WO2016206000A1 - 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用 - Google Patents

一种基于双波长散射信号的气溶胶特征参数传感方法及其应用 Download PDF

Info

Publication number
WO2016206000A1
WO2016206000A1 PCT/CN2015/082083 CN2015082083W WO2016206000A1 WO 2016206000 A1 WO2016206000 A1 WO 2016206000A1 CN 2015082083 W CN2015082083 W CN 2015082083W WO 2016206000 A1 WO2016206000 A1 WO 2016206000A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
concentration
light
surface area
wavelength
Prior art date
Application number
PCT/CN2015/082083
Other languages
English (en)
French (fr)
Inventor
王殊
邓田
窦征
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to JP2017516754A priority Critical patent/JP6315641B2/ja
Priority to PCT/CN2015/082083 priority patent/WO2016206000A1/zh
Priority to US15/510,606 priority patent/US10001438B2/en
Priority to EP15895900.7A priority patent/EP3200168B1/en
Priority to CN201580043588.1A priority patent/CN106663357B/zh
Publication of WO2016206000A1 publication Critical patent/WO2016206000A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/185Signal analysis techniques for reducing or preventing false alarms or for enhancing the reliability of the system

Definitions

  • the invention relates to a method for detecting and detecting an aerosol, in particular to an aerosol surface area concentration, a volume (mass) concentration and a Sauter particle size sensing method based on a dual-wavelength scattering signal, and also relates to the method.
  • the application in fire smoke detection belongs to the field of fire alarm technology.
  • the particle size of the fire aerosol generated by the combustion of the substance is less than 1 ⁇ m, and the particle size of the non-fire aerosol such as water vapor or dust is larger than 1 ⁇ m.
  • the small particle size aerosol particles have a large number, the surface area is large, the large particle size aerosol particles are small, and the surface area is small, so the surface area concentration of the aerosol and other characteristic parameters of the aerosol such as mass (volume) concentration Together with the Sauter diameter, it is more effective in distinguishing between fire and non-fire aerosols.
  • Patent Nos. 200410031104.5, 200980138873.6 and 201180039383.8 all disclose the use of two different wavelengths of scattered light signals to distinguish aerosol particles larger or smaller than 1 ⁇ m in order to reduce false alarms from fire smoke alarms, but not to "perceive” them. Specific particle size and surface area concentration.
  • Patent Application No. 201410748629.4 discloses a method of sensing the aerosol median particle size using two different wavelengths of scattered light signals, but not the aerosol surface area concentration. "Greenberg, P.S. and Fischer, D.G., Advanced Particulate Sensors for Spacecraft Early Warning" Fire Detection, Paper No.
  • AAAA 2010–6243 40th International Conference on Environmental Sys tems, Barcelona, Spain, July 11–15, 2010 gives an aerosol surface area measured at the same wavelength and at different scattering angles using a specific optical structure.
  • concentration and mass concentration but according to the principle of aerosol rice scattering, it is difficult to balance the equilibrium response of large and small particles with only the same wavelength, and the measurement error is large.
  • Chinese Patent Application No. 201410748629.4 proposes a dual-wavelength scattering based on the median particle size value to identify different types of fire and water vapor, dust interference, and alarm with corresponding alarm signals.
  • a method for sensing aerosol particle size of a signal comprising: receiving a corresponding scatter signal reflected by the aerosol at a blue scattered light power P BL and an infrared light scattered light power P IR , and calculating a blue light and infrared light scattering power ratio R;
  • the relationship between the blue light and infrared light scattering power ratio R and the aerosol median diameter d med determines the median diameter d med ;
  • the blue light scattering power P BL and the infrared light scattered light power P IR and the corresponding threshold P are set BLth and P IRth are compared, and corresponding interference warning signals or corresponding fire alarm signals are issued.
  • the method can judge and issue a fire type alarm signal, so as to take targeted and reasonable measures, and to some extent avoid non-fire aerosols causing false alarms, however, since the ratio R has no corresponding physical meaning, the method cannot directly obtain the gas.
  • the sol median particle size it is inconvenient and inaccurate to obtain the particle size spectrum from small to large by R through prior experiments and store it as a reference to obtain the particle size.
  • the nonlinear relationship curve between R and the aerosol median diameter it is found that the ratio of the particle diameters of less than 200 nm and more than 1000 nm is in a nonlinear region, and it is difficult to obtain an accurate result, and the change in the ratio R is too small at 1500 nm or more. It is impossible to distinguish.
  • this method cannot obtain the aerosol surface area concentration, and therefore cannot effectively perceive a small particle size fire aerosol having a large surface area concentration but a small mass (volume) concentration.
  • the characteristic parameters of aerosols are characterized by quantitative concentration, surface area concentration, mass (volume) concentration and particle size distribution. The more characteristic parameters are perceived, the more accurate the judgment is.
  • the object of the present invention is to provide a sensing method for three characteristic parameters of aerosol surface area concentration, volume concentration and Souter average diameter based on the two-wavelength scattering signal, and to identify different types according to these parameters. Fire smoke and water vapor, dust interference, and alarm with different alarm signals, effectively improve the ability to identify and judge various particle size aerosols, and thus significantly improve the accuracy of fire alarms.
  • the quantitative distribution of aerosol particle size generated by material combustion can be described by a lognormal distribution function.
  • the standard deviation of particle size distribution is between 1.6 and 1.9, with little change, usually less than 1 ⁇ m.
  • the aerosol particle diameter obeys the lognormal distribution and the standard deviation of the distribution is within a certain range, for a shorter wavelength of incident light, at a certain scattering angle (usually requires a light-emitting device and a light-receiving device)
  • the angle between the optical axes of the devices is above 90 degrees.
  • the light scattering power of the particles directly corresponds to the aerosol surface area concentration, and the deviation is small. Therefore, the aerosol surface area concentration value can be obtained and used as the aerosol surface area concentration of the sensor. output signal.
  • the particle light scattering power at a certain scattering angle (usually requiring an angle between the light-emitting device and the optical axis of the light-receiving device is less than 90 degrees) directly corresponds to the aerosol volume concentration, and the deviation is small.
  • the aerosol volume concentration value can be obtained and used as the aerosol volume concentration output signal of the sensor.
  • the ratio of volume concentration to surface area concentration is the average diameter of the Sox of the aerosol. In direct proportion.
  • the volume concentration and the surface area concentration can be calculated, and the Sox average diameter of the aerosol can be obtained through the corresponding proportional relationship, thereby identifying different types of fire and water vapor and dust interference, and Different alarm signals are accurately alerted to take targeted and reasonable fire protection measures.
