JP2010098330A - 固体撮像装置の製造方法 - Google Patents

固体撮像装置の製造方法 Download PDF

Info

Publication number
JP2010098330A
JP2010098330A JP2010010146A JP2010010146A JP2010098330A JP 2010098330 A JP2010098330 A JP 2010098330A JP 2010010146 A JP2010010146 A JP 2010010146A JP 2010010146 A JP2010010146 A JP 2010010146A JP 2010098330 A JP2010098330 A JP 2010098330A
Authority
JP
Japan
Prior art keywords
opening
effective pixel
region
pixel region
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010010146A
Other languages
English (en)
Other versions
JP4735762B2 (ja
Inventor
Shunsuke Maruyama
俊介 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010010146A priority Critical patent/JP4735762B2/ja
Publication of JP2010098330A publication Critical patent/JP2010098330A/ja
Application granted granted Critical
Publication of JP4735762B2 publication Critical patent/JP4735762B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】有効画素領域と周辺領域との境界領域の段差を低減することにより、感度ムラが低減された固体撮像装置の製造方法を提供する。
【解決手段】光電変換部PDを有する画素が複数配列された有効画素領域11と、該有効画素領域11の周辺領域13に渡って絶縁層19を形成する工程と、有効画素領域11の光電変換部PD直上に位置する絶縁層19に開口部21を形成し、周辺領域13の絶縁層19にダミー開口部24を形成する工程と、絶縁層19に形成された開口部21及びダミー開口部24を埋め込むように、絶縁層19上に埋め込み層22を形成する。
【選択図】図3

Description

本発明は、有効画素領域とその周辺領域との境界領域に発生する膜厚の段差が低減された固体撮像装置の製造方法に関する。
従来、CMOSイメージセンサやCCDイメージセンサ等の固体撮像装置において光学的特性を向上させるために、様々な提案がなされている。たとえば、固体撮像装置のフォトダイオードからなる光電変換部に入射される光の光量を増加させる為の構成を設けることにより、感度の向上が図られている。
特許文献1及び特許文献2には、固体撮像装置において、フォトダイオードへ入射する光量を増加させて、感度を向上させるために、フォトダイオード上部の光入射側に光導波路を形成する構成が記載されている。光導波路は、フォトダイオード上部の光入射側に開口部を形成し、その開口部に屈折率の高い材料を埋め込むことにより形成される。
特許文献3では、CMOS型の固体撮像装置の多層配線層中に、Cu配線とCu拡散防止膜を設けた場合に、フォトダイオードへの入射光がCu拡散防止膜に反射されることによりフォトダイオードに入射する光量が低下するのを防ぐ構成が記載されている。ここでは、フォトダイオード上部に形成されたCu拡散防止膜を除去することにより、フォトダイオードへの入射光低下を防いでいる。そして、特許文献3では、フォトダイオード上に形成されたCu拡散防止膜を除去するために、多層配線層が形成された後にフォトダイオード上の多層配線層を開口することにより、Cu拡散防止膜を除去する工程が記載されている。
特許文献3に記載されたような、フォトダイオード上部の光入射側にあるCu拡散防止膜を除去する工程や、特許文献1、2に記載されたような、フォトダイオード上部の光入射側に光導波路構造を形成する工程においては、上述したように、フォトダイオード上に開口部を設け、その開口部を埋め込むという工程が発生する。
ところで、固体撮像装置は、有効画素領域、オプティカルブラック(Optical Black;光学的黒)領域、周辺回路領域等から構成される。図12に、固体撮像装置の概略構成を示す。たとえば、図12に示すようなCMOSイメージセンサである固体撮像装置301においては、有効画素領域311と、オプティカルブラック領域312からなる撮像領域313が形成されており、さらに、垂直駆動回路304や水平駆動回路306等の周辺回路部が形成されている。撮像領域313は、光電変換素子であるフォトダイオードと画素トランジスタ(MOSトランジスタ)から成る複数の画素が2次元的に配列されている。オプティカルブラック領域312は、有効画素領域311の周辺の一部に形成され、遮光膜により画素に光が入射されないように構成されている。オプティカルブラック領域312においては、黒レベルの基準信号となる信号が得られる。この固体撮像装置301では、有効画素領域311において入射された光が信号電荷に変換され、画素信号として周辺回路部を通じて出力される。
以上に説明したように、有効画素領域311ではフォトダイオードに光が入射されるが、有効画素領域311周辺に構成されているオプティカルブラック領域312ではフォトダイオードに光が入射されない。このため、特許文献1〜3に記載されたような、フォトダイオードに入射する光の光量を増加させる構成は、有効画素領域311にしか構成されないこととなる。すなわち、フォトダイオード上部の光入射側にある光拡散防止膜を除去するために、フォトダイオード上部を開口する構成や、フォトダイオード上の光入射側に光導波路構造を形成するために、フォトダイオード上部を開口する構成は、有効画素領域のみに必要な構成である。
図13に、上述したCMOSイメージセンサである固体撮像装置301における有効画素領域311とオプティカルブラック領域312の境界領域における製造工程図を示す。図13は、例えば、図12におけるD−D線に沿う断面図であり、有効画素領域311の画素におけるフォトダイオードPD上部に開口部を設けたときの工程図である。
図13では、簡単の為、フォトダイオードPDと多層配線層320のみの図示とする。実際には、フォトダイオードPDと複数の画素トランジスタからなる多層の画素が形成された半導体基板上に多層配線層320が構成され、多層配線層320側から半導体基板に光が入射される。図13に示すように、多層配線層320は、層間絶縁層319を介して3層の配線1M,2M,3Mが形成されており、オプティカルブラック領域312における配線3Mは遮光膜となっている。オプティカルブラック領域312において、配線3Mが遮光膜を構成するので、オプティカルブラック領域312に形成されるフォトダイオードPDには光が入射されない。
特許文献1〜3に記載されたように有効画素領域のフォトダイオードに入射する光の光量を増加させるためには、まず、図13Aに示すように、有効画素領域311のフォトダイオードPD上部の層間絶縁層319に開口部321が形成される。そして、開口部321には、図13Bに示すように、例えば層間絶縁層319より屈折率が高い埋め込み材料が塗布され、開口部321が埋め込まれる。この高屈折率の埋め込み材料が埋め込まれた領域において、光導波路が構成される。
図13Bに示すように、開口部321に埋め込み材料が塗布され、埋め込み層322が形成される工程においては、オプティカルブラック領域312の多層配線層320上にも同時に、埋め込み材料が塗布される。そうすると、図13Bに示すように、オプティカルブラック領域312には、開口部321が形成されていない為に、オプティカルブラック領域312の多層配線層320上に形成された埋め込み層322のほうが、有効画素領域311の開口部321及び多層配線層320上部に形成された埋め込み層322よりも厚く塗布されることとなる。そして、このような埋め込み層322の塗布ムラにより、図13Bに示すように、有効画素領域311とオプティカルブラック領域312との境界部分では、埋め込み層322表面に段差が形成されてしまう。
同様に、図14に、有効画素領域311の多層配線層320に形成される開口部321がCVD法またはPVD法によって埋め込み層323が形成される例を示す。図14において、図13に対応する部分には同一符号を付し重複説明を省略する。
図14Aに示したように、開口部321がCVD法(Chemical Vapor Deposition;化学的蒸着法)やPVD法(Physical Vapor Deposition;物理的蒸着法)により埋め込まれる場合、図14Bに示すように成膜される埋め込み層323の膜厚は、ほぼ一定になる。このため、開口部321と、非開口部上に形成される埋め込み層323には疎密差が発生し、非開口部と開口部321の境界領域で段差が生じる。開口部321が形成されている有効画素領域311上では、埋め込み材料は疎に成膜され、開口部321が形成されていないオプティカルブラック領域312上においては、埋め込み材料が密に成膜されている。
次に、図14Cに示すように、CVD法やPVD法により生じた埋め込み層323の段差(いわゆる凹凸)を平坦にするために、CMP法(化学的機械的研磨)により、埋め込み材料膜表面が平坦化される。しかしながら、CMP法により表面を平坦化する場合、埋め込み材料が疎に形成された有効画素領域311と、密に形成されたオプティカルブラック領域312とでは、表面が一定に平坦化されないという問題がある。図14Cに示すように、埋め込み材料が疎に形成された部分の方が、埋め込み材料が密に形成された部分よりも、研磨速度が速い。このため、結果的に、有効画素領域311上部の埋め込み層323の方が、オプティカルブラック領域312上部の埋め込み層323よりも薄く形成されてしまう。
また、図13に示す、埋め込み層322として塗布型の材料を用いる例では、埋め込み層322を形成した後のベーク工程において、熱処理により埋め込み層322の体積が減る。このとき、開口部321に形成された埋め込み層322の体積が、非開口部に形成された埋め込み層322の体積よりも、開口部の分だけ大きな体積を有するので、ベーク時の埋め込み層322の体積減少も大きくなる。そうすると、開口部321が密に形成されている有効画素領域311と、開口部321が形成されていないオプティカルブラック領域312とでは、ベーク工程後における体積の減少により、より段差が大きくなってしまう。
このように、固体撮像装置の有効画素領域、オプティカルブラック領域、周辺回路領域の境界領域において、埋め込み層表面に段差や膜厚差がある場合には、その段差や膜厚差が上層の膜にも影響を及ぼす。このため、埋め込み層の上層に形成される例えば、パッシベーション膜、カラーフィルタ、オンッチップマイクロレンズなどに、埋め込み層表面の段差が影響する。そして、上層に影響した段差は、有効画素領域内にずれ込んでいく。その結果、有効画素領域内において中央部分と周辺部分での画素の光学的特性が変わってしまい、固体撮像装置から出力される絵に感度ムラが生じる。
有効画素領域と、オプティカルブラック領域や周辺回路部等を含む周辺領域との間における段差や膜厚差を低減させる方法として、特許文献4には、周辺領域の金属配線に対応した凹形状絶縁層間膜を形成して、有効画素領域と周辺領域の段差を軽減する方法が記載されている。また、特許文献5には、有効画素領域と周辺領域との間に段差ができても、段差の低い部分にパターンニング可能な材料を追加する方法が記載されている。さらに、特許文献6には、段差の高い部分を選択的にエッチングして削る方法が記載されている。
しかしながら、これらの特許文献4〜6に記載の方法では、例えば有効画素領域と周辺領域との段差を低減させるために、工程数が増えてしまうという問題点がある。
特開2003−298034号 特開平7−45805号公報 公報特開2005−311015号公報 特開2001−196571号公報 特開2004−356585号公報 特開2007−165403号公報
上述の点に鑑み、本発明は、有効画素領域と周辺領域との境界領域の段差を低減することにより、感度ムラが低減された固体撮像装置の製造方法を提供するものである。
上記課題を解決し、本発明の目的を達成するため、本発明の固体撮像装置の製造方法は、光電変換部を有する画素が複数配列された有効画素領域と、該有効画素領域の周辺領域に渡って絶縁層を形成する工程と、有効画素領域の光電変換部直上に位置する絶縁層に開口部を形成し、周辺領域の絶縁層にダミー開口部を形成する工程と、絶縁層に形成された開口部及びダミー開口部を埋め込むように、絶縁層上に埋め込み層を形成する工程とを有することを特徴とする。
本発明の固体撮像装置の製造方法では、有効画素領域の光電変換部の直上に開口部を形成すると共に、周辺領域の絶縁層にもダミー開口部が形成される。このため、有効画素領域と周辺領域に形成される開口部の疎密差を低減することができ、絶縁層上部に形成される埋め込み層が平坦に形成される。
本発明によれば、固体撮像装置の有効画素領域と周辺領域との境界部分において、膜厚の段差が低減されるので、感度ムラを低減することができる。
本発明の一実施形態に係る固体撮像装置の概略構成図である。 A,B,C 参考例に係る固体撮像装置の製造方法を示す工程図である。 A,B,C 本発明の第1の実施形態に係る固体撮像装置の製造方法を示す工程図である。 A,B,C 本発明の第2の実施形態に係る固体撮像装置の製造方法を示す工程図である。 A,B 本発明の第2の実施形態に係る固体撮像装置の製造方法の他の例を示す概略構成図である。 A,B,C 本発明の第3の実施形態に係る固体撮像装置の製造方法を示す工程図である。 本発明の第3の実施形態に係る固体撮像装置の製造方法の他の例を示す概略構成図である。 本発明の第3の実施形態に係る固体撮像装置の製造方法の他の例を示す概略構成図である。 本発明の第3の実施形態に係る固体撮像装置の製造方法の他の例を示す概略構成図である。 本発明の一実施形態例に係るCMOSイメージセンサを用いた電子機器を示す概略構成図である。 本発明の一実施形態例に係るCCDイメージセンサを用いた電子機器を示す概略構成図である。 従来例の固体撮像装置の概略構成図である。 A,B従来例の固体撮像装置の製造方法を示す概略構成図である。 A,B,C従来例の固体撮像装置の製造方法を示す概略構成図である。
以下、図1〜図11を参照して本発明の実施の形態を説明する。
まず、図1に、本発明の一実施形態に係る固体撮像装置の概略構成を示す。
本実施形態例の固体撮像装置1はCMOSイメージセンサを例としたものであり、例えばSiからなる基板100上に、光電変換素子を含む撮像画素2がマトリックス状に複数2次元的に配列され、有効画素領域11とオプティカルブラック領域12とから構成される撮像領域3と、周辺回路部14とが構成されている。本実施形態例において、オプティカルブラック領域12と周辺回路部14を合わせて周辺領域13とする。
撮像領域3は、有効画素領域11と有効画素領域11の周辺部に構成されたオプティカルブラック領域12とを有する。撮像領域3におけるそれぞれの撮像画素2は、光電変換素子を構成するフォトダイオードと、フォトダイオードにより光電変換された信号電荷を画素信号に変換し垂直信号線9に出力するための複数の画素トランジスタ(MOSトランジスタ)とから構成されている。有効画素領域11においては、フォトダイオードに入射された入射光が信号電荷に光電変換され、画素トランジスタにより画素信号に変換され、この画素信号が垂直信号線9を通じて、周辺回路部14に供給される。オプティカルブラック領域12は、有効画素領域11と同様の構成からなる撮像画素2から構成されるが、遮光膜が構成されることにより、オプティカルブラック領域12のフォトダイオードには入射光が入射されない構成とされる。そして、このような構成とすることにより、オプティカルブラック領域12からは、黒基準信号が出力される。なお、複数の画素トランジスタとしては、例えば、転送トランジスタ、リセットトランジスタ、増幅トランジスタ、及び選択トランジスタの4つのトランジスタとで構成される。または、選択トランジスタを省略した3つのトランジスタで構成される。
また、周辺回路部14は、垂直駆動回路4と、カラム信号処理回路5と、水平駆動回路6と、出力回路7と、制御回路8を有して構成されている。
制御回路8は、垂直同期信号、水平同期信号及びマスタクロックに基づいて、垂直駆動回路4、カラム信号処理回路5及び水平駆動回路6などの動作の基準となるクロック信号や制御信号などを生成し、垂直駆動回路4、カラム信号処理回路5および水平駆動回路6等に入力する。
垂直駆動回路4は、例えばシフトレジスタによって構成され、撮像領域3の各撮像画素2を行単位で順次垂直方向に選択走査し、垂直信号線9を通して、各撮像画素2のフォトダイオードで光電変換された信号電荷に基づく画素信号をカラム信号処理回路5に供給する。フォトダイオードにおいては、受光量に応じて信号電荷が生成される。
カラム信号処理回路5は、撮像画素2において例えば列ごとに配置されている。そして、1行分の画素から出力される信号を、画素列毎に、オプティカルブラック領域12からの信号に基づいて信号処理を行う。すなわち、カラム信号処理回路5では、オプティカルブラック領域12から出力された黒基準信号に基づいて、有効画素領域11のノイズの除去や信号増幅などの信号処理が行われる。
カラム信号処理回路5の出力段には、水平選択スイッチ(図示せず)が水平信号線との間に接続されて設けられる。
水平駆動回路6は、例えば、シフトレジスタによって構成され、水平走査パルスを順次出力することによって、カラム信号処理回路5の各々を順番に選択し、カラム信号処理回路5の各々から画素信号を水平信号線10に出力させる。
出力回路は、カラム信号処理回路5の各々から水平信号線10を通して順次に供給される信号に対し、信号処理を行って出力する。
以下に、本実施形態の各例の固体撮像装置をその製造方法と共に説明する。
[参考例]
図2に、参考例に係る固体撮像装置及びその製造方法を説明する概略断面構成を示す。図2に示す固体撮像装置の概略断面構成は、図1におけるA−A線、またはB−B線に沿う断面構成であり、すなわち、有効画素領域11と、オプティカルブラック領域12と周辺回路部14からなる周辺領域13とに架かる線上における断面構成である。図2では、簡単の為、固体撮像装置における撮像画素2の光電変換部であるフォトダイオードPDと、その上の多層配線層20部分のみの図示とする。実際には、撮像画素2を構成する画素トランジスタや、さらには、周辺回路部14を構成するCMOSトランジスタを含む素子が形成されたSi基板100上に多層配線層20が形成されている。
図2に示す多層配線層20は、3層の金属配線1M,2M,3Mがそれぞれ層間絶縁層19を介して構成されている。
まず、本実施形態例においては、図2Aに示すように、有効画素領域11のフォトダイオードPD上部に対応する多層配線層20には、フォトダイオードPDの直上まで開口した開口部21を形成する。また、同時に、周辺領域13、本実施形態例ではオプティカルブラック領域12における多層配線層20にも有効画素領域11と同様にダミー開口部24を形成する。すなわち、本例においては、有効画素領域11、周辺領域13ともに、ほぼ同一間隔で開口部21,及びダミー開口部24が形成される。
次に、図2Bに示すように有効画素領域11及び周辺領域13の開口部21,及びダミー開口部24に、例えば塗布型の埋め込み材料により、埋め込み層22を形成する。埋め込み層22の形成は、塗布型以外にCVD法やPVD法によって形成してもよい。このとき、非開口部15上にも同時に埋め込み層22が成膜される。また、有効画素領域11のフォトダイオードPD上部における開口部21は光導波路となるように、例えば、多層配線層20を構成する層間絶縁層19よりも高屈折率の有機材料により埋め込み層22が形成される。埋め込み層22は、例えば、シロキサン系樹脂、あるいは、ポリイミド、アクリル系樹脂、ポリスチレン系樹脂などの高屈折率樹脂で構成される。シロキサン系樹脂を用いた場合には、添加物により屈折率を調整することができ、添加物を含有したシロキシ酸系樹脂の屈折率は、たとえば、1.7とすることができる。また、前述した樹脂中に例えば、酸化チタン、酸化タンタル、酸化ニオブ、酸化タングステン、酸化ジルコニウム、酸化亜鉛、酸化インジウム、酸化ハフニウムなどの金属酸化物微粒子を含有することにより、屈折率を高めることができる。層間絶縁層19としては、例えば、SiO2(屈折率1.4)が用いられる。
開口部21に高屈折率の有機材料を埋め込む構成とすることにより、開口部21に光導波路が構成されるので、光導波路により、入射光が屈折され、効率良く有効画素領域11のフォトダイオードPDに光が入射される。
そして、有効画素領域11及び周辺領域13に形成された開口部21,ダミー開口部24及び非開口部15が埋め込み層22により平坦に埋め込まれた後、図2Cに示すように、周辺領域13の多層配線層20上部には、遮光膜18が形成される。遮光膜18が形成されることにより、例えば、オプティカルブラック領域12に形成されるフォトダイオードPDには光が入射されないため、オプティカルブラック領域12からは黒レベルを出力することができる。
この後、図示しないが、パッシベーション膜、カラーフィルタ、オンチップマイクロレンズ等が順次形成されて目的の固体撮像装置を得る。
参考例によれば、本来開口部を必要としない周辺領域13においても、有効画素領域11で形成される開口部21と同様の間隔で、ダミー開口部24を形成することにより、多層配線層20における開口部の疎密を低減することができる。そのため、その後の埋め込み材料を埋め込む工程において、材料を平坦に埋め込むことができる。さらに、埋め込み材料を塗布した後のポストベーク時において、埋め込み層22の体積が減る場合においても、有効画素領域11と周辺領域13において、同様の割合で体積が減ることになる。このため、有効画素領域11及び周辺領域13の境界部分において、多層配線層20上の埋め込み層22に段差が生じるのを防ぐことができる。
このため、この後の工程で埋め込み層22の上部に形成される図示しないパッシベーション膜、カラーフィルタ、オンチップマイクロレンズ等に段差が影響し、有効画素領域11内に段差がずれ込み、感度ムラが起こるのを防ぐことができる。
また、埋め込み層22をCVD法、またはPVD法により形成する場合でも、有効画素領域11と周辺領域13において開口部21、ダミー開口部24上の埋め込み層22に形成される凹凸の疎密差が低減される。このため、埋め込み層22が形成された後に、例えばCMP処理により平坦化するときに、均一に平坦化することができる。また、周辺領域13においても、ダミー開口部24が設けられており、そのダミー開口部24にも埋め込み層22が埋め込まれているので、CMP処理時において周辺領域13の多層配線層20と埋め込み層22との界面における膜ずれが防止される。
[第1の実施形態]
次に、図3に本発明の第1の実施形態に係る固体撮像装置の製造方法を説明する概略断面構成を示す。図3に示す固体撮像装置の概略断面構成も、参考例と同様に、図1におけるA−A線、またはB−Bに沿う断面構成であり、すなわち、有効画素領域11と、オプティカルブラック領域12や周辺回路部14からなる周辺領域13とに架かる線上における断面構成である。図3において、図2と同一部分には、同一符号を付し重複説明を省略する。
本実施形態例においては、図3Aに示すように、周辺領域13に形成される多層配線層20の、一番上の金属配線3Mが遮光膜18を構成するように形成されている。そして、このような多層配線層20において、まず、図3Aに示すように、周辺領域13における多層配線層20の層間絶縁層19にダミー開口部24を設ける。このダミー開口部24は、遮光膜18に達しないように、例えば、金属配線3Mの直上まで開口することにより形成する。
次に、図3Bに示すように、有効画素領域11のフォトダイオードPD上部に位置する多層配線層20の層間絶縁層19をフォトダイオードPD直上まで開口した開口部21を設ける。
ここで本実施形態例においては、周辺領域13の多層配線層20に形成されるダミー開口部24と、有効画素領域11の多層配線層20に形成される開口部21の開口容量が例えばほぼ同じになるよう、開口部20,ダミー開口部24を形成する。
このように、周辺領域13の多層配線層20に遮光膜18が構成されており、周辺領域13と有効画素領域11とで同様の構成の開口部を構成しにくい場合は、開口工程を2回に分け、開口部21及びダミー開口部24を設けることもできる。
次に、図3Cに示すように、有効画素領域11及び周辺領域13の開口部21及びダミー開口部24に、例えば塗布型の埋め込み材料により、埋め込み層22を形成する。埋め込み層22の形成は、CVD法やPVD法によって形成してもよい。このとき、非開口部15上にも同時に埋め込み層22が成膜される。また、有効画素領域11のフォトダイオードPD上部における開口部21は光導波路となるように、例えば、多層配線層20を構成する層間絶縁層19よりも高屈折率の有機材料により埋め込み層22を形成する。埋め込み層22は、例えば、シロキサン系樹脂、あるいは、ポリイミド、アクリル系樹脂、ポリスチレン系樹脂などの高屈折率樹脂で構成される。シロキサン系樹脂を用いた場合には、添加物により屈折率を調整することができ、添加物を含有したシロキシ酸系樹脂の屈折率は、たとえば、1.7とすることができる。また、前述した樹脂中に例えば、酸化チタン、酸化タンタル、酸化ニオブ、酸化タングステン、酸化ジルコニウム、酸化亜鉛、酸化インジウム、酸化ハフニウムなどの金属酸化物微粒子を含有することにより、屈折率を高めることができる。層間絶縁層19としては、例えば、SiO(屈折率1.4)が用いられる。
開口部21に高屈折率の有機材料を埋め込む構成とすることにより、導波路より入射光が屈折され、効率良く有効画素領域11のフォトダイオードPDに光が入射される。
本実施形態例においては、周辺領域13の一番上部の金属配線3Mは、遮光膜18とされている。遮光膜18が形成されることにより、例えば、オプティカルブラック領域12に形成されるフォトダイオードPDには光が入射されないため、黒レベルを出力することができる。
本実施形態例によれば、本来開口部を必要としない周辺領域13においても、有効画素領域11で形成される開口部21とほぼ同じ開口容量を有するダミー開口部24を形成する。これにより、ベーク時に開口部21及びダミー開口部24の埋め込み層22の体積が減る場合においても、有効画素領域11と周辺領域13では、ほぼ同じ容量だけ埋め込み層22の体積が減ることになる。このため、ベーク工程後においても有効画素領域11及び周辺領域13の境界部分において、埋め込み層22に段差が生じるのを防ぐことができる。
また、埋め込み層22をCVD法またはPVD法により形成する場合でも、有効画素領域11と周辺領域13において開口部21,ダミー開口部24の疎密差が低減される。このため、埋め込み層22が形成されたあとに、例えばCMP処理により平坦化する場合においても、埋め込み層22上を均一に平坦化することができる。また、周辺領域13においても、ダミー開口部24が設けられており、そのダミー開口部24にも埋め込み層22が埋め込まれているので、周辺領域13の多層配線層20と埋め込み層22との界面は凹凸形状を有する。このため、周辺領域13の多層配線層20と埋め込み層22との界面において、横方向の力に対する耐性が向上し、CMP処理時において膜ずれが防止される。
また、本実施形態例では2回に分けて開口部21,ダミー開口部24を形成するため、開口部21とダミー開口部24の開口深さを変えることができる。したがって本実施形態例は、周辺領域13において下層の金属配線が密に構成されていて、開口領域が深さ方向に十分に確保できないような場合にも適用することができる。
[第2の実施形態]
次に、図4に本発明の第2の実施形態に係る固体撮像装置の製造方法を説明する概略断面構成を示す。図4に示す固体撮像装置の概略断面構成も、参考例及び第1の実施形態と同様に、図1におけるA−A線、またはB−Bに沿う断面構成、すなわち、有効画素領域11と、オプティカルブラック領域12や周辺回路部14からなる周辺領域13とに架かる線上における断面構成である。図4において、図2,3に対応する部分には、同一符号を付し重複説明を省略する。
本実施形態例においては、図4Aに示すように、周辺領域13に形成される多層配線層20の3層の金属配線1M,2M,3Mのうち、真ん中の金属配線2Mが、遮光膜18を構成するように形成されている。そして、このような多層配線層20において、まず、図4Aに示すように、周辺領域13における多層配線層20の層間絶縁層19にダミー開口部24を設ける。このダミー開口部24は、金属配線2Mで構成される遮光膜18に達しないように、遮光膜18の直上まで開口されるものである。
次に、図4Bに示すように、有効画素領域11のフォトダイオードPD上部に位置する多層配線層20をフォトダイオードPD直上まで開口した開口部21を設ける。
ここで本例においても、周辺領域13の多層配線層20の層間絶縁層19に形成されるダミー開口部24と、有効画素領域11の多層配線層20の層間絶縁層19に形成される開口部21の開口容量を例えばほぼ同じになるように構成することが好ましい。
このように、周辺領域13に形成される遮光膜18が多層配線層20を構成する金属配線の最上層でない場合においても、遮光膜18の直上まで開口すればよい。
そして、有効画素領域11の多層配線層20に形成された開口部21及び、周辺領域13の多層配線層20に形成されたダミー開口部24に埋め込み材料を塗布する。このとき、有効画素領域11のフォトダイオードPD上部における開口部21に、光導波路を構成するために、例えば、多層配線層20を構成する層間絶縁層19よりも高屈折率の有機材料を埋め込むことが好ましい。開口部21に高屈折率の有機材料を埋め込む構成とすることにより、有効画素領域11では導波路より入射光が屈折され、効率良く有効画素領域11のフォトダイオードPDに光が入射される。
本例においては、周辺領域13の金属配線2Mが、遮光膜18とされている。遮光膜18が形成されることにより、例えば、オプティカルブラック領域12に形成されるフォトダイオードPDには光が入射されないため、黒レベルを出力することができる。
第2の実施形態によれば、本来開口部を必要としない周辺領域13にもダミー開口部24を構成することにより、多層配線層20における開口部の疎密が低減されるので、平坦に埋め込み材料を塗布することができ、有効画素領域11と周辺領域13との間の段差を低減することができる。また、有効画素領域11と周辺領域13の多層配線層20に形成される開口部21,ダミー開口部24の開口容量をほぼ同じとなるように構成するときは、埋め込み層22の体積がベーク時において縮んだ場合においても、縮む体積を、有効画素領域11と周辺領域13とで同一に制御することができる。このため、埋め込み層22のべーク工程後においても、有効画素領域11と周辺領域13との境界部分の埋め込み層22表面における段差を低減させることができる。
また、図5Aに、周辺領域13となる周辺回路部14での多層配線層20における金属配線3Mを上面から見た図を示し、そのC−C線に沿う断面構成を図5Bに示す。遮光膜18が、最上層の金属配線3Mで構成されない場合であって、金属配線3Mが疎に構成されている場合は、周辺領域13に形成されるダミー開口部24を、図に示すように、その金属配線3Mに沿って形成するようにしてもよい。
すなわち、周辺領域13において形成されるダミー開口部24と、有効画素領域11において形成される開口部21との開口容量や開口の疎密が、最適に形成されるような構成をとることにより、多層配線層20上に埋め込み層22が平坦に形成される。
[第3の実施形態]
次に、図6に第3の実施形態に係る固体撮像装置の製造方法を説明する概略断面構成を示す。図6に示す固体撮像装置の概略断面構成も、参考例、及び第1〜2の実施形態と同様に、図1におけるA−A線、またはB−Bに沿う断面構成、すなわち、有効画素領域11と、オプティカルブラック領域12や周辺回路部14からなる周辺領域13とに架かる線上における断面構成である。図6において、図2〜4に対応する部分には、同一符号を付し重複説明を省略する。
本実施形態例は、図6Aに示すように、周辺領域13に形成される多層配線層20の3層の金属配線1M,2M,3Mのうち、最上層の金属配線3Mが遮光膜18を構成するように形成されている例である。
まず、図6Aに示すように光が入射される開口側に向かって開口幅が広くなるように側壁がテーパ形状に形成された第1開口部分21a、及びダミー開口部24を、有効画素領域11のフォトダイオードPDの上部及び周辺領域13に形成する。このテーパ形状の第1開口部分21a,及びダミー開口部24は、等方性エッチングと異方性エッチングとを組み合わせることにより形成可能である。テーパ形状に形成された第1開口部分21a,及びダミー開口部24は、多層配線層20の金属配線に接触しないように形成される。すなわち、周辺領域13において形成されるダミー開口部24は、遮光膜18となる金属配線3Mの直上まで開口されており、有効画素領域11に形成された第1開口部分21aも、同様の形状に形成される。
次に、図6Bに示すように、有効画素領域11に形成されたテーパ形状を有する第1開口部分21aをフォトダイオードPD側に向けてさらにエッチングし、フォトダイオードPD直上まで側壁が垂直となるように開口した第2開口部分21bを形成する。したがって、有効画素領域11では、テーパ形状に形成された第1開口部分21aと第2開口部分21bにより形成された開口部21が形成される。
そして、図6Cに示すように有効画素領域11の多層配線層20に形成された開口部21と、周辺領域13の多層配線層20の層間絶縁層19に形成されたダミー開口部24に埋め込み材料を塗布し、埋め込み層22を形成する。このとき、有効画素領域11のフォトダイオードPD上部における開口部21に、光導波路を構成するために、例えば、多層配線層20を構成する層間絶縁層19よりも高屈折率の有機材料を埋め込むことが好ましい。開口部21に高屈折率の有機材料を埋め込む構成とすることにより、導波路より入射光が屈折され、効率良く有効画素領域11のフォトダイオードPDに光が入射される。
本実施形態例においては、周辺領域13の金属配線3Mが、遮光膜18とされている。遮光膜18が形成されることにより、例えば、オプティカルブラック領域12に形成されるフォトダイオードPDには光が入射されないため、黒レベルを出力することができる。
第3の実施形態によれば、本来開口部を必要としない周辺領域13にもダミー開口部24を構成することにより、多層配線層20における開口部の疎密が低減されるので、平坦に埋め込み材料を塗布することができ、有効画素領域11と周辺領域13との間の段差を低減することができる。また、有効画素領域11と周辺領域13の多層配線層20に形成される開口部21,ダミー開口部24の開口容量をほぼ同じとなるように構成するときは、埋め込み材料の体積がベーク時において縮んだ場合においても、縮む体積を、有効画素領域11と周辺領域13とで同一に制御することができる。このため、埋め込み層22のべーク工程後においても、有効画素領域11と周辺領域13との境界部分の埋め込み層22表面における段差を低減させることができる。
さらに、本実施形態例においては、有効画素領域11の開口作業を2回に分けることにより、有効画素領域11の開口部21を光学特性に有利な形とすることができる。本例においては、光導波路の光入射口部分をテーパ形状にすることにより、入射光が入射する間口が広く形成されている。このため、導波路を介してフォトダイオードに入射される光量を増加することができる。有効画素領域11において、第1開口部分21aがテーパ状に形成されることにより、第1開口部分21aの側壁に入射光が反射しても、フォトダイオードPD側へ反射することになり、集光効率の上からも有利となる。
上述した第3の実施形態において、1回目の開口工程で形成するテーパ状の第1開口部分21a及びダミー開口部24をレンズ形状とすることもできる。この第1開口部分21aをレンズ形状に形成するときは、開口間口が広くなることと、レンズ作用とが相俟って、フォトダイオードPDへの集光がし易くなる。
また、有効画素領域11において、2回の加工により開口部21を形成するときは、1回目の開口において、瞳補正をかけることができる。従来、埋め込み層22の上層の光入射面に形成される図示しないオンチップマイクロレンズは、有効画素領域11の中心部分においてオンチップマイクロレンズの光軸中心をフォトダイオードの光軸に合わせ、有効画素領域11の周辺部に向うに従ってオンチップマイクロレンズの中心位置を主光線の向きに合わせてずらす瞳補正が行われている。すなわち、オンチップマイクロレンズは、有効画素領域11の中心部から周辺部に行くに従って、レンズ中心がフォトダイオードPDの中心より有効画素領域11の中心側にずれるように形成される。本実施形態例のように、2回の開口作業により開口部21を設ける場合は、例えば、図7に示すように、中央から周辺へ離れるに従って、1回目に開口する第1開口部分21aの中心31がマオンチップマイクロレンズの光軸中心になるようにフォトダイオードPDからずらして形成する。中央部の第1開口部分21aは、その中心がフォトダイオードPDの中心に合致するように形成される。2回目の開口においては、第2開口部分21bの中心30がフォトダイオードPDの光軸に合わせるようにする。このように、2回の加工により開口部21を形成することにより、1回目に開口された第1開口部分21aでは、オンチップマイクロレンズで集光された光が蹴られることが無い。このため、効率よく入射光を開口部21に入射するように形成することができる。そして、有効画素領域11の周辺部において、瞳補正されたマイクロレンズで集光された光を効率よくフォトダイオードに入射することができる。
また、周辺領域13の多層配線層20に形成されるダミー開口部24が深く確保できない場合は、図8に示すように、周辺領域13のダミー開口部24を有効画素領域11に形成される開口部21よりも広く形成すればよい。このように、有効画素領域11のダミー開口部24の開口パターンによらず、周辺領域13のダミー開口部24の開口パターンを最適化することで、有効画素領域11と周辺領域13の境界部分における埋め込み層22表面の段差を低減することができる。
また、図9に示すように、周辺領域14の側壁がテーパ形状とされたダミー開口部24の開口パターンを、光干渉効果を有するように微細に形成し、さらに、有効画素領域11の開口部21よりも密に形成することもできる。このように、周辺領域13の側壁がテーパ形状とされたダミー開口部24の開口パターンを、光干渉効果を有するように形成することにより、斜めの光の反射を抑制し、フレアの原因となる遮光膜からの反射を抑制することができる。
このように、2回の開口作業により開口部21及びダミー開口部24を設けることにより、有効画素領域11及び周辺領域13の開口部21及びダミー開口部24の形状を好適に変形させることが可能である。すなわち、有効画素領域11の開口形状の自由度が増し、集光や混色特性、シェーディングを改善することができる。
図1に示した固体撮像装置は、参考例、及び第1の実施形態〜第3の実施形態で示すように、開口部21,及びダミー開口部24が埋め込み層22により平坦に埋め込まれた後、パッシベーション膜、カラーフィルタ、オンチップマイクロレンズがそれぞれ積層されて形成されることにより完成される。
そして、第1の実施形態〜第3の実施形態で示した固体撮像装置の製造方法を用いて製造された固体撮像装置1は、有効画素領域11と周辺領域13の境界領域における埋め込み層22の段差を低減させることができるので、その上部に積層されて形成される各層に影響してできる段差も低減することができる。このため、有効画素領域11内に段差がずれ込むことがなく、固体撮像装置の感度ムラを低減することができる。
上述した第1の実施形態〜第3の実施形態で示した固体撮像装置及びその製造方法は、有効画素領域11のフォトダイオード上に光導波路を形成する場合について示したが、本発明は光導波路を形成するための開口部21を設ける工程に限定されるものではない。
例えば、配線層の金属配線をCu配線で形成した場合に、Cu拡散防止膜がCu配線層毎に形成される場合がある。このCu拡散防止膜が有効画素領域のフォトダイオード上の光入射側にあると、屈折率の変化などにより、フォトダイオードに入射される入射光の光量が低減してしまう。
このため、従来、有効画素領域のフォトダイオード直上の配線層に開口することにより、有効画素領域のフォトダイオード上部にあるCu拡散防止膜を除去することが行われている。このような場合においても、第1の実施形態〜第3の実施形態に示したように、周辺領域にもダミー開口部を形成することにより、その後の埋め込み層の成膜工程において、有効画素領域と周辺領域との境界領域における埋め込み層表面の段差を低減することができる。この場合、開口部には埋め込み層として絶縁材料が形成されるが、絶縁材料としては、第1の実施形態〜第4の実施形態に示されたように、高屈折率の有機材料を用いてもよい。
そして、以上のような場合も、第1の実施形態〜第3の実施形態で示した固体撮像装置の製造方法を用いて製造された固体撮像装置と同様、有効画素領域と周辺領域の境界領域における段差を低減させることができる。このため、その上部に積層される、パッシベーション膜、カラーフィルタ、オンチップマイクロレンズも平坦に形成することができる。その結果、固体撮像装置表面にできる段差が有効画素領域内にずれ込むことなく、感度ムラの低減が図られる。
本実施形態例の固体撮像装置として、CMOSイメージセンサを例に用いて説明したが、本発明は、光電変換部となるフォトダイオードの直上に光導波路を有するCCDイメージセンサにも適用可能である。
本発明において、有効画素領域11の周辺領域13の形態としては、有効画素領域11に隣接するオプティカルブラック領域12のみの場合、オプティカルブラック領域12を介在させないで有効画素領域11に隣接する周辺回路部14のみの場合、さらにオプティカルブラック領域12と周辺回路部14にわたる場合を含む。従って、ダミー開口部24は、オプティカルブラック領域12のみに形成する場合、周辺回路部14のみに形成する場合、さらにはオプティカルブラック領域12と周辺回路部14の一部にわたって形成する場合など、種々の形態を採り得る。
次に、図10及び11に、本発明のカメラの概略構成を示す。
本実施形態例のカメラは、上述した第1〜第3の実施形態において製造される固体撮像装置を用いるものであり、図10は、固体撮像装置としてCMOSイメージセンサを用いた例であり、図11は固体撮像装置としてCCDイメージセンサを用いた例である。
図10に示すように、カメラ50は、光学系51と、本発明に係るCMOSイメージセンサ52と、信号処理回路53とを有して成る。本実施例のカメラは、光学系51と、CMOSイメージセンサ52及び信号処理回路53がモジュール化したカメラモジュールの形態を含む。光学系51は、被写体からの像光(入射光)をCMOSイメージセンサ52の撮像面上に結像させる。これにより、CMOSイメージセンサ52の光電変換部のフォトダイオードにおいて、入射光は入射光量に応じて信号電荷に変換される。そして、その信号電荷はCMOSイメージセンサ52に構成された垂直駆動回路、水平駆動回路、カラム信号処理回路、それらを制御する制御回路により、出力される。その出力された出力信号は、信号処理回路53により種々の信号処理が施されて映像信号として、出力される。
図11に示すように、カメラ40は、光学系41と、本発明に係るCCDイメージセンサ42と、CCD駆動回路43と、信号処理回路44とを有して成る。本実施例のカメラは、光学系41と、CCDイメージセンサ42と、CCD駆動回路43と、信号処理回路44がモジュール化したカメラモジュールの形態を含む。光学系41は、被写体からの像体(入射光)をCCDイメージセンサ42の撮像面上に結像させる。これにより、CCDイメージセンサ42の光電変換部のフォトダイオードにおいて、入射光は、入射光量に応じて信号電荷に変換される。CCD駆動回路43は、CCDイメージセンサ42で受光された信号電荷を垂直電荷転送部へ読み出した後、垂直電荷転送部内を転送して水平電荷転送部へ転送し、さらに水平電荷転送部内を転送させるための駆動を行う。信号処理回路44により、CCDイメージセンサ42の出力信号は種々の信号処理が施され、映像信号として、出力される。
以上のように、図10及び図11に示したカメラには、有効画素領域と周辺領域との境界領域の段差が低減された固体撮像装置が用いられる。このため、感度ムラが低減されたカメラとなる。
本発明は、上述のカメラ50、40を内蔵して例えばカメラ付き携帯電話等の電子機器を構成することができる。この電子機器においても、内蔵されたカメラの感度ムラが低減されて信頼性の高い電子機器を提供することができる。
1・・・固体撮像装置、2・・・撮像画素、3・・・撮像領域、4・・・垂直駆動回路、5・・・カラム信号処理回路、6・・・水平駆動回路、7・・・出力回路、8・・・制御回路、9・・・垂直信号線、10・・・水平信号線、11・・・有効画素領域、12・・・オプティカルブラック領域、13・・・周辺領域、14・・・周辺回路部、15・・・非開口部、18・・・遮光膜、19・・・層間絶縁層、20・・・多層配線層、21・・・開口部、21a・・・第1開口部分、21b・・・第2開口部分、22・・・埋め込み層、24・・・ダミー開口部

Claims (9)

  1. 光電変換部を有する画素が複数配列された有効画素領域と、該有効画素領域の周辺領域に渡って絶縁層を形成する工程と、
    前記有効画素領域の光電変換部直上に位置する絶縁層に開口部を形成し、前記周辺領域の遮光膜上部に形成された絶縁層にダミー開口部を形成する工程と、
    前記絶縁層に形成された前記開口部及び前記ダミー開口部を埋め込むように、前記絶縁層上に埋め込み層を形成する工程とを有する
    ことを特徴とする固体撮像装置の製造方法。
  2. 前記ダミー開口部を、前記周辺領域における複数画素を有するオプティカルブラック領域または/及び周辺回路部に形成し、前記埋め込み層に絶縁材料を用いる
    ことを特徴とする請求項1記載の固体撮像装置の製造方法。
  3. 前記埋め込み層に、前記絶縁層より屈折率の高い有機材料を用いる
    ことを特徴とする請求項1又は2に記載の固体撮像装置の製造方法。
  4. 前記有効画素領域の前記開口部と、前記周辺領域の前記ダミー開口部を開口容量がほぼ等しくなるように形成する
    ことを特徴とする請求項1〜3のいずれか一項に記載の固体撮像装置の製造方法。
  5. 前記開口部を開口側の側壁がテーパ形状を有するように形成する
    ことを特徴とする請求項1〜4のいずれか一項に記載の固体撮像装置の製造方法。
  6. 前記周辺領域のダミー開口部を、光干渉効果を有するように形成する
    ことを特徴とする請求項1〜5のいずれか一項に記載の固体撮像装置の製造方法。
  7. 前記有効画素領域の前記開口部を、2回の開口作業により開口する
    ことを特徴とする請求項1〜6のいずれか一項に記載の固体撮像装置の製造方法。
  8. 前記1回目の開口作業と前記2回目の開口作業で形成する開口部分は、それぞれ異なる形状である
    ことを特徴とする請求項7に記載の固体撮像装置の製造方法。
  9. 前記1回目の開口作業による開口中心と、前記2回目の開口作業による開口中心とを異ならせて、瞳補正される前記開口部を形成する
    ことを特徴とする請求項7又は8に記載の固体撮像装置の製造方法。
JP2010010146A 2010-01-20 2010-01-20 固体撮像装置の製造方法 Expired - Fee Related JP4735762B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010146A JP4735762B2 (ja) 2010-01-20 2010-01-20 固体撮像装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010146A JP4735762B2 (ja) 2010-01-20 2010-01-20 固体撮像装置の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007340331A Division JP4735643B2 (ja) 2007-12-28 2007-12-28 固体撮像装置、カメラ及び電子機器

Publications (2)

Publication Number Publication Date
JP2010098330A true JP2010098330A (ja) 2010-04-30
JP4735762B2 JP4735762B2 (ja) 2011-07-27

Family

ID=42259746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010146A Expired - Fee Related JP4735762B2 (ja) 2010-01-20 2010-01-20 固体撮像装置の製造方法

Country Status (1)

Country Link
JP (1) JP4735762B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004368A (ja) * 2010-06-17 2012-01-05 Panasonic Corp 固体撮像素子およびその製造方法
JP2012164944A (ja) * 2011-02-09 2012-08-30 Canon Inc 固体撮像装置、及び固体撮像装置の製造方法
JP2014168206A (ja) * 2013-02-28 2014-09-11 Canon Inc 撮像装置
US8852987B2 (en) 2012-08-07 2014-10-07 Canon Kabushiki Kaisha Method of manufacturing image pickup device
CN110752227A (zh) * 2018-07-23 2020-02-04 爱思开海力士有限公司 图像感测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109411A (ja) * 2003-10-02 2005-04-21 Canon Inc 撮像装置および撮像システム
JP2006261247A (ja) * 2005-03-15 2006-09-28 Canon Inc 固体撮像素子およびその製造方法
JP2007141873A (ja) * 2005-11-14 2007-06-07 Sony Corp 固体撮像素子、撮像装置、及び固体撮像素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109411A (ja) * 2003-10-02 2005-04-21 Canon Inc 撮像装置および撮像システム
JP2006261247A (ja) * 2005-03-15 2006-09-28 Canon Inc 固体撮像素子およびその製造方法
JP2007141873A (ja) * 2005-11-14 2007-06-07 Sony Corp 固体撮像素子、撮像装置、及び固体撮像素子の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004368A (ja) * 2010-06-17 2012-01-05 Panasonic Corp 固体撮像素子およびその製造方法
JP2012164944A (ja) * 2011-02-09 2012-08-30 Canon Inc 固体撮像装置、及び固体撮像装置の製造方法
US9029967B2 (en) 2011-02-09 2015-05-12 Canon Kabushiki Kaisha Solid-state image pickup device having waveguides in light-receiving and light-shielding areas
US9577003B2 (en) 2011-02-09 2017-02-21 Canon Kabushiki Kaisha Method of forming an image pickup device having two waveguides and a light-shielding member
US10615204B2 (en) 2011-02-09 2020-04-07 Canon Kabushiki Kaisha Solid-state image pickup device and method of making the same
US8852987B2 (en) 2012-08-07 2014-10-07 Canon Kabushiki Kaisha Method of manufacturing image pickup device
JP2014168206A (ja) * 2013-02-28 2014-09-11 Canon Inc 撮像装置
CN110752227A (zh) * 2018-07-23 2020-02-04 爱思开海力士有限公司 图像感测装置
CN110752227B (zh) * 2018-07-23 2023-10-03 爱思开海力士有限公司 图像感测装置

Also Published As

Publication number Publication date
JP4735762B2 (ja) 2011-07-27

Similar Documents

Publication Publication Date Title
JP4735643B2 (ja) 固体撮像装置、カメラ及び電子機器
JP7171652B2 (ja) 固体撮像素子および電子機器
JP7301936B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
JP5493461B2 (ja) 固体撮像装置、電子機器及び固体撮像装置の製造方法
US10685998B2 (en) Solid-state image-capturing device using phase difference pixel and production method thereof, and electronic appliance
JP5760923B2 (ja) 固体撮像装置の製造方法
WO2015174297A1 (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP2007013061A (ja) 固体撮像装置及びその製造方法
JP2014229810A (ja) 固体撮像装置、および電子機器
US20070153337A1 (en) Image sensor and method of fabricating the same
JP2013214616A (ja) 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP5298617B2 (ja) 固体撮像装置とその製造方法、及び電子機器
JP4735762B2 (ja) 固体撮像装置の製造方法
JP2009099817A (ja) 固体撮像素子
JP5948783B2 (ja) 固体撮像装置、および電子機器
JP5332822B2 (ja) 固体撮像素子、撮像装置
JP5332823B2 (ja) 固体撮像素子、撮像装置
JP6316902B2 (ja) 固体撮像装置、および電子機器
JP5994887B2 (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
KR20070044626A (ko) 이미지센서 및 그 제조방법
JP2006114592A (ja) 固体撮像素子
JP5425138B2 (ja) 固体撮像装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110411

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees