WO2017183597A1 - 微小体検出装置 - Google Patents

微小体検出装置 Download PDF

Info

Publication number
WO2017183597A1
WO2017183597A1 PCT/JP2017/015421 JP2017015421W WO2017183597A1 WO 2017183597 A1 WO2017183597 A1 WO 2017183597A1 JP 2017015421 W JP2017015421 W JP 2017015421W WO 2017183597 A1 WO2017183597 A1 WO 2017183597A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
receiving element
light receiving
detection device
Prior art date
Application number
PCT/JP2017/015421
Other languages
English (en)
French (fr)
Inventor
卓 藤原
中井 賢也
伸夫 竹下
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016084301A external-priority patent/JP2019109049A/ja
Priority claimed from JP2017005081A external-priority patent/JP2019109050A/ja
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2017183597A1 publication Critical patent/WO2017183597A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present invention relates to a microscopic object detection apparatus.
  • the micro object detection device is, for example, a dust sensor or a pollen sensor used in an air conditioner (hereinafter referred to as an air conditioner), an air conditioner, an air cleaner, or the like.
  • the minute body detection device is, for example, a sensor that detects a minute body and a sensor that detects a minute body as a single body.
  • the minute body detection device particularly detects and separates fine particles having various particle diameters floating in the air.
  • Patent Document 1 discloses a pollen sensor that discriminates pollen and dust by irradiating suspended particles with irradiation light and detecting scattered light in directions of polarization orthogonal to each other.
  • the pollen sensor of Patent Document 1 discloses a pollen sensor that irradiates suspended particles with light and detects suspended particles based on the intensity of scattered light. That is, in the pollen sensor of Patent Document 1, when detecting suspended particles in the air, the suspended particles are irradiated with light and the scattered light is observed by the light receiving element. If this method is used, it is possible to discriminate particle sizes having the same size. For example, as shown in Patent Document 1, it is possible to distinguish pollen from dust.
  • the sensitivity of the light receiving element is matched with pollen having a large particle size, PM2.5 having a small particle size cannot be detected. Therefore, for example, it is not possible to distinguish between pollen and PM2.5.
  • the light receiving element receives scattered light from the suspended particles.
  • the microscopic object detection apparatus is provided in view of such points, and can discriminate particles having different particle diameters.
  • a microscopic object detection apparatus of the present invention includes a light emitting element that emits light that irradiates a microscopic object, a light receiving element that receives scattered light emitted when the irradiated light strikes the microscopic object, and A calculation unit that receives a signal output from the light receiving element and performs calculation, and the calculation unit calculates a plurality of the signals simultaneously.
  • microscopic objects having different sizes can be detected.
  • FIG. 10 is a diagram showing output signals S 1 to S n and threshold values TH 1 to TH n of amplifiers AM 1 to AM n of the micro object detection device according to the fourth embodiment of the present invention.
  • Japanese Patent Application Laid-Open No. 8-122252 discloses a dust sensor that detects the concentration of dust by a gradient when scattered light from suspended particles increases or decreases.
  • this dust sensor can measure the concentration of fine particles, but cannot determine the type of suspended particles. Further, this dust sensor cannot discriminate particles having different particle sizes.
  • JP-A-8-122252 discloses, for example, the structure of a dust sensor. Light is applied to fine particles (dust), and the fine particles are detected by the intensity of scattered light. That is, when detecting minute particles in the air, detection is performed by irradiating the minute particles with light emitted from the light emitting element and observing the scattered light with the light receiving element.
  • this dust sensor does not know what kind of microparticles exist in the air and what kind of microparticles can be removed.
  • the scattered light changes depending on the particle size of the fine particles. When the particle size is large, the intensity of the scattered light is increased. When the particle size is small, the intensity of the scattered light becomes weak.
  • the particle size of pollen and dust is about 30 ⁇ m.
  • the particle size of a fine particle called PM2.5 is 2.5 ⁇ m.
  • Scattered light varies depending on the particle size of the fine particles.
  • PM2.5 is a small particle having a particle size of 2.5 ⁇ m or less among small particles floating in the atmosphere.
  • the component of PM2.5 contains carbon, nitrate, sulfate, ammonium salt, inorganic elements such as silicon, sodium or aluminum.
  • Japanese Patent Application Laid-Open No. 2005-283152 discloses a pollen sensor that detects the polarization direction of scattered light of floating particles and discriminates between pollen particles and dust.
  • this pollen sensor can measure the concentration of fine particles (pollen particles and dust), but cannot determine the particle size of fine particles. That is, suspended particles having different particle sizes cannot be detected.
  • International Publication No. WO2016 / 67484 includes a processing unit that calculates a mass concentration of particles contained in a gas, and shows a relative relationship between a plurality of peak values extracted from a waveform of a detection signal and one or more threshold values.
  • a particle detection sensor that corrects and executes a determination process is disclosed.
  • this particle detection sensor is described so that the amplifier has multiple gains.
  • this particle detection sensor is configured to switch a plurality of gains with a switch. For this reason, this particle detection sensor has one type of gain at a certain time, and cannot detect a wide range from large particles to small particles.
  • the microscopic object detection apparatus can detect fine particles having various particle sizes separately. That is, the microscopic object detection device discriminates fine particles having different particle sizes for each particle size.
  • the microscopic object detection device detects fine particles having a particle diameter of about several ⁇ m to several tens of ⁇ m.
  • the microscopic object detection apparatus of the present invention fine particles having different particle diameters or different shapes can be discriminated. Moreover, the microscopic object detection apparatus of the present invention can detect microparticles having different particle diameters without being saturated by an amplifier.
  • FIG. 1 is a configuration diagram showing a configuration of the microscopic object detection apparatus 100 according to the first embodiment.
  • 2 and 3 are diagrams illustrating output signals of the amplifiers AM 1 , AM 2 , and AM 3 according to the first embodiment.
  • 2A and 3A show signals from the light receiving element 7.
  • FIG. In other words, it shows the output signal of the amplifier AM 1.
  • FIG. 2B and FIG. 3B show signals of the light receiving element 8.
  • it shows the output signal of the amplifier AM 2.
  • 2C and 3C show signals of the light receiving element 9.
  • the horizontal axis represents time
  • the vertical axis represents signal level.
  • the minute body detection apparatus 100 includes a light emitting element 1, light receiving elements 7, 8, 9 and a calculation unit 14. Further, the minute body detection device 100 can include lenses 2 and 3, mirrors 4 and 5, a flow rate controller 6, a prism 10, or amplifiers AM 1 , AM 2 , and AM 3 .
  • the light emitting element 1 emits irradiation light that irradiates the fine particles 20. That is, the light emitting element 1 is a light source.
  • the fine particle 20 is an object to be detected by the minute body detection apparatus 100.
  • the fine particles 20 are also referred to as fine bodies.
  • the lens 2 condenses the irradiation light emitted from the light emitting element 1.
  • the irradiation light is condensed by the lens 2 at the position of the fine particles 20 inside the mirrors 4 and 5.
  • the lens 2 collects the irradiation light at the position of the fine particles 20.
  • the lens 3 guides scattered light to the light receiving elements 8 and 9.
  • the lens 3 is disposed at a position of a hole 41 formed in the mirror 4 or the mirror 5. Then, the light emitted from the mirrors 4 and 5 through the hole 41 is condensed.
  • the condensing position of the scattered light collected by the lens 3 is, for example, on the light receiving surfaces of the light receiving elements 8 and 9.
  • Mirrors 4 and 5 have, for example, a spherical shape. As described above, the irradiation light collected by the lens 2 strikes the fine particles 20 and becomes scattered light. The mirrors 4 and 5 have a shape in which scattered light that has been scattered by the fine particles 20 reaches the light receiving element 7.
  • Mirrors 4 and 5 are, for example, elliptical mirrors.
  • the “elliptical mirror” is a mirror surface having a surface that reflects light collected from one focal point and collects it at the other focal point by using two focal points that are characteristic of an ellipse. Sometimes called an ellipsoidal mirror.
  • the flow controller 6 causes air to flow into the area surrounded by the mirrors 4 and 5 (hereinafter referred to as a detection area D). This air contains fine particles 20 to be detected.
  • the air A 1 flows into the detected region D from a hole 61 (hereinafter referred to as an intake port) opened at a position facing the flow rate controller 6.
  • the air inlet 61 is provided near the light receiving element 7.
  • Flow controller 6 is in the exhaust air A 1 flowing into the detection area D.
  • air A 2 is exhausted.
  • the light receiving element 7 receives the scattered light scattered by the fine particles 20.
  • the light receiving element 7 is disposed at a position where the scattered light reflected by the mirrors 4 and 5 reaches. For this reason, the light reaching the light receiving element 7 is, for example, scattered light reflected by the mirrors 4 and 5. For example, the polarization direction of the light reaching the light receiving element 7 may be reflected by the mirrors 4 and 5 and changed.
  • the light receiving element 7 outputs a signal S 1.
  • the light receiving elements 8 and 9 also receive the scattered light that has been scattered by the fine particles 20.
  • the light receiving elements 8 and 9 receive light that has passed through the holes 41 formed in the mirror 4 or the mirror 5.
  • the light receiving elements 8 and 9 directly receive, for example, scattered light scattered by hitting the fine particles 20.
  • the light received by the light receiving elements 8 and 9 is, for example, light that maintains the polarization direction when it hits the fine particles 20.