  • the first step is to construct a detector having two short-wavelength light-emitting devices and having two detection signals, wherein an angle between the first (short-wavelength) light-emitting device and the optical axis of the light-receiving device is above 90°.
  • the angle between the second (long wavelength) light emitting device and the optical axis of the light collecting device is below 90°;
  • the first channel (short wavelength) received aerosol is reflected by the short-wavelength light-scattering optical power P S , and the corresponding aerosol surface area concentration C 2 is calculated as follows:
  • C 2 is in units of nm 2 /cm 3
  • the unit of P S usually converts the scattered light power into a voltage V (which may also be a quantized value of the converted voltage)
  • M 2 is a scattered light surface area concentration conversion coefficient, which is optical
  • the constant corresponding to the structure and electrical parameters is usually (1.5-3.5) x 10 -10
  • the unit is (nm 2 /cm 3 ) -1 when the optical power is quantized, and V/ when the optical power is expressed by the voltage V.
  • M 2 can be calibrated by a measuring device such as a particle spectrometer;
  • the aerosol signal received by the second (long wavelength) aerosol is reflected by the long-wavelength light-scattering power P L , and the aerosol volume concentration C 3 is calculated according to the following formula (if the material density is known, Volume concentration gives mass concentration):
  • the unit of C 3 is nm 3 /cm 3 (or the mass concentration unit is ⁇ g/m 3 when the density of the substance is known)
  • the unit of P L is the optical power conversion voltage V (which may also be a quantized value of the conversion voltage)
  • M 3 is the scattering light volume (or mass) concentration conversion coefficient, which is a constant corresponding to the optical structure and electrical parameters.
  • M 3 is the volume concentration conversion coefficient, the value range is usually (0.5-2.5) x 10 -12 , and the optical power is
  • the unit of quantized value is (nm 3 /cm 3 ) -1 , which is V/(nm 3 /cm 3 ) when the optical power is expressed by the voltage V.
  • the mass concentration can be obtained, and M 3 is the mass concentration.
  • the conversion factor usually takes the range of (0.5-2.5)x10 -3 , the unit is ( ⁇ g/m 3 ) -1 , and M 3 can be calibrated by measuring equipment such as a particle spectrometer;
  • the aerosol volume concentration C 3 is calculated according to the following formula (the volume concentration is used here, if the mass concentration is used in the foregoing step, the volume concentration can be obtained by dividing the mass concentration by the density) and the aerosol surface area concentration C 2 Ratio, the average diameter D S of the aerosol solt is obtained in nm
  • the corresponding interference cue signal is sent including the volume concentration C 3 being greater than its predetermined threshold V th , and the Souter diameter of the dust or water vapor aerosol may be indicated according to the size of the D S .
  • the diameter of the Sauter depends on the specific ratio of the volume concentration to the surface area concentration, and not only the Sutter diameter D S size and the surface area concentration C 2 and the volume concentration C 3 value, but also the high surface area and volume concentration. Dust or water vapor interferes.
  • the fourth step according to Sauter diameter is calculated apparent, when the concentration of C 2 typically only a surface area greater than a predetermined threshold corresponding to the threshold S th, the greater the concentration of the surface area, the smaller the Sauter diameter, It not only outputs the SOT diameter D S size and surface area concentration C 2 and the volume concentration C 3 value, but also alarms the fire smoke aerosol with a large surface area concentration (the greater the surface area concentration, the greater the damage to the human lungs);
  • the concentration C 3 and the surface area concentration C 2 are respectively greater than the corresponding predetermined thresholds V th , S th , and the diameter of the Sauter depends on the specific ratio of the volume concentration to the surface area concentration, and generally the D S is between the particle size of the fire smoke. D div between the boundary value
  • the present invention directly measures the aerosol surface area concentration, the volume concentration and the Souter average particle size, it is no longer necessary to find the entire particle size spectrum curve or table obtained from small to large by prior experiments, so the particle size judgment is more direct and accurate.
  • the aforementioned prior art optical signal ratio has a non-linear relationship with the particle diameter, and the ratio R of less than 200 nm and greater than 1000 nm is in a non-linear region, and it is difficult to obtain an accurate result, and above 1500 nm, This is caused by the fact that the ratio R is too small to be distinguished.
  • the ratio of the Souter diameter to the volume concentration and the surface area concentration of the present invention is linear, and can be directly obtained when the particle diameter is less than 200 nm and larger than 1000 nm.
  • the physical meaning of aerosol surface area concentration and volume concentration is very clear, direct output surface area concentration and volume concentration are more conducive to fire and non-fire interference aerosol determination, if only surface area concentration exceeds the predetermined threshold, and sote particles If the diameter is small, the output is small particle size and high surface area concentration fire smoke.
  • the volume concentration does not exceed the threshold, according to the Souter diameter formula of the fourth step, the larger the surface area concentration, the smaller the particle size and the fire hazard. The bigger.
  • the aerosol with a larger particle size is obtained from the diameter of the Souter.
  • the volume concentration exceeds the predetermined threshold, the large particle non-fire interferes with the aerosol.
  • the Sotter diameter according to the fourth step. Formula, the larger the volume concentration at this time, the larger the particle size, and the more the non-fire interference particles of high-volume dust or water vapor of large particle size can be determined. Therefore, after adopting the invention, the size of the aerosol particle diameter can be judged not only by the average diameter of the Souter, but also whether a fire has occurred in time, a fire alarm signal is promptly issued or a non-fire factor is promptly issued, and the aerosol volume can be passed. The concentration and surface area concentration are judged to obtain the characteristic parameters of the detected aerosol, thereby judging and issuing the fire type alarm signal, so as to take targeted and reasonable measures.
  • the present invention directly senses the surface area concentration, volume or mass concentration of the aerosol, and the average diameter of the Souter, it can also be used as a sensor in environmental monitoring, industrial production, and in daily life where it is necessary to measure the characteristic parameters of the aerosol.
  • FIG. 1 is a schematic diagram of a system configuration according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of an optical structure according to an embodiment of the present invention.
  • Figure 3 is a circuit schematic diagram of one embodiment of the present invention.
  • FIG. 4 is a measurement result of aerosol surface area concentration according to an embodiment of the present invention, showing The standard deviation is 1.16-1.24, the difference in the surface area concentration of the diisooctyl sebacate DEHS with different peak particle sizes (259-1181 nm) and the surface area concentration measured by the scanning electromigration spectrometer.
  • FIG. 5 is a measurement result of aerosol volume concentration according to an embodiment of the present invention, showing volume concentration and scanning power of DEHS aerosol of diisooctyl sebacate with standard deviation of 1.16-1.24 and different peak particle diameters (259-1181 nm) The relationship between the volume concentration measured by the migration particle spectrometer.
  • Figure 6 is a graph showing the average diameter measurement of an aerosol Solt according to an embodiment of the present invention, showing a Souter of a diisooctyl sebacate DEHS aerosol having a standard deviation of 1.16-1.24 and different peak particle diameters (259-1181 nm). The relationship between the average diameter and the peak particle size measured by the scanning electromigration spectrometer.
  • Figure 7 is a linear relationship between the volume concentration to surface area concentration ratio and the Souter particle size in accordance with one embodiment of the present invention.
  • Figure 8 is a flow chart of one embodiment of the present invention.
  • the aerosol characteristic parameter sensing method based on the dual-wavelength light scattering signal is applied to the fire smoke detecting system shown in FIG. 1 , and the system contains two wavelengths of short wavelength (blue light) and long wavelength (infrared light).
  • the blue light uses an ultraviolet or blue light source having a wavelength of 280-490 nm
  • the infrared light uses an infrared light source having a wavelength of 830-1050 nm.
  • FIG. 2 a schematic diagram of the optical structure of this embodiment, wherein a is a blue light and an infrared light receiving tube, b is an infrared emitting tube, and c is a blue light emitting tube.
  • An electronic signal processing and control unit 4 has a processing control circuit including a CPU, a typical configuration Referring to Figure 3, where D 1 is an infrared light emitting tube, D 2 is a blue light-emitting tube, D 3 blue light and the infrared light receiving tube, N 1 is a power supply circuit, N 2 containing CPU of the electronic signal processing, transmission and a control unit, a signal processing flow implemented in N 2, N RC 2 of the two signal transmission output as, N 3 to receive the light signal amplifier.
  • the system of the present embodiment can obtain an aerosol surface area concentration conversion coefficient M 2 and a volume concentration conversion coefficient M 3 by experimental calibration.
  • the specific process is to have a standard deviation of 1.24, a Souter particle size of 472.3 nm, a surface area concentration of 1.41 ⁇ 10 11 (nm 2 /cm 3 ), and a mass concentration of 1.01 ⁇ 10 4 ⁇ g/m 3 (volume concentration of 1.11 ⁇ 10 13 (nm 3 ). /cm 3 ))
  • the surface area concentration conversion coefficient M 2 of the present embodiment was 2.91 x 10 -10 (#/(nm 2 /cm 3 )).
  • the system of the present embodiment was used to measure the adipic acid diisooctyl lipid (DEHS) aerosol with a standard deviation of 1.16 - 1.24 and different peak particle diameters (259-1181 nm).
  • the electromigration particle spectrometer (SMPS) was used as a control measurement to obtain the aerosol surface area concentration measurement result of FIG. 4, the aerosol volume concentration measurement result of FIG. 5, and the aerosol sote average diameter measurement result of FIG.
  • the first step is to construct a detector having two short-wavelength light-emitting devices and having two detection signals, wherein the angle between the first-channel light-emitting device and the optical axis of the light-receiving device is above 90°, this embodiment It is 120 degrees; the angle between the light-emitting device of the second path and the optical axis of the light-receiving device is below 90°, which is 85 degrees in this embodiment.
  • the aerosol surface area concentration C 2 is calculated according to the following formula:
  • the aerosol volume concentration C 3 is calculated according to the following formula (if the material density is known, the mass concentration is obtained):
  • Figure 5 shows the relationship between the DEHS aerosol volume concentration measured by the standard deviation of 1.16-1.24 and the different peak particle diameters (259-1181 nm) and the volume concentration measured by the scanning electromigration particle spectrometer. It is not difficult to determine the scattered light volume concentration conversion coefficient M 3 .
  • the fourth step is to calculate the ratio of the aerosol volume concentration C 3 to the aerosol surface area concentration C 2 to obtain the aerosol Sauter mean diameter D S :
  • Figure 6 shows the Souter mean diameter of the DEHS aerosol with the standard deviation of 1.16-1.24 and the different peak particle diameters (259-1181 nm) measured in this example and the peak particle diameter measured by the scanning electromigration particle spectrometer. relationship.
  • the aerosol volume concentration C 3 and the aerosol surface area concentration C 2 are compared with the set corresponding thresholds V th , S th , and the various possible cases are treated as follows:
  • the corresponding interference prompt signal is sent, including two cases: only the volume concentration C 3 is greater than its predetermined threshold V th , then not only the Sutter diameter D S size and the surface area concentration C 2 and the volume concentration C 3 value are output, but also the alarm Interference with large particle high volume concentration dust or water vapor; surface area concentration C 2 and volume concentration C 3 are greater than their corresponding predetermined thresholds S th , V th , respectively, not only output Sutter diameter D S size and surface area concentration C 2 and volume Concentration of C 3 value, while alarming for high surface area and volume concentration of dust or water vapor interference;
  • a corresponding fire alarm signal is issued, including the following two cases: only the surface area concentration C 2 is greater than the corresponding predetermined threshold S th , and the Sauter mean diameter D S is less than a preset large-scale fire particle and small
  • the boundary value D div of particle size fire smoke (0.5 ⁇ m in this embodiment) not only outputs the SOT diameter D S size and surface area concentration C 2 and the volume concentration C 3 value, but also alarms for a smaller particle size and high surface area concentration fire.
  • Smoke aerosol surface area concentration C 2 and volume concentration C 3 are respectively greater than corresponding predetermined thresholds S th , V th , and the Sauter mean diameter D S is between 0.5 ⁇ m and D th , which not only outputs the Souter diameter D S
  • Figure 7 shows the relationship between the measured volume concentration to surface area concentration ratio and the Souter diameter measured by the present invention. It can be seen that it is completely linear, and there is no nonlinear problem with small particle size and large particle size.
  • the present embodiment directly perceives the surface area concentration, volume or mass concentration of the aerosol, and the average diameter of the Souter, it can also be applied to the environment monitoring, industrial production, and daily life where it is necessary to measure the characteristic parameters of the aerosol as a sensor. use. Any technical solution formed by equivalent replacement or equivalent transformation falls within the protection required by the present invention. range.
  • the present invention distinguishes between fire and non-fire aerosols by sensing three factors of aerosol surface area concentration, volume (mass) concentration, and Sauter mean diameter, and can not directly obtain characteristic parameters such as aerosol particle size and surface area concentration, and can Further improve the accuracy of fire smoke detection and reduce the false alarm rate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Computer Security & Cryptography (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

基于双波长光散射信号的气溶胶特征参数传感方法及其应用,属于消防报警技术领域。该方法通过接收两种波长的光散射光功率,计算气溶胶表面积浓度和体积浓度,得到气溶胶索特平均直径,与对应门限比较,从而发出相应的火灾报警信号。采用该方法后,不仅可以通过索特平均直径判断气溶胶粒径的大小,从而及时鉴别出是否发生了火灾,及时正确地发出火灾报警信号或提示非火灾因素干扰;而且可以通过气溶胶表面积浓度和体积浓度判断得到被探测气溶胶的特征参数,从而判断并发出火灾种类报警信号,以便采取针对性的合理措施。

Description

一种基于双波长散射信号的气溶胶特征参数传感方法及其应用 技术领域
本发明涉及一种气溶胶的探测传感方法,尤其是一种基于双波长散射信号的气溶胶表面积浓度、体积(质量)浓度和索特(Sauter)粒径传感方法,同时还涉及此方法在火灾烟雾探测中的应用,属于消防报警技术领域。
背景技术
基于气溶胶光散射原理的烟雾火灾探测技术自上世纪70年代问世以来获得了广泛应用,但已有技术不能感知气溶胶表面积和粒径的大小,无法区分火灾烟雾和灰尘、水蒸气,因此误报警成为探测有效性的最大问题。
通常,物质燃烧产生的火灾气溶胶的粒径小于1μm,水蒸气、灰尘等非火灾气溶胶粒径大于1μm。而在同等质量浓度下,小粒径气溶胶粒子数量多、表面积大,大粒径气溶胶粒子数量少、表面积小,因此气溶胶的表面积浓度与气溶胶的其它特征参数例如质量(体积)浓度和索特(Sauter)直径一起,能够更有效的区分火灾和非火灾气溶胶。
专利号为200410031104.5、200980138873.6和201180039383.8的专利均公开了采用两种不同波长散射光信号来区分大于或小于1μm气溶胶粒子的方法,以期减少火灾烟雾报警器误报警,但不能够“感知”出其粒径具体数值和表面积浓度。申请号为201410748629.4的专利申请公开了采用两种不同波长散射光信号来感知气溶胶中值粒径的方法,但不能感知气溶胶表面积浓度。文献“Greenberg,P.S.and Fischer,D.G.,Advanced Particulate Sensors for Spacecraft Early Warning  Fire Detection,Paper No.AIAA2010–6243,40th International Conference on Environmental Sys tems,Barcelona,Spain,July11–15,2010”给出了一种采用特定光学结构的工作于同一波长、不同散射角度测量气溶胶表面积浓度和质量浓度的方法,但是根据气溶胶米散射原理,仅用同一个波长,难以兼顾大小粒子的均衡响应,其测量误差较大。
为了弥补现有技术存在的不足,申请号为201410748629.4的中国专利申请提出一种根据中值粒径值识别不同种类的火灾和水蒸气、灰尘干扰,并以相应的报警信号告警的基于双波长散射信号的气溶胶粒径传感方法,该方法包括接收到气溶胶以蓝光散射光功率PBL和红外光散射光功率PIR反映的相应散射信号后,计算蓝光和红外光散射功率比值R;根据蓝光和红外光散射功率比值R与气溶胶中值粒径dmed的关系确定中值粒径dmed;将蓝光散射光功率PBL和红外光散射光功率PIR与所设定的对应门限PBLth、PIRth进行比较,发出相应的干扰提示信号或相应的火灾报警信号。虽然该方法可以判断并发出火灾种类报警信号,以便采取针对性的合理措施,同时在一定程度上避免非火灾气溶胶引起误报,然而由于比值R没有对应的物理意义,该方法不能直接获得气溶胶中值粒径,需要由R通过事先实验获得从小到大的整个粒径谱曲线并存贮作为比照查找才能获得粒径,既不方便也不准确。特别是从R与气溶胶中值粒径的非线性关系曲线可知,对于小于200nm和大于1000nm的粒径比值均处于非线性区域,难以获得准确结果,在1500nm以上则造成由于比值R变化过小而无法区分。此外,该方法不能获得气溶胶表面积浓度,因此不能有效感知表面积浓度大但质量(体积)浓度不大的小粒径火灾气溶胶。此外,气溶胶的特征参数由数量浓度、表面积浓度、质量(体积)浓度和粒径分布表征, 所感知的特征参数越多,其判断就越准确。
发明内容
本发明的目的是:针对上述技术存在的不足,提出一种基于双波长散射信号的气溶胶表面积浓度、体积浓度和索特平均直径三个特征参数的传感方法,进而根据这些参数识别不同种类的火灾烟雾和水蒸气、灰尘干扰,并以不同的报警信号告警,有效提高对各种粒径气溶胶的识别判断能力,进而显著提高火灾报警的精准性。
研究表明,气溶胶特征参数有多种,其中表面积浓度、体积浓度(若已知物质密度,即得到质量浓度)和索特平均直径是最主要的参数,这些参数不仅度量了气溶胶的特征,而且还反映了粒子的分布情况,因此传感出这些参数便可以更有效准确地判断火灾烟雾。
理论上,物质燃烧生成的气溶胶粒径的数量分布都可以用对数正态分布函数描述,其粒径分布标准差大约在1.6-1.9之间,变化不大,通常粒径小于1μm。
申请人通过研究分析发现,当气溶胶粒径服从对数正态分布和分布的标准差在一定范围内时,对于较短波长的入射光,在一定散射角度上(通常要求发光器件与收光器件光学轴线之间的夹角在90度以上)粒子光散射功率,与气溶胶表面积浓度直接对应,偏差很小,由此可以得出气溶胶表面积浓度数值,并以此作为传感器的气溶胶表面积浓度输出信号。对于较长波长的入射光,在一定散射角度上(通常要求发光器件与收光器件光学轴线之间的夹角在90度以下)粒子光散射功率,与气溶胶体积浓度直接对应,偏差很小,由此可以得出气溶胶体积浓度数值,并以此作为传感器的气溶胶体积浓度输出信号。而按照定义,体积浓度与表面积浓度之比则与气溶胶的索特平均直径 成正比。
因此,根据接收到的粒子光散射功率,可以通过计算体积浓度与表面积浓度,再通过相应的比例关系得到气溶胶的索特平均直径,进而识别不同种类的火灾和水蒸气、灰尘干扰,并以不同的报警信号精准告警,以便采取针对性的合理消防措施。
本发明按以下步骤实现基于双波长散射信号的气溶胶特征参数传感方法:
第一步、构建具有短长两种波长发光器件、且具有两路探测信号的探测器,其中第一路(短波长)的发光器件与收光器件光学轴线之间的夹角在90°以上,第二路(长波长)的发光器件与收光器件光学轴线之间的夹角在90°以下;
第二步、将第一路(短波长)接收到的气溶胶以短波长光散射光功率PS反映的散射信号,按下式计算相应气溶胶表面积浓度C2
Figure PCTCN2015082083-appb-000001
式中C2的单位为nm2/cm3,PS的单位通常将散射光光功率转换为电压V(也可以是转换电压的量化数值),M2为散射光表面积浓度转换系数,是光学结构和电气参数对应的常数,通常为(1.5-3.5)x10-10,在光功率为量化数值时单位为(nm2/cm3)-1,在光功率以电压V表示时为V/(nm2/cm3)-1,M2可以通过粒谱仪等测量设备标定;
第三步、将第二路(长波长)接收到的气溶胶以长波长光散射光功率PL反映的散射信号,按下式计算气溶胶体积浓度C3(若已知物质密度,即可由体积浓度得到质量浓度):
Figure PCTCN2015082083-appb-000002
式中C3的单位为nm3/cm3(或已知物质密度时质量浓度单位为μg/m3),PL的单位为光功率转换电压V(也可以是转换电压的量化数值),M3为散射光体积(或质量)浓度转换系数,是光学结构和电气参数对应的常数,M3为体积浓度转换系数时取值范围通常为(0.5-2.5)x10-12,在光功率为量化数值时单位为(nm3/cm3)-1,在光功率以电压V表示时为V/(nm3/cm3),若已知物质密度,可得到质量浓度,M3为质量浓度转换系数时通常取值范围为(0.5-2.5)x10-3,单位为(μg/m3)-1,M3可以通过粒谱仪等测量设备标定;
第四步、按下式计算气溶胶体积浓度C3(此处采用体积浓度,若在前述步骤中使用质量浓度,则可以由质量浓度除以密度获得体积浓度)与气溶胶表面积浓度C2之比,得到气溶胶索特平均直径DS,单位为nm
Figure PCTCN2015082083-appb-000003
第五步、将气溶胶体积浓度C3、气溶胶表面积浓度C2和索特直径DS三个参数作为气溶胶特征直接输出,同时与所设定的对应门限Vth、Sth和Dth进行比较:
当体积浓度C3、表面积浓度C2分别低于各自对应的预定门限Vth、Sth时,返回第一步;
当至少体积浓度C3、表面积浓度C2之一高于其对应的预定门限Vth、Sth时,判断粒子索特平均直径DS是否大于设定的门限Dth;如是,则发出相应的非火灾因素干扰提示信号;如否,则发出相应的火灾报警信号。
更具体而言,所述第五步中,发出相应的干扰提示信号包括仅体积浓度C3大于其预定门限Vth,则可以根据DS的大小提示灰尘或水蒸 气气溶胶的索特直径。此时C3越大,索特直径就越大,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时提示为大粒子高体积浓度的非火灾因素如灰尘或水蒸气等干扰;若表面积浓度C2和体积浓度C3分别大于其对应的预定门限Sth、Vth,由第四步索特直径计算公式可知,此时气溶胶粒径虽然超过Dth但不会太大,此时索特直径取决于体积浓度与表面积浓度的具体比值,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时提示为高表面积和体积浓度的灰尘或水蒸气干扰。
进一步,所述第五步中,发出相应的火灾报警信号时,则可以根据DS的大小提示火灾气溶胶的索特平均直径,当DS小于预置的区分大粒径火灾烟雾和小粒径火灾烟雾的分界值Ddiv,根据第四步索特直径计算公式可知,此时通常仅有表面积浓度C2大于其对应的预定门限Sth,表面积浓度越大,索特直径就越小,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为表面积浓度大的火灾烟雾气溶胶(表面积浓度越大对人体肺部吸入损害就越大);当体积浓度C3和表面积浓度C2分别大于对应的预定门限Vth、Sth,此时索特直径取决于体积浓度与表面积浓度的具体比值,一般DS介于所述区分火灾烟雾粒径大小的分界值Ddiv与Dth之间,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为较大粒径的高表面积和体积浓度火灾烟雾气溶胶。
本发明由于直接测量出气溶胶表面积浓度、体积浓度和索特平均粒径,不再需要查找通过事先实验获得从小到大的整个粒径谱曲线或表格,因此粒径判断更直接、准确。特别是前述最接近的现有技术光信号比值与粒径之间是非线性关系,对于小于200nm和大于1000nm的比值R均处于非线性区域,难以获得准确结果,在1500nm以上则 造成由于比值R变化过小而无法区分。本发明的索特直径与体积浓度和表面积浓度之比为线性关系,粒径小于200nm和大于1000nm时仍可以直接得到。此外,气溶胶表面积浓度与体积浓度的物理意义十分明确,直接输出表面积浓度和体积浓度更有利于火灾和非火灾干扰气溶胶的确定,表现在若仅有表面积浓度超过预定门限,且索特粒径较小,则输出为小粒径高表面积浓度火灾烟雾,在体积浓度未超过门限时,根据第四步的索特直径公式,此时表面积浓度越大,则粒径越小,火灾危害性越大。而由索特直径得出粒径较大的气溶胶,若仅有体积浓度超过预定门限,则为大粒子非火灾干扰气溶胶,在表面积浓度未超过门限时,根据第四步的索特直径公式,此时体积浓度越大,则粒径越大,越能确定是大粒径的高体积浓度灰尘或水蒸气的非火灾干扰粒子。因此采用本发明后,不仅可以通过索特平均直径判断气溶胶粒径的大小,从而及时鉴别出是否发生了火灾,及时正确地发出火灾报警信号或提示非火灾因素干扰;而且可以通过气溶胶体积浓度和表面积浓度判断得到被探测气溶胶的特征参数,从而判断并发出火灾种类报警信号,以便采取针对性的合理措施。
此外,由于本发明直接感知出气溶胶的表面积浓度、体积或质量浓度、索特平均直径,因此还可以作为传感器应用于环境监测、工业生产和日常生活中需要测量气溶胶这些特征参数的场合。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本发明一个实施例的系统构成示意图。
图2为本发明一个实施例的光学结构示意图。
图3为本发明一个实施例的电路原理图。
图4为本发明一个实施例的气溶胶表面积浓度测量结果,显示了 标准差为1.16-1.24、不同峰值粒径(259-1181nm)的癸二酸二异辛脂DEHS气溶胶表面积浓度与扫描电迁移粒谱仪测得的表面积浓度的关系。
图5为本发明一个实施例的气溶胶体积浓度测量结果,显示了标准差为1.16-1.24、不同峰值粒径(259-1181nm)的癸二酸二异辛脂DEHS气溶胶体积浓度与扫描电迁移粒谱仪测得的体积浓度的关系。
图6为本发明一个实施例的气溶胶索特平均直径测量结果,显示了标准差为1.16-1.24、不同峰值粒径(259-1181nm)的癸二酸二异辛脂DEHS气溶胶的索特平均直径与扫描电迁移粒谱仪测得的峰值粒径的关系。
图7为本发明一个实施例的体积浓度与表面积浓度比值与索特粒径之间的线性关系。
图8为本发明一个实施例的流程图。
具体实施方式
实施例一
本实施例基于双波长光散射信号的气溶胶特征参数传感方法应用于图1所示的火灾烟雾探测系统中,该系统含有短波长(蓝光)和长波长(红外光)两个波长的发射装置1、2,以及蓝光和红外光散射光功率的接收装置3,电子信号处理与控制单元4,粒子表面积浓度、体积浓度和索特平均直径输出单元5。蓝光采用波长为280-490nm的紫外或蓝光光源,红外光采用波长为830-1050nm的红外光源。
本实施例的光学结构示意图参见图2,其中a为蓝光和红外光接收管,b为红外发射管,c为蓝光发射管。电子信号处理与控制单元4中具有含CPU的处理控制电路,其典型构成参见图3,其中D1为红外光发射管,D2为蓝光发射管,D3为蓝光和红外光接收管,N1为电源电 路,N2为含CPU的电子信号处理、传输与控制单元,信号处理流程在N2中实现,N2的RC2口作为信号传输输出,N3为接收光信号放大电路。
本实施例的系统可以通过实验标定得到气溶胶表面积浓度转换系数M2和体积浓度转换系数M3。具体过程为将标准差为1.24、索特粒径为472.3nm、表面积浓度为1.41x1011(nm2/cm3)、质量浓度为1.01x104μg/m3(体积浓度1.11x1013(nm3/cm3))的癸二酸二异辛脂(DEHS)气溶胶通入探测器,测得蓝光信号量化数值为41#(对应光功率作用的蓝光输出41/256x5V=0.8V),可得本实施例的表面积浓度转换系数M2为2.91x10-10(#/(nm2/cm3))。同时,测得红外光信号量化数值为12#(对应光功率作用的红外光输出12/256x5V=0.23V),可以得到质量浓度转换系数M3为1.19x10-3(#/(μg/m3))或体积浓度转换系数M3为1.08x10-12(#/(nm3/cm3))。
为了验证上述标定的正确性,通过本实施例的系统对标准差为1.16-1.24、不同峰值粒径(259-1181nm)的癸二酸二异辛脂(DEHS)气溶胶进行测量,同时采用扫描电迁移率粒谱仪(SMPS)作为对照测量,获得图4的气溶胶表面积浓度测量结果、图5的气溶胶体积浓度测量结果和图6的气溶胶索特平均直径测量结果。
本实施例用于火灾探测的具体实施步骤如下(参见图8):
第一步、构建具有短长两种波长发光器件、且具有两路探测信号的探测器,其中第一路的发光器件与收光器件光学轴线之间的夹角在90°以上,本实施例为120度;第二路的发光器件与收光器件光学轴线之间的夹角在90°以下,本实施例为85度。
第二步、接收到第一路以短波长散射光功率PS反映的散射信号后,按下式计算气溶胶表面积浓度C2
Figure PCTCN2015082083-appb-000004
图4给出了本实施例测得的标准差为1.16-1.24、不同峰值粒径(259-1181nm)的DEHS气溶胶表面积浓度与扫描电迁移粒谱仪测得的表面积浓度的关系,由此不难确定散射光表面积浓度转换系数M2
第三步、接收到第二路以长波长光散射光功率PL反映的散射信号后,按下式计算气溶胶体积浓度C3(若已知物质密度,即得到质量浓度):
Figure PCTCN2015082083-appb-000005
图5给出了本实施例测得的标准差为1.16-1.24、不同峰值粒径(259-1181nm)的DEHS气溶胶体积浓度与扫描电迁移粒谱仪测得的体积浓度的关系,由此不难确定散射光体积浓度转换系数M3
第四步、计算气溶胶体积浓度C3与气溶胶表面积浓度C2之比,得到气溶胶Sauter平均直径DS
Figure PCTCN2015082083-appb-000006
图6给出了本实施例测得的标准差为1.16-1.24、不同峰值粒径(259-1181nm)的DEHS气溶胶的索特平均直径与扫描电迁移粒谱仪测得的峰值粒径的关系。
第五步、将气溶胶体积浓度C3和气溶胶表面积浓度C2与所设定的对应门限Vth、Sth进行比较,对各种可能的情况分别处理如下:
(1)当体积浓度C3、表面积浓度C2分别低于各自对应的预定门限Vth、Sth,返回第一步。
(2)当至少气溶胶体积浓度C3和气溶胶表面积浓度C2之一高于其对 应的预定门限Vth、Sth时,判断索特平均直径DS是否大于设定的门限Dth,本实施例设定为1μm(通常为0.9到1.1μm,可根据使用环境酌情设定):
如是,则发出相应的干扰提示信号,包括两种情况:仅体积浓度C3大于其预定门限Vth,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为大粒子高体积浓度灰尘或水蒸气干扰;表面积浓度C2和体积浓度C3分别大于其对应的预定门限Sth、Vth,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为高表面积和体积浓度的灰尘或水蒸气干扰;
如否,则发出相应的火灾报警信号,包括以下二种情况:仅表面积浓度C2大于对应的预定门限Sth,且索特平均直径DS小于一个预置的区分大粒径火灾烟雾和小粒径火灾烟雾的分界值Ddiv(本实施例为0.5μm),则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为较小粒径高表面积浓度火灾烟雾气溶胶;表面积浓度C2和体积浓度C3分别大于对应的预定门限Sth、Vth,且索特平均直径DS介于0.5μm与Dth之间,则不仅输出索特直径DS大小和表面积浓度C2以及体积浓度C3数值,同时报警为较大粒径高表面积和体积浓度的火灾烟雾气溶胶。
图7显示了本发明所测得的体积浓度与表面积浓度比值和索特直径之间的关系,可以看到其完全是线性的,不存在对小粒经和大粒径的非线性问题。
此外,由于本实施例直接感知出气溶胶的表面积浓度、体积或质量浓度、索特平均直径,因此还可以应用于环境监测、工业生产和日常生活中需要测量气溶胶这些特征参数的场合,作为传感器使用。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护 范围。
因此,本发明通过感知气溶胶表面积浓度、体积(质量)浓度和索特平均直径三个参数来区分火灾和非火灾气溶胶,不仅能够直接得到气溶胶粒径和表面积浓度等特征参数,而且能够进一步提高火灾烟雾探测准确度并降低误报率。

Claims (4)

  1. 一种基于双波长散射信号的气溶胶特征参数传感方法,其特征在于包括以下步骤:
    第一步、构建具有短长两种波长发光器件、且具有两路探测信号的探测器,其中波长较短的第一路的发光器件与收光器件光学轴线之间的夹角在90°以上,波长较长的第二路的发光器件与收光器件光学轴线之间的夹角在90°以下;
    第二步、将第一路接收到的气溶胶以短波长光散射光功率PS反映的散射信号,按下式计算相应气溶胶表面积浓度C2
    Figure PCTCN2015082083-appb-100001
    式中C2的单位为nm2/cm3,PS的单位为将散射光光功率转换成的电压V,M2为散射光表面积浓度转换系数,是光学结构和电气参数对应的常数,数值范围为(1.5-3.5)x10-10,单位在光功率以电压表示时为V/(nm2/cm3);
    第三步、将第二路接收到的气溶胶以长波长光散射光功率PL反映的散射信号,按下式计算气溶胶体积浓度C3
    Figure PCTCN2015082083-appb-100002
    式中C3的单位为nm3/cm3,PL的单位为将散射光光功率转换成的电压V,M3为散射光体积浓度转换系数,是光学结构和电气参数对应的常数,数值范围为(0.5-2.5)x10-12,单位在光功率以电压表示时为V/(nm3/cm3);
    第四步、按下式计算气溶胶体积浓度C3与气溶胶表面积浓度C2 之比,得到气溶胶索特平均直径DS,单位为nm
    Figure PCTCN2015082083-appb-100003
    第五步、将气溶胶体积浓度C3、气溶胶表面积浓度C2和索特直径DS三个参数作为气溶胶特征直接输出,同时与所设定的对应门限Vth、Sth和Dth进行比较:
    当体积浓度C3、表面积浓度C2分别低于各自对应的预定门限Vth、Sth时,返回第一步;
    当至少体积浓度C3、表面积浓度C2之一高于其对应的预定门限Vth、Sth时,判断粒子索特平均直径DS是否大于设定的门限Dth;如是,则发出相应的非火灾因素干扰提示信号;如否,则发出相应的火灾报警信号。
  2. 根据权利要求1所述基于双波长散射信号的气溶胶特征参数传感方法,其特征在于:所述短波长光采用波长为280-490nm的紫外光或蓝光光源,所述长波长光采用波长为830-1050nm的红外光源。
  3. 根据权利要求2所述的基于双波长散射信号的气溶胶特征参数传感方法,其特征在于:所述短波长发光器件与收光器件光学轴线之间的夹角为110°-130°;所述长波长发光器件与收光器件光学轴线之间的夹角为70°-89°。
  4. 根据权利要求1至3任一所述的基于双波长散射信号的气溶胶特征参数传感方法在火灾烟雾探测系统中的应用。
PCT/CN2015/082083 2015-06-23 2015-06-23 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用 WO2016206000A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017516754A JP6315641B2 (ja) 2015-06-23 2015-06-23 2波長の散乱光信号に基づくエアロゾルの特徴パラメータの取得方法及びその使用
PCT/CN2015/082083 WO2016206000A1 (zh) 2015-06-23 2015-06-23 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用
US15/510,606 US10001438B2 (en) 2015-06-23 2015-06-23 Method of sensing aerosol characteristic parameter using dual-wavelength scattered signal and application thereof
EP15895900.7A EP3200168B1 (en) 2015-06-23 2015-06-23 Method of sensing aerosol characteristic parameter using dual-wavelength scattered signal and application thereof
CN201580043588.1A CN106663357B (zh) 2015-06-23 2015-06-23 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082083 WO2016206000A1 (zh) 2015-06-23 2015-06-23 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用

Publications (1)

Publication Number Publication Date
WO2016206000A1 true WO2016206000A1 (zh) 2016-12-29

Family

ID=57586109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082083 WO2016206000A1 (zh) 2015-06-23 2015-06-23 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用

Country Status (5)

Country Link
US (1) US10001438B2 (zh)
EP (1) EP3200168B1 (zh)
JP (1) JP6315641B2 (zh)
CN (1) CN106663357B (zh)
WO (1) WO2016206000A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615816A (zh) * 2019-01-31 2019-04-12 中磊电子(苏州)有限公司 可避免假警报的烟雾检测器
CN113686738A (zh) * 2021-08-04 2021-11-23 王殊 一种探测气溶胶特征的锂电池泄漏监测方法
CN113686738B (zh) * 2021-08-04 2024-06-07 王殊 一种探测气溶胶特征的锂电池泄漏监测方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10600301B2 (en) * 2017-05-31 2020-03-24 Vistatech Labs Inc. Smoke device and smoke detection circuit
CN107564234B (zh) * 2017-09-15 2019-09-13 华中科技大学 一种均衡响应黑、白烟的火灾探测方法及系统
CN108709847A (zh) * 2018-06-22 2018-10-26 佛山融芯智感科技有限公司 一种空气粒子检测方法及检测装置
CN109712367A (zh) * 2019-02-20 2019-05-03 北大青鸟环宇消防设备股份有限公司 烟雾探测器及烟雾探测方法
US11475552B2 (en) * 2019-12-03 2022-10-18 Purdue Research Foundation Method and apparatus for sensing suspended dust concentration
CN110987736B (zh) * 2019-12-18 2021-04-06 华中科技大学 一种气溶胶粒谱与浓度测量装置及方法
CN111487171B (zh) * 2020-04-28 2023-03-28 武汉拓宝科技股份有限公司 一种前向与后向结合的双波长散色的火灾烟雾探测方法
CN111537403B (zh) * 2020-07-09 2020-10-02 中国人民解放军国防科技大学 生物气溶胶成烟面积的多维观察系统及计算方法
US11402326B2 (en) 2020-09-25 2022-08-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for multi-wavelength scattering based smoke detection using multi-dimensional metric monitoring
CN112991666B (zh) * 2021-02-08 2023-04-28 三明学院 一种火灾烟雾探测器及其烟室和抗干扰烟雾探测方法
WO2022226412A2 (en) * 2021-04-23 2022-10-27 Poppy Health, Inc. System and method for characterizing, monitoring, & detecting bioaerosol presence & movement in an indoor environment
CN114241701A (zh) * 2021-11-24 2022-03-25 中国民用航空飞行学院 一种基于bp神经网络的多参数融合探测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113136A1 (en) * 2000-09-18 2002-08-22 Talley Douglas G. Optical patternation method
CN2516967Y (zh) * 2001-12-21 2002-10-16 中国科学技术大学 三波长全散射激光感烟火灾探测装置
WO2008017698A1 (de) * 2006-08-09 2008-02-14 Siemens Schweiz Ag Streulicht-rauchmelder
CN102171733A (zh) * 2008-10-09 2011-08-31 报知机株式会社 烟检测器
CN104392577A (zh) * 2014-12-08 2015-03-04 王殊 一种基于双波长散射信号的气溶胶粒径传感方法及其在火灾烟雾探测中的应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495893A (en) * 1994-05-10 1996-03-05 Ada Technologies, Inc. Apparatus and method to control deflagration of gases
JP3780701B2 (ja) * 1998-05-29 2006-05-31 ホーチキ株式会社 煙感知装置
DE10120747C1 (de) * 2001-04-25 2002-10-17 Vaisala Impulsphysik Gmbh Verfahren zur Bestimmung der Sichtweite, Niederschlagsmenge und Niederschlagsart
CN1234001C (zh) * 2001-12-21 2005-12-28 中国科学技术大学 三波长全散射激光感烟火灾探测方法及其装置
DE10246756B4 (de) * 2002-10-07 2006-03-16 Novar Gmbh Branderkennungsverfahren und Brandmelder zu dessen Durchführung
JP4029794B2 (ja) * 2003-07-29 2008-01-09 Toto株式会社 エアロゾル粒子濃度測定方法、装置およびそれを備える複合構造物作製装置
AU2004286360A1 (en) * 2003-10-23 2005-05-12 Terence Cole Martin Improvement(s) related to particle monitors and method(s) therefor
CN2852113Y (zh) * 2005-12-23 2006-12-27 蚌埠依爱消防电子有限责任公司 立式双向散射感烟探测器迷宫
US8047055B2 (en) * 2007-08-08 2011-11-01 Tsi, Incorporated Size segregated aerosol mass concentration measurement with inlet conditioners and multiple detectors
JP5662154B2 (ja) * 2007-11-15 2015-01-28 エックストラリス・テクノロジーズ・リミテッド アクティブビデオ煙検出(avsd)システムでの物体進入判断方法およびavsdシステム
JP2009210584A (ja) * 2008-03-03 2009-09-17 Agilent Technol Inc 工程内で小粒子の粒径分布を計算する方法及びシステム
CN101504790B (zh) * 2008-11-07 2010-12-22 清华大学 红外光束型火灾烟雾探测器
WO2011002272A1 (en) * 2009-07-01 2011-01-06 Universiti Sains Malaysia Air pollution measuring and warning system
GB2479148A (en) * 2010-03-30 2011-10-05 Tioxide Europe Ltd Method of characterising a scattering coloured pigment
US9377481B1 (en) * 2010-06-16 2016-06-28 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Multi-parameter scattering sensor and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020113136A1 (en) * 2000-09-18 2002-08-22 Talley Douglas G. Optical patternation method
CN2516967Y (zh) * 2001-12-21 2002-10-16 中国科学技术大学 三波长全散射激光感烟火灾探测装置
WO2008017698A1 (de) * 2006-08-09 2008-02-14 Siemens Schweiz Ag Streulicht-rauchmelder
CN102171733A (zh) * 2008-10-09 2011-08-31 报知机株式会社 烟检测器
CN104392577A (zh) * 2014-12-08 2015-03-04 王殊 一种基于双波长散射信号的气溶胶粒径传感方法及其在火灾烟雾探测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3200168A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109615816A (zh) * 2019-01-31 2019-04-12 中磊电子(苏州)有限公司 可避免假警报的烟雾检测器
US10741036B1 (en) 2019-01-31 2020-08-11 Sercomm Corporation Smoke detector for false alarm reduction
CN113686738A (zh) * 2021-08-04 2021-11-23 王殊 一种探测气溶胶特征的锂电池泄漏监测方法
CN113686738B (zh) * 2021-08-04 2024-06-07 王殊 一种探测气溶胶特征的锂电池泄漏监测方法

Also Published As

Publication number Publication date
EP3200168B1 (en) 2019-12-11
JP2017535754A (ja) 2017-11-30
JP6315641B2 (ja) 2018-04-25
CN106663357A (zh) 2017-05-10
CN106663357B (zh) 2019-01-22
US10001438B2 (en) 2018-06-19
EP3200168A1 (en) 2017-08-02
EP3200168A4 (en) 2017-11-29
US20170284934A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016206000A1 (zh) 一种基于双波长散射信号的气溶胶特征参数传感方法及其应用
CN104392577B (zh) 一种基于双波长散射信号的气溶胶粒径传感方法
CN108205867B (zh) 一种具备干扰粒子识别能力的早期火灾烟雾探测方法
US3901602A (en) Light scattering method and apparatus for the chemical characterization of particulate matter
AU2017201651B2 (en) Fire detection
CN106448023B (zh) 一种具有存储功能的火灾烟雾报警器
US7738098B2 (en) Particle monitors and method(s) therefor
EP1868172A2 (en) Method of mounting a housing on a duct and corresponding housing arrangement
EP2414812A1 (en) Methods and systems for particle characterization using optical sensor output signal fluctuation
JP7261748B2 (ja) 室内空気の品質の検出および監視を備えたチャンバレス煙検出器
CN102967542B (zh) 一种识别、计量烟雾粒子的方法及装置
JP2011095022A (ja) 粒子センサ
US7019657B2 (en) Method, apparatus and system for fire detection
WO2021077158A1 (en) Improvements related to particle, including sars‑cov‑2, detection and methods therefor
AU2007203107B2 (en) Improvement(s) related to particle monitors and method(s) therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15895900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15510606

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015895900

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015895900

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017516754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE