JP2010126077A - 走行支援装置 - Google Patents

走行支援装置 Download PDF

Info

Publication number
JP2010126077A
JP2010126077A JP2008304884A JP2008304884A JP2010126077A JP 2010126077 A JP2010126077 A JP 2010126077A JP 2008304884 A JP2008304884 A JP 2008304884A JP 2008304884 A JP2008304884 A JP 2008304884A JP 2010126077 A JP2010126077 A JP 2010126077A
Authority
JP
Japan
Prior art keywords
vehicle
correction amount
target
time
traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008304884A
Other languages
English (en)
Other versions
JP5593606B2 (ja
Inventor
Hideto Omae
秀人 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008304884A priority Critical patent/JP5593606B2/ja
Publication of JP2010126077A publication Critical patent/JP2010126077A/ja
Application granted granted Critical
Publication of JP5593606B2 publication Critical patent/JP5593606B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】滑らかな操舵感を実現しつつ、車両の車線逸脱を抑制することができる走行支援装置を提供する。
【解決手段】目標軌道40上の目標地点401,…,40Nと、車両2が現時点以降に走行すると予測される走行軌道42上の2個以上の走行地点421,…,42Nとの横方向誤差が減少するよう2個以上の補正量を演算し、演算した補正量に基づいて車両2の操舵状態を補正することを繰り返す。このため、車両2の操舵状態は、最終的な目標地点40Nへ一直線状に車両2が移動するよう補正されるのではなく、走行軌道442のように曲線状に車両2が移動するよう補正される。従って、車両2の車両挙動の急変を抑制して、運転者が違和感を覚えない滑らかな操舵感を実現しつつ、車両2の横方向誤差を減少させて、車線4からの車両2の逸脱を抑制することができる。
【選択図】図2

Description

本発明は、走行すべき軌道に沿って車両を走行させるための走行支援装置に関する。
従来、走行すべき目標軌道に沿って車両を走行させるために、車両の走行軌道と目標軌道との誤差を減少させるよう車両の操舵状態を補正する走行支援装置が提案されている(特許文献1,2参照)。
例えばレーン・キーピング・アシストを実行する走行支援装置は、車載カメラが撮像した車両前方の車線形状(具体的には、車両左右の白線境界線)を認識し、車線の幅及び車線半径、目標軌道である車線中央を基準とする車両の横方向位置及び走行方向等を推定する。また、走行支援装置は、推定した横方向位置、走行方向、及び車線半径等に基づいて、車線中央からの横方向位置の誤差及び/又は車線中央に沿う方向からの走行方向の誤差を小さくするような補正量を、電動パワーステアリングシステムへ出力する。補正量が入力された電動パワーステアリングシステムが、入力された補正量に基づいて車輪の実舵角を制御することによって、車両は車線の中央を走行する。
特許文献1に開示されている走行支援装置(移動体の制御装置)は、目標経路上に目標点を定め、車両を目標点まで到達させる目標点到達ヨーレートを求め、目標点における車両の傾斜角度と目標経路の傾斜角度との角度偏差を求め、角度偏差を減少させるのに要するヨーレートの補正分を求め、目標点到達ヨーレートからヨーレートの補正分を減算した値を目標ヨーレートとして求める。次いで、移動体の制御装置は、目標ヨーレートを生ぜしめる目標舵角を求め、最後に、車両の舵角が目標舵角となるように舵角を補正する。
また、特許文献2に開示されている走行支援装置(車両のレーン走行支援装置)は、撮像した画像からレーンマークの連続線部を検出したときの検出値に基づいて、レーンマークの空白部を含む走行レーン内における車両の横方向位置を、車両運動モデル及び道路モデルに基づき推定する。次いで、車両のレーン走行支援装置は、推定した横方向位置と目標位置との比較結果に応じて修正操舵を行なう。
特開平5−197423号公報 特開2005−132194号公報
目標軌道からの横方向位置の誤差を速やかに減少させることと、ヨーレート及びロール等(以下、車両挙動という)の急変を防止することとは、背反事項である。何故ならば、横方向位置の誤差を速やかに減少させる場合、実舵角の変化が大きくなるため、車両挙動が急変するからである。
この結果、横方向位置の誤差を速やかに減少させたせいで、操舵中の運転者が違和感を覚えることがある。
しかしながら、車両挙動の急変を抑制した場合、横方向位置の誤差の減少が緩やかになるため、車線追従応答性が悪くなり、車両が車線から逸脱する虞がある。しかも、横方向位置の誤差が減少し難いため、風の圧力、路面の摩擦力等の外乱が車両に加わることによって、車両が車線から更に逸脱し易くなる。
ところで、従来の走行支援装置は、走行軌道と目標軌道とを可及的速やかに一致させようとするあまり、車両の現時点での操舵状態、及び横方向位置の誤差等に基づいて、車両の現時点の走行地点から目標軌道上の目標地点まで、車両を最短距離で(換言すれば、一直線状に)移動させようとする傾向にあり、車両挙動が急変し易い。
本発明は斯かる事情に鑑みてなされたものであり、その主たる目的は、運転者が違和感を覚えない滑らかな操舵感を実現しつつ、車両の車線逸脱を抑制することができるロバスト性が高い走行支援装置を提供することにある。
第1発明に係る走行支援装置は、車両の走行状態及び操舵状態を検出する状態検出手段から検出結果を時系列的に取得する状態取得手段を備え、前記車両が走行すべき目標軌道に沿って前記車両を走行させるための走行支援装置において、前記状態取得手段が検出結果を取得する都度、前記状態取得手段が取得した検出結果に基づいて、該検出結果を取得した時点以降の前記車両の走行軌道を予測する軌道予測手段と、該軌道予測手段が予測した走行軌道を走行した場合に到達するN(NはN≧2の自然数)個の走行地点と、前記目標軌道を走行した場合に到達し、前記N個の走行地点に時間的に対応するN個の目標地点との前記車両の横方向誤差を減少させるべく、前記車両の操舵状態を補正するための補正量をNu (Nu は2≦Nu ≦Nの自然数)個演算する補正量演算手段と、該補正量演算手段が演算した補正量に基づいて前記車両の操舵状態を補正する状態補正手段へ、前記補正量を出力する補正量出力手段とを備えることを特徴とする。
第2発明に係る走行支援装置は、前記補正量演算手段は、前記横方向誤差を減少させるための第1パラメータと、前記補正量演算手段によって演算される補正量が小さい値になるようにするための第2パラメータとを用いるようにしてあることを特徴とする。
第3発明に係る走行支援装置は、前記補正量演算手段は、前記第1パラメータを、N個の目標地点に対応してN個用いるようにしてあり、前記第2パラメータを、演算すべきNu 個の補正量に対応してNu 個用いるようにしてあることを特徴とする。
第4発明に係る走行支援装置は、前記補正量演算手段は、前記第1パラメータ及び第2パラメータ夫々を時系列的に変更可能にしてあることを特徴とする。
第1発明の走行支援装置による場合、現時点の車両の走行状態及び操舵状態(以下、車両状態という)に基づいて、車両が現時点以降に走行すると予測される走行軌道上の2個以上の走行地点と、目標軌道上の2個以上の目標地点との横方向誤差が減少するよう、複数個の補正量を演算し、演算した補正量に基づいて車両の操舵状態を補正することを時系列的に繰り返す。
このため、車両の操舵状態は、従来のように、現時点での車両状態及び横方向誤差のみに基づいて、目標地点への最短距離を一直線状に車両が移動するよう補正されるのではなく、将来的な車両状態及び横方向誤差を考慮した上で、あたかも折線状又は曲線状に車両が移動し、徐々に目標軌道に近づくよう補正される。
従って、目標軌道が例えば車線に沿って設定されている場合、車両挙動の急変を抑制して、運転者が違和感を覚えない滑らかな操舵感を実現することと、車両の目標軌道からの位置ずれを減少させて、車線からの車両の逸脱を抑制することとを両立させることができる。
また、目標軌道が例えば障害物を迂回するように設定されている場合、車両挙動の急変を抑制して、運転者が違和感を覚えない滑らかな操舵感を実現することと、車両の目標軌道からの位置ずれを減少させて、車両が障害物に衝突しないようにすることとを両立させることができる。
また、以上のような補正を時系列的に繰り返すことによって、車両に加わる外乱に左右され難く、高いロバスト性を得ることができる。
第2発明の走行支援装置による場合、走行地点と目標地点との横方向誤差を減少させるための第1パラメータを大きくすることによって、車線追従応答性の向上を優先させることができる。また、補正量を減少させるための第2パラメータを大きくすることによって、操舵感の向上を優先させることができる。
第1パラメータの増大による効果と及び第2パラメータの増大による効果は背反する。従って、第1パラメータ及び第2パラメータ夫々の大きさを、車両の種類、目標軌道の形状、及び/又は目標軌道が存在する場所等に応じて適切に設定することによって、運転者が違和感を覚えない滑らかな操舵感を実現することと、車線からの車両の逸脱を抑制することとを両立させることができる。
第3発明の走行支援装置による場合、N個の目標地点全部に対して1個の第1パラメータを用いるのではなく、N個の目標地点に対応してN個の第1パラメータを用いる。このため、第1パラメータは必ずしも一定である必要はなく、例えば目標軌道の目標地点近傍の形状に応じて、異なる第1パラメータを用いることができる(即ち、N個の内の少なくとも1個は他と異なるようにすることができる)。この結果、目標地点毎に、走行地点と目標地点との横方向誤差を減少させる度合いを設定することができる。
また、Nu 個の補正量全部に対して1個の第2パラメータを用いるのではなく、Nu 個の補正量に対応してNu 個の第2パラメータを用いる。このため、第2パラメータは必ずしも一定である必要はなく、例えば目標軌道の目標地点近傍の形状に応じて、異なる第2パラメータを用いることができる(即ち、Nu 個の内の少なくとも1個は他と異なるようにすることができる)。この結果、演算される補正量毎に、補正量を減少させる度合いを設定することができる(延いては、走行地点と目標地点との横方向誤差を減少させる度合いを設定することができる)。
つまり、車両の種類、車速、目標軌道の形状、及び/又は目標軌道が存在する場所等に応じて、車線追従応答性の向上を優先させるか、操舵感の向上を優先させるかを、詳細に設定することができる。
第4発明の走行支援装置による場合、Nu 個全部の補正量を演算する都度、第1パラメータ及び第2パラメータ夫々を変更することができる(無論、変更しなくてもよい)。つまり、車両の操舵状態を補正することを時系列的に繰り返す都度、横方向誤差を減少させる度合いと補正量を減少させる度合いとを設定することができる。
通常、目標軌道の形状は一定ではなく、車両の移動に伴って変化するが、本発明の走行支援装置においては、変化する目標軌道の形状に応じて、車線追従応答性の向上を優先させるか、操舵感の向上を優先させるかを、詳細に設定することができる。
以下、本発明を、その実施の形態を示す図面に基づいて詳述する。
図1は、本発明の実施の形態に係る走行支援装置の構成を示すブロック図である。
図中1は走行支援装置であり、走行支援装置1は、車両2に搭載されている。車両2は、走行支援装置1の他に、操舵部材21、ステアリング軸22、前輪23,23、電動パワーステアリングシステム(EPS)24、車載カメラ25、後輪26,26及び後述する各種センサ31〜35を備える。
走行支援装置1は、CPU10、ROM11、RAM12、EEPROM13、I/F14、画像処理部15、画像メモリ16、及びI/F部17を備える。I/F14は、走行支援装置1とEPS24とのインタフェースであり、I/F部17は、走行支援装置1と各種センサ31〜35夫々とのインタフェースである。画像処理部15は、図示しないインタフェースを介して、車載カメラ25に接続される。
ROM11は、読み出し専用の不揮発性メモリであり、走行支援装置1の制御プログラム及びデータが記憶してある。RAM12は、読み書き可能な揮発性メモリである。
CPU10は、走行支援装置1の制御中枢であり、RAM12を作業領域として用い、ROM11に記憶された制御プログラム及びデータに従って、各種処理を実行する。
EEPROM13は読み書き可能な不揮発性メモリであり、後述する走行支援処理(図3参照)を実行する場合に用いる各種の定数が記憶されている。EEPROM13に記憶されている定数は、走行支援装置1の製造時にEEPROM13に書き込まれたものである。ただし、EEPROM13に記憶されている定数の内、後述する単位時間(サンプリングタイム)t0 、個数N,Nu 、及び重み係数Q,R等は、例えば図示しない操作部を運転者が操作することによって、走行支援装置1の工場出荷後に変更可能であってもよい。
また、EEPROM13には、後述する時刻t−1の時点で取得した各種センサ31〜35夫々の検出結果、及び時刻t−1の時点での演算結果等が記憶されており、これらは後述する時刻tの時点での演算に用いられる。
車速センサ31は、車両2の車速を検出する。また、ヨーレートセンサ32は、車両2のヨーレートを検出し、横Gセンサ33は、車両2の左右方向(横方向)の加速度を検出し、方位角センサ34は、所定の方向(例えば北方向)と車両2の走行方向とがなす角度(ヨー角)を検出し、操舵角センサ35は、操舵部材21の操舵角を検出する。各種センサ31〜35夫々の検出結果は、所定のサンプリング間隔で、I/F部17を介して走行支援装置1に入力される。各種センサ31〜35は、車両2の車両状態(即ち走行状態及び操舵状態)を検出する状態検出手段として機能する。
方位角センサ34は、絶対座標における車両2のヨー角を得るためのものである。従って、方位角センサ34の代わりに、デジタルGPSを用いて絶対ヨー角を求める構成でもよく、車両2の初期位置を基準に、車両2の相対的なヨー角を積算して、絶対ヨー角を求める構成でもよい。
操舵部材21は、運転者が操作するステアリングホイールであり、ステアリング軸22の上端部に固設されている。ステアリング軸22の下端部には、車両2の左右に配されている前輪23,23を含む舵取機構が連結されている。
操舵部材21が回転操作された場合、操舵部材21の回転力がステアリング軸22を介して舵取機構に伝達されて左右方向の運動に変換され、変換された左右方向の運動が前輪23,23に伝達されて、操舵がなされる。
EPS24は、操舵部材21による操舵を補助する図示しない電動モータを備え、この電動モータの回転力が、ステアリング軸22の中途に伝達されるように構成されている。
EPS24には、車速センサ31の検出結果、ヨーレートセンサ32の検出結果、操舵部材21の回転操作によってステアリング軸22に加えられる操舵トルク及び電動モータの駆動電流等を検出する図示しない各種センサの検出結果、並びに、走行支援装置1が出力した出力補正量Δu(t)(後述)が与えられる。EPS24においては、与えられた出力補正量Δu(t)及び検出結果に基づいて、ステアリング軸22に伝達すべき操舵補助力が演算され、演算された操舵補助力に対応する回転力を、電動モータが発生させる。
この結果、電動モータが発生させた回転力は、ステアリング軸22を介して舵取機構に伝達されて左右方向の運動に変換され、変換された左右方向の運動が前輪23,23に伝達される。この結果、EPS24は、操舵部材21による操舵を補助することができる。
車載カメラ25は、車両2の前方を撮像してなる前方画像を生成し、生成した前方画像を、走行支援装置1の図示しないインタフェースを介して、画像処理部15へ、所定のサンプリング間隔で時系列的に出力する。前方画像には、車両2の前方の車線の形状が示されている。
走行支援装置1の画像メモリ16は、SRAM又はDRAM等を用いてなる読み書き可能な揮発性メモリである。
画像処理部15は、ASIC(Application Specified Integrated Circuit)を用いてなり、画像メモリ16を作業領域として用いて、車載カメラ25から入力された前方画像に所定の画像処理を施す。ここで、画像処理部15が行なう画像処理は、例えば歪補正処理、及びエッジ抽出処理等である。
歪補正処理では、例えば、前方画像の端部の歪みを補正する。
エッジ抽出処理では、例えば、前方画像に含まれる一の画素及びこの画素に隣接する他の画素夫々の画素値の差が閾値を超える場合に、この一の画素をエッジ成分として抽出する。このとき抽出されるエッジ成分は、例えば車両2の前方の車線の両側端部の形状を示す。
図2は、走行支援装置1による走行支援を説明する模式図である。
図中4は車線であり、車線4の左側端部411と右側端部412との間を、車両2が走行している。左側端部411及び右側端部412夫々は、例えば路面に形成されている白線である。
車両2が走行すべき目標軌道40は、車線4の左右方向中央部に位置するものとする。
以下では、車両2の位置とは、車両2の重心の地面に対する投影位置(以下、単に重心点2gという)を意味する。また、横方向とは、車両2の左右方向を意味する。
現時点(以下、時刻tの時点ともいう)で、車両2は、走行地点420に位置している。走行支援装置1のCPU10は、目標軌道40に沿って車両2を走行させるために、車両2の現時点以降の走行軌道42と目標軌道40との誤差を減少させる。
目標軌道40上の目標地点400は、車両2が目標軌道40に沿って走行していると仮定した場合に、時刻tの時点で車両2が位置する地点である。目標地点400は、目標軌道40の法線の内、走行地点420を通る法線と、目標軌道40との交点に相当する。
時刻tの時点での車両2の横方向誤差430は、目標地点400及び走行地点420間の横方向距離に等しい。
走行支援装置1は、車両2が目標軌道40に沿って走行するよう、車両2の操舵状態を補正する。
このために、走行支援装置1のCPU10は、車載カメラ25が撮像した前方画像に基づいて目標軌道40を設定し、各種センサ31〜35が検出した車両2の車両状態(即ち、時刻tの車両2の車両状態)に基づいて、車両2が時刻tの時点以降に走行すると予測される走行軌道42上のN個の走行地点421,422,…,42N−1,42Nと、目標軌道40上のN個の目標地点401,402,…,40N−1,40Nとにおける車両2の横方向誤差が減少するよう、補正量Δδ(t),…,Δδ(t+Nu −1)を演算し、演算した補正量Δδ(t),…,Δδ(t+Nu −1)の内の1個である出力補正量Δu(t)をEPS24へ出力することを時系列的に繰り返す。
この結果、図2に示す事例の場合は、図中白抜矢符方向に車両2が操舵される。
ここで、目標軌道40上のN個の目標地点401,…,40N及び走行軌道42上のN個の走行地点421,…,42Nについて説明する。
走行地点の個数Nは、N≧2の自然数である。また、車両2の単位時間t0 を、t0 >0の任意の値とする。
目標地点401,402,…,40N−1,40Nとは、N個の走行地点421,422,…,42N−1,42Nに時間的に対応するものであり、車両2が目標軌道40を走行した場合に、時刻t+t0 の時点、時刻t+2×t0 の時点、…、時刻t+(N−1)×t0 の時点、及び時刻t+N×t0 の時点で車両2が到達する地点である。
同様に、走行地点421,422,…,42N−1,42Nとは、車両2が走行軌道42を走行した場合に、時刻t+t0 の時点、時刻t+2×t0 の時点、…、時刻t+(N−1)×t0 、及び時刻t+N×t0 の時点で車両2が到達する地点である。ただし、走行地点421,…,42Nは、目標軌道40の目標地点401,…,40N夫々における法線と、走行軌道42との交点に相当する。
以下では、t0 =1として、単位時間t0 の記載を省略する。
車両2の車線追従応答性を優先して車両2の操舵状態を補正する場合、横方向誤差を速やかに減少させることができるため、車両2の将来的な走行軌道は、例えば走行軌道441のようになる。一方、運転者が違和感を覚えない滑らかな操舵感を優先して車両2の操舵状態を補正する場合、車両挙動の急変を抑制することができるため、車両2の将来的な走行軌道は、例えば走行軌道442のようになる。
従来の走行支援装置による場合、車両2の操舵状態は、時刻tでの車両状態及び横方向誤差430のみに基づいて、例えば目標地点402へ走行軌道443に沿って一直線状に車両2が移動するよう補正される。この結果、横方向誤差が急激に減少するため、車線追従応答性は非常に高くなるが、車両挙動が急変するため、操舵中の運転者が違和感を覚えがちである。
本実施の形態の走行支援装置1による場合、N=2であるとき、車両2の操舵状態は、時刻tでの車両状態及び横方向誤差430に基づいて予測される時刻t+1,t+2の時点夫々での横方向誤差に基づいて、例えば目標地点402へ走行軌道444に沿って折線状に車両2が移動するよう補正される。この結果、車線追従応答性を大幅に犠牲にすることなく、車両挙動の急変が抑制されるため、従来よりも操舵感が滑らかになる。また、個数Nが多ければ多いほど、折線状の走行軌道444は曲線状になり、更に滑らかな操舵感が実現される。
図3は、走行支援装置1で実行される走行支援処理の手順を示すフローチャートである。走行支援処理は、車両2が走行している場合に実行され、車両2が停止した場合に終了する。走行支援処理が実行されている間、車載カメラ25が撮像した前方画像が走行支援装置1の画像処理部15に順次入力され、画像処理部15は、入力された前方画像に画像処理を施す。
CPU10は、車両2の車両状態を取得する(S11)。具体的には、S11では、CPU10は、時刻tの時点で各種センサ31〜35が検出した検出結果を取得する。後述するように、S16の処理完了後、CPU10は、処理をS11へ戻すため、S11におけるCPU10は、状態検出手段から検出結果を時系列的に取得する状態取得手段として機能する。
S11の処理終了後、CPU10は、時刻tの時点で車載カメラ25が撮像し、画像処理部15によって画像処理が施された前方画像(以下、単に前方画像という)に基づいて、目標軌道40を設定する(S12)。
S12におけるCPU10は、前方画像に含まれている車線4の左側端部411及び右側端部412夫々の形状に基づいて、左側端部411と右側端部412との中央部に位置すべき目標軌道40を演算する。ただし、本実施の形態における走行支援装置1は、設定すべき目標軌道40として、目標軌道40の曲率を用いるよう構成されている。
目標軌道40の曲率は一定ではない。このため、走行支援装置1は、目標軌道40の各目標地点400,401,402,…,40N−1,40Nにおける目標軌道40の曲率ρ(t),ρ(t+1),ρ(t+2),…,ρ(t+N−1),ρ(t+N)を、目標軌道40の形状を示す軌道形状値として用いるよう構成されている。曲率ρ(t),ρ(t+1),…,ρ(t+N)を、以下では単に曲率Ρ(t)ともいう。
曲率Ρ(t)は先見情報であり、前方画像に基づいて曲率Ρ(t)を算出する手法は、周知の手法が用いられる。
また、曲率Ρ(t)は離散値である。このため、整数である変数iをi=0,1,2,…,N−1とすると、曲率ρ(t+i)を時間微分した微分値Δρ(t+i)は、時刻t+i+1の時点の曲率ρ(t+i+1)と時刻t+iの時点の曲率ρ(t+i)との差分として、下記の式(1)のように表す。
Δρ(t+i)=ρ(t+i+1)−ρ(t+i)…(1)
i=0である場合、Δρ(t)=ρ(t+1)−ρ(t)である。
なお、走行支援装置1は、CPU10が前方画像に基づいて曲率Ρ(t)を算出する構成に限定されるものではない。例えば、走行支援装置1は、画像処理部15が曲率Ρ(t)を算出する構成であってもよく、車両2に搭載された図示しないカーナビゲーション装置が有する地図画像に基づいて曲率Ρ(t)を算出する構成であってもよく、車両2外部の通信装置から曲率Ρ(t)を受信する構成であってもよい。また、走行支援装置1は、設定すべき目標軌道40として、目標軌道40の各地点の座標値、又は目標軌道40の形状を表す関数等を用いる構成でもよい。
S12の処理終了後、CPU10は、後述するS14の処理に必要な各種変数を求める(S13)。
ここで、図4は、車両2の現時点の走行地点420と目標地点400との横方向誤差430を説明する模式図である。ただし、図4に示す車両2は、横方向中央部に各1個の前輪23及び後輪26を備える2輪等価4輪車両モデルである。即ち、図2に示す各左右の前輪23,23及び後輪26,26が、図4に示すように、等価的に車両2の前後軸と車軸との交点に集中していると看做したものである。なお、2輪等価4輪車両モデル以外の車両モデル(例えばフルビークルモデル)を用いて車両2の状態方程式を導き出してもよい。
まず、車両2に固有の定数を説明する。
本実施の形態では、車両2に固有の定数として、重心点2gと前輪23との離隔距離lf 、重心点2gと後輪26との離隔距離lr 、前輪23に対するコーナリングパワーKf 、後輪26に対するコーナリングパワーKr 、車両2の慣性重量m、及び車両のヨーイング慣性モーメントIが用いられる。これらは、EEPROM13に予め記憶されている。
コーナリングパワーKf (コーナリングパワーKr )は、前輪23(後輪26)の接地面の長さlft(長さlrt)と、前輪23(後輪26)の材質、形状、及び空気圧等によって決まる変数Kft(変数Krt)に基づいて、下記の式(2)及び式(3)のように表される。ただし、前輪23及び後輪26夫々の変形、空気圧の変化等は小さいため、コーナリングパワーKf ,Kr は定数であると看做すことができる。
f =Kft×lft 2 /2…(2)
r =Krt×lrt 2 /2…(3)
図4に示すように、水平な路面に固定したX−Y座標系において、現時点の車両2は、走行地点420を、車速Vで走行している。車両2のヨー角θは、X軸と車両2の走行方向とがなす角度であり、車両2のヨーレートは、ヨー角θを時間微分した微分値dθ/dt(=θ' )である。以下では、車両2の速度ベクトルを車速ベクトルvという。従って、車両2のヨー角θは、X軸と車速ベクトルvとがなす角度である。
ここで、目標軌道40上の目標地点400における接線ベクトルを目標速度ベクトルvr とすると、車両2の目標ヨー角θr は、X軸と車両2の目標走行方向とがなす角度(即ちX軸と目標速度ベクトルvr とがなす角度)であり、車両2の目標ヨーレートは目標ヨー角θr を時間微分した微分値dθr /dtである。
車両2を目標軌道40に追従させるためには、車両2の車速ベクトルvを目標速度ベクトルvr に追従させればよい。換言すれば、車両2のヨーレートdθ/dtを目標ヨーレートdθr /dtに等しくすると共に、車両2の重心点2gを目標地点400に等しくすればよい。
そこで、現時点の車両2のヨー角θと目標ヨー角θr との誤差をヨー角誤差θm とし、現時点の車両2のヨーレートdθ/dtと目標ヨーレートdθr /dtとの誤差をヨーレート誤差θm ' =dθm /dtとする。また、現時点の車両2の横方向誤差430を横方向誤差ym とし、目標軌道40の目標地点400における曲率を曲率ρとし、車両2の現時点の実舵角を実舵角δとする。更に、現時点の車両2の横方向の速度(車速ベクトルvの横方向の成分)を横速度y' とし、目標速度ベクトルvr の横方向の成分を目標横速度yr ' とし、横速度y' と目標横速度yr ' との誤差を横速度誤差ym ' とする。
現時点の車両2の状態方程式は、目標軌道40からの誤差を示す状態方程式で表すと、次の式(4)のようになる。ただし、添え字mは誤差を意味する。
Figure 2010126077
ここで、ヨーレート誤差θm ' 及び横速度誤差ym ' は、下記の式(5)及び式(6)で示される。
θm ' =dθ/dt−dθr /dt=θ' −(Vcosθm )ρ…(5)
m ' =y' cosθm +Vsinθm …(6)
ヨーレート誤差θm ' の絶対値|θm ' |が“1”よりも非常に小さい(|θm ' |≪1)とすると、式(5)及び式(6)は、下記の式(7)及び式(8)となる。
θm ' ≒θ' −Vρ…(7)
m ' ≒y' +Vθm …(8)
ところで、現時点における横加速度誤差ym ''は、式(8)に示す横速度誤差ym ' を時間微分して式(7)に示すヨーレート誤差θm ' を代入して求めることができる。更に、θ' ≪Vρとすると、横加速度誤差ym ''は下記の式(9)で表せる。ただし、横加速度y''は、現時点における車両2の横加速度である。
m ''≒y''+Vθm ' =y''+V(θ' −Vρ)≒y''−V2 ρ…(9)
ここで、時刻tの時点におけるヨー角誤差θm 、ヨーレート誤差θm ' 、横方向誤差ym 、及び横速度誤差ym ' 夫々を、ヨー角誤差θm (t)、ヨーレート誤差θm ' (t)、横方向誤差ym (t)、及び横速度誤差ym ' (t)と表わす。すると、時刻t+1の時点、時刻t+2の時点、…、時刻t+N−1、時刻t+Nの時点について、ヨー角誤差θm 、ヨーレート誤差θm ' 、横方向誤差ym 及び横速度誤差ym ' 夫々は、ベクトル形式で表すと、下記の式(10)、式(11)、式(12)、及び式(13)のようになる。
θm =[θm (t+1),θm (t+2),…,θm (t+N−1),θm (t+N)]…(10)
θm ' =[θm ' (t+1),θm ' (t+2),…,θm ' (t+N)]…(11)
m =[ym (t+1),ym (t+2),…,ym (t+N−1),ym (t+N)]…(12)
m ' =[ym ' (t+1),ym ' (t+2),…ym ' (t+N−1),ym ' (t+N)]…(13)
次に、式(4)を離散化すると、時刻tの時点の車両2の状態方程式は、次の式(14)のようになる。
Figure 2010126077
式(14)の変数Xe (t)とは車両2の現時点(即ち時刻tの時点)の車両状態を示し、変数Xe (t+1)とは車両2の未来(具体的には時刻t+1の時点)の車両状態を示している。
また、式(14)の変数Δδ(t)は、時刻tの時点で車両2に入力された実舵角δ(t)を時間微分した微分値であり、微分値Δδ(t)は、時刻tの時点から時刻t+1までの間(以下、区間t〜t+1という)、車両2に入力される実舵角δ(t)を補正すべき補正量である。補正量Δδ(t)は、時刻t+1の時点(即ち現時点よりも単位時間分だけ未来の時点)で車両2に入力される実舵角δ(t+1)と、時刻tの時点(即ち現時点)で車両2に入力される実舵角δ(t+1)との差分として、下記の式(15)のように表す。
Δδ(t)=δ(t+1)−δ(t)…(15)
ところで、車両2の車速V及びヨーレートθ' (t)としては、S11の処理で取得した車速センサ31及びヨーレートセンサ32夫々の検出結果を用いることができる。また、曲率ρ(t)は、S12の処理で設定した曲率ρ(t)を用いることができる。
従って、S13におけるCPU10は、式(7)を用いて、下記の式(16)のようにヨーレート誤差θm ' (t)を算出し、時刻t−1の時点のヨー角誤差θm (t−1)を用いてヨーレート誤差θm ' (t)を積分することによって、下記の式(17)のようにヨー角誤差θm (t)を算出する。
θm ' (t)=θ' (t)−Vρ(t)…(16)
θm (t)=θm ' (t)+θm (t−1)…(17)
ここで、時刻t−1の時点とは、現時点よりも単位時間分だけ過去の時点である。
更に、車両2の横加速度y''(t)としては、S11の処理で取得した横Gセンサ33の検出結果を用いることができる。
従って、S13におけるCPU10は、式(9)を用いて、下記の式(18)のように横加速度誤差ym ''(t)を算出し、時刻t−1の時点の横速度誤差ym ' (t−1)を用いて横加速度誤差ym ''(t)を積分することによって、下記の式(19)のように横速度誤差ym ' (t)を算出する。
m ''(t)=y''(t)−V2 ρ(t)…(18)
m ' (t)=ym ''(t)+ym ' (t−1)…(19)
更に、S13におけるCPU10は、前方画像に基づいて横方向誤差ym (t)を演算する。
更にまた、S13におけるCPU10は、時刻tの時点で取得した操舵角センサ35の検出結果に基づいて、実舵角δ(t)を演算する。また、S13におけるCPU10は、EEPROM13に記憶されている実舵角δ(t−1)を読み出す。ここで、実舵角δ(t−1)は、時刻t−1の時点で車両2に入力された実舵角であり、時刻t−1の時点で取得した操舵角センサ35の検出結果に基づいてCPU10が演算したものである。
なお、走行支援装置1は、操舵角センサ35の検出結果に基づいて実舵角を演算する構成に限らず、実舵角センサの検出結果を実舵角として用いる構成でもよく、又はモータレゾルバを用いてステアリング軸22の回転角を検出する回転角センサを備え、この回転角センサの検出結果に基づいて実舵角を演算する構成であってもよい。
また、走行支援装置1は、車速センサ31の検出結果の代わりに、車輪速センサ又はデジタルGPSを用いて車速を求める構成でもよい。
ところで、方位角センサ34の検出結果は、初期値の設定又は演算結果の補正等に用いられる。
式(14)を時刻t+1の時点、時刻t+2の時点、…、に適用すると、次の下記の式(20の1),(20の2),…,(20のN−1),のようになる。
e (t+2)=Ae e (t+1)+Be Δδ(t+1)+Ee ρ(t+1),
e (t+1)=Ce e (t+1)…(20の1)
e (t+3)=Ae e (t+2)+Be Δδ(t+2)+Ee ρ(t+2),
e (t+2)=Ce e (t+2)…(20の2)

e (t+N)=Ae e (t+N−1)+Be Δδ(t+N−1)+Ee ρ(t+N−1),
e (t+N−1)=Ce e (t+N−1)…(20のN−1)
e (t+N+1)=Ae e (t+N)+Be Δδ(t+N)+Ee ρ(t+N),
e (t+N)=Ce e (t+N)…(20のN)
ここで、式(20の1)に係るYe (t+1)の右辺に式(14)に係るXe (t+1)を代入し、式(20の2)に係るYe (t+2)の右辺に式(20の1)に係るXe (t+2)及び式(14)に係るXe (t+1)を代入し、…ということを繰り返すと、時刻t+1の時点以降の車両2の将来的な走行軌道42と目標軌道40との横方向誤差ym を予測する予測式として、次の式(21)が求められる。ただし、式(21)における変数jは、1≦j≦Nの自然数である。
Figure 2010126077
式(21)の右辺の第1項は、時刻tの時点の車両2の車両状態に依存する項である。第2項は、車両2に対する未来の制御入力である補正量ΔU(t)(後述する式(22)参照)によって決定される項である。第3項は、先見情報である目標軌道40の曲率Ρ(t)に依存する項である。
S12の処理で、曲率Ρ(t)(=[ρ(t),ρ(t+1),…,ρ(t+N)])は、現時点の目標地点400とN個の目標地点401,…,40Nとについて{N+1}個設定され、式(21)で、横方向誤差ym (式(12)参照)は、N個の走行地点421,…,42NについてN個予測される。
個数NがN≧2であるため、走行支援装置1は、各目標地点401,…,40Nの曲率ρ(t+1),…,ρ(t+N)が一定ではない形状を有していても、目標軌道40の形状が適切に反映された横方向誤差ym を演算することができる。この結果、車両2を車線4に的確に追従させることができる。
一方、補正量ΔU(t)は、下記の式(22)に示すように、N個以下のNu 個演算される。
ΔU(t)=[Δδ(t),Δδ(t+1),…,Δδ(t+Nu −1)]…(22)
補正量Δδ(t)は、区間t〜t+1で車両2に入力される実舵角δ(t)を補正すべき補正量である。同様に、補正量Δδ(t+1)は、区間t+1〜t+2で車両2に入力される実舵角δ(t+1)を補正すべき補正量であり、…、補正量Δδ(t+Nu −1)は、区間t+Nu −1〜t+Nu で車両2に入力される実舵角δ(t+Nu −1)を補正すべき補正量である。
本実施の形態では、個数Nu をNu ≧2としているため、走行支援装置1は、車両2が、例えば図2に示す走行軌道443ではなく、走行軌道444に沿って走行するように、操舵状態を補正することができる。
ところで、Nu =Nに設定したとしても、補正量の演算は可能であるが、演算時間が長くなる。従って、個数Nu は、Nu <Nの適宜の値であることが望ましい。Nu <Nである場合、補正量Δδ(t+Nu ),…,Δδ(t+N−1)夫々は一定値であると看做される。
ここで、区間t〜t+Nを予測区間といい、区間t〜t+Nu を補正量決定区間という。横方向誤差ym は予測区間について演算され、補正量ΔU(t)は、補正量決定区間について演算される。
式(21)において、車両2を目標軌道40に追従させるためには、区間t〜t+1,t+1〜t+2,…,t+Nu −1〜t+Nu 夫々で、時刻t+1,t+2,…,t+Nの時点の横方向誤差ym (t+1),ym (t+2),…,ym (t+N)夫々がなるべく小さくなるような実舵角δ(t),δ(t+1),…,δ(t+Nu −1)が、夫々車両2に入力されるようにすればよい。
しかしながら、滑らかな操舵感を確保するためには、実舵角の変化(増分)は可及的小さいほうがよい。
このため、横方向誤差ym (式(12)参照)、及び実舵角の増分である補正量ΔU(t)(式(22)参照)で構成される線形2次形式の評価関数Jを組み、この評価関数Jを小さくする補正量ΔU(t)を求める必要がある。
ここで、式(21)に対する評価関数Jを、次の式(23)のように組む。
Figure 2010126077
式(23)の右辺の第1項は、予測区間における横方向誤差ym に依存する項であり、第2項は、補正量決定区間における実舵角の増分である補正量ΔU(t)に依存する項である。
また、式(23)中のQ,Rは、右辺の第1項及び第2項夫々の重みであり、重み係数Qは、N×Nの任意の定数行列、重み係数Rは、Nu ×Nu の任意の定数行列である。重み係数Q,Rは、車両2の種類、平均的な車速V、車両2が頻繁に走行する車線4における目標軌道40の形状、及び/又は目標軌道40が存在する場所等に応じた固定値が、EEPROM13に予め記憶されている。
重み係数Qは、横方向誤差ym を減少させるための第1パラメータとして機能し、重み係数Qが大きい場合、演算される補正量が大きくなって実舵角の変化量が大きくなるため、車両挙動は急変するが、横方向誤差ym が速やかに減少する。一方、重み係数Rは、演算される補正量が小さい値になるようにするための第2パラメータとして機能し、重み係数Rが大きい場合、演算される補正量が小さくなって実舵角の変化量が小さくなるため、横方向誤差ym の減少が緩やかになるが、車両挙動の急変が抑制される。
なお、重み係数Q,R夫々は、定数行列に限定されるものではなく、例えば、単なる定数であってもよい。
また、重み係数Q,Rは、固定値に限定されるものではない。
例えば、S11の処理で取得した車両2の車速V、S12の処理で設定した目標軌道40の形状、及び/又は、S13の処理で演算した横方向誤差ym (t)等に基づき、CPU10が、S14の処理を実行する前に、重み係数Q,R夫々を、所定の関数、テーブル等を用いて求めてもよい。つまり、重み係数Q,Rは、時系列的に(換言すれば、S11〜S16の処理を実行する都度)変更可能である。
或いは、式(23)ではなく、下記の式(24)が用いられる構成でもよい。
Figure 2010126077
式(23)と式(24)との差異は、式(23)中の重み係数Q,Rが、式(24)では重み係数Q1 ,…,Qj ,…,QN 及び重み係数R1 ,…,Rj ,…,RNuに変更されている点である。つまり、N個の目標地点401,…,40Nに対応してN個の重み係数Qj が用いられ、Nu 個の補正量Δδ(t),…,Δδ(t+Nu −1)に対応してNu 個の重み係数Rj が用いられる。
N個の重み係数Qj は全てが等しくても一部が等しくても全てが異なっていてもよい。Nu 個の重み係数Rj も同様である。更に、重み係数Qj ,Rj が時系列的に変更可能であってもよい。
次に、重み係数Q,Rの大小(重み係数Q,R夫々が行列である場合、行列を構成する要素夫々の大小)を決定する方法の概要を説明する。
例えば目標軌道40の形状が急カーブである場合、又は車速Vが速い場合、車両2は車線4から逸脱し易いため、車線追従応答性の向上が優先される。従って、重み係数Qは大きめに設定され、重み係数Rは比較的小さく設定される。この場合、図2に示す車両2は、走行軌道441を走行するよう操舵状態が補正される。
一方、目標軌道40の形状が緩やかなカーブである場合、又は車速Vが遅い場合、車両2は車線4から逸脱し難いため、操舵感の向上が優先される。そこで、重み係数Rは大きめに設定され、重み係数Qは比較的小さく設定される。この場合、図2に示す車両2は、走行軌道442を走行するよう操舵状態が補正される。
また、目標軌道40が存在する場所が一般道である場合、車線4の幅が狭いため、車両2は車線4から逸脱し易い。従って、車線追従応答性の向上が優先されて重み係数Qは大きめに設定され、重み係数Rは比較的小さく設定される。
一方、目標軌道40が存在する場所が高速道路である場合、車線4の幅が広いため、車両2は車線4から逸脱し難い。そこで、操舵感の向上が優先されて、重み係数Rは大きめに設定され、重み係数Qは比較的小さく設定される。
つまり、式(23)は、重み係数Q,Rを適切に設定することによって、走行軌道42の走行地点421,…,42Nと、目標軌道40の目標地点401,…,40Nとの横方向誤差ym を減少させるときの走行軌道42を任意に(例えば走行軌道441に、又は走行軌道442に)設定するためのものである。
そして、式(23)に示す評価関数J及び式(21)に示す横方向誤差ym の予測式Ye (t+j)を、夫々ベクトル形式で表すと、次の式(25)に示す評価関数J及び式(26)に示す予測式Ye (t)になる。
Figure 2010126077
更に、式(25)に式(26)を代入すると、次の式(27)が得られる。
Figure 2010126077
式(27)に示されるように、評価関数Jは、補正量ΔU(t)の線形2次形式で表現することができるため、評価関数Jを最小にするための最適な補正量ΔU(t)は、次の式(28)となる。式(28)は、式(27)を補正量ΔU(t)に関して偏微分し、左辺を零ベクトルとして整理したものである。
Figure 2010126077
S13の処理終了後、CPU10は、S13の演算結果と、EEPROM13に記憶してある各種の定数と、式(28)とに基づいて、補正量ΔU(t)を演算する(S14)。
式(28)は、S11にてCPU10が各種センサ31〜35の検出結果の検出結果を取得する都度、取得した検出結果に基づいて、この検出結果を取得した時点(即ち時刻tの時点)以降の車両2の走行軌道を予測するためのものである。ただし、式(28)では、走行軌道42の各走行地点421,…,42Nの座標値、又は走行軌道42の形状を表す関数等が直接的に演算されるわけではない。具体的には、走行軌道42は、目標軌道40の目標地点401,…,40Nからの横方向誤差ym で示される。
また、式(28)は、横方向誤差ym を減少させるべく、車両2の操舵状態を補正するためのNu 個のΔδ(t),…,Δδ(t+Nu −1)を演算するためのものである。
つまり、S14におけるCPU10は、軌道予測手段及び補正量演算手段として機能する。
S14の処理終了後、CPU10は、次の式(29)を用いて、EPS24へ出力すべき出力補正量Δu(t)を演算し(S15)、演算した出力補正量Δu(t)を、EPS24へ出力する(S16)。S15及びS16におけるCPU10は補正量出力手段として機能する。
Figure 2010126077
CPU10がS16の処理を実行することによって、EPS24に出力補正量Δu(t)が与えられる。EPS24は、与えられた出力補正量Δu(t)に基づいて操舵を補助することによって、CPU10が演算した補正量に基づいて車両2の操舵状態を補正する状態補正手段として機能する。
S16の処理完了後、CPU10は、処理をS11へ戻す。
S15で求めた出力補正量Δu(t)(=補正量Δδ(t))は、S14で演算した補正量ΔU(t)の内、区間t〜t+1で車両2に入力される実舵角δ(t)を補正すべき補正量である。つまり、補正量ΔU(t)の最初の1ブロックのみが、実際の制御に適用される。何故ならば、車両2の車両状態及び外乱の影響は、時刻tの時点のものしか考慮できないからである。
なお、補正量Δδ(t+1),…,Δδ(t+Nu −1)を、出力補正量Δu(t)として用いてもよい。しかしながら、現時点からの経過時間が長ければ長いほど、車両2が外乱の影響を受け易くなる。従って、補正量ΔU(t)の最初の1ブロックのみを用いることが最も望ましい。これは、2ブロック目以降の補正量を用いても、外乱によって、目標軌道に追従できない可能性が高くなるためである。
CPU10は、S11〜S16の処理を、所定の単位時間(サンプリングタイム)毎に繰り返し実行する。この結果、単位時間毎に出力補正量Δu(t)がEPS24へ出力される。
この場合、単位時間毎に各種センサ31〜35の検出結果を取得するため、車両2に加えられた外乱の影響も含む車両2の現状を忠実に反映した走行軌道42を予測することができる。また、単位時間毎に画像処理部15から与えられた前方画像に基づき、目標軌道40が新たに設定されるため、目標軌道40を正確に設定することができる。
ここで、車両2に加えられる外乱とは、路面の摩擦力、カント、轍、凹凸、路面μ、及び風の圧力等である。また、車両2の運動をモデル化する場合のモデル化誤差も、外乱として認識することができる。
従って、走行支援装置1は、車両挙動の急変を抑制して、運転者が違和感を覚えない滑らかな操舵感を実現することと、目標軌道40からの横方向誤差ym を速やかに減少させて、車線4からの車両2の逸脱を抑制することとを両立させることができる。
ところで、S11〜S16の処理を繰り返し実行する単位時間は、車載カメラ25及び各種センサ31〜35夫々のサンプリング間隔、CPUのクロック速度等に応じて設定されるものであるが、固定値でもあってもよく、例えば車速Vの変化に応じて変更してもよい。
なお、本実施の形態においては、走行支援装置1から補正量が与えられる状態補正手段としてEPS24を例示したが、これに限定されるものではない。例えば、ステア・バイ・ワイヤ・システム、又は左右駆動力配分システム等に、走行支援装置1から補正量が与えられる構成でもよい。
また、車線4の左右方向中央部に設定されている目標軌道40を例示したが、これに限らず、障害物を迂回するように設定されている目標軌道40でもよい。この場合、車両挙動の急変を抑制して、運転者が違和感を覚えない滑らかな操舵感を実現することと、目標軌道40からの横方向誤差ym を速やかに減少させて、車両が障害物に衝突しないようにすることとを両立させることができる。
また、今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、特許請求の範囲と均等の意味及び特許請求の範囲内での全ての変更が含まれることが意図される。
更に、本発明の効果がある限りにおいて、走行支援装置1に、実施の形態に開示されていない構成要素が含まれていてもよい。
本発明の実施の形態に係る走行支援装置の構成を示すブロック図である。 本発明の実施の形態に係る走行支援装置による走行支援を説明する模式図である。 本発明の実施の形態に係る走行支援装置で実行される走行支援処理の手順を示すフローチャートである。 車両の現時点の走行地点と目標地点との横方向誤差を説明する模式図である。
符号の説明
1 走行支援装置、10 CPU(状態取得手段,軌道予測手段,補正量演算手段,補正量出力手段)、2 車両、31 車速センサ(状態検出手段)、32 ヨーレートセンサ(状態検出手段)、33 横Gセンサ(状態検出手段)、34 方位角センサ(状態検出手段)、35 操舵角センサ(状態検出手段)、40 目標軌道、42 走行軌道、Q,Qj 重み係数(第1パラメータ)、R,Rj 重み係数(第2パラメータ)

Claims (4)

  1. 車両の走行状態及び操舵状態を検出する状態検出手段から検出結果を時系列的に取得する状態取得手段を備え、
    前記車両が走行すべき目標軌道に沿って前記車両を走行させるための走行支援装置において、
    前記状態取得手段が検出結果を取得する都度、前記状態取得手段が取得した検出結果に基づいて、該検出結果を取得した時点以降の前記車両の走行軌道を予測する軌道予測手段と、
    該軌道予測手段が予測した走行軌道を走行した場合に到達するN(NはN≧2の自然数)個の走行地点と、前記目標軌道を走行した場合に到達し、前記N個の走行地点に時間的に対応するN個の目標地点との前記車両の横方向誤差を減少させるべく、前記車両の操舵状態を補正するための補正量をNu (Nu は2≦Nu ≦Nの自然数)個演算する補正量演算手段と、
    該補正量演算手段が演算した補正量に基づいて前記車両の操舵状態を補正する状態補正手段へ、前記補正量を出力する補正量出力手段と
    を備えることを特徴とする走行支援装置。
  2. 前記補正量演算手段は、前記横方向誤差を減少させるための第1パラメータと、前記補正量演算手段によって演算される補正量が小さい値になるようにするための第2パラメータとを用いるようにしてあることを特徴とする請求項1に記載の走行支援装置。
  3. 前記補正量演算手段は、前記第1パラメータを、N個の目標地点に対応してN個用いるようにしてあり、前記第2パラメータを、演算すべきNu 個の補正量に対応してNu 個用いるようにしてあることを特徴とする請求項2に記載の走行支援装置。
  4. 前記補正量演算手段は、前記第1パラメータ及び第2パラメータ夫々を時系列的に変更可能にしてあることを特徴とする請求項2又は3に記載の走行支援装置。
JP2008304884A 2008-11-28 2008-11-28 走行支援装置 Expired - Fee Related JP5593606B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304884A JP5593606B2 (ja) 2008-11-28 2008-11-28 走行支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304884A JP5593606B2 (ja) 2008-11-28 2008-11-28 走行支援装置

Publications (2)

Publication Number Publication Date
JP2010126077A true JP2010126077A (ja) 2010-06-10
JP5593606B2 JP5593606B2 (ja) 2014-09-24

Family

ID=42326740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304884A Expired - Fee Related JP5593606B2 (ja) 2008-11-28 2008-11-28 走行支援装置

Country Status (1)

Country Link
JP (1) JP5593606B2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202139A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 運転操作支援装置及び運転操作支援方法
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2017027354A (ja) * 2015-07-22 2017-02-02 本田技研工業株式会社 経路生成装置、経路生成方法、および経路生成プログラム
JP2017077849A (ja) * 2015-10-22 2017-04-27 本田技研工業株式会社 車両走行制御装置
JP2017144759A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 車両制御装置
JP2018008550A (ja) * 2016-07-11 2018-01-18 株式会社デンソー 操舵制御装置
JP2018531385A (ja) * 2016-07-21 2018-10-25 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC 自律走行車を運行させるための制御エラー補正計画方法
JP6430087B1 (ja) * 2018-03-23 2018-11-28 三菱電機株式会社 経路生成装置、および、車両制御システム
CN109311509A (zh) * 2016-06-21 2019-02-05 三菱电机株式会社 车辆驾驶支援装置及车辆驾驶支援方法
JP2020054319A (ja) * 2018-10-04 2020-04-09 株式会社クボタ 作業車両
WO2020129722A1 (ja) * 2018-12-20 2020-06-25 株式会社クボタ 自動走行作業車のための制御装置
WO2020256035A1 (ja) * 2019-06-20 2020-12-24 ヤンマーパワーテクノロジー株式会社 作業車両用の自動走行システム
US11148665B2 (en) 2015-10-30 2021-10-19 Hitachi Automotive Systems, Ltd. Vehicular motion control device and method
WO2022085042A1 (ja) * 2020-10-19 2022-04-28 三菱電機株式会社 経路生成装置および走行支援制御装置
JP7154340B1 (ja) 2021-04-16 2022-10-17 三菱電機株式会社 経路生成装置及び走行支援制御装置
JP7333763B2 (ja) 2020-02-12 2023-08-25 株式会社Subaru 制御装置、制御方法およびプログラム
JP7333764B2 (ja) 2020-02-12 2023-08-25 株式会社Subaru 制御装置、制御方法およびプログラム
US11958528B2 (en) 2020-09-24 2024-04-16 Subaru Corporation Vehicle control apparatus and vehicle control method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197423A (ja) * 1992-01-17 1993-08-06 Honda Motor Co Ltd 移動体の制御装置
JPH06300580A (ja) * 1993-04-15 1994-10-28 Fuji Heavy Ind Ltd 車輛の軌道追従制御装置
JP2001134320A (ja) * 1999-11-01 2001-05-18 Honda Motor Co Ltd 車線追従制御装置
JP2005132194A (ja) * 2003-10-30 2005-05-26 Aisin Seiki Co Ltd 車両のレーン走行支援装置
JP2005170327A (ja) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd 車両用自動操舵制御装置
JP2006076386A (ja) * 2004-09-08 2006-03-23 Toyota Motor Corp 車輌用操舵制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05197423A (ja) * 1992-01-17 1993-08-06 Honda Motor Co Ltd 移動体の制御装置
JPH06300580A (ja) * 1993-04-15 1994-10-28 Fuji Heavy Ind Ltd 車輛の軌道追従制御装置
JP2001134320A (ja) * 1999-11-01 2001-05-18 Honda Motor Co Ltd 車線追従制御装置
JP2005132194A (ja) * 2003-10-30 2005-05-26 Aisin Seiki Co Ltd 車両のレーン走行支援装置
JP2005170327A (ja) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd 車両用自動操舵制御装置
JP2006076386A (ja) * 2004-09-08 2006-03-23 Toyota Motor Corp 車輌用操舵制御装置

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202139A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 運転操作支援装置及び運転操作支援方法
JP2016146061A (ja) * 2015-02-06 2016-08-12 国立研究開発法人農業・食品産業技術総合研究機構 走行制御装置
JP2017027354A (ja) * 2015-07-22 2017-02-02 本田技研工業株式会社 経路生成装置、経路生成方法、および経路生成プログラム
JP2017077849A (ja) * 2015-10-22 2017-04-27 本田技研工業株式会社 車両走行制御装置
US11148665B2 (en) 2015-10-30 2021-10-19 Hitachi Automotive Systems, Ltd. Vehicular motion control device and method
JP2017144759A (ja) * 2016-02-15 2017-08-24 三菱電機株式会社 車両制御装置
DE112016006989T5 (de) 2016-06-21 2019-02-28 Mitsubishi Electric Corporation Fahrzeugfahrt-assistenzvorrichtung und fahrzeugfahrt-assistenzverfahren
CN109311509A (zh) * 2016-06-21 2019-02-05 三菱电机株式会社 车辆驾驶支援装置及车辆驾驶支援方法
US20190210598A1 (en) * 2016-06-21 2019-07-11 Mitsubishi Electric Corporation Vehicle driving assistance apparatus and vehicle driving assistance method
CN109311509B (zh) * 2016-06-21 2021-05-11 三菱电机株式会社 车辆驾驶支援装置及车辆驾驶支援方法
JP2018008550A (ja) * 2016-07-11 2018-01-18 株式会社デンソー 操舵制御装置
JP2018531385A (ja) * 2016-07-21 2018-10-25 バイドゥ・ユーエスエイ・リミテッド・ライアビリティ・カンパニーBaidu USA LLC 自律走行車を運行させるための制御エラー補正計画方法
JP6430087B1 (ja) * 2018-03-23 2018-11-28 三菱電機株式会社 経路生成装置、および、車両制御システム
CN111868801A (zh) * 2018-03-23 2020-10-30 三菱电机株式会社 路径生成装置及车辆控制系统
WO2019180919A1 (ja) * 2018-03-23 2019-09-26 三菱電機株式会社 経路生成装置、および、車両制御システム
JP7106418B2 (ja) 2018-10-04 2022-07-26 株式会社クボタ 作業車両
JP2020054319A (ja) * 2018-10-04 2020-04-09 株式会社クボタ 作業車両
JP2020099226A (ja) * 2018-12-20 2020-07-02 株式会社クボタ 自動走行作業車のための制御装置
WO2020129722A1 (ja) * 2018-12-20 2020-06-25 株式会社クボタ 自動走行作業車のための制御装置
JP7072496B2 (ja) 2018-12-20 2022-05-20 株式会社クボタ 自動走行作業車のための制御装置
US11937526B2 (en) 2018-12-20 2024-03-26 Kubota Corporation Control device for work vehicle configured to travel autonomously
WO2020256035A1 (ja) * 2019-06-20 2020-12-24 ヤンマーパワーテクノロジー株式会社 作業車両用の自動走行システム
JP7333763B2 (ja) 2020-02-12 2023-08-25 株式会社Subaru 制御装置、制御方法およびプログラム
JP7333764B2 (ja) 2020-02-12 2023-08-25 株式会社Subaru 制御装置、制御方法およびプログラム
US11958528B2 (en) 2020-09-24 2024-04-16 Subaru Corporation Vehicle control apparatus and vehicle control method
WO2022085042A1 (ja) * 2020-10-19 2022-04-28 三菱電機株式会社 経路生成装置および走行支援制御装置
JP7154340B1 (ja) 2021-04-16 2022-10-17 三菱電機株式会社 経路生成装置及び走行支援制御装置
JP2022164165A (ja) * 2021-04-16 2022-10-27 三菱電機株式会社 経路生成装置及び走行支援制御装置

Also Published As

Publication number Publication date
JP5593606B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5593606B2 (ja) 走行支援装置
JP6055525B1 (ja) 車両の走行制御装置
JP6237256B2 (ja) 車速制御装置
CN109760677B (zh) 一种车道保持辅助方法及系统
US9090285B2 (en) Method for providing a lanekeeping assistance based on modifying mechanical sources of steering torques
US9610976B2 (en) Lane departure prevention control system for vehicle
JP4835054B2 (ja) 車両安定化制御システム
US20150274164A1 (en) Lane deviation prevention control apparatus of vehicle
KR20180063199A (ko) 장애물과의 충돌이 임박한 경우에 자동차의 조향 수단을 제어하기 위한 시스템
JP6315107B2 (ja) 目標経路生成装置および走行制御装置
JP7193408B2 (ja) 車両制御装置
JP2007022169A (ja) 車両制御装置およびカント状態判定方法
JP6579699B2 (ja) 車両の走行制御装置
JP2006236238A (ja) 車両のレーン走行支援装置
US20180037234A1 (en) Method and device for estimating the friction values of a wheel of a vehicle against a substrate
JPWO2018047292A1 (ja) 車両の走行制御方法および走行制御装置
US9771068B2 (en) Running-support system and running-support method
JP5380860B2 (ja) 車線維持支援装置及び車線維持支援方法
JP2009208602A (ja) 車線維持支援装置及び車線維持支援方法
JP2004189177A (ja) 車両用運転操作補助装置およびその装置を備える車両
JP6317972B2 (ja) 車両の車線逸脱防止制御装置
JP2020164061A (ja) 車両制御装置
JP5282590B2 (ja) 車両用運転支援装置および車両用運転支援方法
JP6288305B2 (ja) 目標車速生成装置および走行制御装置
JP5326778B2 (ja) 車両の自動操舵制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5593606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees