾値として適切である。
また、圧力が82.2Torrのときは、弁別閾値が100〜240mVのときの検出個数はいずれも10個/60秒を上回ったが、弁別閾値が300〜1000mVのときの検出個数は0〜19個/60秒であった。弁別閾値が400mV及び500mVのときの検出個数は10個/60秒を上回ったが、検出誤差を考慮すると、圧力が82.2Torrのときは300mVが弁別閾値として適切である。
また、圧力が82.2Torrのときは、弁別閾値が100〜240mVのときの検出個数はいずれも10個/60秒を上回ったが、弁別閾値が300〜1000mVのときの検出個数は0〜19個/60秒であった。弁別閾値が400mV及び500mVのときの検出個数は10個/60秒を上回ったが、検出誤差を考慮すると、圧力が82.2Torrのときは300mVが弁別閾値として適切である。
図5は、窒素ガス分子の検出個数が10個以下となる弁別閾値と圧力との関係を示す。図5中、横軸は圧力(Torr)、縦軸は弁別閾値(検出個数が10個以下となる最小弁別閾値電圧)(mV)を示す。圧力が401Torrのとき、及び大気圧のときは、窒素ガスに含まれる残留不純物により検出個数が10個以下に減少しないため、検出個数が10個以下となる弁別閾値は、検出個数が急激に減少する線を外挿して求めた。この結果、圧力が401Torrのとき及び大気圧のときの最小弁別閾値は、約600mV及び約800mVとなった。
大気圧の弁別閾値である800mVのときに検出できる最小パーティクル径をaとすると、42.5Torrの弁別閾値である200mVにおいて検出できる最小パーティクル径は、式(1)より、(200/800)1/6×a=0.79×aとなる。つまり、弁別閾値を800mVから200mVへ変化させると、検出可能な最小パーティクル径が79%の大きさになる。このことから、弁別閾値を小さくすることにより、検出可能な最小パーティクル径を小さくできることがわかる。
なお、図5は横軸及び縦軸を対数で表した両対数グラフである。図5に示す圧力と最小弁別閾値との関係を表す線分の傾きは約0.5であることから、最小弁別閾値は圧力の1/2乗、すなわち平方根に比例することがわかる。したがって、本実施例のように圧力の平方根に比例する値に基づき弁別閾値を変動させれば、窒素ガスの散乱光によるパーティクルの検出個数を10個/60秒以下に抑えることができ、且つ検出可能な最小パーティクル径を小さくできる。
図6は本発明の第2の実施例の構成を示す。ここでは第1の実施例と異なる部分についてのみ説明する。第2の実施例では、信号処理部13が電気信号をDC成分とAC成分に分けて出力するように構成されている。信号処理部13が出力したAC成分は閾値判別部18に入力され、DC成分は閾値設定部16に入力される。
上述したように、DC成分は、信号処理部13の電気信号をパーティクルによるパルス信号の時間幅より十分長い時定数で積分した値である。AC成分は、散乱光検出器32の電気信号からDC成分を差し引いた値である。
閾値設定部16はDC成分の平方根に比例した値を閾値とする。これは、酸素や窒素等のガスによる散乱光強度がDC成分に比例し、光のゆらぎは光強度の平方根に比例するため、背景光ノイズはDC成分の平方根に比例するという原理に基づく。
上述したように、DC成分は、信号処理部13の電気信号をパーティクルによるパルス信号の時間幅より十分長い時定数で積分した値である。AC成分は、散乱光検出器32の電気信号からDC成分を差し引いた値である。
閾値設定部16はDC成分の平方根に比例した値を閾値とする。これは、酸素や窒素等のガスによる散乱光強度がDC成分に比例し、光のゆらぎは光強度の平方根に比例するため、背景光ノイズはDC成分の平方根に比例するという原理に基づく。
10…検出部
12…真空計
13…信号処理部
16…閾値設定部
18…閾値判別部
20…カウンタ
22…排気管
24…光入射窓
26…光出射窓
28…光照射部
281…光源
30…検出窓
32…散乱光検出器
40…測定対象領域
12…真空計
13…信号処理部
16…閾値設定部
18…閾値判別部
20…カウンタ
22…排気管
24…光入射窓
26…光出射窓
28…光照射部
281…光源
30…検出窓
32…散乱光検出器
40…測定対象領域
Claims (5)
- a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出する散乱光検出手段と、
c)前記測定対象領域の真空度を測定する真空度計測手段と、
d)前記測定対象領域の真空度に応じた弁別閾値を設定する閾値設定部と、
e)前記散乱光検出手段の検出信号と前記弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とするパーティクル計数装置。 - 前記真空度計測手段は前記測定対象領域の圧力を測定し、前記閾値設定部は該測定された圧力の平方根に基づき前記弁別閾値を設定することを特徴とする請求項1に記載のパーティクル計数装置。
- a)真空状態ないし真空に近い状態の測定対象領域に光を照射する光照射手段と、
b)前記測定対象領域に光が照射されたときに生じる散乱光を検出し、電気信号に変換する散乱光検出手段と、
c)前記電気信号の時間平均値に基き弁別閾値を設定する閾値設定部と、
d)前記電気信号と前記弁別閾値とを比較して前記測定対象領域のパーティクルの有無を判別する判別部と
を有することを特徴とするパーティクル計数装置。 - 前記閾値設定部は、前記電気信号の時間平均値の平方根に基づき前記弁別閾値を設定することを特徴とする請求項3に記載のパーティクル計数装置。
- 前記閾値設定部が、前記電気信号の時間平均値として、測定対象領域を流れてくるパーティクルによる散乱光の電気信号のピーク幅の2倍以上の時間平均値を取ることを特徴とする請求項3又は4に記載のパーティクル計数装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009269332A JP2010151810A (ja) | 2008-11-28 | 2009-11-26 | パーティクル計数装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008305369 | 2008-11-28 | ||
JP2009269332A JP2010151810A (ja) | 2008-11-28 | 2009-11-26 | パーティクル計数装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010151810A true JP2010151810A (ja) | 2010-07-08 |
Family
ID=42222541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009269332A Pending JP2010151810A (ja) | 2008-11-28 | 2009-11-26 | パーティクル計数装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US8294894B2 (ja) |
JP (1) | JP2010151810A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012189509A (ja) * | 2011-03-11 | 2012-10-04 | Shimadzu Corp | パーティクル計数装置 |
JP2020176915A (ja) * | 2019-04-18 | 2020-10-29 | 株式会社島津製作所 | パーティクル計数方法及びパーティクル計数装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5950319B2 (ja) * | 2010-06-15 | 2016-07-13 | 新日本空調株式会社 | パーティクル濃度測定装置 |
JP6573987B2 (ja) * | 2015-12-28 | 2019-09-11 | Phcホールディングス株式会社 | 気中微粒子計測器及び清浄環境機器 |
DE102018220600B4 (de) * | 2018-11-29 | 2020-08-20 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Detektieren von Partikeln |
CN113168240A (zh) * | 2018-12-13 | 2021-07-23 | 雷蛇(亚太)私人有限公司 | 模拟输入设备、计算系统和用于接收并处理模拟输入的方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4277170A (en) * | 1979-11-01 | 1981-07-07 | Miles Richard B | Laser beacon and optical detector system for aircraft collision hazard determination |
US4739177A (en) * | 1985-12-11 | 1988-04-19 | High Yield Technology | Light scattering particle detector for wafer processing equipment |
US4864127A (en) * | 1986-07-31 | 1989-09-05 | Brame Durward B | Earth surface hydrocarbon gas cloud detection by use of landsat data |
US4928537A (en) * | 1988-12-06 | 1990-05-29 | Regents Of The University Of Minnesota | System for airborne particle measurement in a vacuum |
US5278634A (en) * | 1991-02-22 | 1994-01-11 | Cyberoptics Corporation | High precision component alignment sensor system |
US5282151A (en) | 1991-02-28 | 1994-01-25 | Particle Measuring Systems, Inc. | Submicron diameter particle detection utilizing high density array |
US5192870A (en) * | 1992-01-14 | 1993-03-09 | International Business Machines Corporation | Optical submicron aerosol particle detector |
US5247188A (en) * | 1992-01-23 | 1993-09-21 | High Yield Technology | Concentrator funnel for vacuum line particle monitors |
US5300780A (en) * | 1992-12-17 | 1994-04-05 | Trw Inc. | Missile surveillance method and apparatus |
JPH07306133A (ja) | 1994-03-14 | 1995-11-21 | Hitachi Electron Eng Co Ltd | 微粒子検出器 |
US5943130A (en) * | 1996-10-21 | 1999-08-24 | Insitec, Inc. | In situ sensor for near wafer particle monitoring in semiconductor device manufacturing equipment |
US6781688B2 (en) * | 2002-10-02 | 2004-08-24 | Kla-Tencor Technologies Corporation | Process for identifying defects in a substrate having non-uniform surface properties |
-
2009
- 2009-11-25 US US12/626,370 patent/US8294894B2/en active Active
- 2009-11-26 JP JP2009269332A patent/JP2010151810A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012189509A (ja) * | 2011-03-11 | 2012-10-04 | Shimadzu Corp | パーティクル計数装置 |
JP2020176915A (ja) * | 2019-04-18 | 2020-10-29 | 株式会社島津製作所 | パーティクル計数方法及びパーティクル計数装置 |
JP7115406B2 (ja) | 2019-04-18 | 2022-08-09 | 株式会社島津製作所 | パーティクル計数方法及びパーティクル計数装置 |
Also Published As
Publication number | Publication date |
---|---|
US8294894B2 (en) | 2012-10-23 |
US20100134796A1 (en) | 2010-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10859487B2 (en) | Automatic power control liquid particle counter with flow and bubble detection systems | |
JP2010151810A (ja) | パーティクル計数装置 | |
JP5610167B2 (ja) | 粒子検出用の2次元光学画像化方法及びシステム | |
JP5112312B2 (ja) | 病原体及び微粒子検出システム並びに検出法 | |
JP4351676B2 (ja) | 空中浮遊病原体検出システム | |
JP2007057360A (ja) | 粒子検出装置及びそれに使用される粒子検出方法 | |
WO2016206000A1 (zh) | 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用 | |
JP2008122395A (ja) | In−Situ走査ビームの粒子モニタのための信号処理方法 | |
JP2012509486A (ja) | 媒体中の固体粒子を分析する方法およびシステム | |
JP5489962B2 (ja) | 粒子計数方法 | |
JP5299241B2 (ja) | パーティクル計数装置 | |
JP4981569B2 (ja) | 粒子計数装置 | |
CN110892460B (zh) | 带有室内空气质量检测和监测的无腔室型烟雾检测器 | |
JP3532274B2 (ja) | 粒子検出装置 | |
EP0654142A1 (en) | Aerosol discriminator | |
KR102077692B1 (ko) | 광산란기반의 먼지센서 | |
JP2007278858A (ja) | 霧粒子センサ及び霧センサ | |
WO2017183597A1 (ja) | 微小体検出装置 | |
CN117953644A (zh) | 一种多模式吸气式感烟火灾探测器 | |
JP2781398B2 (ja) | 粉粒体流量計測装置 | |
CN116625894A (zh) | 一种颗粒物检测系统与方法 | |
JP2019109049A (ja) | 微小体検出装置 | |
US20160334324A1 (en) | Methods of creation and use of a non-radioactive detection methodology | |
WO2005024715A1 (ja) | 粒子検出器 | |
JP2003106982A (ja) | 粉塵量検出器 |