JP2010088251A - エネルギー伝達装置およびエネルギー伝達制御用半導体装置 - Google Patents

エネルギー伝達装置およびエネルギー伝達制御用半導体装置 Download PDF

Info

Publication number
JP2010088251A
JP2010088251A JP2008256912A JP2008256912A JP2010088251A JP 2010088251 A JP2010088251 A JP 2010088251A JP 2008256912 A JP2008256912 A JP 2008256912A JP 2008256912 A JP2008256912 A JP 2008256912A JP 2010088251 A JP2010088251 A JP 2010088251A
Authority
JP
Japan
Prior art keywords
voltage
switching element
energy transfer
turn
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256912A
Other languages
English (en)
Other versions
JP5117980B2 (ja
Inventor
Takashi Saji
隆司 佐治
Tetsuji Yamashita
哲司 山下
Yoshihiro Mori
吉弘 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008256912A priority Critical patent/JP5117980B2/ja
Priority to US12/535,211 priority patent/US8274802B2/en
Publication of JP2010088251A publication Critical patent/JP2010088251A/ja
Application granted granted Critical
Publication of JP5117980B2 publication Critical patent/JP5117980B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop

Abstract

【課題】外部端子を削減することで、スイッチング電源装置の設計を容易化することができ、かつ、小型化や低コスト化が可能となるエネルギー伝達装置およびエネルギー伝達制御用半導体装置を提供する。
【解決手段】スイッチング素子1のドレイン電圧から所定の電圧以上の部分をクランプした電圧信号を出力する電圧制限回路6と、その電圧信号からスイッチング素子1をターンオンさせるタイミングを検出するターンオン検出回路7を備えることで、外部端子を追加することなく、スイッチング素子1をドレイン電圧の極小値でターンオンさせる。
【選択図】図1

Description

本発明は、入力電圧に対してスイッチング素子を通じてスイッチングすることにより出力電圧を制御するエネルギー伝達装置およびそれを構成するエネルギー伝達制御用半導体装置に関するものである。
従来から、家電製品等の一般家庭用機器には、その電源装置として、消費電力の低減化による電力効率の向上等の目的から、半導体(トランジスタなどのスイッチング素子)によるスイッチング動作を利用して出力電圧を制御するスイッチング電源制御用半導体装置を有するスイッチング電源装置が広く用いられている。
しかしながら、スイッチング電源装置は、スイッチング素子のオンオフによるスイッチング動作に伴い高いスイッチングノイズを発生することから、ノイズ発生源として他の電子機器の誤動作や機能停止などといった弊害を招く恐れがあるため、スイッチングノイズを低減したスイッチング電源装置が要求されている。
また、電源効率の向上のため、スイッチング損失を低減したスイッチング電源装置もまた要求されている。
上記要求に応えるため、例えば、ソフトスイッチングであるRCC(リンギングチョークコンバータ)擬似共振型制御方式を採用することで、スイッチングノイズやスイッチング損失を低減するスイッチング電源装置がある。
このスイッチング電源装置は、スイッチング素子がターンオフしてからトランスの二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧から適切なタイミングを検出し、スイッチング素子をターンオンさせることでソフトスイッチングを実現する。
ターンオンのタイミングを検出する手段として、例えば、特許文献1に開示されるようなものがある。特許文献1に開示されるスイッチング電源装置は、図9に示すように、ターンオン検出回路7によって、スイッチング素子1のスイッチング動作によりトランス110の補助巻線110cに誘起される電圧が正から負に切り替わるタイミングを、補助巻線110cに接続された抵抗143、144を介して検出することで、スイッチング素子1に印加される電圧が低下したところでスイッチング素子1をターンオンするように制御している。
また、ターンオンのタイミングを検出する手段として、例えば、特許文献2に開示されるようなものもある。特許文献2に開示されるスイッチング電源装置は、図10に示すように、スイッチング素子1に印加される電圧の時間に関する導関数が零以下のある基準値に等しく、かつ、比較回路9による比較動作の結果、スイッチング素子1に印加される電圧が入力電圧よりも小さい時、すなわち、スイッチング素子1に印加される電圧が極小値を示す瞬間にスイッチング素子1をターンオンするように制御している。
特開2005−287260号公報 特表2003−524359号公報 特開平9−266256号公報
しかしながら、特許文献1に開示されるような従来のスイッチング電源装置では、ターンオンのタイミングを補助巻線に誘起される電圧から擬似的に検出しているため、スイッチング素子に印加される電圧を直接モニターする場合に比べて検出精度が低くなる。また、極小値を示す瞬間にスイッチング素子をターンオンするために、コンデンサなどの外付け部品で調整が必要になる。さらに、補助巻線に接続するための外部端子が必要になり、外付け部品と共にコスト増加の原因にもなる。
また、特許文献2に開示されるような従来のスイッチング電源装置では、スイッチング素子に印加される電圧を直接モニターしているため、特許文献1に開示されるようなスイッチング電源装置に比べると、極小値を示す瞬間にスイッチング素子をターンオンすることが容易になるが、ターンオンのタイミングを検出する回路は、スイッチング素子に印加される高電圧に耐え得ることが要求される。
また、一般に、スイッチング素子がターンオフした直後にスイッチング素子に印加される電圧は、トランスのリーケージインダクタンスとスイッチング素子の寄生容量などに起因して振動するため、特許文献2に開示されるようなスイッチング電源装置は、ターンオンのタイミングを誤検出しないように、スイッチング素子に印加される電圧が入力電圧よりも小さい時にのみ、スイッチング素子をターンオンするように制御している。
そのため、特許文献2に開示されるようなスイッチング電源制御用半導体装置は、スイッチング素子および入力ラインに接続される比較器を備えており、入力ラインに接続するための外部端子が必要になる。また、この比較器も高電圧に耐え得ることが要求される。高耐圧素子で比較器を構成することは、チップ面積の増大や製造工程の増加を招き、コスト増加の原因にもなる。
本発明は、上記従来の問題点を解決するものであり、スイッチング素子がターンオフしてから二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧の状態を検出し、スイッチング素子をターンオンさせるスイッチング電源装置において、外部端子を削減することで、スイッチング電源装置の設計を容易化することができ、かつ、小型化や低コスト化が可能となるエネルギー伝達装置およびエネルギー伝達制御用半導体装置を提供する。
上記の課題を解決するために、本発明の請求項1に記載のエネルギー伝達装置は、一次巻線と二次巻線を有するトランスと、前記一次巻線に直列接続され前記一次巻線を介して入力される第1の直流電圧をスイッチングするスイッチング素子と、前記スイッチング素子によるスイッチングを制御する制御回路と、前記制御回路によるスイッチング制御によって前記二次巻線に発生する交流電圧を第2の直流電圧に変換して負荷に電力供給する出力電圧生成部とを備えたエネルギー伝達装置であって、前記制御回路は、前記制御回路によるスイッチング制御によって前記スイッチング素子に印加される電圧が所定電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する電圧制限手段と、前記電圧制限手段により得られた電圧信号により、前記スイッチング素子がターンオフしてから前記二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧の状態を検出し、前記スイッチング素子をターンオンさせる信号を生成するターンオン検出回路とを備えたことを特徴とする。
また、本発明の請求項2に記載のエネルギー伝達装置は、請求項1記載のエネルギー伝達装置であって、前記ターンオン検出回路は、前記スイッチング素子に印加される電圧が所定電圧以上である時には、前記スイッチング素子をターンオンさせる信号を生成しないことを特徴とする。
また、本発明の請求項3に記載のエネルギー伝達装置は、請求項1または請求項2記載のエネルギー伝達装置であって、前記電圧制限手段は、前記スイッチング素子がターンオフしてから前記リンギング電圧が発生するまでの期間に、前記スイッチング素子に印加される電圧の第1の最下点よりも小さい電圧を第1の基準電圧として、前記スイッチング素子に印加される電圧が前記基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力することを特徴とする。
また、本発明の請求項4に記載のエネルギー伝達装置は、請求項1から請求項3のいずれかに記載のエネルギー伝達装置であって、前記ターンオン検出回路は、前記スイッチング素子がターンオフしてから所定期間は、前記スイッチング素子をターンオンさせる信号を生成しないことを特徴とする。
また、本発明の請求項5に記載のエネルギー伝達装置は、請求項4記載のエネルギー伝達装置であって、前記電圧制限手段は、前記スイッチング素子がターンオフして前記所定期間経過後から前記リンギング電圧が発生するまでの期間に、前記スイッチング素子に印加される電圧の第2の最下点よりも小さい電圧を第2の基準電圧として、前記スイッチング素子に印加される電圧が前記第2の基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力することを特徴とする。
また、本発明の請求項6に記載のエネルギー伝達装置は、請求項1から請求項5のいずれかに記載のエネルギー伝達装置であって、前記電圧制限手段は、前記ターンオン検出回路を構成する回路素子の耐電圧よりも小さい電圧に制限した電圧信号を出力することを特徴とする。
また、本発明の請求項7に記載のエネルギー伝達装置は、請求項1から請求項6のいずれかに記載のエネルギー伝達装置であって、前記電圧制限手段は、前記ターンオン検出回路が前記リンギング電圧を検出する値よりも大きい電圧を第3の基準電圧として、前記スイッチング素子に印加される電圧が前記第3の基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力することを特徴とする。
また、本発明の請求項8に記載のエネルギー伝達装置は、請求項1から請求項7のいずれかに記載のエネルギー伝達装置であって、前記電圧制限手段は、前記スイッチ素子に印加される電圧が入力され、所定の電圧でピンチオフして出力する接合型電界効果トランジスタを有することを特徴とする。
また、本発明の請求項9に記載のエネルギー伝達装置は、請求項1から請求項8のいずれかに記載のエネルギー伝達装置であって、前記電圧制限手段は、前記スイッチング素子に印加される電圧に応じて電圧信号を出力し、前記スイッチング素子に印加される電圧が所定電圧以上である時には、所定の電圧範囲に制限した電圧信号を、さらに分圧回路によって降圧して出力することを特徴とする。
また、本発明の請求項10に記載のエネルギー伝達装置は、請求項1から請求項9のいずれかに記載のエネルギー伝達装置であって、前記ターンオン検出回路は、前記リンギング電圧の極小点を検出し、前記スイッチング素子をターンオンさせる信号を生成することを特徴とする。
また、本発明の請求項11に記載のエネルギー伝達装置は、請求項1から請求項9のいずれかに記載のエネルギー伝達装置であって、前記ターンオン検出回路は、前記リンギング電圧の発生から二次電流オン期間を検出し、前記スイッチング素子をターンオンさせる信号を生成することを特徴とする。
また、本発明の請求項12に記載のエネルギー伝達制御用半導体装置は、請求項1から請求項11のいずれかに記載のエネルギー伝達装置を構成するエネルギー伝達制御用半導体装置であって、前記スイッチング素子と前記制御回路とを、同一基板上に半導体集積回路化して形成したことを特徴とする。
以上のように本発明によれば、スイッチング素子がターンオフしてから二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧の状態を検出し、スイッチング素子をターンオンさせるスイッチング電源装置において、スイッチング素子に印加される電圧からリンギング電圧の状態を検出するため、外部端子を削減することができる。
また、スイッチング素子がターンオフした直後に、スイッチング素子に印加される電圧が振動しても、前記スイッチング素子に印加される電圧が所定電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する電圧制限手段を備えることによって、ターンオンのタイミングを誤検出することがなく、スイッチング素子および入力ラインに接続される比較器や、入力ラインに接続するための外部端子を削減することができる。
また、電圧制限手段に、適切なピンチオフ電圧になるように設計された接合型電界効果トランジスタを用いることで、ターンオンのタイミングを誤検出しないようにしたり、ターンオン検出回路を低耐圧素子で構成したりすることを容易に実現できる。
以上により、ターンオンのタイミングを検出するための外部端子の削減を実質的に実現することで、スイッチング電源装置の設計を容易化することができ、かつ、小型化や低コスト化が可能となる。
以下、本発明の実施の形態を示すエネルギー伝達装置およびエネルギー伝達制御用半導体装置について、図面を参照しながら具体的に説明する。
(実施の形態1)
本発明の実施の形態1のエネルギー伝達装置およびエネルギー伝達制御用半導体装置を説明する。
図1は本実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の一構成例を示す回路ブロック図である。図1において、エネルギー伝達制御用半導体装置100は、内部に、パワーMOSFETからなるスイッチング素子1と、スイッチング素子1のスイッチング動作を制御するスイッチング制御回路2を備える。また、外部接続端子として、スイッチング素子1の高電圧入力端子(DRAIN端子)、補助電源電圧入力端子(VCC端子)、フィードバック入力端子(FB端子)、スイッチング素子1の出力端子(SOURCE)でもあるエネルギー伝達制御用半導体装置100のGND端子の4端子を備える。
トランス110は一次巻線110a、二次巻線110b、および補助巻線110cを有し、一次巻線110aと二次巻線110bの極性は逆になっている。このエネルギー伝達装置、すなわち、スイッチング電源装置はフライバック型となっている。また、補助巻線110cと二次巻線110bは極性が同じであり、補助巻線110cには、スイッチング素子1のスイッチング動作によって二次巻線110bに発生する交流電圧(二次側交流電圧)に比例する交流電圧(補助側交流電圧)が発生する。
一次巻線110aはエネルギー伝達制御用半導体装置100のDRAIN端子に接続されており、スイッチング素子1の制御電極(ゲート)は、スイッチング制御回路2の出力信号によりオンオフのスイッチング制御がなされる。これにより、一次巻線110aを介してスイッチング素子1に入力される第1の直流電圧(入力電圧)Vinをスイッチング制御し、二次巻線110bおよび補助巻線110cに交流電圧を発生させる。第1の直流電圧Vinは、例えば、商用の交流電源が整流かつ平滑化されたものである。
二次巻線110bには、ダイオード121とコンデンサ122とからなる出力電圧生成部が接続されている。出力電圧生成部は、スイッチング素子1のスイッチング動作によって二次巻線110bに発生する二次側交流電圧を整流かつ平滑化して第2の直流電圧(出力電圧)Voutに変換し、その電圧Voutを負荷131に供給する。
補助巻線110cには、ダイオード141とコンデンサ142とからなる整流平滑化回路が接続されている。この整流平滑化回路は、スイッチング素子1のスイッチング動作によって補助巻線110cに発生する補助側交流電圧を整流かつ平滑化して補助電源電圧VCCに変換し、その電圧VCCをエネルギー伝達制御用半導体装置100のVCC端子に供給する。この整流平滑化回路は、後述するレギュレータ4によって、エネルギー伝達制御用半導体装置100の補助電源部として活用される。
また、エネルギー伝達制御用半導体装置100のDRAIN端子とGND端子との間には、トランス110との共振によるリンギングの大きさおよび周期を決定するためのコンデンサ151が挿入されている。
また、エネルギー伝達制御用半導体装置100のFB端子には、出力電圧生成部に接続された出力電圧フィードバック回路161から出力されるフィードバック信号、例えば、フォトトランジスタによる電流信号が入力される。
続いて、エネルギー伝達制御用半導体装置100が備える制御回路について説明する。この制御回路は、内部回路電源電圧VDDを制御するレギュレータ3と、スイッチング電源装置の起動・停止を制御する起動・停止回路4と、スイッチング素子1に流れるドレイン電流を検出するドレイン電流検出回路5と、スイッチング素子1のDRAIN端子に印加される電圧が所定電圧以上である時には、所定の電圧範囲にクランプ(制限)した電圧信号を出力する電圧制限回路6と、スイッチング素子1のターンオンのタイミングを決定するターンオン検出回路7と、フィードバック信号および各種制御信号に応じてスイッチング素子1をオンオフするための信号を出力するスイッチング制御回路2とを有する。以下、各回路の機能について順に説明する。
レギュレータ3は、スイッチング素子1のDRAIN端子、VCC端子、起動・停止回路4およびエネルギー伝達制御用半導体装置100の内部回路電源電圧VDDに接続されており、入力直流電圧Vinがトランス110を介してスイッチング素子1のDRAIN端子に印加されると、DRAIN端子からVCC端子を介して、補助電源電圧VCCを出力する整流平滑回路のコンデンサ142に電流を供給し、補助電源電圧VCCを上昇させる。
なお、VCC端子電圧が起動電圧まで達すると、レギュレータ3の動作により、DRAIN端子からVCC端子への電流供給はカットされ、内部回路への電流供給は補助電源電圧VCCを出力する整流平滑回路のコンデンサ142より行われる。また、VCC端子電圧が停止電圧まで低下した場合は、起動前と同様に、レギュレータ3の動作により、DRAIN端子からVCC端子へ電流供給がなされ、再びVCC端子電圧は上昇する。このようにして、内部回路電源電圧VDDは、レギュレータ3により、一定電圧となるよう制御されている。
起動・停止回路4は、VCC端子電圧をモニターしており、VCC端子電圧の大きさによって、スイッチング素子1の発振(オンオフ)および停止を制御している。VCC端子電圧が起動電圧に達すると、起動信号をスイッチング制御回路2に出力し、VCC端子電圧が停止電圧まで低下すると、停止信号をスイッチング制御回路2に出力する。
スイッチング素子電流検出回路であるドレイン電流検出回路5は、例えば、スイッチング素子1に流れるドレイン電流とスイッチング素子1のオン抵抗との積で決まるオン電圧を検出することにより、相対的にスイッチング素子1に流れるドレイン電流を検出して、ドレイン電流の大きさに比例した電圧信号をスイッチング制御回路2に出力する。
電圧制限回路6は、DRAIN端子に印加される電圧に応じて電圧信号を出力し、DRAIN端子に印加される電圧が所定電圧以上である時には所定の電圧範囲にクランプした電圧信号をターンオン検出回路7へ出力する。電圧制限回路6は、例えば、図2に示すように、接合型電界効果トランジスタ201と、接合型電界効果トランジスタ201の出力を抵抗202、203で分割する分圧回路とから構成される。ここでいう、接合型電界効果トランジスタ201とは、図3(a)に示すように、所定の入力電圧に対してピンチオフし、出力は所定の電圧で固定され、それ以上の電圧信号が出力されないものが望まれる。
なお、接合型電界効果トランジスタ201のピンチオフ電圧Vpは、デバイス構造や製造条件によって決定され、作製時に任意の電圧に設定することもできる。例えば、Vp=50Vに設定される。ただし、ここでは、接合型電界効果トランジスタ201がピンチオフする時の入力電圧と出力電圧を同じVpとしているが、一致していなくても問題ない。
また、接合型電界効果トランジスタ201がピンチオフした時に、出力は一定値で固定されることが理想的であるが、出力信号が入力されるターンオン検出回路7がスイッチング素子1のターンオンのタイミングを誤検出しない程度の電圧範囲であれば、一定値に固定されていなくても問題ない。
ターンオン検出回路7は、電圧制限回路6から入力した電圧信号からスイッチング素子1のターンオンのタイミングを検出し、ターンオン信号をスイッチング制御回路2へ出力する。ターンオン検出回路7は、例えば、図2に示すように、ボトム検出回路211と、マスク時間設定回路212と、AND回路213で構成される。ボトム検出回路211は、例えば、微分回路を有しており、電圧制限回路6から入力した電圧信号の極小点を検出する。マスク時間設定回路212は、スイッチング素子1がターンオフしてから所定の期間にマスク時間信号を出力する。ボトム検出回路211とマスク時間設定回路212のそれぞれの出力をAND回路213に入力し、論理和をターンオン検出信号としてスイッチング制御回路2へ出力する。
スイッチング制御回路2は、起動・停止回路4、ドレイン電流検出回路5、ターンオン検出回路7のそれぞれから入力された各種制御信号、および、FB端子を介して出力電圧フィードバック回路161から入力されたフィードバック信号に応じて、出力直流電圧Voutを一定に安定させるように、スイッチング素子1をオンオフするための信号を出力する。
以上のように構成された図1および図2に示すエネルギー伝達装置およびエネルギー伝達制御用半導体装置100の動作を説明する。
図示しないがダイオードブリッジなどの整流器に商用電源からの交流電源が入力されると、整流器と入力コンデンサとにより、整流かつ平滑化されて、直流電圧Vinに変換される。この直流入力電圧Vinは、トランス110の一次巻線110aを介して、DRAIN端子に印加され、DRAIN端子からエネルギー伝達制御用半導体装置100内のレギュレータ3を介して、VCC端子に接続されているコンデンサ142に起動用充電電流が流れる。この充電電流により、エネルギー伝達制御用半導体装置100のVCC端子電圧が起動・停止回路4で設定された起動電圧に達すると、スイッチング素子1によるスイッチング動作の制御が開始される。
起動時、図1には明記していないが、起動・停止回路4からの出力信号を基に起動パルスが発生し、スイッチング素子1がターンオンする。一旦、スイッチング素子1がターンオンすると、スイッチング素子1に電流が流れ、スイッチング素子1に流れる電流の大きさに応じた電圧が、ドレイン電流検出回路5よりスイッチング制御回路2へ入力される。スイッチング素子1を流れる電流が過電流保護基準電圧VLIMITで決まる設定値に達する、または、スイッチング素子1を流れる電流が出力電圧フィードバック回路161からのフィードバック信号によって決定される電流値に達する、または、スイッチング素子1がターンオンしている期間がスイッチング制御回路2内で設定された最大オン時間に達すると、スイッチング制御回路2はスイッチング素子1をターンオフさせる。
スイッチング素子1がターンオフすると、スイッチング素子1のターンオン時にトランス110の一次巻線110aに蓄えられたエネルギーが二次巻線110bに伝達される。その後、二次巻線110bに流れる二次側電流がなくなると、トランス110の一次巻線110aによるインダクタンスLとスイッチング素子1のDRAIN端子とSOURCE端子(GND端子)間に接続された共振用コンデンサ151の容量値Cで決定される共振動作が開始される。
この時、ターンオン検出回路7によって、スイッチング素子1のDRAIN端子電圧が極小値になるタイミングでターンオン信号が生成され、スイッチング素子1は再びターンオンする。
以上のようなスイッチング動作が繰り返されて、出力電圧Voutが上昇していくが、出力電圧フィードバック回路161で設定された電圧以上になると、出力電圧フィードバック回路161は、フィードバック信号として、例えば、エネルギー伝達制御用半導体装置100のFB端子から電流を流出するように制御する。この流出電流が大きくなると、スイッチング素子1を流れる電流を制限するように、スイッチング制御回路2はスイッチング素子1をターンオフする。
このようにして、スイッチング素子1のオンデューティ(オン期間の比率)は適切な状態に変化していく。つまり、スイッチング素子1のターンオンは、ターンオン検出回路7からのターンオン信号により行われ、ターンオフはスイッチング素子1に流れる電流が、FB端子から流出する電流量により決定される電流レベルに達することにより行われる。
すなわち、負荷131への電流供給が小さい軽負荷時は、スイッチング素子1に電流が流れる期間が短くなり、重負荷時には、スイッチング素子1に電流が流れる期間が長くなることになる。
このように、エネルギー伝達制御用半導体装置100は、スイッチング電源装置の負荷131に供給される電力に応じて、スイッチング素子1に流れる電流を制御し、オンデューティを変化させるといった制御を行う。なお、スイッチング素子1のターンオンするタイミングを、共振動作中のDRAIN端子電圧が最も低下した時に出力するように設定することにより、ターンオン時のスイッチングロスおよびスイッチングノイズが抑えられ、スイッチング電源装置の高効率化および低ノイズ化を実現することができる。
ここで、電圧制限回路6とターンオン検出回路7の詳細について、図2および図3を用いて説明する。
図2に示す電圧制限回路6は、DRAIN端子に印加される電圧を入力して、所定の電圧以上の部分をクランプした電圧信号を、さらに分圧回路によって降圧してターンオン検出回路7へ出力する。ターンオン検出回路7は、電圧制限回路6から入力した電圧信号からスイッチング素子1のターンオンのタイミングを検出し、ターンオン信号をスイッチング制御回路2へ出力する。
一般に、高電圧信号を降圧する際には、分圧回路のみを使用する場合が多いが、図2に示す電圧制限回路6のように、所定の入力電圧に対してピンチオフし、所定の電圧以上の部分をクランプして出力する接合型電界効果トランジスタ201を挿入することで、スイッチング素子1がターンオフした直後に発生する電圧振動成分の一部または全てを削減することができる。なお、このターンオフ直後の電圧振動成分は、トランス110のリーケージインダクタンスとスイッチング素子1の寄生容量などに起因したもので、ターンオンのタイミングを誤検出してしまう恐れがあり、可能な限り削減されることが望まれる。
そこで、スイッチング素子1のDRAIN端子に印加される電圧波形が、例えば、図3(b)に示すような場合に、接合型電界効果トランジスタ201のピンチオフ電圧VpをVp=Vpmax1(ターンオフ直後の電圧振動の最下点、例えば、30(V)以下となるように、接合型電界効果トランジスタ201を設計することで、上記ターンオフ直後の電圧振動成分を全て削減することができる。
なお、接合型電界効果トランジスタ201がピンチオフした時に、出力は一定値で固定されることが理想的であるが、出力が入力依存性を持っていて上記ターンオフ直後の電圧振動成分が多少残っていても、出力信号が入力されるターンオン検出回路7がスイッチング素子1のターンオンのタイミングを誤検出しないように、ターンオン検出回路7が設計されていることが望ましい。
また、図2に示すように、スイッチング素子1のターンオン検出を、スイッチング素子1がターンオフしてから所定の期間は無効化するマスク時間設定回路212をターンオン検出回路7に有してもよい。こうすることで、マスク時間経過後から、二次側電流が流れなくなったことによるリンギングが発生するまでの期間の電圧振動の最下点であるVpmax2(例えば、50V)付近までピンチオフ電圧を高く設定できるので、接合型電界効果トランジスタ201の設計が容易になる。
なお、スイッチング素子1のターンオンのタイミングを電圧制限回路6からの出力信号で検出するために、接合型電界効果トランジスタ201のピンチオフ電圧は、二次側電流が流れなくなったことにより発生するリンギング電圧の最小値(例えば、図3(b)におけるVpmin)よりも大きく設定する必要がある。
また、接合型電界効果トランジスタ201は、例えば、特許文献3に開示されているように、スイッチング素子1と同一半導体基板内に作製してもよい。こうすることで、さらなるチップサイズの縮小を実現することができる。
また、接合型電界効果トランジスタ201と、スイッチング素子1と、その制御回路とを同一半導体基板上に形成して集積回路化することで、当該スイッチング電源装置を構成するための部品点数を削減することができ、容易に小型化および軽量化さらにコスト低減を実現することができる。
また、接合型電界効果トランジスタ201の出力を、抵抗202、203で分割する分圧回路によって、さらに降圧してもよい。こうすることで、接合型電界効果トランジスタ201のピンチオフ電圧を高く設定しても、ターンオン検出回路7を低耐圧な素子で構成することができる。言うまでもなく、チップサイズの縮小や低コスト化を実現することができる。
次に、本発明の実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の代表的な動作を図7にタイミングチャートで示す。
電圧制限回路6にピンチオフ電圧をVpに設定された接合型電界効果トランジスタ201を備えている場合、ドレイン電圧がVpを超える部分がクランプされた波形が電圧制限回路6の出力電圧として出力される。この出力信号はターンオン検出回路7に入力され、微分回路などによって谷部分を検出して、ボトム検出信号として処理される。一方、マスク時間設定回路212よりゲート信号(スイッチング制御信号)がオフしてから所定の期間はボトム検出信号を受け付けないようにされる。所定の期間後、ボトム検出可能となり、ボトム検出信号が出力されると、AND回路213によってターンオン検出信号が出力される。このターンオン検出信号に基づき、ゲート信号(スイッチング制御信号)が出力される。
以上のように本実施の形態によれば、スイッチング素子がターンオフしてから二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧の状態を検出し、スイッチング素子1をターンオンさせるスイッチング電源装置において、スイッチング素子1に印加される電圧からリンギング電圧の状態を検出するため、外部端子を削減することができる。
また、スイッチング素子1がターンオフした直後に、スイッチング素子1に印加される電圧が振動しても、所定の電圧以上の部分をクランプした電圧信号を出力する電圧制限回路6を備えることによって、ターンオンのタイミングを誤検出することがない。すなわち、従来例2(図10)において設けられていたスイッチング素子1および入力ラインに接続される比較回路9や、入力ラインに接続するための外部端子を削減することができる。
また、電圧制限回路6を有することで、ターンオン検出回路7を低耐圧素子で構成することができ、チップサイズの縮小や低コスト化、製造プロセスの容易化が可能となる。
なお、本実施の形態1では、エネルギー伝達制御用半導体装置100はFB端子を備え、出力電圧生成部に接続された出力電圧フィードバック回路161から出力されるフィードバック信号がFB端子に入力されるように構成されているが、図4に示すように、出力電圧フィードバック回路161から出力されるフィードバック信号を、エネルギー伝達制御用半導体装置100のVCC端子電圧に重畳させて、VCC端子電圧に接続された出力電圧検出回路8により、フィードバック制御を行うこともできる。こうすることで、エネルギー伝達制御用半導体装置100のFB端子を削減することができ、例えば、エネルギー伝達制御用半導体装置100の外部端子をDRAIN端子、VCC端子、GND端子の3端子のみで構成することも可能となる。
また、図5に示すように、補助電源電圧VCCは出力電圧Voutに比例していることを利用して、出力電圧検出を行うことでも、エネルギー伝達制御用半導体装置100のFB端子を削減してもよい。
また、本実施の形態1では、レギュレータ3やドレイン電流検出回路5をスイッチング素子1のDRAIN端子に接続しているが、図6に示すように、スイッチング素子1のDRAIN端子電圧を入力した接合型電界効果トランジスタ201の出力を、レギュレータ3やドレイン電流検出回路5の入力信号として共通化してもよい。こうすることで、レギュレータ3やドレイン電流検出回路5を低耐圧素子で構成することが可能となり、チップサイズの縮小や低コスト化を実現することができる。なお、この場合、レギュレータ3に必要な入力電圧を考慮した上で、接合型電界効果トランジスタ201のピンチオフ電圧を設定するとよい。
また、本実施の形態1では、エネルギー伝達制御用半導体装置100は、補助巻線110cに接続されたVCC端子を備えているが、図6に示すように、エネルギー伝達制御用半導体装置100の消費電力はDRAIN端子を介してのみ供給することで、補助巻線110cと、補助巻線110cに接続された整流平滑化回路と、エネルギー伝達制御用半導体装置100のVCC端子を削減することも可能である。
(実施の形態2)
次に、本発明の実施の形態2のエネルギー伝達装置およびエネルギー伝達制御用半導体装置を説明する。ただし、前述した実施の形態1において説明した部材や回路ブロックと同一のものには同一符号を付して、説明を省略する。
図8は本実施の形態2のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の一構成例を示す回路ブロック図である。本実施の形態2では、ターンオン検出回路7は、二次電流出力時間検出回路10と二次電流オンデューティ制御回路11とを備える。また、補助電源電圧VCCは出力電圧Voutに比例していることを利用して、出力電圧検出回路8によって出力電圧検出を行う。スイッチング制御回路2は、出力電圧検出回路8から入力された信号によって、出力電圧Voutが一定に保たれるようにスイッチング素子1のスイッチング制御を行う(定電圧制御)。
次に、本発明の実施の形態2のエネルギー伝達制御用半導体装置100が有する定電流制御機能について説明する。この機能は、二次電流出力時間検出回路10および二次電流オンデューティ制御回路11により実現する。この機能により、二次電流が流れている第1期間(二次電流のオン期間)と二次電流が流れていない第2期間(二次電流のオフ期間)とからなる第3期間、すなわちスイッチング素子1の発振周期に対する二次電流のオン期間のオンデューティ比(二次電流のデューティレシオ)が一定となるようにスイッチング素子1の発振周波数を制御して、ある負荷範囲において出力電流を一定に制御することができる。
なお、二次電流出力時間検出回路10は電圧制限回路6に接続されており、電圧制限回路6から出力される電圧信号から二次電流のオフタイミングを検出する。また、図8に明記していないが、二次電流出力時間検出回路10は、スイッチング制御回路2の出力信号から二次電流が流れ始めるタイミング(二次電流のオンタイミング)も検出することで、二次電流のオン期間を検出する。
以上のように構成された図8に示すエネルギー伝達装置およびエネルギー伝達制御用半導体装置100の動作を説明する。
本実施の形態2のスイッチング電源装置では、スイッチング素子1のオン期間に、トランス110の一次巻線110aに電流が流れてトランス110にエネルギーが蓄えられ、スイッチング素子1のオフ期間に、トランス110に蓄えられたエネルギーが放出されてトランス110の二次巻線110bに電流(二次電流)が流れる。その後、二次電流がゼロになると、トランス110のインダクタンスとスイッチング素子1の寄生容量による共振現象が起こる。この時、スイッチング素子1に印加される電圧から、電圧制限回路6を介して得られる電圧信号を二次電流出力時間検出回路10に入力し、二次電流のオフタイミングを検出する。
また、二次電流はスイッチング素子1がターンオフすると流れ始めるので、二次電流出力時間検出回路10は、二次電流のオンタイミングとして、スイッチング制御回路2の出力信号の立下りを検出する。
二次電流オンデューティ制御回路11は、二次電流出力時間検出回路10が生成する信号に基づき、二次電流のデューティレシオ(二次電流のオンデューティ)が所定値(一定値)に維持されるように、スイッチング素子1をターンオンさせるためのターンオン検出信号を出力する。
定電流領域では、このターンオン検出信号によりスイッチング素子1の発振(オンオフ)周波数が決まる。この周波数は、負荷131に流れる電流が大きくなり、二次電流のオン期間が長くなるにつれて低くなる。
なお、詳細は記述しないが、二次電流のオンデューティが一定値に達していない負荷領域では、出力電圧Voutが一定に保たれるように、PFM制御などによってスイッチング素子1を制御する。すなわち、二次側の負荷131に応じて、定電圧制御と定電流制御が選択されることになる。
このように、本実施の形態2に係るスイッチング電源装置によれば、スイッチング素子1に印加される電圧からリンギング電圧の状態を検出するため、二次電流のオン期間検出をエネルギー伝達制御用半導体装置100の外部端子を追加することなく実現でき、さらに、フォトカプラ等の高価な部品を使用した出力電圧フィードバック回路161を使用することなく、定電圧特性および定電流特性を得ることができるので、小型化および軽量化さらにコスト低減が可能となる。
以上のように、実施の形態1および実施の形態2では、本発明に係るエネルギー伝達装置およびエネルギー伝達制御用半導体装置において、スイッチング素子のターンオンタイミングを検出する手段や半導体装置の端子数削減に着目して説明したが、この他にも本発明の主旨を逸脱しない範囲でのエネルギー伝達装置およびエネルギー伝達制御用半導体装置の構成を含むことは言うまでもない。
本発明のエネルギー伝達装置およびエネルギー伝達制御用半導体装置は、外部端子を削減することで、スイッチング電源装置の設計を容易化することができ、かつ、小型化や低コスト化が可能となり、AC−DCコンバータやDC−DCコンバータなどのスイッチング電源装置等に有効に適応できる。
本発明の実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例1を示す回路ブロック図 同実施の形態1のエネルギー伝達制御用半導体装置における電圧制限回路およびターンオン検出回路の構成例を示す回路ブロック図 同実施の形態1のエネルギー伝達制御用半導体装置における電圧制限回路内の接合型電圧効果トランジスタの入力VD−出力VTAPの特性とピンチオフ電圧Vpを設定する基準を示すスイッチング素子に印加される電圧の波形図 同実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例2を示す回路ブロック図 同実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例3を示す回路ブロック図 同実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例4を示す回路ブロック図 同実施の形態1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の動作を示すタイミングチャート 本発明の実施の形態2のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例を示す回路ブロック図 従来例1のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例を示す回路ブロック図 従来例2のエネルギー伝達制御用半導体装置を備えたエネルギー伝達装置の構成例を示す回路ブロック図
符号の説明
1 スイッチング素子
2 スイッチング制御回路
3 レギュレータ
4 起動・停止回路
5 ドレイン電流検出回路
6 電圧制限回路
7 ターンオン検出回路
8 出力電圧検出回路
9 比較回路
10 二次電流出力時間検出回路
11 二次電流オンデューティ制御回路
100 エネルギー伝達制御用半導体装置
110 トランス
110a 一次巻線
110b 二次巻線
110c 補助巻線
121、141 整流ダイオード
122、142 コンデンサ
131 負荷
143、144、202、203 抵抗
151 共振用コンデンサ
161 出力電圧フィードバック回路
201 接合型電界効果トランジスタ
211 ボトム検出回路
212 マスク時間設定回路
213 AND回路

Claims (12)

  1. 一次巻線と二次巻線を有するトランスと、
    前記一次巻線に直列接続され前記一次巻線を介して入力される第1の直流電圧をスイッチングするスイッチング素子と、
    前記スイッチング素子によるスイッチングを制御する制御回路と、
    前記制御回路によるスイッチング制御によって前記二次巻線に発生する交流電圧を第2の直流電圧に変換して負荷に電力供給する出力電圧生成部とを備えたエネルギー伝達装置であって、
    前記制御回路は、
    前記制御回路によるスイッチング制御によって前記スイッチング素子に印加される電圧が所定電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する電圧制限手段と、
    前記電圧制限手段により得られた電圧信号により、前記スイッチング素子がターンオフしてから前記二次巻線を流れる二次電流が流れなくなった後に発生するリンギング電圧の状態を検出し、前記スイッチング素子をターンオンさせる信号を生成するターンオン検出回路とを備えた
    ことを特徴とするエネルギー伝達装置。
  2. 前記ターンオン検出回路は、
    前記スイッチング素子に印加される電圧が所定電圧以上である時には、前記スイッチング素子をターンオンさせる信号を生成しない
    ことを特徴とする請求項1記載のエネルギー伝達装置。
  3. 前記電圧制限手段は、
    前記スイッチング素子がターンオフしてから前記リンギング電圧が発生するまでの期間に、
    前記スイッチング素子に印加される電圧の第1の最下点よりも小さい電圧を第1の基準電圧として、
    前記スイッチング素子に印加される電圧が前記基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する
    ことを特徴とする請求項1または請求項2記載のエネルギー伝達装置。
  4. 前記ターンオン検出回路は、
    前記スイッチング素子がターンオフしてから所定期間は、前記スイッチング素子をターンオンさせる信号を生成しない
    ことを特徴とする請求項1から請求項3のいずれかに記載のエネルギー伝達装置。
  5. 前記電圧制限手段は、
    前記スイッチング素子がターンオフして前記所定期間経過後から前記リンギング電圧が発生するまでの期間に、
    前記スイッチング素子に印加される電圧の第2の最下点よりも小さい電圧を第2の基準電圧として、
    前記スイッチング素子に印加される電圧が前記第2の基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する
    ことを特徴とする請求項4記載のエネルギー伝達装置。
  6. 前記電圧制限手段は、
    前記ターンオン検出回路を構成する回路素子の耐電圧よりも小さい電圧に制限した電圧信号を出力する
    ことを特徴とする請求項1から請求項5のいずれかに記載のエネルギー伝達装置。
  7. 前記電圧制限手段は、
    前記ターンオン検出回路が前記リンギング電圧を検出する値よりも大きい電圧を第3の基準電圧として、
    前記スイッチング素子に印加される電圧が前記第3の基準電圧以上である時には、所定の電圧範囲に制限した電圧信号を出力する
    ことを特徴とする請求項1から請求項6のいずれかに記載のエネルギー伝達装置。
  8. 前記電圧制限手段は、
    前記スイッチ素子に印加される電圧が入力され、所定の電圧でピンチオフして出力する接合型電界効果トランジスタを有する
    ことを特徴とする請求項1から請求項7のいずれかに記載のエネルギー伝達装置。
  9. 前記電圧制限手段は、
    前記スイッチング素子に印加される電圧に応じて電圧信号を出力し、
    前記スイッチング素子に印加される電圧が所定電圧以上である時には、所定の電圧範囲に制限した電圧信号を、さらに分圧回路によって降圧して出力する
    ことを特徴とする請求項1から請求項8のいずれかに記載のエネルギー伝達装置。
  10. 前記ターンオン検出回路は、
    前記リンギング電圧の極小点を検出し、
    前記スイッチング素子をターンオンさせる信号を生成する
    ことを特徴とする請求項1から請求項9のいずれかに記載のエネルギー伝達装置。
  11. 前記ターンオン検出回路は、
    前記リンギング電圧の発生から二次電流オン期間を検出し、
    前記スイッチング素子をターンオンさせる信号を生成する
    ことを特徴とする請求項1から請求項9のいずれかに記載のエネルギー伝達装置。
  12. 請求項1から請求項11のいずれかに記載のエネルギー伝達装置を構成するエネルギー伝達制御用半導体装置であって、
    前記スイッチング素子と前記制御回路とを、同一基板上に半導体集積回路化して形成した
    ことを特徴とするエネルギー伝達制御用半導体装置。
JP2008256912A 2008-10-02 2008-10-02 エネルギー伝達装置およびエネルギー伝達制御用半導体装置 Active JP5117980B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008256912A JP5117980B2 (ja) 2008-10-02 2008-10-02 エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US12/535,211 US8274802B2 (en) 2008-10-02 2009-08-04 Energy transmission device and semiconductor device for energy transmission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256912A JP5117980B2 (ja) 2008-10-02 2008-10-02 エネルギー伝達装置およびエネルギー伝達制御用半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012229371A Division JP2013039034A (ja) 2012-10-17 2012-10-17 エネルギー伝達装置およびエネルギー伝達制御用半導体装置

Publications (2)

Publication Number Publication Date
JP2010088251A true JP2010088251A (ja) 2010-04-15
JP5117980B2 JP5117980B2 (ja) 2013-01-16

Family

ID=42075683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256912A Active JP5117980B2 (ja) 2008-10-02 2008-10-02 エネルギー伝達装置およびエネルギー伝達制御用半導体装置

Country Status (2)

Country Link
US (1) US8274802B2 (ja)
JP (1) JP5117980B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133860A (ja) * 2014-01-15 2015-07-23 コーセル株式会社 スイッチング電源装置
WO2015145735A1 (ja) * 2014-03-28 2015-10-01 三菱電機株式会社 Dc/dcコンバータおよび光源点灯装置
JP2016135089A (ja) * 2015-01-22 2016-07-25 富士電機株式会社 マルチ出力電源装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425749B (zh) * 2010-03-17 2014-02-01 Noveltek Semiconductor Corp 主側電流控制器及其相關電源供應器
TWI392204B (zh) * 2010-07-06 2013-04-01 Power Forest Technology Corp 電源轉換裝置及其過電流保護方法
JP5983172B2 (ja) * 2012-08-10 2016-08-31 富士電機株式会社 スイッチング電源装置及びスイッチング電源装置の制御回路
CN103391010B (zh) * 2013-07-25 2015-10-21 深圳市明微电子股份有限公司 一种开关电源驱动芯片及开关电源驱动电路
US9735687B2 (en) * 2015-11-23 2017-08-15 Sync Power Corp. Regulating power converter by sensing transformer discharge timing
WO2018043226A1 (ja) * 2016-08-30 2018-03-08 パナソニックIpマネジメント株式会社 スイッチング電源装置および半導体装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092829A (ja) * 1998-09-07 2000-03-31 Hitachi Ltd スイッチング電源回路
JP2003524359A (ja) * 1999-05-26 2003-08-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 入力電圧を出力電圧に変換する変換器
JP2003259641A (ja) * 2002-03-01 2003-09-12 Koito Mfg Co Ltd 直流電圧変換回路
JP2004364433A (ja) * 2003-06-05 2004-12-24 Koito Mfg Co Ltd 直流電圧変換回路
JP2005503748A (ja) * 2001-09-17 2005-02-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 入力電圧を出力電圧に変換するためのコンバータ
JP2005287260A (ja) * 2004-03-31 2005-10-13 Matsushita Electric Ind Co Ltd スイッチング電源制御用半導体装置
JP2005287261A (ja) * 2004-03-31 2005-10-13 Matsushita Electric Ind Co Ltd スイッチング電源制御用半導体装置
JP2007068248A (ja) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd スイッチング電源装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09266256A (ja) 1996-03-28 1997-10-07 Yokogawa Electric Corp 高耐圧mosトランジスタ及びスイッチング電源装置
JP3794932B2 (ja) 2001-04-10 2006-07-12 新電元工業株式会社 スイッチング電源装置
JP3707409B2 (ja) * 2001-09-10 2005-10-19 株式会社村田製作所 スイッチング電源装置
JP3707436B2 (ja) * 2002-01-25 2005-10-19 株式会社村田製作所 スイッチング電源装置
TWI380565B (en) * 2007-10-26 2012-12-21 Niko Semiconductor Co Ltd Three terminal integrated synchronous rectifier and flyback synchronous rectifying circuit
US7911814B2 (en) * 2008-05-30 2011-03-22 Active-Semi, Inc. Constant current and voltage controller in a three-pin package with dual-use power pin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092829A (ja) * 1998-09-07 2000-03-31 Hitachi Ltd スイッチング電源回路
JP2003524359A (ja) * 1999-05-26 2003-08-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 入力電圧を出力電圧に変換する変換器
JP2005503748A (ja) * 2001-09-17 2005-02-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 入力電圧を出力電圧に変換するためのコンバータ
JP2003259641A (ja) * 2002-03-01 2003-09-12 Koito Mfg Co Ltd 直流電圧変換回路
JP2004364433A (ja) * 2003-06-05 2004-12-24 Koito Mfg Co Ltd 直流電圧変換回路
JP2005287260A (ja) * 2004-03-31 2005-10-13 Matsushita Electric Ind Co Ltd スイッチング電源制御用半導体装置
JP2005287261A (ja) * 2004-03-31 2005-10-13 Matsushita Electric Ind Co Ltd スイッチング電源制御用半導体装置
JP2007068248A (ja) * 2005-08-29 2007-03-15 Matsushita Electric Ind Co Ltd スイッチング電源装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015133860A (ja) * 2014-01-15 2015-07-23 コーセル株式会社 スイッチング電源装置
WO2015145735A1 (ja) * 2014-03-28 2015-10-01 三菱電機株式会社 Dc/dcコンバータおよび光源点灯装置
JPWO2015145735A1 (ja) * 2014-03-28 2017-04-13 三菱電機株式会社 Dc/dcコンバータおよび光源点灯装置
JP2016135089A (ja) * 2015-01-22 2016-07-25 富士電機株式会社 マルチ出力電源装置

Also Published As

Publication number Publication date
US20100085781A1 (en) 2010-04-08
JP5117980B2 (ja) 2013-01-16
US8274802B2 (en) 2012-09-25

Similar Documents

Publication Publication Date Title
JP5117980B2 (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
US7075802B2 (en) Semiconductor device for controlling switching power supply
US8335097B2 (en) Semiconductor device that converts input direct current voltage to regulated output voltage by intermittently switching on and off the input direct current voltage
US8199533B2 (en) Switching power supply device
US8964430B2 (en) Active snubber circuit and power supply circuit
US20090201705A1 (en) Energy converting apparatus, and semiconductor device and switching control method used therein
JP4127399B2 (ja) スイッチング電源制御用半導体装置
JP5660131B2 (ja) スイッチング制御回路及びスイッチング電源装置
JPWO2007018227A1 (ja) 絶縁型スイッチング電源装置
JP6075008B2 (ja) スイッチング電源装置
US9318961B2 (en) Switching power-supply device
JP2004260977A (ja) Ac−dcコンバータ
JP2010041832A (ja) スイッチング電源制御装置及びそれに用いる半導体装置
JP2011010397A (ja) コンバータ
JP2007174890A (ja) スイッチング電源装置とそれに使用される半導体装置
JP2005245142A (ja) スイッチング電源制御用半導体装置
JP5660133B2 (ja) スイッチング制御回路及びスイッチング電源装置
JP2009148012A (ja) スイッチング制御装置及びそれに用いる半導体装置
JP2007068248A (ja) スイッチング電源装置
JP2013039034A (ja) エネルギー伝達装置およびエネルギー伝達制御用半導体装置
JP5288491B2 (ja) スイッチング電源装置
JP4415052B2 (ja) スイッチング電源装置
KR20040031503A (ko) 스너버 회로 및 이에 적합한 스위칭 모드 파워 서플라이
JP2010057207A (ja) スイッチング電源装置
JP2007306650A (ja) スイッチング電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R151 Written notification of patent or utility model registration

Ref document number: 5117980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250