  • the light receiving element 8 outputs a signal S 2.
  • Light-receiving element 9 outputs a signal S 3.
  • the prism 10 receives the light condensed by the lens 3.
  • the prism 10 separates incident scattered light according to its polarization direction. That is, the prism 10 is an example of a separation element.
  • the prism 10 can be replaced with a polarizing plate or the like. In FIG. 1, the light reflected by the prism 10 reaches the light receiving element 8. Further, the light transmitted through the prism 10 reaches the light receiving element 9.
  • the amplifiers AM 1 , AM 2 , and AM 3 amplify signals output from the light receiving elements 7, 8, and 9.
  • the amplifier AM 1 amplifies the signal S 1 output from the light receiving element 7.
  • the amplifier AM 2 amplifies the signal S 2 output from the light receiving element 8.
  • the amplifier AM 3 amplifies the signal S 3 output from the light receiving element 9.
  • the amplifiers AM 1 , AM 2 , and AM 3 send the amplified signals S 4 , S 5 , and S 6 to the calculation unit 14.
  • Signal S 4 is a signal amplifier AM 1 was amplified.
  • Signal S 5 is a signal amplifier AM 2 was amplified.
  • Signal S 6 is a signal that an amplifier AM 3 was amplified.
  • air A 1 containing fine particles 20 enters the detected region D from the air inlet 61.
  • the air A 1 flows into the detected area D at a flow rate set by the flow rate controller 6.
  • Scattered light is generated when light emitted from the light emitting element 1 hits the fine particles 20 (for example, PM2.5).
  • the scattered light is reflected by the mirror 4 and the mirror 5 and enters the light receiving element 7.
  • the light receiving element 7 is, for example, a light receiving element for PM2.5.
  • the light incident on the light receiving element 7 is converted into an electric signal S 1.
  • the electric signal S 1 converted from light is amplified by the amplifier AM 1 .
  • Electric signal S 4 which is amplified is sent to the arithmetic unit 14.
  • the calculation unit 14 obtains the number of fine particles 20 (for example, PM2.5) by counting the pulse signals.
  • the arithmetic unit 14 is, for example, an arithmetic processing circuit.
  • the computing unit 14 counts pulse signals exceeding the set threshold value TH. That is, the calculation unit 14 counts peak signals that exceed the threshold value TH.
  • the threshold value TH is set to about twice the noise level.
  • Scattered light is generated when light emitted from the light emitting element 1 hits the fine particles 20 (for example, pollen).
  • the lens 3 is arranged so that the light reflected by the mirrors 4 and 5 does not reach the lens 3. That is, for example, scattered light is directly incident on the lens 3. Then, the light condensed by the lens 3 enters the prism 10.
  • the scattered light is separated into P-polarized light and S-polarized light.
  • the light receiving element 8 receives P-polarized light.
  • the light receiving element 9 receives S-polarized light.
  • the light receiving element 8 outputs a signal S 2 of the P-polarized light.
  • Light-receiving element 9 outputs a signal S 3 of the S-polarized light.
  • P polarized light is converted into an electric signal S 2 by the light receiving element 8. Then, the signal S 2 of the P-polarized light is amplified by an amplifier AM 2. On the other hand, S polarized light is converted into an electric signal S 3 by the light receiving element 9. Then, the S-polarized signal S 3 is amplified by the amplifier AM 3 .
  • the calculation unit 14 obtains peak values of the signals S 2 and S 3 based on the P-polarized signal S 2 and the S-polarized signal S 3 .
  • the arithmetic unit 14 uses the peak value is determined and the ratio or difference between the signal S 2 and the signal S 3 of the S-polarized light of P-polarized light.
  • the calculation unit 14 obtains the ratio or difference between the P-polarized signal S 2 and the S-polarized signal S 3 using the signal S 5 and the signal S 6 .
  • ⁇ Pollen is usually spherical.
  • the polarization direction of the light emitted from the light emitting element 1 is P-polarized light. If particles 20 have a spherical, better signal S 2 of the P-polarized light is greater than the signal S 3 of the S-polarized light. Therefore, beyond the signal S 2 of the P-polarized light is the threshold TH, the signal S 2 of the P-polarized light is the greater than the signal S 3 of the S-polarized light, calculating unit 14 determines particle 20 and pollen.
  • the a signal signal time T 2 is determined as pollen.
  • the peak signal P 11 of the signal S 5 is greater than the peak signal P 14 of the signal S 6.
  • the scattered light also enters the light receiving element 7 for PM2.5. Therefore, as shown in FIG. 2 (A), the signal S 4 appears at the output of the amplifier AM 1. However, the calculation unit 14 does not count this as PM2.5. In FIG. 2 (A), the arithmetic unit 14 does not count the peak signal P 8.
  • the ratio of the signal S 6 of the P-polarized light of the signal S 5 and S-polarized light it can be determined that pollen. That is, when the signal S 5 of the P-polarized light is greater than the signal S 6 of the S polarized light, it can be determined that the pollen. In this case, the signal S 4 of the PM2.5 detected at the same time is not counted as PM2.5.
  • the peak signal P 9 is the peak value of the signal S 4.
  • Peak signal P 12 is the peak signal of the signal S 5.
  • Peak signal P 15 is the peak value of the signal S 6. Then, for example, the calculation unit 14, not counting the peak signal P 9.
  • Scattered light is generated when light emitted from the light emitting element 1 hits the fine particles 20 (for example, dust).
  • the lens 3 is arranged so that the light reflected by the mirrors 4 and 5 does not reach the lens 3. That is, for example, scattered light is directly incident on the lens 3. Then, the light condensed by the lens 3 enters the prism 10.
  • the scattered light is separated into P-polarized light and S-polarized light.
  • the light receiving element 8 receives P-polarized light.
  • the light receiving element 9 receives S-polarized light.
  • Dust is usually non-spherical. “Non-spherical” means not spherical.
  • the same level means that the level difference between the signals S 2 and S 3 is smaller than when the fine particles 20 are spherical.
  • the calculation unit 14 determines fine particles 20 and dust.
  • Figure 2, (B) and FIG. 2 (C) the a signal signal at time T 1 is is determined that dust.
  • the peak signals obtained by determining the fine particles 20 as dust are the peak signals P 10 and P 13 .
  • the calculation unit 14 counts the peak signals P 1 , P 2 , P 3 , P 4 , P 5 , and P 6 .
  • the signal at time T 3 does not exceed the respective threshold TH. For this reason, the calculation unit 14 does not count the peak signals P 12 and P 15 of the signals S 5 and S 6 at time T 3 as pollen or dust. However, at time T 3, the peak signal P 12 of the signal S 5 of the P-polarized light is larger than the peak signal P 15 of the signal S 6 of the S-polarized light. Thus, the peak signal P 9 of the signal S 4 at time T 3 shown in FIG. 2 (A), not counted as PM2.5.
  • a threshold value having a signal level lower than the threshold value TH shown in FIGS. 2B and 2C is prepared. This threshold makes it possible to detect the peak signal P 12. And although it does not count as pollen or dust, it can not be counted as PM2.5.
  • a method of connecting a plurality of amplifiers to one light receiving element as shown in the second embodiment can be considered.
  • a plurality of amplifiers AM are connected to each of the light receiving elements 7, 8, 9.
  • a plurality of gains or threshold values can be set for one light receiving element 7, 8, 9.
  • the peak signals P 10 , P 11 , P 12 of the P-polarized signal S 5 are the peak signals P 13 , P 14 , P 15 of the S-polarized signal S 6. Is bigger than. For this reason, the calculation unit 14 does not count the peak signals P 7 , P 8 , P 9 of the signal S 4 at the times T 1 , T 2 , T 3 shown in FIG. 2A as PM 2.5.
  • the output signal S 4 of the amplifier AM 1 is saturated as shown at time T 4 in FIG.
  • the “long time” is a time longer than the time during which the irradiation light emitted from the light emitting element 1 is irradiated to one fine particle 20 to be detected at the flow velocity of the air A 1 determined by the flow controller 6. That is.
  • a state in which the signal S 4 is saturated the peak signal P 16.
  • the state of the signal S 4 exceeds a threshold value TH for a long time is a peak signal P 17.
  • Peak signal of the signal S 5 corresponding to the peak signal P 16 is the peak signal P 18.
  • Peak signal of the signal S 5 corresponding to the peak signal P 17 is the peak signal P 19.
  • Peak signal of the signal S 6 corresponding to the peak signal P 16 is the peak signal P 20.
  • Peak signal of the signal S 6 corresponding to the peak signal P 17 is the peak signal P 21.
  • the calculation unit 14 may not be able to correctly count PM2.5. Therefore, by removing the peak signals P 16 and P 17 of these signals S 4 from the count target, the microscopic object detection device 100 can improve the detection accuracy of the fine particles 20.
  • the minute body detection device 100 includes the three light receiving elements 7, 8, and 9. Further, the mirrors 4 and 5 are configured such that scattered light is collected on the light receiving element 7 for PM2.5, for example. Therefore, the minute body detection apparatus 100 can detect the fine particles 20 by collecting the scattered light even with a small amount of scattered light.
  • the amount of scattered light is larger than the amount of scattered light of PM2.5.
  • the light receiving elements 8 and 9 that receive pollen or dust scattered light receive, for example, direct light.
  • the light receiving elements 8 and 9 receive scattered light through the lens 3.
  • the light receiving elements 8 and 9, without the detection signal S 2, S 3 saturated it is possible to receive scattered light pollen or dust I can do it.
  • the minute detection apparatus 100 simultaneously with the detection of such PM2.5, even when detecting the pollen or dust, not counting the peak signal of the signals S 1 of PM2.5 detected at the same time. Thereby, the minute body detection device 100 can prevent erroneous detection and improve the counting accuracy of PM2.5.
  • PM2.5 is a fine particle that emits weak scattered light with a small particle size.
  • Pollen or dust is a fine particle that emits strong scattered light with a large particle size.
  • the minute body detection apparatus 100 collects more scattered light by the mirrors 4 and 5. Then, the minute detection apparatus 100 includes, for example, by amplifying the signals S 1 by an amplifier AM 1 of high gain, and detecting particles PM2.5.
  • the output signals S 5 and S 6 of the amplifiers AM 2 and AM 3 may be saturated.
  • the output signals S 5 and S 6 of the amplifiers AM 2 and AM 3 may continue to be in a state where the signal exceeds the threshold value TH for a longer time than usual.
  • the count accuracy of PM2.5 of the microscopic object detection device 100 is lowered. For this reason, the detection accuracy can be improved by removing the peak signals P 16 and P 17 of these signals S 4 from the PM2.5 counting target.
  • the pollen when the pollen is slightly in contact with the light beam emitted from the light emitting element 1, the scattered light becomes very weak.
  • fine detection apparatus 100 in order to avoid being misjudged and PM2.5, fine detection apparatus 100, etc. the ratio or difference between the signal S 2 and the signal S 3 of the S-polarized light of P-polarized light, pollen Determine. Then, the minute detection apparatus 100 excludes a peak signal P 9 of the signal S 4 of the PM2.5 detected at the same time from the count.
  • the amount of light of the two polarized light differs.
  • the P-polarized signal S 2 is larger than the S-polarized signal S 3 .
  • P-polarized light and S-polarized light are separated by the prism 10.
  • FIG. The microscopic object detection apparatus 101 according to the second embodiment has a plurality of amplifiers AM and processes all output signals of the amplifiers AM at the same time. As a result, for example, fine particles smaller than PM2.5 to large fine particles having a diameter of about 30 ⁇ m can be detected without being saturated by any amplifier AM.
  • the microscopic object detection apparatus 101 can widen the particle size range of the fine particles 20 that can be detected simultaneously. That is, according to the microscopic object detection apparatus 101, an effect is obtained that the larger the number of amplifiers AM, the wider the particle size range of the fine particles 20 that can be detected simultaneously.
  • the minute body detection apparatus 101 can set the gains of the plurality of amplifiers AM.
  • the minute body detection apparatus 101 can freely set a threshold value for determining the signal level in the signal processing circuit.
  • the signal processing circuit performs arithmetic processing on the signal output from the amplifier AM.
  • the signal processing circuit is, for example, the calculation unit 14.
  • the micro object detection apparatus 101 can select the particle diameter of the fine particles 20 to be detected mainly. That is, the microscopic object detection apparatus 101 can obtain an effect that the particle size of the microscopic object to be detected can be freely selected.
  • the micro object detection apparatus 101 has a plurality of amplifiers AM and can simultaneously process all output signals of the amplifiers AM.
  • the microscopic object detection apparatus 101 can detect from the fine particles 20 smaller than PM2.5 to the large fine particles 20 having a diameter of about 30 ⁇ m without being saturated by any amplifier AM.
  • FIG. 4 is a configuration diagram showing the configuration of the microscopic object detection apparatus 101.
  • the minute body detection device 101 includes a light emitting element 1, a light receiving element 7, a calculation unit 14, and an amplifier AM n . Further, the minute body detection device 101 can include the lens 2, the mirror 4, the mirror 5, or the flow rate control unit 6.
  • the minute body detection device 101 does not include the lens 3, the prism 10, the light receiving elements 8 and 9, and the amplifiers AM 2 and AM 3 of the minute body detection device 100.
  • micro-detection apparatus 101 includes a plurality of amplifiers AM 1, AM 2, AM 3 corresponding to the amplifier AM 1 of the micro-detection apparatus 100.
  • Constituent elements that are the same as the constituent elements of the microscopic object detection apparatus 100 described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted. Similar components are the light emitting element 1, the lens 2, the mirrors 4 and 5, the flow rate controller 6, the air inlet 61, the light receiving element 7, the calculation unit 14, and the detection region D. Incidentally, an amplifier AM 2, AM 3 and amplifier AM 2, AM 3 of the minute detection apparatus 101 of the micro-object detection apparatus 100 are denoted by the same reference numerals. However, the usage is different.
  • the air containing the fine particles 20 enters a region (hereinafter referred to as a detection region D) in which the fine particles 20 of the microscopic object detection device 101 are detected from the upper part of FIG.
  • the air A 1 flows into the detected area D at a flow rate set by the flow rate controller 6.
  • Light emitted from the light emitting element 1 is collected by the lens 2. Scattered light is generated when light emitted from the light emitting element 1 strikes the fine particles 20. The scattered light is reflected by the mirror 4 and the mirror 5 and enters the light receiving element 7. Receiving element 7 converts the scattered light into an electrical signal S 0. Note that the signal S 0 of the minute body detection device 101 corresponds to the signal S 1 of the minute body detection device 100.
  • the scattered light reflected by the mirror 5 reaches the light receiving element 7.
  • the scattered light reflected by the mirror 4 reaches the light receiving element 7 after being reflected by the mirror 5.
  • the light receiving element 7 is arranged on the mirror 4 side.
  • the mirror 5 is disposed to face the light receiving element 7.
  • FIG 5, 6 and 7 are diagrams illustrating an amplifier AM 1, AM 2, the output signals S 1 of AM 3, S 2, S 3 and the threshold TH. Note that the signal S 1, S 2, S 3 of the micro-object detection apparatus 101 is a signal different signals S 1, S 2, S 3 of the minute detection apparatus 100.
  • the electric signal S 0 output from the light emitting element 1 is simultaneously amplified by the amplifiers AM 1 , AM 2 , and AM 3 .
  • the gains of the amplifiers AM 1 , AM 2 , AM 3 are set to different values, for example.
  • the threshold value TH of each signal is the same value.
  • the amplified signals S 1 , S 2 , S 3 are sent to the calculation unit 14. As shown in FIG. 5, the calculation unit 14 counts pulse signals (peak signals) exceeding a certain level (settable threshold value TH) to obtain the number of fine particles 20. The calculation unit 14 counts that the number of the fine particles 20 is one when the signals S 2 and S 3 that are lower than the threshold value TH are detected next after the threshold value TH is exceeded.
  • the threshold value TH is set to about twice the noise level.
  • FIG. 5 the signal S 1 of the amplifier AM 1 does not exceed the threshold value TH.
  • Signal S 2 of the amplifier AM 2 is not saturating, it exceeds the threshold value TH.
  • Signal S 3 of the amplifier AM 3 is saturated. From these, in this case, the detected fine particles 20 are determined to have a medium size.
  • FIG. 6 the signal S 1 of the amplifier AM 1 does not saturate and exceeds the threshold value TH. It is saturated and the signal S 2 and the signal S 3 of the amplifier AM 3 of the amplifier AM 2. From these facts, in this case, the detected fine particles 20 are determined to be large particles.
  • FIG. 7 the signal S 1 of the amplifier AM 1 is not observed.
  • the signal S 2 of the amplifier AM 2 is detected, it does not exceed the threshold value TH.
  • Signal S 3 of the amplifier AM 3 has exceeded the threshold value TH. From these, it can be seen that in this case, the detected fine particles 20 are small particles of the PM2.5 class.
  • Oke decide the threshold value TH for the output signals S 1, S 2, S 3 of each amplifier AM 1, AM 2, AM 3
  • the levels of the output signals S 1 , S 2 and S 3 of the amplifiers AM 1 , AM 2 and AM 3 can all be detected simultaneously.
  • the size of the detected fine particles 20 can be determined together with the number of fine particles 20.
  • FIG. 8 is a configuration diagram showing a configuration of the microscopic object detection device 102 according to the first modification.
  • the minute body detection device 102 includes a light emitting element 1, a light receiving element 7, a calculation unit 14, and an amplifier AM n . Further, the minute body detection device 102 can include the lens 2, the mirror 4, the mirror 5, or the flow rate control unit 6. Constituent elements similar to those of the minute body detection devices 100 and 101 are denoted by the same reference numerals, and description thereof is omitted.
  • Fine detection apparatus 102 is different from the a point with n number of amplifier AM n fine detection apparatus 101.
  • the number n of the amplifier AM n is "3".
  • the micro-object detection apparatus 102 is e N number of amplifiers AM n. N is, for example, four or more. Each of the output signal S n is inputted all at the same time to the arithmetic unit 14.
  • the threshold value TH of each signal is the same value.
  • FIGS. 9 and 10 are diagrams showing an output signal S 1 ⁇ S n and the threshold TH of the amplifier AM 1 ⁇ AM n.
  • Fine particles 20 smaller than the fine particles 20 listed last as an example in the fine object detection device 101 are input to the fine object detection device 102. In this case, the microparticle detection apparatus 101 cannot detect the fine particles 20.
  • the fine particles 20 exceeding the threshold value TH can be detected.
  • the larger the number of amplifiers AM n having a larger gain the smaller the particles 20 can be detected together with their size. Large particles 20 can also be detected along with their size.
  • the second modification is different from the minute body detection devices 101 and 102 in that the threshold value TH n is changed by the amplifier AM n .
  • the gain of the amplifier AM n can be set to the same value. Further, for example, the gain of the amplifier AM n can be set to different values.
  • FIG. 10 is a diagram showing output signals S 1 to S n and threshold values TH 1 to TH n of the amplifiers AM 1 to AM n .
  • the gains of the amplifiers AM 1 to AM n and the threshold values TH 1 to TH n are changed. Thereby, the size of the fine particles 20 having an arbitrary particle diameter to be detected can be detected more finely.
  • the threshold value TH n is gradually increased from the amplifier AM 1 to the amplifier AM n .
  • the threshold value TH n is gradually increased from the amplifier AM 1 to the amplifier AM n .
  • supplementary notes (1) and supplementary notes (2) are each independently labeled. Therefore, for example, “Appendix 1” exists in both appendices (1) and (2).
  • a microscopic object detection apparatus that detects the number of microscopic
  • ⁇ Appendix 2> Among the peak signals of the third signal, a peak signal in which the peak signal is saturated, The microbody detection device according to appendix 1, which is excluded from the number of peaks.
  • ⁇ Appendix 3> The microbody detection device according to supplementary note 1, wherein a peak signal that lasts a peak value longer than other peak signals among the peak signals of the third signal is excluded from the number of peaks.
  • ⁇ Appendix 3> The microbody detection device according to appendix 1 or 2, wherein the gain values of the amplifiers are different from each other, and a threshold value for the amplifier of the calculation unit is different depending on the amplifier.

Abstract

微小体検出装置(100)は、発光素子(1)、受光素子(7)および演算部(14)を備える。発光素子(1)は、微小体(20)に照射する光を出射する。受光素子(7)は、照射光が微小体(20)に当たって発せられる散乱光を受光する。演算部(14)は、受光素子(7)の出力する信号(S,S,S)を受けて演算を行う。演算部(14)は、複数の信号(S,S,S)を同時に演算する。微小体検出装置(100)は、大きさの異なる微小体(20)を検出することができる。

Description

微小体検出装置
 本発明は、微小体検出装置に関する。
 微小体検出装置は、例えば、エアーコンディショナー(以下、エアコンという。)、空調装置または空気清浄機などに用いられるダストセンサまたは花粉センサ等である。微小体検出装置は、例えば、微小体を検出するセンサ、および単体としての微小体を検出するセンサである。微小体検出装置は、例えば、特に、空気中に浮遊する様々な粒径の微粒子を分別して検出する。
 近年、花粉またはハウスダスト等によってアレルギー等を発症するケースが増加している。そして、エアコン、空調装置または空気清浄機などによって、花粉またはハウスダスト等を除去することへの関心が高まっている。さらに、日本へのPM2.5の飛散が問題となっている。それらの問題を受けて、高性能な微小体を検出するセンサが必要とされている。
 例えば、特許文献1には、浮遊粒子に照射光を照射して、互いに直交する偏光方向の散乱光を検出することで花粉と土埃との識別を行う花粉センサが示されている。特許文献1の花粉センサは、浮遊粒子に光を照射して、散乱光の強さによって浮遊粒子を検出する花粉センサを開示している。つまり、特許文献1の花粉センサは、空気中の浮遊粒子を検出する場合には、浮遊粒子に光を照射して、その散乱光を受光素子によって観測している。この手法を用いると、同じ程度の大きさの粒径を判別する事は可能である。例えば、特許文献1に示されるように、花粉と埃とを判別する事は可能である。
特開2005-283152号公報
 しかしながら、粒径の大きな粒子と粒径の小さな粒子とを検出する場合には、粒径の大きな微粒子に受光素子のダイナミックレンジを合わせると、粒径の小さな微粒子が検出されないと言う問題が発生する。
 また、逆に、粒径の小さな微粒子に受光素子のダイナミックレンジを合わせると、粒径の大きな微粒子は受光素子で飽和してしまい粒子が判別できないと言う問題が発生する。
 例えば、粒径の大きな花粉に受光素子の感度を合わせると、粒径の小さなPM2.5は検出できない。従って、例えば、花粉とPM2.5とを判別する事は出来ない。受光素子は、浮遊粒子からの散乱光を受光する。
 本発明に係る微小体検出装置は、このような点に鑑みて提供されるものであり、粒径の異なる粒子を判別することができる。
 上述の課題を解決するために、本発明の微小体検出装置は、微小体に照射する光を出射する発光素子と、前記照射光が前記微小体に当たって発せられる散乱光を受光する受光素子と、前記受光素子の出力する信号を受けて演算を行う演算部とを備え、前記演算部は、複数の前記信号を同時に演算する。
 本発明の微小体検出装置によれば、大きさの異なる微小体を検出することができる。
本発明の実施の形態1の微小体検出装置の構成を示す構成図である。 本発明の実施の形態1の増幅器の出力信号を示す図である。 本発明の実施の形態1の増幅器の出力信号を示す図である。 本発明の実施の形態2に係る微小体検出装置10の構成を示す構成図である。 本発明の実施の形態2に係る微小体検出装置10の増幅器AM,AM,AMの出力信号S,S,Sと閾値THとを示す図である。 本発明の実施の形態2に係る微小体検出装置10の増幅器AM,AM,AMの出力信号S,S,Sと閾値THとを示す図である。 本発明の実施の形態2に係る微小体検出装置10の増幅器AM,AM,AMの出力信号S,S,Sと閾値THとを示す図である。 本発明の実施の形態3に係る微小体検出装置11の構成を示す構成図である。 本発明の実施の形態3に係る微小体検出装置11の増幅器AM~AMの出力信号S~Sと閾値THとを示す図である。 本発明の実施の形態4に係る微小体検出装置の増幅器AM~AMの出力信号S~Sと閾値TH~THとを示す図である。
 例えば、特開平8-122252号公報には、浮遊粒子からの散乱光が増加または減少する際の勾配によって、ダストの濃度を検出するダストセンサが示されている。
 しかし、このダストセンサは、微粒子の濃度を測定する事は出来るが、浮遊粒子の種類までは判別する事は出来ない。また、このダストセンサは、粒径の異なる粒子を判別することができない。
 特開平8-122252号公報において、例えば、ダストセンサの構造が開示されている。微小粒子(ダスト)に光を照射し散乱光の強さによって微小粒子を検出している。つまり、空気中の微小粒子を検出する場合には、微小粒子に発光素子の発する光を照射し、その散乱光を受光素子によって観測する事で検出を行う。
 しかし、このダストセンサは、空気中にどのような種類の微小粒子が存在し、また、どの種類の微小粒子を除去出来ているかまでは分からない。微小粒子の粒径によって散乱光は変化する。粒径が大きい場合には、散乱光の強度は強くなる。粒径が小さい場合には、散乱光の強度は弱くなる。
 例えば、粒径の大きな微小粒子に受光素子のダイナミックレンジを合わせると、粒径の小さな微小粒子が検出されないと言う問題が発生する。また逆に、粒径の小さな微小粒子に受光素子のダイナミックレンジを合わせると、粒径の大きな微小粒子は受光素子で飽和してしまうと言う問題が発生する。
 つまり、このような手法を用いると、同じ程度の粒径の花粉と埃とを判別する事は可能である。しかし、例えば、花粉とPM2.5とを判別することは難しい。
 一般に、花粉および埃の粒径は30μm程度である。一方、PM2.5と呼ばれる微粒子の粒径は2.5μmである。
 微粒子の粒径によって、散乱光は変化する。粒径が大きいほど散乱光の強度は強くなり、粒径が小さいほど散乱光の強度は弱くなる。つまり、粒径が大きいほど散乱光は強くなるので、受光素子の受光感度を花粉の散乱光に合わせると、PM2.5の散乱光は弱すぎて検出できない。従って、花粉とPM2.5とを判別する事は難しい。同様に、埃とPM2.5とを判別する事は難しい。
 PM2.5は、大気中に浮遊する小さな粒子のうち、粒子の大きさが2.5μm以下の小さな粒子のことである。PM2.5の成分は、炭素、硝酸塩、硫酸塩、アンモニウム塩、ケイ素、ナトリウム又はアルミニウム等の無機元素などが含まれている。
 例えば、特開2005-283152号公報は、浮遊粒子の散乱光の偏光方向を検出して、花粉粒子と土埃との識別を行う花粉センサを開示している。
 しかし、この花粉センサは、微粒子(花粉粒子と土埃)の濃度を測定する事は出来るが、微粒子の粒径までは判別する事は出来ない。つまり、異なる粒径の浮遊粒子を検出できない。
 例えば、国際公開WO2016/67484号公報は、気体中に含まれる粒子の質量濃度を算出する処理部を備え、検知信号の波形から抽出された複数の波高値と1以上の閾値との相対関係を補正して、判定処理を実行する粒子検出センサを開示している。
 しかし、この粒子検出センサは、増幅器が複数のゲインを持つよう記載されている。しかし、この粒子検出センサは、複数のゲインをスイッチで切替えるように構成されている。このため、この粒子検出センサは、ある時刻ではゲインは1種類であり、大きな粒子から小さな粒子までの広範囲の検出が出来ない。
 また、例えば、粒径の大きな微粒子でも、発光素子の光が微粒子をすれすれに通過した場合には、散乱光が弱くなってしまう。そして、大きな粒子と小さな粒子との区別がつかなくなるという問題が発生する。
 現在、エアコン、空調装置または空気清浄機などに搭載されている空気清浄機能に付随する微小体の検出は、単に微小粒子が存在するか否かを表示している。
 本発明に係る微小体検出装置は、様々な粒径の微粒子を分別して検出することができる。つまり、微小体検出装置は、粒径の異なる微粒子を粒径ごとに判別する。ここで、例えば、微小体検出装置は、数μmから数十μm程度の粒径の微粒子を検出する。
 本発明の微小体検出装置によれば、粒径の異なる微粒子または形状の異なる微粒子を判別することができる。また、本発明の微小体検出装置は、異なる粒径の微小粒子を、増幅器で飽和することなく検出する事が出来る。
 以下、本発明の実施の形態について、本発明を適用した微小体検出装置について説明をする。
実施の形態1.
 図1は、実施の形態1に係る微小体検出装置100の構成を示す構成図である。図2及び図3は、実施の形態1に係る増幅器AM,AM,AMの出力信号を示す図である。図2(A)及び図3(A)は、受光素子7の信号を示している。つまり、増幅器AMの出力信号を示している。図2(B)及び図3(B)は、受光素子8の信号を示している。つまり、増幅器AMの出力信号を示している。図2(C)及び図3(C)は、受光素子9の信号を示している。つまり、増幅器AMの出力信号を示している。図2および図3において、横軸は時間であり、縦軸は信号レベルである。
 微小体検出装置100は、発光素子1、受光素子7,8,9および演算部14を備えている。また、微小体検出装置100は、レンズ2,3、ミラー4,5、流量制御器6、プリズム10または増幅器AM,AM,AMを備えることができる。
 まず、微小体検出装置100の構成について説明する。
 発光素子1は、微粒子20に照射する照射光を発する。つまり、発光素子1は、光源である。微粒子20は、微小体検出装置100の被検出物である。微粒子20は、微小体ともいう。
 レンズ2は、発光素子1から放射された照射光を集光する。照射光は、レンズ2によって、ミラー4,5の内部の微粒子20の位置に集光される。レンズ2は、照射光を微粒子20の位置に集光させる。
 レンズ3は、受光素子8,9に散乱光を導く。レンズ3は、ミラー4またはミラー5に空けられた穴41の位置に配置されている。そして、ミラー4,5の内部から穴41を通して、ミラー4,5の外に出た光を集光する。図1では、レンズ3で集光された散乱光の集光位置は、例えば、受光素子8,9の受光面上となっている。
 ミラー4,5は、例えば、球面形状をしている。上述のように、レンズ2によって集光された照射光は、微粒子20に当たって散乱光となる。ミラー4,5は、この微粒子20に当たって散乱した散乱光が受光素子7に到達する形状をしている。
 ミラー4,5は、例えば、楕円鏡である。「楕円鏡」とは、楕円の特徴である2つの焦点を利用して、一方の焦点から出た光を反射して、もう一方の焦点に集める面を持つ鏡面のことである。楕円面鏡と呼ぶこともある。
 流量制御器6は、ミラー4,5で囲まれた領域(以下、被検出領域Dという)に空気を流入させる。この空気は、検出対象である微粒子20を含んでいる。
 図1では、空気Aは、流量制御器6に対向する位置に開けられた穴61(以下、吸気口という)から、被検出領域D内に流入する。吸気口61は、例えば、受光素子7の近くに設けられている。流量制御器6は、被検出領域D内に流入した空気Aを排気している。図1においては、空気Aが排気されている。
 受光素子7は、微粒子20に当たって散乱した散乱光を受光する。受光素子7は、ミラー4,5で反射された散乱光が到達する位置に配置されている。このため、受光素子7に到達する光は、例えば、ミラー4,5で反射された散乱光である。受光素子7に到達する光の偏光方向は、例えば、ミラー4,5で反射されて変更されている場合がある。受光素子7は、信号Sを出力する。
 また、受光素子8,9も、微粒子20に当たって散乱した散乱光を受光する。受光素子8,9は、ミラー4またはミラー5に開けられた穴41を通った光を受光する。受光素子8,9は、例えば、微粒子20に当たって散乱した散乱光を直接受光する。受光素子8,9が受光する光は、例えば、微粒子20に当たった際に偏光方向を保った光である。受光素子8は、信号Sを出力する。受光素子9は、信号Sを出力する。
 プリズム10は、レンズ3で集光された光を入射する。プリズム10は、入射した散乱光を、その偏光方向によって分離する。つまり、プリズム10は、分離素子の一例である。例えば、プリズム10を偏光板などに置き換えることができる。図1では、プリズム10で反射された光は、受光素子8に到達する。また、プリズム10を透過した光は、受光素子9に到達する。
 増幅器AM,AM,AMは、受光素子7,8,9の出力する信号を増幅する。増幅器AMは、受光素子7の出力する信号Sを増幅する。増幅器AMは、受光素子8の出力する信号Sを増幅する。増幅器AMは、受光素子9の出力する信号Sを増幅する。
 増幅器AM,AM,AMは、増幅した信号S,S,Sを演算部14に送る。信号Sは、増幅器AMが増幅した信号である。信号Sは、増幅器AMが増幅した信号である。信号Sは、増幅器AMが増幅した信号である。
 次に、微小体検出装置100の動作について説明する。
 まず、PM2.5が取り込まれた場合について述べる。
 図1において、吸気口61から微粒子20を含んだ空気Aが、被検出領域D内に入る。空気Aは、流量制御器6によって設定された流量で、被検出領域Dの内部に流れ込む。
 発光素子1から放射された光が微粒子20(例えば、PM2.5)に当たる事で、散乱光が発生する。散乱光は、ミラー4およびミラー5によって反射されて、受光素子7に入射する。受光素子7は、例えば、PM2.5用の受光素子である。
 受光素子7に入射した光は、電気信号Sに変換される。光から変換された電気信号Sは、増幅器AMによって増幅される。増幅された電気信号Sは、演算部14に送られる。
 演算部14は、パルス信号をカウントする事によって微粒子20(例えば、PM2.5)の個数を得る。演算部14は、例えば、演算処理回路である。演算部14は、設定された閾値THを超えたパルス信号をカウントする。つまり、演算部14は、閾値THを超えたピーク信号をカウントする。通常、閾値THは、ノイズレベルの2倍程度に設定される。
 次に、花粉が取り込まれた場合について述べる。
 発光素子1から放射された光が微粒子20(例えば、花粉)に当たる事で、散乱光が発生する。
 このとき、例えば、ミラー4,5で反射された光がレンズ3に到達しないように、レンズ3は配置されている。つまり、例えば、レンズ3には、散乱光が直接入射する。そして、レンズ3によって集光された光は、プリズム10に入射する。
 プリズム10を通る事によって、散乱光はP偏光とS偏光とに分離される。そして、例えば、受光素子8がP偏光を受光する。受光素子9がS偏光を受光する。そして、受光素子8は、P偏光の信号Sを出力する。受光素子9は、S偏光の信号Sを出力する。
 P偏光は、受光素子8によって電気信号Sに変換される。そして、P偏光の信号Sは、増幅器AMで増幅される。一方、S偏光は、受光素子9によって電気信号Sに変換される。そして、S偏光の信号Sは、増幅器AMで増幅される。
 演算部14は、P偏光の信号SおよびS偏光の信号Sを基にして、各信号S,Sのピーク値を求める。そして、演算部14は、そのピーク値を使って、P偏光の信号SとS偏光の信号Sとの比率または差などを求める。図1では、演算部14は、信号Sおよび信号Sを用いて、P偏光の信号SとS偏光の信号Sとの比率または差などを求めている。
 花粉は、通常、球形をしている。
 例えば、発光素子1から出射される光の偏光方向がP偏光とする。微粒子20が球形の場合には、P偏光の信号Sの方がS偏光の信号Sよりも大きくなる。このため、P偏光の信号Sが閾値THを超えて、P偏光の信号SがS偏光の信号Sよりも大きくなれば、演算部14は、微粒子20を花粉と判別する。
 図2(B)及び図2(C)では、時刻Tの信号が花粉と判別される信号である。つまり、信号Sのピーク信号P11は、信号Sのピーク信号P14よりも大きい。
 また、この花粉を検出した同時刻(時刻T)に、PM2.5用の受光素子7にも散乱光が入射する。このため、図2(A)に示したように、増幅器AMの出力に信号Sが現れる。しかし、演算部14は、これをPM2.5としてカウントしない。図2(A)では、演算部14は、ピーク信号Pをカウントしない。
 なお、P偏光の信号Sが閾値THを超えていなくても、P偏光の信号SとS偏光の信号Sとの比率で、花粉と判別することができる。つまり、P偏光の信号SがS偏光の信号Sよりも大きい場合には、花粉と判別することができる。この場合にも、同時刻に検出されたPM2.5の信号Sは、PM2.5としてカウントされない。
 図2では、ピーク信号Pは信号Sのピーク値である。ピーク信号P12は信号Sのピーク信号である。ピーク信号P15は信号Sのピーク値である。そして、例えば、演算部14は、ピーク信号Pをカウントしない。
 これらの現象は、花粉が発光素子1から出力された光束に僅かに触れた時に発生する。このような信号をPM2.5のカウントから除外する事によって、微粒子20の検出精度を向上させることが出来る。
 次に、埃が取り込まれた場合について述べる。
 発光素子1から放射された光が微粒子20(例えば、埃)に当たる事で、散乱光が発生する。
 このとき、例えば、ミラー4,5で反射された光がレンズ3に到達しないように、レンズ3は配置されている。つまり、例えば、レンズ3には、散乱光が直接入射する。そして、レンズ3によって集光された光は、プリズム10に入射する。
 プリズム10を通る事によって、散乱光はP偏光とS偏光とに分離される。そして、例えば、受光素子8がP偏光を受光する。受光素子9がS偏光を受光する。
 埃は、通常、非球形をしている。「非球形」とは、球形でないことである。
 微粒子20が非球形の場合には、P偏光の信号SとS偏光の信号Sとは、同じレベルとなる。ここで、「同じレベル」とは、微粒子20が球形の場合に比べて、信号S,Sのレベル差が小さいことを意味する。
 例えば、P偏光の信号SおよびS偏光の信号Sが、ともに閾値THを超えれば、演算部14は、微粒子20を埃と判別する。図2(B)及び図2(C)では、時刻Tの信号が埃と判別される信号である。図2(B)及び図2(C)において、微粒子20を埃と判別したピーク信号は、ピーク信号P10,P13である。
 また、この埃を検出した同時刻(時刻T)に、PM2.5用の受光素子7にも散乱光が入射する。このため、図2(A)に示したように、増幅器AMの出力に信号Sが現れる。しかし、演算部14は、これをPM2.5としてカウントしない。図2(A)では、演算部14は、ピーク信号Pをカウントしない。
 以上より、図2(A)では、演算部14は、ピーク信号P,P,P,P,P,Pをカウントする。
 図2(B)及び図2(C)では、時刻Tの信号は、各々閾値THを超えていない。このため、演算部14は、時刻Tの信号S,Sのピーク信号P12,P15を、花粉または埃としてカウントしない。しかし、時刻Tで、P偏光の信号Sのピーク信号P12がS偏光の信号Sのピーク信号P15よりも大きくなっている。このため、図2(A)に示す時刻Tの信号Sのピーク信号Pは、PM2.5としてカウントされない。
 例えば、図2(B)及び図2(C)に示した閾値THよりも信号レベルの低い閾値を用意する。この閾値によって、ピーク信号P12を検知することができる。そして、花粉または埃としてカウントしないが、PM2.5としてもカウントしないことができる。
 信号レベルの低い閾値を設けるには、例えば、実施の形態2で示すように、1つの受光素子に複数の増幅器を接続する方法が考えられる。例えば、受光素子7,8,9の各々に、複数の増幅器AMを接続する。これによって、1つの受光素子7,8,9に対して、複数のゲインまたは閾値を設定することができる。
 図2では、時刻T,T,Tで、P偏光の信号Sのピーク信号P10,P11,P12がS偏光の信号Sのピーク信号P13,P14,P15よりも大きくなっている。このため、演算部14は、図2(A)に示す時刻T,T,Tの信号Sのピーク信号P,P,Pを、PM2.5としてカウントしない。
 次に、複数の微粒子20がくっついた場合について、または、微粒子20の濃度が非常に高い場合について述べる。
 微粒子20がくっついた状態、または、微粒子20の濃度が非常に高い場合には、図3(A)の時刻Tに示すように、増幅器AMの出力信号Sが飽和する。または、図3(A)の時刻Tから時刻Tまでに示すように、増幅器AMの出力信号Sが長時間にわたって閾値THを超えた状態が続く。
 ここで「長時間」とは、流量制御器6によって決まる空気Aの流速において、検出対象としている1個の微粒子20に発光素子1から発せられた照射光が照射される時間よりも長い時間のことである。
 図3(A)において、信号Sが飽和した状態は、ピーク信号P16である。また、信号Sが長時間にわたって閾値THを超えた状態は、ピーク信号P17である。ピーク信号P16に対応する信号Sのピーク信号は、ピーク信号P18である。ピーク信号P17に対応する信号Sのピーク信号は、ピーク信号P19である。ピーク信号P16に対応する信号Sのピーク信号は、ピーク信号P20である。ピーク信号P17に対応する信号Sのピーク信号は、ピーク信号P21である。
 これらの場合には、演算部14は、正しくPM2.5をカウント出来ないことがある。このため、これらの信号Sのピーク信号P16,P17をカウント対象から外す事によって、微小体検出装置100は、微粒子20の検出精度を向上させることが出来る。
 以上のように、微小体検出装置100は、3つの受光素子7,8,9を備えている。また、ミラー4,5は、例えば、PM2.5用の受光素子7に散乱光が集まるように構成されている。そのため、微小体検出装置100は、僅かな散乱光でも、散乱光を集めることで、微粒子20を検出することが出来る。
 また、花粉または埃の粒子は、PM2.5の粒子に比べて大きいため、散乱光の光量は、PM2.5の散乱光の光量よりも多い。
 そのため、花粉または埃の散乱光を受光する受光素子8,9は、例えば、直接光を受光する。図1では、受光素子8,9は、レンズ3を通して、散乱光を受光している。花粉または埃を検出する散乱光をミラー4,5で集めないことで、受光素子8,9は、検出信号S,Sが飽和することなく、花粉または埃の散乱光を受光する事が出来る。
 また、微小体検出装置100は、PM2.5等の検出と同時に、花粉または埃を検出した場合でも、同時刻に検出されたPM2.5の信号Sのピーク信号をカウントしない。これによって、微小体検出装置100は、誤検出を防ぎ、PM2.5のカウント精度を向上することができる。PM2.5は、小さな粒径で弱い散乱光を発する微粒子である。花粉または埃は、大きな粒径で強い散乱光を発する微粒子である。
 微小体検出装置100は、ミラー4,5によって散乱光をより多く集める。そして、微小体検出装置100は、例えば、高いゲインの増幅器AMで信号Sを増幅することで、PM2.5の粒子を検出している。
 また、微粒子20がくっついた状態、または、微粒子20の濃度が高い場合には、増幅器AM,AMの出力信号S,Sは飽和することがある。または、増幅器AM,AMの出力信号S,Sは、通常よりも長い時間で、信号が閾値THを超えた状態が続くことがある。
 これらの場合には、微小体検出装置100のPM2.5のカウント精度は、低下する。このため、これらの信号Sのピーク信号P16,P17をPM2.5のカウント対象から外す事によって、検出精度を向上させることが出来る。
 また、花粉が発光素子1の発する光束に僅かに接した場合には、散乱光は非常に弱くなる。このような場合には、PM2.5と誤判別されるのを防ぐために、微小体検出装置100は、P偏光の信号SとS偏光の信号Sとの比率または差などから、花粉を判別する。そして、微小体検出装置100は、同時刻に検出されたPM2.5の信号Sのピーク信号Pをカウントから除外する。
 花粉のような球形の微粒子の場合には、2つの偏光の光量が異なることが知られている。例えば、発光素子1から発せられた光がP偏光の場合には、P偏光の信号SがS偏光の信号Sよりも大きい。P偏光とS偏光とは、プリズム10によって分けられる。
 なお、図2、および図3に示した閾値の符号は、全て「TH」としているが、各々の閾値は同じでも、異なっていても構わない。
実施の形態2.
 実施の形態2に係る微小体検出装置101は、複数の増幅器AMを持ち各増幅器AMの出力信号を全て同時に処理している。これによって、例えば、PM2.5よりも小さな微粒子から直径が30μm程度の大きな微粒子までを、いずれかの増幅器AMで飽和することなく検出する事が出来る。
 また、微小体検出装置101は、増幅器AMの数を増やせば増やすほど、同時に検出できる微粒子20の粒径の幅を広げる事が出来る。つまり、微小体検出装置101によれば、増幅器AMの数を増やせば増やすほど同時に検出できる微粒子20の粒径の幅を広げる事ができると言う効果が得られる。
 また、微小体検出装置101は、複数の増幅器AMのゲインをそれぞれ設定できる。そして、微小体検出装置101は、信号処理回路において信号レベルを判別する閾値を自由に設定することが出来る。信号処理回路は、増幅器AMが出力した信号を演算処理する。実施の形態2において、信号処理回路は、例えば、演算部14である。このため、微小体検出装置101は、主に検出する微粒子20の粒径を選ぶことが出来る。つまり、微小体検出装置101は、主に検出する微小体の粒径を自由に選ぶことが出来ると言う効果が得られる。
 微小体検出装置101は、複数の増幅器AMを持ち各増幅器AMの出力信号を全て同時に処理ことができる。そして、微小体検出装置101は、PM2.5よりも小さな微粒子20から直径が30μm程度の大きな微粒子20までを、いずれかの増幅器AMで飽和することなく検出する事ができる。
 図4は、微小体検出装置101の構成を示す構成図である。
 微小体検出装置101は、発光素子1、受光素子7、演算部14および増幅器AMを備える。また、微小体検出装置101は、レンズ2、ミラー4、ミラー5または流量制御部6を備えることができる。
 微小体検出装置101は、微小体検出装置100のレンズ3、プリズム10、受光素子8,9および増幅器AM,AMを備えていない。一方、微小体検出装置101は、微小体検出装置100の増幅器AMに相当する増幅器AM,AM,AMを複数備えている。
 実施の形態1で説明した微小体検出装置100の構成要素と同様の構成要素には、同一符号を付し、その説明を省略する。同様の構成要素は、発光素子1、レンズ2、ミラー4,5、流量制御器6、吸気口61、受光素子7、演算部14および被検出領域Dである。なお、微小体検出装置100の増幅器AM,AMと微小体検出装置101の増幅器AM,AMとは、同じ符号を付している。しかし、使われ方が異なる。
 次に微小体検出装置101の動作について説明する。
 図4において、微粒子20を含んだ空気は、図4の上部から微小体検出装置101の微粒子20を検出する領域(以下、被検出領域Dという)に入る。空気Aは流量制御器6によって設定された流量で被検出領域Dの内部に流れ込む。
 発光素子1の発する光は、レンズ2によって集光される。発光素子1の発する光が微粒子20に当たることで散乱光が発生する。散乱光は、ミラー4およびミラー5によって反射されて、受光素子7に入射する。受光素子7は、散乱光を電気信号Sに変換する。なお、微小体検出装置101の信号Sは、微小体検出装置100の信号Sに相当する。
 ミラー5で反射された散乱光は、受光素子7に到達する。一方、ミラー4で反射された散乱光は、ミラー5で反射された後に受光素子7に到達する。
 図4に示すように、受光素子7は、ミラー4側に配置されている。一方、ミラー5は、受光素子7に対向して配置されている。
 図5、図6および図7は、増幅器AM,AM,AMの出力信号S,S,Sと閾値THとを示す図である。なお、微小体検出装置101の信号S,S,Sは、微小体検出装置100の信号S,S,Sと異なる信号である。
 発光素子1の出力する電気信号Sは、増幅器AM,AM,AMによって同時に増幅される。各増幅器AM,AM,AMのゲインは、例えば、異なる値に設定されている。そして、例えば、各信号の閾値THは等しい値である。
 増幅された信号S,S,Sは、演算部14に送られる。演算部14は、図5に示したように、あるレベル(設定可能な閾値TH)を超えたパルス信号(ピーク信号)をカウントする事によって微粒子20の個数を得る。演算部14は、閾値THを超えた時点から次に閾値THを下回る信号S,Sが検出されれば、微粒子20が1個であるとカウントする。通常、閾値THは、ノイズレベルの2倍程度に設定される。
 まず、図5について説明する。図5では、増幅器AMの信号Sは、閾値THを超えていない。増幅器AMの信号Sは、飽和することはなく、閾値THを超えている。増幅器AMの信号Sは、飽和している。これらのことから、この場合には、検出された微粒子20は、中程度の大きさと判別される。
 次に、図6について説明する。図6では、増幅器AMの信号Sは、飽和することはなく、閾値THを超えている。増幅器AMの信号Sと増幅器AMの信号Sとは飽和している。これらのことから、この場合には、検出された微粒子20は、大きな粒子だと判別される。
 次に、図7について説明する。図7では、増幅器AMの信号Sは、観測されない。増幅器AMの信号Sは検出されているが、閾値THを超えていない。増幅器AMの信号Sは、閾値THを超えている。これらのことから、この場合には、検出された微粒子20は、PM2.5クラスの小さい粒子であることが分かる。
 微小体検出装置101において、事前に既知の大きさの微粒子20を検出する事によって、各増幅器AM,AM,AMの出力信号S,S,Sに対する閾値THを決めておけば、各増幅器AM,AM,AMの出力信号S,S,Sのレベルを全て同時に検出することができる。そして、微粒子20の個数とともに、検出した微粒子20の大きさを判別することが出来る。
<変形例1>
 図8は変形例1に係る微小体検出装置102の構成を示す構成図である。
 微小体検出装置102は、発光素子1、受光素子7、演算部14および増幅器AMを備える。また、微小体検出装置102は、レンズ2、ミラー4、ミラー5または流量制御部6を備えることができる。微小体検出装置100,101と同様の構成要素には、同じ符号を付し、その説明を省略する。
 微小体検出装置102は、増幅器AMをn個備える点で微小体検出装置101と相違する。微小体検出装置101では、増幅器AMの数量nは、「3」である。
 次に、微小体検出装置102の動作について説明する。
 図8において、微小体検出装置102は増幅器AMをN個えている。N個は、例えば、4個以上である。それぞれの出力信号Sは、全て同時に演算部14に入力される。
 各増幅器AM(n=1~n)のゲインは、例えば、異なる値に設定されている。そして、例えば、各信号の閾値THは等しい値である。
 図9および図10は、増幅器AM~AMの出力信号S~Sと閾値THとを示す図である。
 微小体検出装置101で例として最後に挙げた微粒子20よりも小さい微粒子20が、微小体検出装置102に入力される。この場合には、微小体検出装置101では微粒子20を検出することは出来ない。
 しかし、さらに大きなゲインを持った増幅器AMがあれば、その閾値THを超える微粒子20を検出することが出来る。このことよって、ゲインの大きな増幅器AMの個数が多ければ多いほど、小さい微粒子20を、その大きさとともに検出する事ができる。また、大きな微粒子20も、その大きさとともに検出する事が出来る。
<変形例2>
 変形例2では、閾値THを増幅器AMによって変更する点で微小体検出装置101,102と相違する。
 この場合には、例えば、増幅器AMのゲインを同一の値とすることができる。また、例えば、増幅器AMのゲインを異なる値とすることができる。
 図10は、増幅器AM~AMの出力信号S~Sと閾値TH~THとを示す図である。
 図10のように、変形例2では、例えば、各増幅器AM~AMのゲインと閾値TH~THとを変えている。これによって、検出したい任意の粒径の微粒子20の大きさを、より細かく検出する事が出来る。
 図10では、例えば、閾値THを増幅器AMから増幅器AMまで徐々に大きくしている。増幅器AMから増幅器AMまでの出力信号S~Sを、全て同時に観測することによって、検出された微粒子20がどの閾値THの間に存在するかを検出する事ができる。そして、その微粒子20の大きさを検出する事が出来る。
 なお、上述の各実施の形態においては、「平行」または「垂直」などの部品間の位置関係もしくは部品の形状を示す用語を用いている場合がある。これらは、製造上の公差や組立て上のばらつきなどを考慮した範囲を含むことを表している。このため、請求の範囲に部品間の位置関係もしくは部品の形状を示す記載をした場合には、製造上の公差又は組立て上のばらつき等を考慮した範囲を含むことを示している。
 また、以上のように本発明の実施の形態について説明したが、本発明はこれらの実施の形態に限るものではない。
 以上の各実施の形態を基にして、以下に発明の内容を付記(1)及び付記(2)として記載する。付記(1)と付記(2)とは、各々独立して符号を付している。そのため、例えば、付記(1)と付記(2)との両方に、「付記1」が存在する。
 また、付記(1)の特徴と付記(2)の特徴とを組み合わせることができる。
<付記(1)>
<付記1>
 被検出物である微小体に照射する光を出射する発光素子と、
 前記微小体に前記光が照射されて生じた散乱光を直接入射して、偏光方向によって第1の偏光および第2の偏光に分離する分離素子と、
 前記第1の偏光を受光して第1の信号に変換する第1の受光素子と、
 前記第2の偏光を受光して第2の信号に変換する第2の受光素子と、
 前記散乱光を受光して第3の信号に変換する第3の受光素子と、
 前記第1の信号、前記第2の信号および前記第3の信号を基に、前記微小体を判別または検出する演算部と
を備え、
 前記演算部は、同時刻の前記第1の信号のピーク値の大きさと、前記第2の信号のピーク値の大きさとの相違から、前記微小体の形状を判別し、前記形状を判別した前記第1の信号のピークと同時刻のピークを除外した前記第3の信号のピーク数を基に前記形状が判別された微小体よりも小さな微小体の数を検出する微小体検出装置。
<付記2>
 前記第3の信号のピーク信号のうち、当該ピーク信号が飽和したピーク信号を、
前記ピーク数から除外する付記1に記載の微小体検出装置。
<付記3>
 前記第3の信号のピーク信号のうち、他のピーク信号よりも長い時間ピーク値を持続したピーク信号を、前記ピーク数から除外する付記1に記載の微小体検出装置。
<付記(2)>
<付記1>
 微小体に照射される照射光を発する発光素子と、
 前記照射光が前記微小体に当たって発せられる散乱光を受光する受光素子と、
 前記散乱光を前記受光素子に導くミラーと、
 前記受光素子の出力する信号を増幅する増幅器と、
 前記増幅器の出力する信号を受けて演算を行う演算部と
を備え、
 前記増幅器は複数備えられ、
 前記演算部は、複数の前記増幅器の信号を同時に演算する微小体検出装置。
<付記2>
 前記微小体の大きさを区分する数よりも前記増幅器の数を多く備える付記1に記載の微小体検出装置。
<付記3>
 前記増幅器のゲインの値は、各々異なる値であり、前記演算部の前記増幅器に対する閾値は、前記増幅器によって異なる値である付記1または2に記載の微小体検出装置。
<付記4>
 前記ゲインと前記閾値とは可変である付記3に記載の微小体検出装置。
 100,101 微小体検出装置、 1 発光素子、 2,3 レンズ、 4,5 ミラー、 6 流量制御器、 61 吸気口、 7,8,9 受光素子、 10 プリズム、 11,12,13 増幅器、 14 演算部、 20 微粒子、 41 穴、 A,A 空気、 AM,AM,AM,AMn-1,AM 増幅器、 D 被検出領域、 T,T,T,T,T,T 時刻、 TH 閾値、 S,S,S,S,S,S,Sn-1,S 信号、 P~P21 信号のピーク。

Claims (14)

  1.  微小体に照射する光を出射する発光素子と、
     前記照射光が前記微小体に当たって発せられる散乱光を受光する受光素子と、
     前記受光素子の出力する信号を受けて演算を行う演算部と
    を備え、
     前記演算部は、複数の前記信号を同時に演算する微小体検出装置。
  2.  前記受光素子は複数備えられる請求項1に記載の微小体検出装置。
  3.  前記受光素子に対応した増幅器を備える請求項1または2に記載の微小体検出装置。
  4.  前記演算部は、前記微小体に対応した前記受光素子の信号からピーク信号を検出する請求項1から3のいずれか1項に記載の微小体検出装置。
  5.  前記演算部は、同時刻に複数の前記ピーク信号を検出した場合には、少なくとも1つの前記ピーク信号を残し、他の前記ピーク信号を検出対象から外す請求項4に記載の微小体検出装置。
  6.  検出対象から外される前記ピーク信号は、検出される前記微小体の中で大きさの小さい微小体に対応するピーク信号である請求項5に記載の微小体検出装置。
  7.  前記散乱光を入射して、偏光方向によって第1の偏光および第2の偏光に分離する分離素子と、
     前記受光素子は、前記第1の偏光を受光して第1の信号に変換する第1の受光素子と、前記第2の偏光を受光して第2の信号に変換する第2の受光素子と、前記散乱光を受光して第3の信号に変換する第3の受光素子とを含み、
     前記演算部は、同時刻の前記第1の信号のピーク信号の大きさと、前記第2の信号のピーク信号の大きさとの相違から、前記微小体の形状を判別し、前記形状を判別した前記第1の信号のピーク信号と同時刻の前記第3の信号のピーク信号を検出対象から外す請求項5または6に記載の微小体検出装置。
  8.  前記演算部は、飽和した前記ピーク信号を検出対象から外す請求項4に記載の微小体検出装置。
  9.  前記演算部は、閾値を超えた前記ピーク信号の時間を基にして、前記ピーク信号を検出対象から外す請求項4に記載の微小体検出装置。
  10.  1つの前記受光素子に複数の増幅器が接続されている請求項1から9のいずれか1項に記載の微小体検出装置。
  11.  前記増幅器は、前記微小体の大きさに対応してゲインが決められている請求項10に記載の微小体検出装置。
  12.  前記ゲインは可変である請求項11に記載の微小体検出装置。
  13.  前記演算部の前記増幅器に対する閾値は、前記増幅器によって異なる値である請求項11または12に記載の微小体検出装置。
  14.  前記閾値は可変である請求項13に記載の微小体検出装置。
PCT/JP2017/015421 2016-04-20 2017-04-17 微小体検出装置 WO2017183597A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-084301 2016-04-20
JP2016084301A JP2019109049A (ja) 2016-04-20 2016-04-20 微小体検出装置
JP2017005081A JP2019109050A (ja) 2017-01-16 2017-01-16 微小体検出装置
JP2017-005081 2017-01-16

Publications (1)

Publication Number Publication Date
WO2017183597A1 true WO2017183597A1 (ja) 2017-10-26

Family

ID=60115992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015421 WO2017183597A1 (ja) 2016-04-20 2017-04-17 微小体検出装置

Country Status (1)

Country Link
WO (1) WO2017183597A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138222B1 (ko) * 2019-04-11 2020-07-27 주식회사 제이에스티앤랩 배출가스 입자 측정 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127033A (ja) * 1990-09-19 1992-04-28 Hitachi Ltd 粒子計数装置
JPH06130014A (ja) * 1992-10-20 1994-05-13 Matsushita Electric Ind Co Ltd 空気質レベル判定方法および空気質レベル判定装置
JPH07504497A (ja) * 1992-02-21 1995-05-18 イギリス国 粒子特性の分析
JPH11339153A (ja) * 1998-05-29 1999-12-10 Hochiki Corp 煙感知装置
JP2005283152A (ja) * 2004-03-26 2005-10-13 Shinei Kk 花粉センサ
JP2012112721A (ja) * 2010-11-22 2012-06-14 Sumco Corp 浮遊粒子の測定方法及びその装置
JP2015118000A (ja) * 2013-12-18 2015-06-25 アズビル株式会社 粒子検出装置及び粒子の検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04127033A (ja) * 1990-09-19 1992-04-28 Hitachi Ltd 粒子計数装置
JPH07504497A (ja) * 1992-02-21 1995-05-18 イギリス国 粒子特性の分析
JPH06130014A (ja) * 1992-10-20 1994-05-13 Matsushita Electric Ind Co Ltd 空気質レベル判定方法および空気質レベル判定装置
JPH11339153A (ja) * 1998-05-29 1999-12-10 Hochiki Corp 煙感知装置
JP2005283152A (ja) * 2004-03-26 2005-10-13 Shinei Kk 花粉センサ
JP2012112721A (ja) * 2010-11-22 2012-06-14 Sumco Corp 浮遊粒子の測定方法及びその装置
JP2015118000A (ja) * 2013-12-18 2015-06-25 アズビル株式会社 粒子検出装置及び粒子の検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102138222B1 (ko) * 2019-04-11 2020-07-27 주식회사 제이에스티앤랩 배출가스 입자 측정 장치

Similar Documents

Publication Publication Date Title
JP5610167B2 (ja) 粒子検出用の2次元光学画像化方法及びシステム
KR20190010587A (ko) 유동 및 버블 검출 시스템을 가지는 자동 전력 제어 액체 입자 계수기
JP4654793B2 (ja) 塵埃検知装置およびこれを用いた電気掃除機
CN108603825B (zh) 用于对单独流体承载颗粒进行检测和/或形态分析的方法和设备
JP2007057360A (ja) 粒子検出装置及びそれに使用される粒子検出方法
CN113188964A (zh) 微小物检测装置
WO2007029480A1 (ja) 粒子検出器
JP6274104B2 (ja) 微小粒子測定装置におけるラミナーフローモニタリング方法と微小粒子分析方法及び微小粒子測定装置
JP2016105043A (ja) 浮遊粒子検出装置
KR20110080646A (ko) 입자 측정 장치
JP5662742B2 (ja) 粒径計測装置及び粒径計測方法
JP2004125602A (ja) 花粉センサ
JP2009030988A (ja) 粒子計数装置
CN209878547U (zh) 一种大气颗粒物检测装置
JP3532274B2 (ja) 粒子検出装置
WO2017183597A1 (ja) 微小体検出装置
JP2006189337A (ja) 微粒子測定装置
JP5362895B1 (ja) 光散乱式粒子計数器
JP2010151810A (ja) パーティクル計数装置
JP2007278858A (ja) 霧粒子センサ及び霧センサ
JP2010151811A (ja) パーティクル計数装置
JP2019109049A (ja) 微小体検出装置
US20080148869A1 (en) Particle Counter
CN108120659A (zh) 一种具有自归零校准的粒子浓度检测系统和方法
JP3818867B2 (ja) 光散乱式粒子検出器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785935

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP