JP2010117356A - センサ信号を補償するためのシステム及び方法 - Google Patents

センサ信号を補償するためのシステム及び方法 Download PDF

Info

Publication number
JP2010117356A
JP2010117356A JP2009259487A JP2009259487A JP2010117356A JP 2010117356 A JP2010117356 A JP 2010117356A JP 2009259487 A JP2009259487 A JP 2009259487A JP 2009259487 A JP2009259487 A JP 2009259487A JP 2010117356 A JP2010117356 A JP 2010117356A
Authority
JP
Japan
Prior art keywords
signal
vehicle
sensor
wheel
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009259487A
Other languages
English (en)
Inventor
Hsiencheng Wu
シェンチェン・ウー
Qingyuan Li
チンユアン・リー
Daniel Patient
ダニエル・ペイシェント
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2010117356A publication Critical patent/JP2010117356A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/50Devices characterised by the use of electric or magnetic means for measuring linear speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/174Using electrical or electronic regulation means to control braking characterised by using special control logic, e.g. fuzzy logic, neural computing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • B60T8/17551Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve determining control parameters related to vehicle stability used in the regulation, e.g. by calculations involving measured or detected parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/04Vehicle reference speed; Vehicle body speed

Abstract

【課題】センサ信号を補償する。
【解決手段】第1のセンサ110は、車両の第1の条件に対応する第1の信号を生成するように構成される。第2のセンサ115は、車両の第2の条件に対応する第2の信号を生成するように構成される。ファジィ論理モジュール120は、少なくとも第2の信号の信号安定性に基づいて、第1の組の値を出力するように構成される。カルマンフィルタモジュール125は、第1の組の値及び第1の信号を受信すると共に、少なくとも該第1の組の値及び該第1の信号に基づいてセンサ補償信号を推定する。
【選択図】図2

Description

本発明は、車両の電子安定制御(「ESC」)システム又は電子安定プログラム(「ESP」)内のセンサ信号を補償することに関する。
ESCシステムを備える車両は、いくつかのセンサを利用して、車両の現在の「状態」を推定する。ESCシステムセンサは、情報を生成し、その情報をESCシステムの電子制御ユニット(「ECU」)に送信する。ESCシステムセンサは、たとえば、ハンドル角センサ、ヨーレートセンサ、横加速度センサ及び車輪速度センサを含む。ESUは、車両の安定性又は運転者の車両制御に影響を及ぼす可能性がある状況を検出する。ESCシステムは、アンチロックブレーキ、トラクションコントロールのような、車両内の種々のシステム及び機能を制御することができる。ESCシステムの制御アルゴリズムが、運転者の入力信号を車両の応答(たとえば、ESC内のセンサから求められるような車両の状態)と比較する。
車両の不具合を修正し、制御及び安定性を維持するためにESCシステムによって用いられるセンサは、車両の環境によって外乱を受けることがあるか、又は誤りを生じることがある。たとえば、車両が坂を上っているか、坂を下っているか、又は凹凸のある地形の上を走行している場合に、センサ(さらに詳細には、それらのセンサが提供する情報)が外乱を受けることがあるか、又は誤りを生じることがある。結果として、センサは、ECUに、車両の状態を正確に表していない信号を与え、それにより、車両の性能、安定性及び安全性が影響を及ぼされることがある。
ESCシステムに関して上記で言及された欠陥に鑑みて、車両の環境に関連する外乱に対してセンサ信号を補償するためのシステム及び方法が必要とされている。
一実施の形態では、ECUは、1つには、車両の絶対縦速度のための値を用いて車両の「状態」を求める。車両の絶対縦速度は、たとえば、車両が横滑りしているか、又はスリップしている時点を判定するために必要である。しかしながら、車両が坂を上っているか、坂を下っているか、又は凹凸のある地形の上を走行している場合には、車両の絶対縦速度の値に誤りが生じている場合があり、車輪速度センサからの測定された車両速度は、車両の絶対縦速度を反映していない場合がある。また、ESCシステムは、車両の縦加速度を測定する加速度センサを備える場合もある。車両の縦速度と同様に、車両の縦加速度も、車両の環境によって誤りが生じていることがある。縦加速度センサオフセットを推定し、それを用いて、ESCシステムに入力されるセンサ信号が補償される。
車両の縦加速度センサオフセット及び絶対縦速度を正確に推定するために、このシステムは、車輪速度センサからの複数の車輪速度信号、縦加速度センサ、ファジィ論理モジュール及びカルマンフィルタモジュールを用いる。車輪速度センサは、車両の車輪の速度を表す信号を与える。車輪速度信号は処理され、その後、各車輪速度信号の一次導関数及び二次導関数(たとえば、車輪加速度及び車輪ジャーク信号)と共に、ファジィ論理ユニットに与えられる。ファジィ論理ユニットは、それらの信号を用いて、車輪毎の車輪安定確率を求めると共に、複数のカルマンフィルタ利得係数を計算する。車輪安定確率及びカルマンフィルタ利得係数はカルマンフィルタモジュールに送信され、カルマンフィルタモジュールは、その車両のための加速度センサオフセット及び絶対縦速度を推定する。加速度センサオフセットを、誤りを生じている加速度センサ信号と組み合わせて、補償済み加速度センサ信号が生成される。車両の補償済み加速度センサ信号及び推定された絶対縦速度は、ESCシステムのECUに送信される。
別の実施の形態において、本発明は、第1のセンサと、第2のセンサと、ファジィ論理モジュールと、カルマンフィルタモジュールとを備える、車両センサ信号を補償するためのシステムを提供する。第1のセンサは、車両の第1の条件に対応する第1の信号を生成する。第2のセンサは、車両の第2の条件に対応する第2の信号を生成するように構成される。ファジィ論理モジュールは、少なくとも第2の信号の信号安定性に関連する第1の組の値を出力するように構成される。カルマンフィルタモジュールは、第1の組の値及び第1の信号を受信すると共に、少なくとも該第1の組の値及び該第1の信号に基づいてセンサ補償信号を推定するように構成される。
別の実施の形態において、本発明は、センサ信号を補償する方法を提供する。該方法は、車両の第1の条件に対応する第1の信号を生成すること、及び車両の第2の条件に対応する第2の信号を生成することを含む。ファジィ論理モジュールが、少なくとも第2の信号を受信し、少なくとも該第2の信号の信号安定性に基づいて、第1の組の値を出力する。該方法はまた、カルマンフィルタモジュールにおいて、第1の組の値及び第1の信号を受信すること、及び少なくとも該第1の組の値及び該第1の信号に基づいてセンサ補償信号を推定することも含む。
さらに別の実施の形態において、本発明は、車両内のセンサ信号を補償するためのシステムを提供する。該システムは、第1のセンサと、第2のセンサと、ファジィ論理モジュールと、カルマンフィルタモジュールとを備える。加速度センサは、車両の第1の加速度に対応する加速度信号を生成するように構成される。車輪速度センサは、車両の第1の車輪速度に対応する第1の車輪速度信号を生成するように構成される。ファジィ論理モジュールは、少なくとも第1の車輪速度信号の信号安定性に対応する第1の組の値を出力するように構成される。カルマンフィルタモジュールは、第1の組の値及び加速度信号を受信すると共に、少なくとも該第1の組の値及び該加速度信号を用いて、加速度センサ補償信号を推定するように構成される。
本発明の他の態様は、詳細な説明及び添付の図面を検討することによって明らかになるであろう。
電子安定制御(「ESC」)システムを備える車両を示す。 センサ信号を補償するためのシステムを示す。 本発明の一実施形態によるファジィ論理ユニットを示す。 センサ信号補償システムの状態図を示す。 ファジィ変数「小さい」の場合のファジィプロットの図である。 ファジィ変数「最も小さい」の場合のファジィプロットの図である。 2つの車輪ジャーク値間の相対的な距離に関連付けられるファジィプロットの図である。 ファジィ変数「小さい」の場合のファジィプロットの図である。 ファジィ変数「近い」の場合のファジィプロットの図である。 ファジィ変数「近い」の場合のファジィプロットの図である。 ファジィ変数「最も近い」の場合のファジィプロットの図である。 2つの車輪速度値間の相対的な距離に関連付けられるファジィプロットの図である。
本発明の任意の実施の形態を詳細に説明する前に、本発明が、その応用形態において、詳細な説明において説明されるか、又は添付の図面において示される構成の細部及び構成要素の配置に限定されないことを理解されたい。本発明は、他の実施形態を行うことが可能であり、種々の方法で実践又は実行することができる。
図1は、電子安定制御(「ESC」)モジュール15と、複数のセンサ20と、複数のアクチュエータ25とを備える車両10を示す。複数のセンサ20は、たとえば、車輪速度、加速度、ドリフト等のような車両10の種々の条件を検知するセンサを含む。例示される実施形態では、アクチュエータ25は、たとえば、ブレーキシステムにおいてブレーキをかけるために圧力を加える油圧ポンプである。センサ20は、特に、油圧ポンプによってブレーキに加えられる圧力、車輪速度及び縦加速度を検知する。本発明の他の実施形態では、付加的な、又は異なるESCサブシステム、センサ及びアクチュエータを用いることができる。
ESCモジュール15は、センサ情報を用いて、車両10の性能、安定性及び安全性を維持又は改善するために取るべき行動を判定する。しかしながら、ESCモジュール15に結合されるセンサ20は、誤り及び/又は雑音の影響を受けやすい。たとえば、ESCモジュール15は、車両10の絶対縦速度の正確な推定又は計算を必要とする。車両10の絶対縦速度は必ずしも車輪の速度に等しいとは限らないので(たとえば、車輪が横滑りしているか、又はスリップしているとき)、結果として、ESCモジュール15によって行なわれる判定に誤りが生じる可能性がある。白色雑音及びセンサ電源変動も、ESCモジュール15によって行なわれる判定にさらに別の誤りを導入する可能性があるので、それらの誤りは補償されなければならない。
図2は、センサ信号補償システム100を示す。センサ信号補償システム100は、コンバイナ105と、第1のセンサ110と、第2のセンサ115と、ファジィ論理ユニット120と、カルマンフィルタモジュール125とを備える。第1のセンサ110は、一実施形態では、縦加速度センサである。一実施形態では、加速度センサ110は、車両の縦加速度を表す信号を出力するように構成される。いくつかの実施形態において、車両10が平らな地面(すなわち、傾いていない地面)の上を走行している場合には、加速度センサは0に等しい値を出力する。車両10が、上向きの傾斜を含む(たとえば、20%の傾斜がある)地面の上を走行している場合には、加速度センサは、0に等しくない信号を出力する。
車両の全加速度は、垂直加速度ベクトルと、縦加速度ベクトルと、横加速度ベクトルとの和である。説明の目的上、本明細書では、車両の加速度は、縦加速度成分に関して説明される。しかしながら、センサ信号補償システム100は、車両10の他のベクトル成分又は条件にも適用することができる。上記のように、車両10が平らな地面(すなわち、傾いていない地面)の上にあるとき、縦加速度センサオフセットは0に等しい。車両10が傾いている場合には、縦加速度センサ110によって測定される縦加速度は、2つの成分、すなわちその傾斜に対して垂直な成分と、その傾斜に対して平行な成分とのベクトル和である。加速度センサが受けるオフセットは、重力に起因する加速度に、その傾斜の正弦(度又はラジアン単位)を乗算した値に概ね等しい。たとえば、20%の傾斜は、18度の傾斜に概ね等しい。18度傾いている結果として、推定される加速度センサオフセットは、以下に示される値に概ね等しくなる。ただし、g=9.81m/sである。
(g)・sin(18度)=3.03m/s
20%の下向きの傾斜を有する地面の上を走行している車両10の場合にも同様の推定を行なうことができるが、その傾斜の角度は−18度に概ね等しく、それゆえ、加速度センサオフセットは18度の傾斜の場合の符号反転である。加速度センサオフセットは、その傾斜に平行である車両加速度成分に関連付けられる。
第2のセンサ115は、一実施形態では、車輪速度センサであり、車両の車輪に関連する車輪速度信号を与える。車輪速度センサを用いて、車両10の車輪毎の(たとえば、4輪それぞれの)車輪速度信号を与えることができる。第2のセンサ115からの車輪速度信号は、ソフトウエアモジュール(図示せず)によって処理され、その後、ファジィ論理ユニットに出力される。そのソフトウエアモジュールは、車両10の車輪毎の車輪速度信号を受信し、車輪速度信号の一次導関数を取ることによって車輪加速度信号を計算し、且つ車輪速度信号の二次導関数を取ることによって車輪ジャーク信号を計算する。そのソフトウエアモジュールは、ファジィ論理ユニット120に対して、車両10の車輪毎の車輪速度信号、車輪毎の加速度信号、及び車輪毎の車輪ジャーク信号を出力する。
ファジィ論理ユニット120は、車両10の各車輪に関連する車輪速度信号、車輪加速度信号及び車輪ジャーク信号を受信する。ファジィ論理ユニット120は、それらの信号を用いて、車両10の車輪毎の車輪安定確率を計算する。1組の車輪安定確率がカルマンフィルタモジュールに出力される。車輪安定確率は、車輪毎に受信される信号の推定される信頼性に相当する変数である。言い換えると、車輪安定確率は、或る車輪速度信号が車両10の絶対縦速度を推定するために用いられるのに適している確率の計算値である。ファジィ確率の値は、以下で説明されるように、特に、センサ信号の安定性、不確定性推定、及び車両10の運転状況に依存する。
図3は、ファジィ論理ユニット120を示す。ファジィ論理ユニット120は、高優先度適応ファジィ集合モジュール200、低優先度適応ファジィ集合モジュール205、運転状況モジュール210、非線形フィルタリングモジュール215、ファジィ演算モジュール220、不確定性推定モジュール225、及びフィルタ利得モジュール230を備える。高優先度適応ファジィ集合モジュール200は、入力信号(たとえば、車輪速度信号、車輪加速度信号及び車輪ジャーク信号)を受信し、それらの入力信号を用いて、車輪の安定性を解析する。高優先度適応ファジィ集合モジュール200は、それらの入力信号を用いて、強い高忠実度ファジィ集合を生成する。強いファジィ集合は、車輪安定性の解析に最も大きな影響を及ぼすファジィ集合である。
低優先度適応ファジィ集合モジュール205は、車輪加速度信号、推定されたモデル誤差信号、及びモデルに基づく車両加速度信号のような入力信号を受信する。モデルに基づく車両加速度信号は、地面の上の車両の加速度を表しており、たとえば、エンジントルク及び車輪圧力に関連する信号に基づく。推定されたモデル誤差信号は、モデルに基づく車輪加速度から導出される推定値を表す。低優先度適応ファジィ集合モジュール205は、これらの入力信号を用いて、低優先度ファジィ集合を生成し、これは高優先度適応ファジィ集合モジュールによって生成された優先度が高いファジィ集合と組み合わせて用いられる。
非線形フィルタリングモジュール215は、高優先度適応ファジィ集合モジュールの各入力信号に(たとえば、車輪加速度、車輪ジャーク等)に重み又は重要度を関連付けるように構成され、運転状況モジュール210は、車両の運転状態を特定するように構成される。たとえば、一実施形態では、運転状況モジュール210は、車両10の運転状態が、(1)加速中であるか、(2)減速中であるか、又は(3)未知であるかを特定するように構成される。
不確定性推定モジュール225は、長時間にわたる車輪安定確率の不確定性に関連する信号をファジィ演算モジュール220に与え、その信号によって、センサ信号補償システム100は、異常な、又は極めて不安定な車輪速度信号を補償できるようになる。たとえば、車輪速度センサから受信された信号が、極めて信頼性がないことを示す場合には、ファジィ演算モジュール220は、車輪速度信号の代わりに、不確定性推定信号を用いて、車輪安定確率を求める。本発明の一実施形態の場合にファジィ演算モジュールによって実行される演算に関して、車輪速度信号の信頼性及び不安定性が以下で詳細に説明される。
ファジィ演算モジュール220は、重み付けされた高優先度ファジィ集合、低優先度ファジィ集合、不確定性推定信号、運転状況信号を用いて、車輪毎の車輪安定確率を計算する。車輪安定確率を求めるために用いられるファジィ演算の例(すなわち、ファジィ論理試験)が以下に与えられると共に説明される。たとえば、不安定な車輪速度信号は、大きな絶対値の車輪ジャーク(すなわち、車輪速度信号の二次導関数)を有する。車輪ジャークの絶対値が大きいか否かを判定するためにファジィ演算モジュールにおいて実行されるファジィ試験の一例が、試験#1として以下に与えられる。
Figure 2010117356
説明される例として、車両10の車輪毎の車輪ジャークの値が表#1において以下に与えられる値であると仮定する。
Figure 2010117356
試験#1のライン1のための言語値が図5Aを用いて求められ、図5Aは、ファジィ変数「小さい」の場合のファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。試験#1のライン1のための言語値は、車輪毎の車輪ジャークの値を「小さい」演算子のためのファジィプロットの値と関連付けることによって、車両10の車輪毎に求められる。0m/sと15m/sとの間の車輪ジャークは1.000の値を有する。150m/s以上の車輪ジャークは約0.000の値を有する。
車両の車輪毎の対応するファジィ出力推定値が表#2において以下に与えられる。本発明のこの実施形態では、各ファジィ出力推定値は小数第3位まで推定される。150m/sよりも大きな車輪ジャーク値は、0.000の値を割り当てられる。15m/sと150m/sとの間の車輪ジャーク値の場合、線形補間を用いて、ファジィ出力推定値の言語値が求められる。試験#1のライン1を用いて、車両10の車輪の中で最も低い車輪ジャークに対応するファジィ出力推定値が求められる。説明される例では、試験#1のライン1の出力は1.000であり、それは左前輪のファジィ出力推定値に対応する。
Figure 2010117356
試験#1のライン2のための言語値が図5Bを用いて求められ、図5Bは、ファジィ変数「最も小さい」の場合のファジィプロットを示す。Kx1及びKy1は、車両の特性及びESCモジュール15の特性に基づく所定の値である。例示される実施形態では、Kx1は0.936に等しく、Ky1は0.1に等しい。試験#1のライン2のための言語値は、車輪毎の車輪ジャークの絶対値をファジィ変数「最も小さい」の場合のファジィプロットの値と関連付けることによって、車両の車輪毎に求められる。
車輪ジャークの最も小さな絶対値は、1.000のファジィ出力推定値を割り当てられ、車輪ジャークの最も大きな絶対値は、0.000のファジィ出力推定値を割り当てられる。ファジィ演算子「最も小さい」のプロットは、点(Kx1 (MAX(x)−MIN(x)),Ky1)において交わる異なる傾きの2本のラインを含む。車両の車輪毎の対応するファジィ出力推定値が、表#3において以下に与えられる。
Figure 2010117356
試験#1のライン3のための言語値が図5Cを用いて求められ、図5Cは、2つの車輪ジャーク値間の相対的な距離に関連付けられるファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。試験#1のライン3のための言語値は、車輪ジャークの最も大きな値と車輪ジャークの最も小さな値との間の差を用いて、車両の車輪毎に求められる。例示される実施形態では、車輪ジャークの最も大きな値と車輪ジャークの最も小さな値との間の差は以下のように与えられる。
200m/s−7m/s=193m/s
車両の車輪毎の対応するファジィ出力値は0.044である。その後、試験#1の場合のライン1、2及び3のためのファジィ出力推定値は、試験#1からのファジィ演算子に従って組み合わせられる。ファジィ演算子「OR」は以下のように与えられる。
=OR(x,x
=γ・MAX(x,x)+(1−γ)・(x+x)/2
試験#1の例示される実施形態の場合、γ=0.95、x=1.000(左前輪の場合のライン2のファジィ出力推定値)及びx=0.044(ライン3のファジィ出力推定値)である。yの値は0.976であると計算され、「AND」演算の入力xになる。ファジィ変数「AND」は以下のように与えられる。
=AND(x,x
=γ・MIN(x,x)+(1−γ)・(x+x)/2
試験#1の例示される実施形態の場合、γ=0.8、x=1.000(左前輪の場合のライン1のファジィ出力)及びx=0.976(OR演算の結果)である。yの値は、0.977であると計算される。車両の車輪毎に、同じように計算を実行することができる。車両の車輪毎の試験#1の結果が、表#4において以下に与えられる。試験#1の結果が1.000の値に近くなるほど、車輪速度信号の信頼性が高くなる。
Figure 2010117356
試験#1に基づいて、左前輪が最も信頼性が高く(すなわち、1.000に最も近く)、右前輪が2番目に信頼性が高く、左後輪が3番目に信頼性が高く、右後輪が最も信頼性が低い。それゆえ、試験#1に基づいて、左前輪が、加速度センサオフセットを計算するために用いられるのに最も適している車輪速度信号を与える。
また、不安定な車輪は、大きな絶対値の車輪加速度を有する。車輪加速度の絶対値が大きいか否かを判定するためのファジィ試験が試験#2として以下に与えられる。
Figure 2010117356
試験#2は、上記の試験#1と同じようにして数値計算することができる。試験#2のライン1のための言語値が図5Dを用いて求められ、図5Dは、ファジィ変数「小さい」の場合のファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。記述される実施形態では、Kx1=4.2m/s及びKx2=6.0m/sである。試験#2のライン1のための言語値は、車両10の車輪毎の車輪加速度の値をファジィ変数「小さい」の場合のファジィプロットの値と関連付けることによって、車両の車輪毎に求められる。0.0m/sと4.2m/sとの間の車輪加速度は1.000の値を有する。6m/s以上の車輪加速度は約0.000の値を有する。
また、不安定な車輪信号は、車輪加速度と車両モデル加速度との間に大きな偏差を有する。車輪加速度と車両モデル加速度との間に大きな偏差があるか否かを判定するためのファジィ試験が、試験#3として以下に与えられる。
Figure 2010117356
試験#3は、上記の試験#2と同じようにして数値計算することができる。試験#3のライン1のための言語値が図5Eを用いて求められ、図5Eは、ファジィ変数「近い」の場合のファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。記述される実施形態では、Kx1=0.45m/s及びKx2=3.0m/sである。試験#3のライン1のための言語値は、車輪毎の車輪加速度の値をファジィ変数「近い」の場合のファジィプロットの値と関連付けることによって、車両の車輪毎に求められる。車両モデル加速度の0.45m/s内にある車両加速度は、1.000のファジィ出力推定値を有する。0.45m/sよりも大きいが、車両モデル加速度から3.0m/s未満しか離れていない車両加速度は、線形補間を用いて求めることができるファジィ出力推定値を有する。車両モデル加速度から3.0m/sよりも大きく離れている車両加速度は、0.000に概ね等しいファジィ出力推定値を有する。
対照的に、安定した車輪では、車両10の車輪速度信号と推定される絶対縦速度との間の差が小さい。車両10の車輪速度信号と推定される絶対縦速度との間の差が小さいか否かを判定するためのファジィ試験が試験#4として以下に与えられる。
Figure 2010117356
試験#4は、上記の試験#1と同じようにして数値計算することができる。試験#4のライン1のための言語値が図5Fを用いて求められ、図5Fは、ファジィ変数「近い」の場合のファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。記述される実施形態では、Kx1=0.1m/s及びKx2=1.7m/sである。試験#4のライン1のための言語値は、車輪毎の車輪速度の値をファジィ変数「近い」の場合のファジィプロットの値と関連付けることによって、車両の車輪毎に求められる。推定された車両速度の0.1m/s内にある車両速度は、1.000のファジィ出力推定値を有する。0.1m/sよりも大きいが、推定された車両速度から1.7m/s未満しか離れていない車両速度は、線形補間を用いて求めることができるファジィ出力推定値を有する。推定された車両速度から1.7m/sよりも大きく離れている車両速度は、0.000に概ね等しいファジィ出力推定値を有する。
試験#4のライン2のための言語値が、図5Gを用いて求められ、図5Gは、ファジィ変数「最も近い」を計算するために用いられるファジィプロットを示す。Ky1は、車両の特性及びESCモジュール15の特性に基づく値を有する。Kx1は、車輪速度信号のMAX値及びMIN値に依存する値を有する。例示される実施形態では、Ky1は、0.2に等しい。試験#4のライン2のための言語値が、車輪毎の車輪速度の値をファジィ変数「最も近い」の場合のファジィプロットの値と関連付けることによって、車両の車輪毎に求められる。
試験#4のライン3のための言語値が図5Hを用いて求められ、図5Hは、2つの車輪速度値間の相対的な距離に関連付けられるファジィプロットを示す。Kx1及びKx2は、車両の特性及びESCモジュール15の特性に基づく所定の値である。記述される実施形態では、Kx1=0.1m/s及びKx2=0.4m/sである。試験#4のライン3のための言語値は、車輪速度の最も大きな値と車輪速度の最も小さな値との間の差を用いて、車両の車輪毎に求められる。
ファジィ試験2〜4の各結果は、必要に応じて「AND」ファジィ演算子及び「OR」ファジィ演算子を用いて、上記の試験#1と同じようにして計算することができる。各試験の結果の組み合わせに基づいて、ファジィ論理ユニット120は、車両10の各車輪に関連付けられる、車輪速度信号、車輪加速度信号、及び車輪ジャーク信号のための1組のファジィ値を計算する。その後、各車輪に対応する1組のファジィ値を用いて、車輪毎の車輪速度センサ信号の安定性に対応する車輪安定確率を計算する。車輪安定確率は、個別に、又は1組の値として、カルマンフィルタモジュール125に出力される。他の実施形態では、さらに多くのファジィ試験又は異なるファジィ試験が実行され、それを用いて、車輪安定確率が求められる。
個々の車輪速度信号の不安定の度合いが高くなるほど、その車輪のための車輪安定確率が小さくなる。本発明の一実施形態では、128のファジィ値を用いて、車輪速度信号の不安定の度合いが0であることを指示する。108のような、それよりも低い値は、その車輪速度センサからの信号がかなり不安定であることを指示する。代替的には、ファジィ値を128で除算して、ファジィ値の小数表現を生成することができる(たとえば、108/128=0.8438)。
表5〜表8(以下に示す)は、20%傾斜まで加速する試験車両の4つの車輪(たとえば、右前輪、左前輪、右後輪、左後輪)毎の実際のファジィ集合を例示する。車輪毎のファジィ集合又は1組のファジィ値は、1組の9個の値又は計算値を含むものとして示される。車輪速度(1)は、車輪毎の個々の車輪速度センサによって測定される。車輪ジャーク(2)、車輪加速度(3)及び車輪速度(5)のためのファジィ値は、図3に関して上記で説明されたファジィ組み合わせモジュールによって求められる。車輪安定確率(9)は、車輪毎の車輪速度信号が安定している尤度を表す数値表現であり、ライン(4)及び(7)の和を、車輪速度信号の最も小さな不安定度を表す値、すなわち128で除算することによって計算される。約1の車輪安定確率は、極めて信頼性が高い車輪速度信号を指示する。車輪速度信号の信頼性は、カルマンフィルタ利得係数を選択するために、フィルタ利得モジュール230(以下で説明される)によって用いられる。
Figure 2010117356
Figure 2010117356
Figure 2010117356
Figure 2010117356
フィルタ利得モジュール230は、ファジィ演算モジュール220からの出力信号を受信する(たとえば、車輪毎の車輪安定確率)。フィルタ利得モジュール230は、車輪速度信号の安定性に基づいて、1組のカルマンフィルタ利得係数のための値を求める。1組のカルマンフィルタ利得係数は、カルマンフィルタモジュール125に出力される。カルマンフィルタ利得係数は、以下に説明されるように、カルマンフィルタモジュール125の推定誤差を最小にするように選択される。
カルマンフィルタモジュール125は、入力に雑音が含まれる動的なシステムの状態を推定する再帰フィルタとして構成される。たとえば、カルマンフィルタモジュール125は、第1のセンサ110から誤りを含む信号(たとえば、誤りを含む加速度センサ信号)受信する。また、カルマンフィルタモジュール125は、ファジィ論理ユニット120からの入力として、車輪安定確率及びカルマンフィルタ利得係数も受信する。受信した信号及び既知の車両モデルに基づいて、カルマンフィルタモジュール125は、ファジィ論理ユニットからの値に基づいて、絶対縦速度(「vFzREF」)及び加速度センサオフセット(「axOffAxSensor」)を推定する。
センサ信号補償システム100のための状態モデル300が図4に示される。入力yは、加速度センサ信号を表す2×1行列である。数多くの事例において、加速度センサ信号は、上記で説明されたように、雑音、オフセット、又は雑音とオフセットの組み合わせによって誤りを生じている。y行列は、以下の式によって与えられる。
Figure 2010117356
入力wは、たとえば、加速度センサ又は車輪速度センサからの白色雑音を表す。入力wは、yから独立しており、センサ信号補償システム100がセンサ信号を補償するために知る必要はない。車両の絶対縦速度及び加速度センサオフセットのための値は、車両10の未知の状態であり、以下のxによって与えられる。
Figure 2010117356
入力変数zは、ファジィ論理ユニット120のファジィ演算モジュールからの車輪安定確率に基づく重み付けされた変数である。入力vは、たとえば、センサによる消費電力の変動によって引き起こされるセンサ(たとえば、車輪速度センサ)測定誤差を表す。wと同様に、入力vも、センサ信号補償システム100がセンサ信号を補償するために知る必要はない。しかしながら、センサ信号補償システム100は、白色雑音入力変数w及び測定誤差入力変数vの両方の影響を補償することができる。出力変数x’は、車両10の未知の状態のための状態変数を含む2×1行列である。
センサ信号補償システム100は、定常離散時間カルマン−ビュシー(Kalman-Bucy)フィルタとしてモデル化される。定常離散時間カルマン−ビュシーフィルタの一般的な形が以下に与えられる。
Figure 2010117356
このシステムは2つの未知の状態変数を含み、それゆえ、2つの状態式を必要とする。x’状態変数を積分した後に、車両10の推定される絶対縦速度は以下の式によって与えられる。
Figure 2010117356
現在のサイクル(たとえば、現在の計算周期)中の車両10の推定される絶対縦速度は、補正済みの車両加速度センサ信号(たとえば、車両加速度センサ信号と、予め計算された加速度センサオフセット信号との組み合わせ)を用いて、前回のサイクルの推定された縦速度の外挿に基づいて推定される。時間係数tは積分の結果であり、計算毎のサイクル長又はサンプル周期に関連する。
加速度センサオフセット信号は第2の状態式として用いられ、変化しないものと仮定される。すなわち、加速度オフセット補正項は、前回のサイクルの加速度オフセット補正項に等しいものと仮定されるか、又は計算毎にわずかしか、又は無視できる程度にしか変化しないものと仮定される。
離散時間カルマン−ビュシーフィルタの一般的な形において上記で導入された係数F及びHは、カルマンフィルタモジュール125において用いられるカルマンフィルタシステムモデルに基づいて選択される定数行列(すなわち、状態式の所望の出力)である。いくつかの実施形態において、F及びHは、以下に与えられる値を有する。他の実施形態では、F及びHは、異なる値を有する。
Figure 2010117356
車両10の絶対縦速度及び加速度センサオフセットを推定するために結果として生成される行列方程式は以下の式によって与えられる。
Figure 2010117356
離散時間カルマン−ビュシーフィルタの一般的な形において示される値Kは、計算されたカルマンフィルタ利得係数kovx及びkoaxOffを含む2×1行列であり、それらの係数は、ファジィ論理ユニット120のフィルタ利得モジュール230において計算される。カルマンフィルタ利得係数は、上記で説明されたように、車輪速度信号の安定性に基づく。車輪速度信号が高い信頼性を有する場合には、カルマンフィルタ利得係数は大きい。車輪速度信号の信頼性が低い場合には、カルマンフィルタ利得係数は小さい。カルマンフィルタ利得係数が大きい結果として、カルマンフィルタモジュール125は、短時間で、車両10の絶対縦速度及び加速度センサオフセットの正確な推定値に収束する。カルマンフィルタ利得係数が小さいと、結果として、カルマンフィルタモジュール125が車両10の絶対縦速度及び加速度センサオフセットの正確な推定値に収束するのに(大きなカルマンフィルタ利得係数と比べると)より長い時間を要する。
表9はセンサ信号補償システム100の効果を例示する。以下に列挙される値1〜4は、1つの車両の4つの各車輪から測定された車輪速度である(上記の表5〜表8から得られた)。
Figure 2010117356
車両10の推定された縦速度(表9の要素「5」)は8.92361m/sであると計算される。カルマンフィルタモジュール125からの加速度センサオフセット(表9の要素「7」)は−2.24668m/sであると推定される。カルマンフィルタモジュール125からの負の加速度センサオフセットは、車両10が坂を上っていることを指示する。補償済み加速度センサ出力(表9の要素「8」)は、加速度センサ出力(表9の要素「6」)及び加速度センサオフセット(表9の要素「7」)の組み合わせとして計算される。その後、車両10の補償済み加速度センサ出力(表9の要素「8」)及び推定された縦速度(表9の要素「5」)は、ESCモジュール15に送信される。補償済み加速度センサ出力(表9の要素「8」)及び推定された縦速度(表9の要素「5」)は、ESCモジュール15に、平らな地面(たとえば、上向き及び下向きのいずれの傾斜もない地面)の上を走行している車両10に類似の加速度及び速度信号を与える。補償済み加速度センサ出力が車両10の縦加速度に概ね等しいことによって、ESCモジュール15は、アクチュエータ25(たとえば、油圧ポンプ)のための作動信号を生成するための正確に推定された縦速度を確実に受信している。
こうして、本発明は、特に、車両内のセンサ信号を補償するためのシステム及び方法を提供する。本発明の種々の特徴及び利点が、添付の特許請求の範囲において述べられる。

Claims (20)

  1. 車両センサ信号を補償するためのシステムであって、該システムは、
    車両の第1の条件に対応する第1の信号を生成するように構成される第1のセンサと、
    前記車両の第2の条件に対応する第2の信号を生成するように構成される第2のセンサと、
    少なくとも前記第2の信号の信号安定性に基づいて、第1の組の値を出力するように構成されるファジィ論理モジュールと、
    前記第1の組の値及び前記第1の信号を受信すると共に、少なくとも該第1の組の値及び該第1の信号に基づいてセンサ補償信号を推定するように構成されるカルマンフィルタモジュールとを備える、車両センサ信号を補償するためのシステム。
  2. 前記第1のセンサは加速度センサであり、前記第2のセンサは車輪速度センサである、請求項1に記載のシステム。
  3. 前記第1の組の値は、1組のカルマンフィルタ利得係数を含む、請求項1に記載のシステム。
  4. 前記センサ補償信号及び前記第1の信号を組み合わせるように構成される組み合わせモジュールをさらに備える、請求項1に記載のシステム。
  5. 前記センサ補償信号は加速度センサ補償信号である、請求項1に記載のシステム。
  6. 前記カルマンフィルタモジュールは、前記車両の絶対縦速度を推定するように構成される、請求項1に記載のシステム。
  7. 前記第2の信号は車輪速度信号である、請求項1に記載のシステム。
  8. 前記ファジィ論理モジュールは、前記第2の信号の一次導関数に対応する第3の信号と、該第2の信号の二次導関数に対応する第4の信号とを受信するように構成される、請求項1に記載のシステム。
  9. センサ信号を補償する方法であって、
    車両の第1の条件に対応する第1の信号を生成すること、
    前記車両の第2の条件に対応する第2の信号を生成すること、
    ファジィ論理モジュールにおいて、少なくとも前記第2の信号を受信すること、
    前記ファジィ論理モジュールから、少なくとも前記第2の信号の信号安定性に基づいて、第1の組の値を出力すること、
    カルマンフィルタモジュールにおいて、前記第1の組の値及び前記第1の信号を受信すること、並びに
    少なくとも前記第1の組の値及び前記第1の信号に基づいてセンサ補償信号を推定することを含む、センサ信号を補償する方法。
  10. 前記第1の信号は前記車両の加速度に関連し、前記第2の信号は前記車両の車輪速度に関連する、請求項9に記載の方法。
  11. 前記第1の組の値を出力することは、1組のカルマンフィルタ利得係数を出力することを含む、請求項9に記載の方法。
  12. 前記センサ補償信号及び前記第1の信号を組み合わせることをさらに含む、請求項9に記載の方法。
  13. 前記センサ補償信号は加速度センサ補償信号である、請求項9に記載の方法。
  14. 前記カルマンフィルタモジュールにおいて、前記車両の絶対縦速度を推定することをさらに含む、請求項9に記載の方法。
  15. 前記ファジィ論理モジュールにおいて、前記第2の信号の一次導関数に対応する第3の信号と、該第2の信号の二次導関数に対応する第4の信号とを受信することをさらに含む、請求項9に記載の方法。
  16. 車両内のセンサ信号を補償するためのシステムであって、
    前記車両の第1の加速度に対応する加速度信号を生成するように構成される加速度センサと、
    前記車両の第1の車輪速度に対応する第1の車輪速度信号を生成するように構成される車輪速度センサと、
    少なくとも前記第1の車輪速度信号の信号安定性に対応する第1の組の値を出力するように構成されるファジィ論理モジュールと、
    前記第1の組の値及び前記加速度信号を受信するように構成されるカルマンフィルタモジュールとを備え、
    前記カルマンフィルタモジュールは、少なくとも前記第1の組の値及び前記加速度信号を用いて、加速度センサ補償信号を推定するように構成される、車両内のセンサ信号を補償するためのシステム。
  17. 前記第1の組の値は、1組のカルマンフィルタ利得係数を含む、請求項16に記載のシステム。
  18. 前記加速度センサ補償信号及び前記加速度信号を組み合わせるように構成される組み合わせモジュールをさらに備える、請求項16に記載のシステム。
  19. 前記カルマンフィルタモジュールは、前記車両の絶対縦速度を推定するように構成される、請求項16に記載のシステム。
  20. 前記ファジィ論理モジュールは、前記第1の車輪速度信号の一次導関数に対応する第1の信号と、該第1の車輪速度信号の二次導関数に対応する第2の信号とを受信するように構成される、請求項16に記載のシステム。
JP2009259487A 2008-11-14 2009-11-13 センサ信号を補償するためのシステム及び方法 Pending JP2010117356A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/271,490 US8165742B2 (en) 2008-11-14 2008-11-14 System and method for compensating sensor signals

Publications (1)

Publication Number Publication Date
JP2010117356A true JP2010117356A (ja) 2010-05-27

Family

ID=41589470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259487A Pending JP2010117356A (ja) 2008-11-14 2009-11-13 センサ信号を補償するためのシステム及び方法

Country Status (4)

Country Link
US (1) US8165742B2 (ja)
EP (1) EP2187223B1 (ja)
JP (1) JP2010117356A (ja)
ES (1) ES2447368T3 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014016946A1 (ja) * 2012-07-26 2014-01-30 トヨタ自動車株式会社 制駆動力制御装置
WO2014016945A1 (ja) * 2012-07-26 2014-01-30 トヨタ自動車株式会社 制駆動力制御装置
JP2014520495A (ja) * 2011-05-03 2014-08-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ファジー論理ベースブレーキ制御

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8639415B2 (en) * 2008-08-25 2014-01-28 Trw Automotive U.S., Llc Method for correction of dynamic output signals of inertial sensors having mounting offsets
US8165769B2 (en) * 2009-03-02 2012-04-24 GM Global Technology Operations LLC Multi-factor speed estimation system and method for use
CN102009654B (zh) * 2010-11-12 2013-02-13 清华大学 一种全轮电驱动车辆的纵向车速估计方法
DE102011088466B4 (de) 2010-12-22 2024-05-02 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung eines Offsets eines Beschleunigungssensors
JP5477316B2 (ja) * 2011-03-16 2014-04-23 株式会社アドヴィックス 車両ずり下がり状態判定装置およびそれを備えた車両制御装置
WO2014195873A1 (en) 2013-06-03 2014-12-11 E-Aam Driveline Systems Ab System and method for determining a vehicle velocity parameter
DE102014204683B4 (de) * 2014-03-13 2021-12-23 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zur Kalibrierung eines Beschleunigungssensors
US10235817B2 (en) * 2015-09-01 2019-03-19 Ford Global Technologies, Llc Motion compensation for on-board vehicle sensors
US9976519B2 (en) 2015-10-26 2018-05-22 Ford Global Technologies, Llc Confidence-modified exponentially weighted moving average filter for engine-off natural vacuum testing
CN106394561B (zh) * 2015-11-10 2018-07-27 北京中科易电信息科技股份有限公司 一种车辆的纵向车速的估计方法和装置
KR101786237B1 (ko) 2015-12-09 2017-10-17 현대자동차주식회사 운전자보조시스템용 센서의 고장진단 및 보정을 위한 장치 및 방법
CN108490472B (zh) * 2018-01-29 2021-12-03 哈尔滨工程大学 一种基于模糊自适应滤波的无人艇组合导航方法
GB2574257B (en) * 2018-06-01 2021-06-30 Jaguar Land Rover Ltd Vehicle dynamics estimation method and apparatus
EP3643570B1 (en) * 2018-10-23 2023-12-13 NXP USA, Inc. Sensor circuit compensation for supply voltage transients
KR20210057872A (ko) * 2019-11-12 2021-05-24 현대자동차주식회사 친환경 차량 및 그 모터 토크 제어 방법
CN113353066A (zh) * 2021-06-30 2021-09-07 中汽创智科技有限公司 一种障碍物触碰识别方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174774A (ja) * 1993-11-02 1995-07-14 Toshiba Corp 車両速度等演算装置及びこの装置を用いた車両走行制御システム
JPH07196029A (ja) * 1993-11-25 1995-08-01 Sumitomo Electric Ind Ltd 前後加速度センサ異常検出装置
JPH10104259A (ja) * 1996-09-30 1998-04-24 Mitsubishi Motors Corp 車両用前後加速度推定装置
JPH10138905A (ja) * 1996-11-07 1998-05-26 Denso Corp 推定車体速度演算方法
JP2002104158A (ja) * 2000-10-03 2002-04-10 Toyota Central Res & Dev Lab Inc 路面摩擦状態演算装置、タイヤ種別判定装置、タイヤ摩耗判定装置、路面傾斜推定装置及び加速度センサのオフセット補正装置
JP2003506259A (ja) * 1999-08-06 2003-02-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 速度変数の決定方法および装置
JP2007271605A (ja) * 2006-03-08 2007-10-18 Yamaha Motor Co Ltd 加速度推定装置および車両

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432918A (en) * 1987-07-28 1989-02-02 Mitsubishi Motors Corp Active suspension controller
JP2977037B2 (ja) * 1988-02-29 1999-11-10 日産自動車株式会社 アンチスキッド制御装置
JPH02270619A (ja) * 1989-04-13 1990-11-05 Mitsubishi Electric Corp ショックアブソーバ制御装置
JP3165314B2 (ja) 1994-01-28 2001-05-14 株式会社東芝 車両速度演算装置およびそれを用いた車両走行距離演算装置
DE19606480C2 (de) * 1996-02-21 1998-04-16 Siemens Ag Verfahren und Anordnung zur Adaption eines Fuzzy-Reglers
US6175792B1 (en) * 1998-02-03 2001-01-16 Trw Inc. Apparatus and method for improving dynamic response of an active roll control vehicle suspension system
DE10065022A1 (de) * 2000-12-23 2002-07-04 Bosch Gmbh Robert Verfahren und Vorrichtung zum Abgleichen des Offset eines Druckwertes
US6898585B2 (en) * 2001-02-02 2005-05-24 University Of Illinois Fuzzy logic method for adaptively evaluating the validity of sensor data
GB2372020A (en) * 2001-02-07 2002-08-14 Lucas Industries Ltd Haptic controller for electrically-assisted power steering in road vehicles
EP1258708B1 (de) * 2001-05-16 2010-03-17 Robert Bosch Gmbh Verfahren und Vorrichtung für die Bestimmung von Offsetwerten durch ein Histogrammverfahren
EP1258407B1 (de) * 2001-05-16 2008-08-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines korrigierten Offsetwertes
US20030135290A1 (en) * 2001-12-31 2003-07-17 Yixin Yao Vehicle road wheel fuzzy logic control system and method of implementing a fuzzy logic strategy for same
US7085642B2 (en) * 2002-08-05 2006-08-01 Ford Global Technologies, Llc Method and system for correcting sensor offsets
US6795763B2 (en) * 2002-10-30 2004-09-21 Visteon Global Technologies, Inc. Expert-type vehicle steering control system and method
TWI264663B (en) * 2003-11-07 2006-10-21 Univ Nat Chiao Tung High-resolution intelligent rotor machine diagnostic system and method
WO2005047086A1 (de) * 2003-11-14 2005-05-26 Continental Teves Ag & Co.Ohg Verfahren und vorrichtung zum regeln der fahrdynamik eines fahrzeugs
DE102005054208B3 (de) 2005-11-14 2007-06-14 Siemens Ag Verfahren zur Bestimmung von Langzeit-Offset-Drifts von Beschleunigungssensoren in Kraftfahrzeugen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174774A (ja) * 1993-11-02 1995-07-14 Toshiba Corp 車両速度等演算装置及びこの装置を用いた車両走行制御システム
JPH07196029A (ja) * 1993-11-25 1995-08-01 Sumitomo Electric Ind Ltd 前後加速度センサ異常検出装置
JPH10104259A (ja) * 1996-09-30 1998-04-24 Mitsubishi Motors Corp 車両用前後加速度推定装置
JPH10138905A (ja) * 1996-11-07 1998-05-26 Denso Corp 推定車体速度演算方法
JP2003506259A (ja) * 1999-08-06 2003-02-18 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 速度変数の決定方法および装置
JP2002104158A (ja) * 2000-10-03 2002-04-10 Toyota Central Res & Dev Lab Inc 路面摩擦状態演算装置、タイヤ種別判定装置、タイヤ摩耗判定装置、路面傾斜推定装置及び加速度センサのオフセット補正装置
JP2007271605A (ja) * 2006-03-08 2007-10-18 Yamaha Motor Co Ltd 加速度推定装置および車両

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014520495A (ja) * 2011-05-03 2014-08-21 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ファジー論理ベースブレーキ制御
WO2014016946A1 (ja) * 2012-07-26 2014-01-30 トヨタ自動車株式会社 制駆動力制御装置
WO2014016945A1 (ja) * 2012-07-26 2014-01-30 トヨタ自動車株式会社 制駆動力制御装置
CN104487297A (zh) * 2012-07-26 2015-04-01 丰田自动车株式会社 制动/驱动力控制装置
CN104507767A (zh) * 2012-07-26 2015-04-08 丰田自动车株式会社 制驱动力控制装置
JP5790883B2 (ja) * 2012-07-26 2015-10-07 トヨタ自動車株式会社 制駆動力制御装置
JP5800092B2 (ja) * 2012-07-26 2015-10-28 トヨタ自動車株式会社 制駆動力制御装置
JPWO2014016945A1 (ja) * 2012-07-26 2016-07-07 トヨタ自動車株式会社 制駆動力制御装置

Also Published As

Publication number Publication date
EP2187223B1 (en) 2014-01-08
US8165742B2 (en) 2012-04-24
US20100131140A1 (en) 2010-05-27
ES2447368T3 (es) 2014-03-11
EP2187223A1 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP2010117356A (ja) センサ信号を補償するためのシステム及び方法
JP4724163B2 (ja) 車体速度推定装置
US6804594B1 (en) Active steering for handling/stability enhancement
JP3565938B2 (ja) 車両の制動力制御装置
US10435028B2 (en) Vehicle state estimation apparatus and method
JP2005199818A (ja) 車両挙動再現システム
CN110550024B (zh) 一种基于自动驾驶的车辆运行控制方法和装置
JP2007182209A (ja) 車両物理量推定装置及びプロブラム
US10363939B2 (en) Vehicle reference velocity estimation apparatus and method
GB2574257A (en) Vehicle dynamics estimation method and apparatus
JP2009073466A (ja) 車両姿勢角推定装置及びプログラム
JP2011025914A (ja) 前後加速度制御装置
JP2015514037A (ja) 車両におけるアクティブ操舵システム用の非線形補償制御装置
JP2008094375A (ja) 車両物理量推定装置及びプログラム
KR20200047961A (ko) 차량의 통합 제어 장치
JP2007245766A (ja) タイヤの摩擦状態判定装置、abs装置、車両挙動制御装置及び自動車並びにタイヤの摩擦状態判定方法
JP5128457B2 (ja) 車両姿勢角推定装置及びプログラム
JP6969264B2 (ja) 車両の電子装置
KR102200521B1 (ko) 차량의 횡슬립각 추정장치
JP2010143378A (ja) 車両姿勢角推定装置及びプログラム
JPH07304460A (ja) 車両運動制御装置
CN117261916A (zh) 一种侧向车速估算方法
CN117302229A (zh) 一种路面附着系数估算方法及系统
CN117400952A (zh) 一种车辆质心侧偏角估计方法和装置
CN112345264A (zh) 用于检查车辆动态模型的方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140701