JP2010093249A - ソースモジュール、放射ソースおよびリソグラフィ装置 - Google Patents

ソースモジュール、放射ソースおよびリソグラフィ装置 Download PDF

Info

Publication number
JP2010093249A
JP2010093249A JP2009216391A JP2009216391A JP2010093249A JP 2010093249 A JP2010093249 A JP 2010093249A JP 2009216391 A JP2009216391 A JP 2009216391A JP 2009216391 A JP2009216391 A JP 2009216391A JP 2010093249 A JP2010093249 A JP 2010093249A
Authority
JP
Japan
Prior art keywords
fuel
radiation
interceptor
source
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009216391A
Other languages
English (en)
Other versions
JP5070264B2 (ja
Inventor
Dzmitry Labetski
ラベッツスキ,ドズミトリ
Vadim Yevgenyevich Banine
バニエ,バディム,エヴィジェンエビッチ
Erik Roelof Loopstra
ループストラ,エリック,ルーロフ
Johannes Hubertus Josephina Moors
モールス,ヨハネス,フベルトゥス,ヨセフィナ
Gerardus Hubertus Petrus Maria Swinkels
スウィンケルズ,ゲラルドス,ヒューベルタス,ペトラス,マリア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2010093249A publication Critical patent/JP2010093249A/ja
Application granted granted Critical
Publication of JP5070264B2 publication Critical patent/JP5070264B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】燃料デブリを放射コレクタに到達する前に除去する。
【解決手段】放射ソースは、極端紫外線を生成するように構成されている。放射ソースは、チャンバと、チャンバ内のプラズマ形成部位に燃料を供給するように構成された燃料供給と、放射ビームが燃料と衝突した場合に極端紫外線を放つプラズマが生成されるようにプラズマ形成部位に放射ビームを放つように構成されたレーザとを含む。燃料微粒子インターセプターは、チャンバ内に配置され、燃料微粒子が燃料微粒子インターセプターの表面に衝突した場合に燃料微粒子が表面に付着するように燃料に対する親和性を有する材料を含む。燃料微粒子インターセプターは、重力の影響によってあらゆる燃料微粒子が反射エレメントへと落ちることを防ぐように反射エレメントに対して構成されている。
【選択図】図5

Description

[0001] 本発明は、極端紫外線(EUV)放射ソースおよびそのようなソースを含むリソグラフィ装置に関する。
[0002] リソグラフィ装置は、所望のパターンを基板上、通常、基板のターゲット部分上に付与する機械である。リソグラフィ装置は、例えば、集積回路(IC)の製造に用いることができる。その場合、ICの個々の層上に形成される回路パターンを生成するために、マスクまたはレチクルとも呼ばれるパターニングデバイスを用いることができる。このパターンは、基板(例えば、シリコンウェーハ)上のターゲット部分(例えば、ダイの一部、または1つ以上のダイを含む)に転写することができる。通常、パターンの転写は、基板上に設けられた放射感応性材料(レジスト)層上への結像によって行われる。一般には、単一の基板が、連続的にパターニングされる隣接したターゲット部分のネットワークを含んでいる。公知のリソグラフィ装置としては、ターゲット部分上にパターン全体を一度に露光することにより各ターゲット部分を照射するいわゆるステッパ、および放射ビームによってある特定の方向(「スキャン」方向)にパターンをスキャンすると同時に、この方向に平行または逆平行に基板をスキャンすることにより各ターゲット部分を照射する、いわゆるスキャナが含まれる。
[0003] 今まで以上に小さい構造を基板に投影することを可能にするために、10nm〜20nmの範囲内、例えば、13nm〜14nmの範囲内の波長を有する極端紫外線であるEUV放射を使用することが提案されている。10nmより小さい、例えば、6.7nmまたは6.8nmのように5〜10nmの範囲内の波長を有するEUV放射を使用してもよいこともさらに提案されている。
[0004] 放射は、プラズマを用いて生成することができる。プラズマは、例えば、適した材料(例えば、スズ)の粒子、あるいは、XeガスまたはLi蒸気のような適したガスまたは蒸気の流れなどの燃料にレーザを向けることによって生成することができる。結果として生じるプラズマは、出力放射、例えばEUV放射を放ち、これは、放射を受けて放射をビームへと合焦させるミラー法線入射放射コレクタのような放射コレクタを用いて集められる。そのような放射ソースは、一般的にはレーザ生成プラズマ(LPP)ソースと呼ばれる。
[0005] 放射に加えて、プラズマ放射ソースのプラズマは、熱化された原子、イオン、ナノクラスター、および/またはマイクロ粒子などの粒子の形状において汚染を生成する。汚染は、所望の放射とともに放射ソースから放射コレクタへと出力され、法線入射放射コレクタおよび/または他の部分に対してダメージを与える場合がある。例えば、所望のEUVを生成するためにスズ(Sn)小滴を使用するLPPソースは、原子、イオン、ナノクラスター、および/またはマイクロ粒子の形状を有するスズデブリを大量に生成することができる。以下、微粒子という用語について言及されるが、微粒子は、燃料ソースからの原子/イオンまたは原子クラスターの形状を有する任意のデブリまたは汚染を包含することを意味する。EUVパワーが減少し、または他の問題を引き起こし得るソース容器の中のどこかに終わるデブリが放射コレクタに到達することを防ぐことが望ましい。特にイオンを止めるためにバッファガスが使用されてもよいが、この種類のデブリ緩和では、大きい流れのバッファガスが必要であり得、これは大きなポンプおよび大きな供給のバッファガスを有することを望ましくする。バッファガスの大きな流れによって、プラズマ領域は不安定になり得るが、流れは、燃料のマイクロ小滴がソース真空チャンバの壁に堆積することを止めない。
[0006] さらに、EUV LPPソースは、一部が中央円錐に堆積し得る燃料デブリを大量に生成する。本発明は、制御されていない放出がプラズマソース内で構成された光学部品にダメージを与える、内端円錐内の燃料デブリ堆積の蓄積の防止に関する。
[0007] デブリが放射コレクタに到達する前に燃料デブリを除去することが望ましい。放射ソース内の表面へのあらゆる燃料デブリの集積を回避することが望ましい。本発明の一態様によると、リソグラフィ装置のためのソースモジュールであって、ソースモジュールは、チャンバ壁によって画定されたチャンバと、チャンバ内のプラズマ形成部位に燃料を供給する燃料供給を含む極端紫外線ジェネレータと、プラズマ形成部位における放射放出ポイントから発散される極端紫外線を反射させるチャンバ内の反射エレメントと、1つ又は複数のチャンバ壁に隣接したチャンバ内に配置され、燃料に対する親和性を有する材料を含む燃料微粒子インターセプターとを含む、ソースモジュールが提供される。レーザは、放射ビームが燃料と衝突した場合に極端紫外線を放つプラズマが生成されるようにプラズマ形成部位に放射ビームを放つように構成されてもよい。燃料微粒子インターセプターは、プラズマによって放たれる燃料微粒子を収集するように構成されている。燃料微粒子インターセプターは、チャンバ内に配置され、燃料微粒子が燃料微粒子インターセプターの表面に衝突した場合に燃料微粒子が表面に付着するように燃料に対する親和性を有する材料を含む。燃料微粒子インターセプターは、重力の影響によってあらゆる燃料微粒子が反射エレメントへと落ちることを防ぐように反射エレメントに対して配置されている。
[0008] 本発明の一態様によると、上記のソースモジュールと、パターン付き放射を基板に投影する投影システムとを含むリソグラフィ装置が提供される。
[0009] 本発明の一態様によると、極端紫外線を生成する放射ソースであって、放射ソースは、プラズマ形成部位に燃料を供給する燃料供給と、放射ビームが燃料と衝突した場合に極端紫外線を放つプラズマが生成されるようにプラズマ形成部位に放射ビームを放つレーザと、プラズマによって放たれる燃料微粒子から放射ソースの少なくとも一部を保護する燃料微粒子インターセプターであって、燃料微粒子インターセプターは第1の部分および第2の部分を含み、第2の部分は第1の部分よりプラズマ形成部位の近くに位置決めされ、第1の部分は回転可能である、燃料微粒子インターセプターと、燃料微粒子インターセプターの表面から燃料微粒子を除去し、燃料微粒子を収集場所に向かって誘導する燃料微粒子リムーバーとを含む、放射ソースが提供される。
[0010] 本発明の一態様によると、上記の放射ソースと、パターン付き放射を基板に投影する投影システムとを含むリソグラフィ装置が提供される。
[0011] 本発明のいくつかの実施形態を、単なる例として、添付の概略図を参照して以下に説明する。これらの図面において同じ参照符号は対応する部分を示す。
[0012] 図1は、本発明の一実施形態によるリソグラフィ装置を概略的に示す。 [0013] 図2は、本発明の一実施形態によるリソグラフィ装置を示す。 [0014] 図3は、本発明の一実施形態によるソースモジュールおよび法線入射放射コレクタを示す。 [0015] 図4は、本発明の一実施形態による放射ジェネレータを含むソースモジュールを示す。 [0016] 図5は、本発明の一実施形態による燃料微粒子インターセプターを含むソースモジュールを示す。 [0017] 図6は、本発明の一実施形態によるデブリトラップホイルを含む図5に示されたソースモジュールを示す。 [0018] 図7は、本発明の一実施形態による回転可能な燃料微粒子インターセプターを含むソースモジュールを示す。 [0019] 図8は、本発明の一実施形態による放射ソースのソースモジュールにおける温度分布を示す。 [0020] 図9は、本発明の一実施形態による放射ソースの一部の側面図(A)および正面図(B)を示す。 [0021] 図10は、本発明の一実施形態による放射ソースの一部の側面図(A)および正面図(B)を示す。
[0022] 図1は、本発明の一実施形態によるリソグラフィ装置を概略的に示している。この装置は、放射ビームBを調整するように構成された照明システム(イルミネータ)ILを備える。装置は、パターニングデバイス(例えば、マスク)MAを支持するように構成され、かつ特定のパラメータに従ってパターニングデバイスを正確に位置付けるように構成された第1ポジショナPMに連結されているサポート構造(例えば、マスクテーブル)MTと、基板(例えば、レジストコートウェーハ)Wを保持するように構成され、かつ特定のパラメータに従って基板を正確に位置付けるように構成された第2ポジショナPWに連結されている基板テーブル(例えば、ウェーハテーブル)WTと、パターニングデバイスMAによって放射ビームBに付けられたパターンを基板Wのターゲット部分C(例えば、1つ以上のダイを含む)上に投影するように構成されている投影システム(例えば、屈折または反射投影レンズシステム)PSとを備える。
[0023] 照明システムとしては、放射を誘導し、整形し、または制御するために、屈折型、反射型、磁気型、電磁型、静電型、またはその他のタイプの光コンポーネント、あるいはそれらのあらゆる組合せなどのさまざまなタイプの光コンポーネントを含むことができる。
[0024] サポート構造MTは、パターニングデバイスの配向、リソグラフィ装置の設計、および、パターニングデバイスが真空環境内で保持されているか否かなどの他の条件に応じた態様で、パターニングデバイスを保持する。サポート構造MTは、機械式、真空式、静電式またはその他のクランプ技術を使って、パターニングデバイスを保持することができる。サポート構造MTは、例えば、必要に応じて固定または可動式にすることができるフレームまたはテーブルであってもよい。サポート構造MTは、パターニングデバイスを、例えば、投影システムに対して所望の位置に確実に置くことができる。本明細書において使用される「レチクル」または「マスク」という用語はすべて、より一般的な「パターニングデバイス」という用語と同義であると考えるとよい。
[0025] 本明細書において使用される「パターニングデバイス」という用語は、基板のターゲット部分内にパターンを作り出すように、放射ビームの断面にパターンを与えるために使用できるあらゆるデバイスを指していると、広く解釈されるべきである。なお、留意すべき点として、放射ビームに付与されたパターンは、例えば、そのパターンが位相シフトフィーチャまたはいわゆるアシストフィーチャを含む場合、基板のターゲット部分内の所望のパターンに正確に一致しない場合もある。通常、放射ビームに付けたパターンは、集積回路などのターゲット部分内に作り出されるデバイス内の特定機能層に対応することになる。
[0026] パターニングデバイスは、反射型であってもよい。パターニングデバイスの例としては、マスク、プログラマブルミラーアレイ、およびプログラマブルLCDパネルが含まれる。マスクは、リソグラフィでは公知であり、バイナリ、レベンソン型(alternating)位相シフト、およびハーフトーン型(attenuated)位相シフトなどのマスク型、ならびに種々のハイブリッドマスク型を含む。プログラマブルミラーアレイの一例では、小型ミラーのマトリックス配列が用いられており、各小型ミラーは、入射する放射ビームを様々な方向に反射させるように、個別に傾斜させることができる。傾斜されたミラーは、ミラーマトリックスによって反射される放射ビームにパターンを付ける。
[0027] 本明細書において使用される「投影システム」という用語は、使われている露光放射にとって、あるいは液浸液の使用または真空の使用といった他の要因にとって適切な、屈折型、反射型、反射屈折型、磁気型、電磁型、および静電型光学系、またはそれらのあらゆる組合せを含むあらゆる型の投影システムを包含していると広く解釈されるべきである。本明細書において使用される「投影レンズ」という用語はすべて、より一般的な「投影システム」という用語と同義であると考えるとよい。
[0028] 本明細書に示されているとおり、装置は、反射型のもの(例えば、反射型マスクを採用しているもの)である。
[0029] リソグラフィ装置は、2つ(デュアルステージ)以上の基板テーブル(および/または2つ以上のパターニングデバイステーブル)を有する型のものであってもよい。そのような「マルチステージ」機械においては、追加のテーブルを並行して使うことができ、または予備工程を1つ以上のテーブル上で実行しつつ、別の1つ以上のテーブルを露光用に使うこともできる。
[0030][0031] 図1を参照すると、イルミネータILは、放射ソースSOから放射ビームを受ける。放射ソースSOは、例えば、LPP放射ジェネレータ等のEUV放射ジェネレータおよびEUV放射ジェネレータの放射放出ポイントから発散される放射を集めるための集光光学系を含む。一実施形態では、ソースSOは、集光光学系を含んでもよい。あるいは、集光光学系は、リソグラフィ装置2の一部であってもよく、または、ソースSOおよびリソグラフィ装置2の両方の一部であってもよい。一実施形態では、ソースとリソグラフィ装置は、別個の構成要素であってもよい。そのような場合には、放射ソースSOが集光光学系を含むところでは、集光光学系は、リソグラフィ装置の一部を形成しているとはみなされない。集光光学系を含むソースSOが別個の構成要素であるところでは、放射ビームは、放射ソースSOの集光光学系からイルミネータILへ、例えば、適切な誘導ミラーおよび/またはビームエキスパンダを含むビームデリバリシステムを使って送られる。その他の場合においては、ソースと集光光学系(集光光学系がソースの一部であってもリソグラフィ装置の一部であっても)は、リソグラフィ装置の一体部分とすることもできる。集光光学系、ソースSOおよびイルミネータILは、必要ならばビームデリバリシステムとともに、放射システムと呼んでもよい。イルミネータILは、放射ビームの角強度分布を調節するためのアジャスタを含むことができる。一般に、イルミネータの瞳面内の強度分布の少なくとも外側および/または内側半径範囲(通常、それぞれσ-outerおよびσ-innerと呼ばれる)を調節することができる。さらに、イルミネータILは、インテグレータおよびコンデンサといったさまざまな他のコンポーネントを含むことができる。イルミネータを使って放射ビームを調整すれば、放射ビームの断面に所望の均一性および強度分布をもたせることができる。
[0032] 放射ビームBは、サポート構造(例えば、マスクテーブル)MT上に保持されているパターニングデバイス(例えば、マスク)MA上に入射して、パターニングデバイスによってパターン形成される。パターニングデバイスMAを通り抜けた後、放射ビームBは投影システムPSを通過し、投影システムPSは、基板Wのターゲット部分C上にビームの焦点をあわせる。第2ポジショナPWおよび位置センサIF2(例えば、干渉計デバイス、リニアエンコーダ、または静電容量センサ)を使って、例えば、さまざまなターゲット部分Cを放射ビームBの経路内に位置付けるように、基板テーブルWTを正確に動かすことができる。同様に、第1ポジショナPMおよび別の位置センサIF1を使い、例えば、マスクライブラリからマスクを機械的に取り出した後またはスキャン中に、パターニングデバイスMAを放射ビームBの経路に対して正確に位置付けることもできる。通常、サポート構造MTの移動は、第1ポジショナPMの一部を形成するロングストロークモジュール(粗動位置決め)およびショートストロークモジュール(微動位置決め)を使って達成することができる。同様に、基板テーブルWTの移動も、第2ポジショナPWの一部を形成するロングストロークモジュールおよびショートストロークモジュールを使って達成することができる。ステッパの場合は(スキャナとは対照的に)、サポート構造MTは、ショートストロークアクチュエータのみに連結されてもよく、または固定されてもよい。パターニングデバイスMAおよび基板Wは、パターニングデバイスアライメントマークM1およびM2と、基板アライメントマークP1およびP2とを使って、位置合わせされてもよい。例示では基板アライメントマークが専用ターゲット部分を占めているが、基板アライメントマークをターゲット部分とターゲット部分との間の空間内に置くこともできる(これらは、スクライブラインアライメントマークとして公知である)。同様に、複数のダイがパターニングデバイスMA上に設けられている場合、パターニングデバイスアライメントマークは、ダイとダイの間に置かれてもよい。
[0033] 例示の装置は、以下に説明するモードのうち少なくとも1つのモードで使用できる。
[0034] 1. ステップモードでは、サポート構造MTおよび基板テーブルWTを基本的に静止状態に保ちつつ、放射ビームに付けられたパターン全体を一度にターゲット部分C上に投影する(すなわち、単一静的露光)。その後、基板テーブルWTは、Xおよび/またはY方向に移動され、それによって別のターゲット部分Cを露光することができる。ステップモードにおいては、露光フィールドの最大サイズによって、単一静的露光時に結像されるターゲット部分Cのサイズが限定される。
[0035] 2. スキャンモードでは、サポート構造MTおよび基板テーブルWTを同期的にスキャンする一方で、放射ビームに付けられたパターンをターゲット部分C上に投影する(すなわち、単一動的露光)。サポート構造MTに対する基板テーブルWTの速度および方向は、投影システムPSの(縮小)拡大率および像反転特性によって決めることができる。スキャンモードにおいては、露光フィールドの最大サイズによって、単一動的露光時のターゲット部分の幅(非スキャン方向)が限定される一方、スキャン動作の長さによって、ターゲット部分の高さ(スキャン方向)が決まる。
[0036] 3. 別のモードでは、プログラマブルパターニングデバイスを保持した状態で、サポート構造MTを基本的に静止状態に保ち、また基板テーブルWTを動かす、またはスキャンする一方で、放射ビームに付けられているパターンをターゲット部分C上に投影する。このモードにおいては、通常、パルス放射ソースが採用されており、さらにプログラマブルパターニングデバイスは、基板テーブルWTの移動後ごとに、またはスキャン中の連続する放射パルスと放射パルスとの間に、必要に応じて更新される。この動作モードは、前述の型のプログラマブルミラーアレイといったプログラマブルパターニングデバイスを利用するマスクレスリソグラフィに容易に適用することができる。
[0037] 上述の使用モードの組合せおよび/またはバリエーション、あるいは完全に異なる使用モードもまた採用可能である。
[0038] 図2は、図1の実施形態に示される装置の動作と類似する動作の原理を有するEUVリソグラフィ装置のさらなる実施形態を概略的に示す。図2の実施形態では、装置は、この場合、放射ソースSOの一部であるソースモジュールまたは放射ユニット3、照明システムIL、および投影システムPSを含む。ソースモジュール3は、コレクタ10およびEUV放射ジェネレータを含むチャンバ7を含む。EUV放射ジェネレータは、チャンバ7内のプラズマ形成部位に燃料を供給するように構成された燃料供給を含む。使用中、プラズマ形成部位におけるプラズマの励起の際、放射放出ポイントP、すなわち、EUV放射を放つプラズマの局部が提供される。放出ポイントPは、以下プラズマPとも呼ぶ。好ましくは、EUV放射ジェネレータは、レーザ生成プラズマ(「LPP」)ソースである。チャンバ7は、例えば、チャンバ7内で真空環境を可能にするために構成されたチャンバ壁55を含み、かつそれによって画定される。本実施形態では、プラズマPから放たれる放射は、ソースチャンバ7からイルミネータILへと渡る。図2で概略的に示されるように、集光光学系10は、反射コレクタであってもよい。
[0039] 図2は、レーザ生成プラズマ(LPP)ソースと組み合わされた法線入射放射コレクタ10の適用を示す。しかしながら、特にソースが放電生成プラズマ(DPP)ソースであった場合、放射コレクタは、かすめ入射コレクタであってもよい。さらなる別の実施形態では、放射コレクタはシュヴァルツシルト放射コレクタであってもよく、ソースはDPPソースであってもよい。
[0040] 放射は、チャンバ7におけるアパーチャにまたはその近くに配置された仮想ソースポイント12(すなわち、中間焦点IF)に合焦されてもよい。チャンバ7から、放射ビーム16は、照明システムIL内で反射する。パターン形成されたビーム17が形成され、これは、投影システムPSによって反射エレメント18および19を介してウェーハステージまたは基板テーブルWTへと結像される。示されているものより多いエレメントが、照明システムILおよび投影システムPSに通常存在してもよい。
[0041] 反射エレメント19のうちの1つは、その正面に、中にアパーチャを有する開口数(NA)ディスクを有してもよい。アパーチャのサイズは、パターン形成された放射ビーム17が基板テーブルWTに当たる時にその放射ビーム17によって範囲が定められる角度αを決定する。
[0042] 他の実施形態では、放射コレクタは、集めた放射を中間焦点IFへと合焦させるように構成された放射コレクタ;ソースと一致する第1の焦点および上記の中間焦点IFと一致する第2の焦点を有する放射コレクタ;法線入射放射コレクタ;単一の略楕円放射集光面を有する放射コレクタ;および2つの放射集光面を有するシュヴァルツシルト放射コレクタのうちの1つ以上である。
[0043] さらに、別の実施形態では、EUV放射ジェネレータは、少なくともEUV放射を放つプラズマが生成されるように所定の波長のコヒーレント光のビームを燃料へと合焦させるように構成された、例えば、COレーザなどの光ソースを含むレーザ生成プラズマ(LPP)ソースであってもよい。一実施形態では、放射ソースは、放電生成プラズマ(DPP)ソースであってもよい。
[0044] 図3は、法線入射放射コレクタ10を含む放射ユニット3の一実施形態を断面図で示す。放射コレクタ10は、2つの自然楕円焦点F1およびF2を有する楕円状の構成を有する。特に、法線入射放射コレクタは、楕円体の部分の形状を有する単一の放射集光面10sを有する放射コレクタを含む。言い換えると、楕円放射集光面部分は、図面において線Eで示されている仮想楕円体に沿って延在する。
[0045] 図1に示される実施形態のソースSOがLPP放射ソースを含む場合、放射コレクタは、図3に示されるような単一の楕円ミラーであってもよく、ここでは、放射放出ポイントは1つの焦点(F1)に位置付けされ、中間焦点IFはミラーの他方の焦点(F2)で確立される。第1の焦点(F1)に配置された放射放出ポイントから発散される放射は反射面10sに向かって伝搬し、その表面に反射して第2の焦点F2に向かう反射した放射は、図面において線rで示されている。例えば、一実施形態によると、上述の中間焦点IFは、リソグラフィ装置の放射コレクタと照明システムILと(図1および2を参照)の間に配置されてもよく、あるいは、望ましい場合、照明システムIL内に配置されてもよい。
[0046] 図4は、本発明の一実施形態による放射ソースモジュールを概略的に示す。放射ソースモジュール3は、例えば、Snなどの液化燃料(目標材料)23を小滴に変えるように構成された小滴ジェネレータ22を含んでもよい。小滴ジェネレータ22は、領域26へのSnの液体小滴24a、24b、24cおよび24dの搬送のための適切なメカニズムまたは開口部(図示せず)を用いて構成されてもよく、小滴は、レーザなどの放射エミッタ30によって提供されるレーザビームのような放射ビーム28が衝突するように構成されている。レーザビーム28は、10.6マイクロメートルの波長を有するCOレーザに関連し得る。あるいは、それぞれが1〜11マイクロメートルの範囲内の波長を有する他の適切な放射エミッタまたはレーザが使用されてもよい。レーザビームは、望ましくは、適切な光学システム(図示せず)を用いてプラズマ形成部位とも呼ばれ得る領域26で合焦される。レーザビームとの相互作用の際、小滴24a、24b、24cおよび24dは、6.7nmの放射、または5〜20ナノメートルの範囲内のあらゆる他のEUV放射を放つことができるプラズマ状態へと移される。
[0047] 発散EUVビーム32は、領域26から発散される粒子デブリを収集または偏向させるように構成された汚染トラップ34のような適切なデブリ緩和システムによって遮断されてもよい。実質的にデブリを有さないEUVビーム32Aは、次いで、ビーム32Aを適切に調整するように構成されたリソグラフィ装置の照明システムILといったように、後に続く放射ソースまたはリソグラフィ装置の光学システム36へと入ることができる。放射ソースモジュール3は、レーザ生成プラズマのソースと協働するためにバッファガスを含んでもよい。好ましくは、バッファガスは、帯域内EUVに対して高透過率を有し、二次放射を吸収する。バッファガスは、EUV放射に対して少なくとも50%の透過率を有し、二次放射に対して少なくとも70%の吸収率を有し得る。望ましくは、バッファガスは、EUV放射に対して少なくとも90%または少なくとも95%の透過率を有する。バッファガスが二次放射に対して少なくとも90%の吸収率を有することもさらに望ましい。図5〜8に示される実施形態では、バッファガスは水素(H)を含む。汚染トラップ34は、例えば、対応する局所EUV放射の伝搬の方向に対して局所的に平行に延在するデブリトラップホイルを提供することによって極端紫外線の通過を可能にするように構成された従来のホイルトラップであってもよい。
[0048] 一般的に、スズの全小滴の一部のみがEUV放射生成に寄与し、小滴の一部がデブリへと変換される。デブリは、放射集光ミラーの反射率を減少させる場合があり、これはリソグラフィ装置の生産性における低下へと繋がり得る。スズデブリ(例えば、イオン、粒子、中性および蒸気)が放射コレクタ10に到達することを止めるためにバッファガスが提供されてもよい。スズが放射コレクタ10に到達した場合、スズは除去されない場合があり、および/または除去された場合、スズは望まれていない表面上に堆積し得る。理論に縛られず、プラズマ形成部位におけるプラズマ形成および燃料微粒子形成は、プラズマ形成部位26(図4を参照)から生ずる燃料粒子の支配的方向という結果になり得る。支配的方向は、衝撃レーザビーム28によるプラズマ圧力形成によって、コレクタ10から離れてローブ40に配向されてもよく、かつ小滴移動方向に大体沿って誘導されてもよい。これは、チャンバ壁55の支配的汚染領域という結果になり得る。好ましくは、燃料微粒子インターセプター(図5を参照)は、チャンバの支配的汚染領域内に構成される。
[0049] 図5は、燃料微粒子インターセプター50を含むソースモジュールの一実施形態を含む。燃料微粒子インターセプター50は、チャンバ壁55の少なくても一部の近くまたはそれに隣接したソースチャンバ7へと挿入されてもよい。燃料微粒子インターセプター50は耐燃料材料からなってもよいが、同時に耐燃料材料は燃料に対して親和性を有する必要があり、それによって、燃料のマイクロ小滴が燃料微粒子インターセプターの表面と接触した場合、そのマイクロ小滴は表面に貼り付く。一実施形態では、例えば、モリブデンが燃料微粒子インターセプター50のための材料として使用されてもよい。図5の例では、燃料微粒子インターセプターは、実質的に壁55の一部を覆うように構成されたドラムまたはシールドとして形作られている。図5では、重力の方向は矢印gによって示されている。チャンバ壁55のかなりの部分が、この例では、極端紫外線32を反射させるためにチャンバ7内に構成された反射エレメントであるコレクタ10の上に配置されていることが示されている。この例では、反射エレメントは法線入射コレクタ10として示されているが、インターセプター50がかすめ入射コレクタまたは他の反射光学部品のような他の反射エレメントの「上」に構成されてもよい。インターセプター50は、燃料に対して親和性を有する材料からなり、それによって、燃料微粒子が燃料微粒子インターセプターの表面と衝突した場合、燃料微粒子は表面に付着する。燃料微粒子インターセプター50は、重力の影響によってあらゆる燃料微粒子が反射エレメント10上へと落ちることを防ぐように反射エレメント10に対して構成されてもよい。
[0050] 放射ソースの動作中、燃料微粒子インターセプター50は、上記のプラズマPを含むプラズマ形成部位26から形成され、かつチャンバ7へと放出される燃料微粒子、デブリおよび蒸気40を遮断するように動作する。そのために、温度コントローラ(図5に図示せず)が設けられてもよく、かつインターセプター50を燃料溶融温度(例えば、スズが燃料として使用された場合、232℃)より高い制御温度で保つように構成されてもよい。燃料固体マイクロ粒子が素早く溶けることができるように温度は低すぎないことが好ましいが、高すぎる温度はマイナスの効果を有し得るため、温度は高すぎないことが好ましい。例えば、低いEUV光透過という結果になる高い燃料飽和圧力またはプラズマPと放射コレクタ10との間の領域内の高温度は、放射コレクタ面10s上の燃料堆積の速度を増大し得る。一実施形態では、燃料微粒子インターセプター50の温度は約450℃であってもよい。この例では、インターセプターは、燃料微粒子インターセプターを燃料の溶融温度より高い温度に加熱するように構成されたヒーター(図示せず)をさらに含んでもよい。しかしながら、プラズマ形成によって、作業温度は、燃料が液化されたまま保たれて加熱が本質的にプラズマ形成によって提供される温度へと燃料微粒子インターセプター50が適切に加熱されるように十分に高い場合がある。インターセプターを正しい作業範囲内に保つなどのために温度コントローラを用いて冷却を提供することはさらに便利であり得る。
[0051] 温度450℃では、燃料微粒子インターセプターに到達する微粒子デブリは溶けて液相で保たれ、それによって液層が燃料微粒子インターセプター表面上に形成される。重力場(矢印gによって示される)は、層内の燃料が液体燃料除去ラインまたは出口52に向かって動くように強制することができ、表面張力は、液層が燃料微粒子インターセプター50に取り付けられたまま保つであろう。このようにして、燃料デブリは、燃料微粒子インターセプター50から除去されてもよく、続いて放射ソースのチャンバ7から除去されてもよい。出口52はチャネルの形を有する場合があるが、円柱インターセプター50の配向自体が出口52に対するさらなる特定の設計なしに流れの方向を規定し得る。
[0052] 図5は、作業状態にあるチャンバ7の配向を表し、つまり、チャンバは重力の方向に相対する角度のもとで保たれる。この配向において、好ましくは、燃料微粒子インターセプター50は、少なくともコレクタ10の上に作業状態において設けられたチャンバ壁55を保護するように構成される。図5は、チャンバ7が真空ポンプ57に結合された真空チャンバであることをさらに示し、例示のチャンバ圧力は50〜200Paの間である。チャンバ7には、中間焦点IFの近く、すなわち、コレクタ10の二次焦点の近くで構成された圧力ロック56が設けられる。この例では、圧力ロック56はペクレ抑制器であり、円錐形のアパーチャを含んでもよい。この圧力ロック56は、図2の構成に実質的に従って、プラズマ反応チャンバ7の真空圧とイルミネータの真空圧との間の圧力バランスを構成する。この真空圧は、プラズマ反応チャンバ圧より実質的に低く、例えば、プラズマ反応チャンバ圧の3%であってもよい。シールドは、視線上からプラズマ形成部位をアパーチャから保護するように構成されてもよい。
[0053] 図6に示されるように、燃料微粒子インターセプターの一実施形態は、デブリおよび微粒子を捕獲するように構成された1つ以上のホイル54を含んでもよい。ホイル54は、燃料微粒子インターセプター50に機械的に結合されてもよい。ホイル54は、粒子がドラム50の表面に衝突した後に粒子(小滴)が放射コレクタ10の方向に移動するリスクを防ぐためにプラズマ形成部位26に略向いている小板であってもよい。デブリトラップホイル54を含む現行のインターセプター50と対比して、従来のホイルトラップが図4の汚染トラップ34によって例示されるように極端紫外線の通過を可能にするように設計されることに留意されたい。
[0054] 図7に示されるように、燃料微粒子インターセプター50は、一実施形態において、回転軸の周りで回転可能であってもよい。出口52へと向かう燃料の動きは、燃料微粒子インターセプター50を好ましくはその回転軸の周りで回転させることによって容易になり得る。回転軸は、重力の方向と異なる方向に沿って配向されてもよい。理論に縛られず、回転によって燃料微粒子は凝固してインターセプター50の下の部分に構成され、それによってコレクタ10の上の表面上のインターセプター50に蓄積し得る小滴を防ぐ。図7に示されるように、燃料の凝固を促進するために、出口52と反対の端部における液体燃料フロー入口56から燃料ライン58に沿って液体燃料がさらに追加されてもよい。インターセプターの回転の動きは、インターセプターの壁に沿った遮断された微粒子の一様な分布を促進し、それによって燃料微粒子の支配的方向による燃料微粒子インターセプター50の壁部分の過度の汚染を防ぐ。燃料微粒子インターセプターは、ヒーターを用いてまたは用いずに構成されてもよい。インターセプターは、使用期間の後にクリーニングされてもよい。一実施形態では、燃料微粒子インターセプター50およびホイル54の全ての前述の特徴を同時に実施することができる。
[0055] 図8は、本発明の実施形態による、燃料微粒子インターセプター50の設置および使用の際の放射ソース内の温度分布の一例を示す。示されるように、インターセプターは、プラズマPと中間焦点IFとの間に比較的高温の領域850があり、領域850の温度と比較して比較的冷たい放射コレクタ10とプラズマPとの間の領域851があるという程度まで加熱される。そのような温度分布は、EUV光吸収の増加なしにソース内の圧力の増加を可能にし得る。さらに高いソース圧では、水素の流れがプラズマからのデブリをより効率的に緩和することができ、イオンは、放射コレクタ10からさらに離れて止められてもよく、これは放射コレクタ50の寿命を長くする。
[0056] 図9および図10に示される実施形態は、中央円錐の形を有し得る燃料微粒子インターセプター80から燃料微粒子が除去されることを可能にし得る。燃料微粒子インターセプター80は、下部82および上部84を含む。燃料微粒子は、次いで、燃料がスズを含む実施形態ではスズコレクタなどの収集場所に誘導され、またはそこに落ちてもよい。
[0057] 図9は、燃料が燃料微粒子インターセプター80の上部82で収集されることを防ぐことができる放射ソース、あるいは、燃料微粒子インターセプター80の上部82をその軸の周りで回転させ、かついわゆる中央影90などにおける、ソースから離れるように燃料微粒子が運ばれ得る収集場所88に燃料リムーバー86を設置することによって収集されたあらゆる燃料を運ぶことを可能にできる放射ソースの一実施形態を示す。これは、燃料をさらに運ぶことができるように燃料微粒子インターセプター80の下部84における燃料を収集する。
[0058] 図10は、燃料微粒子インターセプターで収集されて液体形態へと溶けた燃料微粒子を燃料出口に向かって誘導するように、ホイルトラップが回転軸に沿って螺旋式に構成された実施形態を示す。アルキメデススクリュー(Archimedes screw)92としても知られているこの設計は、燃料微粒子インターセプター80の回転部82と置き換えられてもよい。スクリュー92は、燃料を除去領域88へと運ぶように構成されている。
[0059] 一部の態様では、開示された実施形態は反射エレメントの「上」に配置された燃料微粒子インターセプターの配置を考察するが、別の態様では、燃料微粒子インターセプターは、微粒子形成の支配的方向において構成されてもよい。特に、そのような実施形態では、燃料微粒子インターセプターは、支配的汚染領域の壁における形成を防ぐためにチャンバの少なくとも一部をプラズマによって放たれる燃料微粒子から保護するように構成されてもよい。
[0060] 一部の態様では、本発明は、極端紫外線を生成するように構成された放射ソースであって、放射ソースは、チャンバと、チャンバ内のプラズマ形成部位に燃料を供給するように構成された燃料供給と、放射ビームが燃料と衝突した場合に極端紫外線を放つプラズマが生成されるようにプラズマ形成部位に放射ビームを放つように構成されたレーザと、プラズマによって放たれた燃料微粒子からチャンバの少なくとも一部を保護するように構成された燃料微粒子インターセプターと、燃料微粒子インターセプターを燃料の溶融温度より高い温度に加熱するように構成されたヒーターと、余剰燃料を可能にし、かつ燃料微粒子の少なくとも一部がチャンバから出ることを可能にするように構成された燃料出口とを含む放射ソースによって特徴付けられ得る。
[0061] 追加のヒーターが必要でなくなるように、プラズマ形成によってヒーターが形成されてもよい。さらに、インターセプター50に付着した燃料微粒子は、化学的除去のような他の除去手段によって除去されてもよい。
[0062] 本明細書において、IC製造におけるリソグラフィ装置の使用について具体的な言及がなされているが、本明細書記載のリソグラフィ装置が、集積光学システム、磁気ドメインメモリ用のガイダンスパターンおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造といった他の用途を有し得ることが理解されるべきである。当業者にとっては当然のことであるが、そのような別の用途においては、本明細書で使用される「ウェーハ」または「ダイ」という用語はすべて、それぞれより一般的な「基板」または「ターゲット部分」という用語と同義であるとみなしてよい。本明細書に記載した基板は、露光の前後を問わず、例えば、トラック(通常、基板にレジスト層を塗布し、かつ露光されたレジストを現像するツール)、メトロロジーツール、および/またはインスペクションツールで処理されてもよい。適用可能な場合には、本明細書中の開示内容を上記のような基板プロセシングツールおよびその他の基板プロセシングツールに適用してもよい。さらに基板は、例えば、多層ICを作るために複数回処理されてもよいので、本明細書で使用される基板という用語は、すでに多重処理層を包含している基板を表すものとしてもよい。
[0063] 「レンズ」という用語は、文脈によっては、屈折、反射、磁気、電磁気、および静電型光コンポーネントを含む様々な種類の光コンポーネントのいずれか1つまたはこれらの組合せを指すことができる。
[0064] 以上、本発明の具体的な実施形態を説明してきたが、本発明は、上述以外の態様で実施できることが明らかである。上記の説明は、制限ではなく例示を意図したものである。したがって、当業者には明らかなように、添付の特許請求の範囲を逸脱することなく本記載の発明に変更を加えてもよい。

Claims (15)

  1. リソグラフィ装置のためのソースモジュールであって、該ソースモジュールは、
    チャンバ壁によって画定されたチャンバと、
    前記チャンバ内のプラズマ形成部位に燃料を供給する燃料供給を含む極端紫外線ジェネレータと、
    前記プラズマ形成部位における放射放出ポイントから発散される極端紫外線を反射させる前記チャンバ内の反射エレメントと、
    1つ又は複数の前記チャンバ壁に隣接したチャンバ内に配置され、前記燃料に対する親和性を有する材料を含む燃料微粒子インターセプターと
    を含む、ソースモジュール。
  2. 前記燃料微粒子インターセプターは燃料出口をさらに含み、前記燃料微粒子インターセプターは、燃料微粒子インターセプター上で収集されかつ液状形態へと溶けた燃料微粒子を前記燃料出口に向かって誘導する、請求項1に記載のソースモジュール。
  3. 前記チャンバ壁は、作業状態において、前記反射エレメントの上に設けられたチャンバ壁を含み、前記燃料微粒子インターセプターは、後者のチャンバ壁を保護する、請求項1または2に記載のソースモジュール。
  4. 前記燃料微粒子インターセプターを前記燃料の溶融温度より高い温度で保つ温度制御システムをさらに含む、請求項1〜3のいずれかに記載のソースモジュール。
  5. 前記燃料はスズを含み、前記燃料微粒子インターセプター材料はモリブデンを含む、請求項4に記載のソースモジュール。
  6. インターセプター壁は、前記燃料微粒子インターセプターに衝突する燃料微粒子を捕獲するホイルを含む、請求項1〜5のいずれかに記載のソースモジュール。
  7. 前記ホイルは、前記燃料微粒子インターセプター壁に取り付けられている、請求項6に記載のソースモジュール。
  8. 前記燃料微粒子インターセプターは回転可能である、請求項1〜7のいずれかに記載のソースモジュール。
  9. 前記インターセプターの表面に燃料を供給する燃料入口をさらに含む、請求項1〜8のいずれかに記載のソースモジュール。
  10. 前記チャンバは真空チャンバである、請求項1〜9のいずれかに記載のソースモジュール。
  11. 前記燃料微粒子が燃料出口に向かって流れるように、収集された燃料微粒子を前記燃料微粒子インターセプターから除去する燃料微粒子リムーバーをさらに含む、請求項1〜10のいずれかに記載のソースモジュール。
  12. 極端紫外線を生成する放射ソースであって、該放射ソースは、
    プラズマ形成部位に燃料を供給する燃料供給と、
    前記放射ビームが前記燃料と衝突した場合に極端紫外線を放つプラズマが生成されるように前記プラズマ形成部位に放射ビームを放つレーザと、
    前記プラズマによって放たれた燃料微粒子から前記放射ソースの少なくとも一部を保護する燃料微粒子インターセプターであって、該燃料微粒子インターセプターは第1の部分および第2の部分を含み、該第2の部分は該第1の部分より前記プラズマ形成部位の近くに位置決めされ、該第1の部分は回転可能である、燃料微粒子インターセプターと、
    前記燃料微粒子インターセプターの表面から燃料微粒子を除去し、該燃料微粒子を収集場所に向かって誘導する燃料微粒子リムーバーと
    を含む、放射ソース。
  13. 前記燃料微粒子リムーバーは、前記表面をふき取るワイパー、前記表面をこするブレイド、前記表面に接触して前記燃料微粒子を前記収集場所へ運ぶアルキメデススクリューのうちの1つを含む、請求項12に記載の放射ソース。
  14. 請求項1〜11のうちのいずれかに記載のソースモジュールと、
    パターン付き極端紫外線を基板に投影する投影システムと
    を含む、リソグラフィ装置。
  15. 請求項12に記載の放射ソースと、
    パターン付き極端紫外線を基板に投影する投影システムと
    を含む、リソグラフィ装置。
JP2009216391A 2008-09-25 2009-09-18 ソースモジュール、放射ソースおよびリソグラフィ装置 Active JP5070264B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13668608P 2008-09-25 2008-09-25
US61/136,686 2008-09-25
US19370408P 2008-12-17 2008-12-17
US61/193,704 2008-12-17

Publications (2)

Publication Number Publication Date
JP2010093249A true JP2010093249A (ja) 2010-04-22
JP5070264B2 JP5070264B2 (ja) 2012-11-07

Family

ID=41338497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009216391A Active JP5070264B2 (ja) 2008-09-25 2009-09-18 ソースモジュール、放射ソースおよびリソグラフィ装置

Country Status (3)

Country Link
US (1) US8405055B2 (ja)
EP (1) EP2170021B1 (ja)
JP (1) JP5070264B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165943A (ja) * 2010-02-10 2011-08-25 Komatsu Ltd 極端紫外光源装置
JP2013524531A (ja) * 2010-04-05 2013-06-17 サイマー インコーポレイテッド 極紫外線光源
KR20150085033A (ko) * 2012-11-15 2015-07-22 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 방법 및 방사선 소스
JP2016528530A (ja) * 2013-06-28 2016-09-15 エーエスエムエル ネザーランズ ビー.ブイ. Euv光学リソグラフィ装置用の放射源及び当該放射源を備えるリソグラフィ装置
JP2017201424A (ja) * 2012-06-22 2017-11-09 エーエスエムエル ネザーランズ ビー.ブイ. 放射源及びリソグラフィ装置
JP2018018081A (ja) * 2016-07-27 2018-02-01 カール・ツァイス・エスエムティー・ゲーエムベーハー ソース中空体及びそのようなソース中空体を含むeuvプラズマ光源
JP2020504322A (ja) * 2017-01-06 2020-02-06 エーエスエムエル ネザーランズ ビー.ブイ. 誘導デバイス及び関連システム
US11822252B2 (en) 2017-01-06 2023-11-21 Asml Netherlands B.V. Guiding device and associated system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9341752B2 (en) * 2012-11-07 2016-05-17 Asml Netherlands B.V. Viewport protector for an extreme ultraviolet light source
WO2015086232A1 (en) 2013-12-09 2015-06-18 Asml Netherlands B.V. Radiation source device, lithographic apparatus and device manufacturing method
US9826615B2 (en) * 2015-09-22 2017-11-21 Taiwan Semiconductor Manufacturing Co., Ltd. EUV collector with orientation to avoid contamination
US20170311429A1 (en) * 2016-04-25 2017-10-26 Asml Netherlands B.V. Reducing the effect of plasma on an object in an extreme ultraviolet light source
JP7366913B2 (ja) * 2018-03-27 2023-10-23 エーエスエムエル ネザーランズ ビー.ブイ. Euv光源内のデブリを制御するための装置及び方法
US10504684B1 (en) * 2018-07-12 2019-12-10 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH High performance inspection scanning electron microscope device and method of operating the same
US10942459B2 (en) * 2019-07-29 2021-03-09 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography system and cleaning method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022950A (ja) * 2001-07-05 2003-01-24 Canon Inc X線光源用デブリ除去装置及び、デブリ除去装置を用いた露光装置
JP2006086119A (ja) * 2004-08-31 2006-03-30 Xtreme Technologies Gmbh 短波長電磁放射線をエネルギービームによって誘導発生させるための再現可能なターゲット流れを供給する装置
JP2006332654A (ja) * 2005-05-20 2006-12-07 Asml Netherlands Bv 放射システム及びリソグラフィ装置
JP2007110107A (ja) * 2005-09-27 2007-04-26 Asml Netherlands Bv 光学要素上の堆積物の装置外での除去
JP2007134166A (ja) * 2005-11-10 2007-05-31 Ushio Inc 極端紫外光光源装置
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465946B2 (en) * 2004-03-10 2008-12-16 Cymer, Inc. Alternative fuels for EUV light source
US7476886B2 (en) * 2006-08-25 2009-01-13 Cymer, Inc. Source material collection unit for a laser produced plasma EUV light source
US7671349B2 (en) * 2003-04-08 2010-03-02 Cymer, Inc. Laser produced plasma EUV light source
JP4337648B2 (ja) * 2004-06-24 2009-09-30 株式会社ニコン Euv光源、euv露光装置、及び半導体デバイスの製造方法
DE102005023060B4 (de) * 2005-05-19 2011-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Gasentladungs-Strahlungsquelle, insbesondere für EUV-Strahlung
US7332731B2 (en) * 2005-12-06 2008-02-19 Asml Netherlands, B.V. Radiation system and lithographic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022950A (ja) * 2001-07-05 2003-01-24 Canon Inc X線光源用デブリ除去装置及び、デブリ除去装置を用いた露光装置
JP2006086119A (ja) * 2004-08-31 2006-03-30 Xtreme Technologies Gmbh 短波長電磁放射線をエネルギービームによって誘導発生させるための再現可能なターゲット流れを供給する装置
JP2006332654A (ja) * 2005-05-20 2006-12-07 Asml Netherlands Bv 放射システム及びリソグラフィ装置
JP2007110107A (ja) * 2005-09-27 2007-04-26 Asml Netherlands Bv 光学要素上の堆積物の装置外での除去
JP2007134166A (ja) * 2005-11-10 2007-05-31 Ushio Inc 極端紫外光光源装置
JP2008108945A (ja) * 2006-10-26 2008-05-08 Ushio Inc 極端紫外光光源装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011165943A (ja) * 2010-02-10 2011-08-25 Komatsu Ltd 極端紫外光源装置
JP2013524531A (ja) * 2010-04-05 2013-06-17 サイマー インコーポレイテッド 極紫外線光源
JP2017201424A (ja) * 2012-06-22 2017-11-09 エーエスエムエル ネザーランズ ビー.ブイ. 放射源及びリソグラフィ装置
US10394141B2 (en) 2012-06-22 2019-08-27 Asml Netherlands B.V. Radiation source and lithographic apparatus
KR102122484B1 (ko) * 2012-11-15 2020-06-15 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 방법 및 방사선 소스
US10095119B2 (en) 2012-11-15 2018-10-09 Asml Netherlands B.V. Radiation source and method for lithography
JP2018194860A (ja) * 2012-11-15 2018-12-06 エーエスエムエル ネザーランズ ビー.ブイ. 放射源およびリソグラフィのための方法
JP2016502737A (ja) * 2012-11-15 2016-01-28 エーエスエムエル ネザーランズ ビー.ブイ. 放射源およびリソグラフィのための方法
KR20200068753A (ko) * 2012-11-15 2020-06-15 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 방법 및 방사선 소스
KR20150085033A (ko) * 2012-11-15 2015-07-22 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 방법 및 방사선 소스
KR102281775B1 (ko) * 2012-11-15 2021-07-27 에이에스엠엘 네델란즈 비.브이. 리소그래피를 위한 방법 및 방사선 소스
JP2016528530A (ja) * 2013-06-28 2016-09-15 エーエスエムエル ネザーランズ ビー.ブイ. Euv光学リソグラフィ装置用の放射源及び当該放射源を備えるリソグラフィ装置
JP2018018081A (ja) * 2016-07-27 2018-02-01 カール・ツァイス・エスエムティー・ゲーエムベーハー ソース中空体及びそのようなソース中空体を含むeuvプラズマ光源
JP2020504322A (ja) * 2017-01-06 2020-02-06 エーエスエムエル ネザーランズ ビー.ブイ. 誘導デバイス及び関連システム
JP7193459B2 (ja) 2017-01-06 2022-12-20 エーエスエムエル ネザーランズ ビー.ブイ. 極端紫外線源(euv源)
US11822252B2 (en) 2017-01-06 2023-11-21 Asml Netherlands B.V. Guiding device and associated system

Also Published As

Publication number Publication date
EP2170021B1 (en) 2015-11-04
US8405055B2 (en) 2013-03-26
EP2170021A2 (en) 2010-03-31
US20100085547A1 (en) 2010-04-08
JP5070264B2 (ja) 2012-11-07
EP2170021A3 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP5070264B2 (ja) ソースモジュール、放射ソースおよびリソグラフィ装置
JP5732525B2 (ja) コレクタミラーアセンブリおよび極端紫外線放射の生成方法
JP5659015B2 (ja) 放射源
US8507882B2 (en) Radiation source and lithographic apparatus
JP4563930B2 (ja) リソグラフィ装置、照明系、及びフィルタ・システム
JP6687691B2 (ja) 放射源およびリソグラフィのための方法
JP5162546B2 (ja) 放射源及びリソグラフィ装置
US8917380B2 (en) Lithographic apparatus and method
JP6122853B2 (ja) 放射源
JP2010062560A5 (ja)
JP2011513987A (ja) リソグラフィ装置、プラズマ源、および反射方法
US8547525B2 (en) EUV radiation generation apparatus
JP5577351B2 (ja) リソグラフィ装置および放射システム
US8242473B2 (en) Radiation source
JP5531053B2 (ja) 放射源、リソグラフィ装置及びデバイス製造方法
JP2011258950A (ja) 水素ラジカルジェネレータ
JP6395832B2 (ja) 放射源用コンポーネント、関連した放射源およびリソグラフィ装置
NL2007628A (en) Lithographic apparatus and method.
NL2010217A (en) Source collector apparatus, lithographic apparatus and device manufacturing method.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5070264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250