JP2010083253A - プロペラシャフト - Google Patents

プロペラシャフト Download PDF

Info

Publication number
JP2010083253A
JP2010083253A JP2008252831A JP2008252831A JP2010083253A JP 2010083253 A JP2010083253 A JP 2010083253A JP 2008252831 A JP2008252831 A JP 2008252831A JP 2008252831 A JP2008252831 A JP 2008252831A JP 2010083253 A JP2010083253 A JP 2010083253A
Authority
JP
Japan
Prior art keywords
layer
constant velocity
propeller shaft
velocity joint
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008252831A
Other languages
English (en)
Inventor
Yasushi Iida
靖 飯田
Fumiaki Kishi
文昭 貴志
Ryotaro Nagao
良太郎 永尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008252831A priority Critical patent/JP2010083253A/ja
Publication of JP2010083253A publication Critical patent/JP2010083253A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/02Couplings for rigidly connecting two coaxial shafts or other movable machine elements for connecting two abutting shafts or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/08Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key
    • F16D1/0852Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft
    • F16D1/0858Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end with clamping hub; with hub and longitudinal key with radial clamping between the mating surfaces of the hub and shaft due to the elasticity of the hub (including shrink fits)

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Motor Power Transmission Devices (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

【課題】本発明は、最大限の軽量化効果を満足しつつ、衝突時におけるボディの破壊にあわせてプロペラシャフトの破壊を確実に進行させることができ、ボティによるエネルギー吸収効果を十分に発現させることができるプロペラシャフトを提供する。
【解決手段】端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
【選択図】図5

Description

本発明は、自動車等の駆動力伝達軸として使用される、FRP製筒体を用いたプロペラシャフトに関する。
自動車ではトランスミッションの動力を、プロペラシャフト(推進軸)を介してディファレンシャル装置に伝達している。図1、3、4に示すように、プロペラシャフトはその接合部において金属製二股ヨーク11、31、41が設けられ、図2に示すような十字軸式ジョイント12、21を介したカルダン式ジョイントによってトランスミッションおよびディファレンシャル装置に連結されていることが多い。プロペラシャフトはねじれや曲げに強くしかも軽量とするため、一般に金属パイプ製のシャフト本体の両端にヨークが溶接された構造となっている。
通常、金属製パイプでのプロペラシャフトでは長尺になった場合は、プロペラシャフトの固有振動数の一つである曲げ一次共振周波数(いわゆる危険回転数)との関係で2ピース(3ジョイント方式)または3ピース(4ジョイント方式)にする必要がある。当然、ジョイント部の数が多くなるに従ってジョイント部に必要な金属製ヨークやカルダン式ジョイント等の部品点数が多くなり、車両重量を軽くすることが出来ないと共に組付け工数が多くなりコスト高の原因となる。
また、燃費向上を目的として、筒体本体を繊維強化プラスチック(FRP)で形成してより軽量化を図ったプロペラシャフトが提案され、また、一部の車両に実施されている。これらのプロペラシャフトはFRP製筒体13と、その両端に圧入(もしくは接着)接合された金属製二股ヨーク11、31、41とから構成されている。特許文献1に開示されているように、FRP製のプロペラシャフトでは、繊維配向を任意に変更でき、また比重が小さいため、曲げ一次共振周波数を大きくできるので、長尺のプロペラシャフトでも1ピース(2ジョイント)で一次共振周波数(危険回転数)を満足することができ、シャフトのFRP化と中間ジョイント廃止による部品点数で軽量化を図ることができる。また、部品点数の削減によりコスト削減も可能となる。
他方、このようなFRP製プロペラシャフトも、ディファレンシャルやトランスミッションとの接合においては、特許文献2や図1に示すように、金属製プロペラシャフトと同様FRP製筒体13とその両端に圧入(もしくは接着)接合された金属製二股ヨーク11、31、41と十字軸式ジョイント12、21、フランジヨーク15、44、シャフトヨーク14、34を介したカルダン式ジョイントによって実施されている。又、特許文献3に示すように、等速ジョイントをFRPチューブに内包し、金属製二股ヨーク11、31、41と十字軸式ジョイント12、21、フランジヨーク15、44、シャフトヨーク14、34を省略することによって更に軽量化を図ったプロペラシャフトを提供している。
ところが、そのために以下において説明するような問題が起こっている。
トランスミッション、ディファレンシャルとの接合部におけるカルダン式ジョイントタイプ(図3、4参照)では、十字軸式ジョイント12、21とヨーク部品が依然として残り、従ってプロペラシャフト全体としてまだ部品点数も多く軽量化効果、部品組み付け工数削減が十分とは言えない。
又、軽量化とともに重要なことに、衝突時における乗員の安全確保の問題がある。この安全確保についての近年における自動車の設計思想は、ボディをクラッシャブル構造とし、衝突時の衝撃エネルギー(圧縮荷重)をボディの圧縮破壊によって吸収し、もって乗員にかかる急激な加速度を緩和することに支配される。しかし、上述したように、危険回転数を優先した思想の下にFRP製の本体を設計すると、必然的に軸方向の圧縮荷重に対する強度が高くなり、衝突時にボディが破壊し、その破壊が逐次進行してプロペラシャフトに達したときに、プロペラシャフトがあたかもつっかい棒のように作用して衝撃エネルギーの吸収効果が損われるようになってしまう。特許文献3のように軽量化を最大限追求したFRP製プロペラシャフト構造も、このつっかい棒作用により軽量化と衝撃エネルギー吸収効果が両立しないという課題を依然抱えている。
かかる問題を解決しようとして、特許文献4は、衝突時の圧縮荷重で継手が本体との接合面において軸方向に移動し、同時に継手が本体全体をその端部から徐々に押し拡げて破壊するようにしたプロペラシャフトを提案している。しかしながら、この従来のプロペラシャフトは、継手の移動を確保するために本体と継手とを複雑な歯形や分離剤を介して接合しなければならず、構造が複雑になるばかりか、製造上の煩雑さも免れない。また、そのような構成のプロペラシャフトにおいて継手を圧入接合しようとすると、本体に圧入時の力に耐える強度をもたせなければならないが、そのための強度をもたせることは、圧縮荷重による本体の押し拡げ、破壊を困難にする。すなわち、上述した基本的要求と、押し拡げ、破壊という相反する要求とを同時に満足させることはなかなか難しい。
このように、従来のプロペラシャフトは、いずれも、捩り強度や危険回転数といった基本的要求を満足させても、軽量化及び衝突時における乗員の安全確保においてバランスのとれたものであるとはいい難い。
特開平2−236014号公報 特許第3402255号公報 US4892433公報 特開平3−37416号公報
本発明は、上記問題を解決するためになされたものであり、最大限の軽量化効果を満足しつつ、衝突時におけるボディの破壊にあわせてプロペラシャフトの破壊を確実に進行させることができ、ボティによるエネルギー吸収効果を十分に発現させることができるプロペラシャフトを提供することにある。
かかる課題を解決するための本発明は、端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトで、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記等速ジョイントは、軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させて剥離させる機能を備えているプロペラシャフトとするものである。具体的には、以下の構成からなる。すなわち、
(1)端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
(2)一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の一端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
(3)一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する、ヘリカル巻された補強繊維を含有する主層と、上記本体の一端部および他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含有する部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
(4)一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する、本体の軸方向に対して±5〜45°の角度でヘリカル巻された補強繊維を含有する主層と、上記本体の一端部及び他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含有する部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
(5)上記圧縮荷重伝達部は外径が上記部分層の外径以下でかつ、上記部分層の外端面と対向する立面を有している、(1)〜(4)のいずれかのプロペラシャフト
(6)一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、上記本体は、
a.上記本体の全長にわたって設けた、上記本体の軸方向に対して±5〜45°の角度でヘリカル巻された補強繊維を含む主層と、
b.上記本体の一端部および他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含む部分層と、を有し、上記一端部および他端部に設けた等速ジョイントは
c.上記部分層に内接する接合面と、
d.上記接合面に隣接して設けた、上記等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる、外径が上記部分層の外経以下で、かつ、上記部分層の外端面と対向する立面を備えた圧縮荷重伝達部と、を有しているプロペラシャフト。
(7)上記等速ジョイントの接合が、圧入接合によって行われている、(1)〜(6)のいずれかのプロペラシャフト。
(8)上記等速ジョイントの上記FRP製筒体との接合面に、その等速ジョイントの軸方向に延びるセレーションが設けられている、(1)〜(7)のいずれかのプロペラシャフト。
(9)上記部分層は外端面に対応する内端面側の部分がくさび形の縦断面形状を有している(1)〜(8)のいずれかのプロペラシャフト。
(10)上記部分層は、外端面側から内端面側に向かって厚みが徐々に薄くなっている、(1)〜(9)のいずれかのプロペラシャフト。
本発明によれば、軽量化効果が大きく、かつ、等速ジョイントの軸方向に作用する圧縮荷重を主層と部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているので、軽量化を最大限発揮すると共に衝突時におけるボディの破壊にあわせて破壊を確実に進行させることができ、ボディのエネルギー吸収効果を十分に発現させることができる。
本発明は、図5、6、7に示すようにFRP製筒体53と、駆動源の駆動軸57に連結される等速ジョイント51、54、61、71からなるプロペラシャフトである。
FRP製筒体53は、強化繊維として、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、セラミック繊維等が使用され、この中でも危険回転数を考慮すると炭素繊維の使用が好ましい。また、炭素繊維以外の強化繊維は、プロペラシャフトに必要なねじり強度や危険回転数を考慮すると40質量%以下であることが好ましい。
また、強化繊維に含浸させる樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂などの熱硬化性樹脂、ポリ酢酸ビニル樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリフェニレンオキシド樹脂、ポリフェニレンスルフィド樹脂、ポリアリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアラミド樹脂、ポリベンゾイミダゾール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、酢酸セルロース樹脂などの熱可塑性樹脂が好適に用いられるが、これらの中でも、良好な作業性と成形後の優れた機械特性という点を考慮すると熱硬化性樹脂が好ましく、中でも、エポキシ樹脂が特に好ましく用いられ、FRP製筒体を形成する。なお、ここで言う、FRP製筒体は、フィラメントワインディング法やテープワインディング法等により、熱硬化性樹脂や熱可塑性樹脂に代表される樹脂を含浸させた強化繊維をマンドレルに巻き付けて成形する方法などにより得られる。
FRP製筒体53は、図8に示すように一様な内径を有するとともに、その全長にわたって延在する、軸方向に対して±5〜45゜の角度でヘリカル巻された補強繊維を含む主層81と、FRP製筒体53の両端部において、上記主層81と一体に、かつ、その主層81の内側に設けた、フープ巻された補強繊維を含む部分層(軸方向に対して補強繊維が±80〜90゜の角度で配列されている層)82とを有している。
主層81は、FRP製筒53体の、主として、軸方向における曲げ弾性率を向上させてプロペラシャフトの曲げ共振周波数を高くし、危険回転数を高くするとともに、捩り強度を向上させるように作用する。また、部分層82は、FRP製筒体53の、主として、等速ジョイントが圧入接合される各端部に、後述するように破壊の進行を妨げることなく圧入時の力に耐える強度を与えるとともに、等速ジョイントからの回転トルク(捩りトルク)をFRP製筒体53に伝達するように作用する。
このようなFRP製筒体53は、たとえばフィラメントワインディング法によって成形することができる。すなわち、樹脂を含浸した補強繊維束を用い、その樹脂含浸補強繊維束をマンドレルの一端部に所望の厚み、所望の長さフープ巻して部分層82を形成した後、そのまま樹脂含浸補強繊維束をマンドレルの他端部に走らせてその他端部に同様に部分層82を形成する。引き続き、樹脂含浸繊維束を他端部から始めてその他端部と一端部との間を往復させながらヘリカル巻し、所望の厚みの主層81を形成する。主層81の形成を終えた後、その主層81の上に樹脂含浸繊維束を薄くフープ巻することもでき、そうすると、余分な樹脂が絞り出されて補強繊維の体積含有率が高くなり、本体の各種強度や弾性率等がさらに向上するようになる。このようにして、補強繊維束を中途で切断することなく連続して各層を形成することができる。層の形成後は、好ましくは回転させながら樹脂を硬化ないし固化させ、マンドレルを引き抜いて本体を得る。
なお、樹脂を含浸した補強繊維束を使用する例について説明したが、樹脂が含浸されていない強化繊維束を、フィラメントワインディングする直前に樹脂浴等に浸漬させて樹脂を含浸させることもできる。
上述のようにして得られたFRP製筒体53の一端部および他端部には、等速ジョイント51、54、61、71が圧入接合され、等速ジョイントには駆動源からの駆動軸が直接連結される。
等速ジョイント自体に、外周面軸方向に延び、かつ、歯先径の直径が、本体となるFRP製筒体の内径よりも大きい切り込み歯を有しているので、等速ジョイントを直接FRP製筒体に圧入接合することができる。又、等速ジョイントはユニバーサルに可変する機能と軸方向にスライドする機能を併せ持っている。これにより従来の継手構造であるカルダン式ジョイントと比較してジョイント部における金属製二股ヨーク、十字軸式ジョイントや金属製スタブシャフトを削減することができ、大幅な軽量化を達成することができる。
上記のように構成された等速ジョイント接合部詳細は、図6〜図9に示すように、FRP製筒体53の部分層82、92に内接し、かつ、その部分層82、92よりもやや短い接合面64、74を有する。接合面64、74は、図6(b)、7(a)に示すように、軸方向に延びるセレーション63、73が形成され、その部分の外径は、圧入前におけるFRP製筒体53の内径よりもやや大きくなっている。したがって、等速ジョイントをFRP製筒体53に圧入すると、等速ジョイントの接合面64、74には圧縮応力が、また、FRP製筒体53には周方向の引張応力がそれぞれ作用し、これら圧縮応力と引張応力とでFRP製筒体53と等速ジョイントとが強固に接合されるようになる。そして、FRP製筒体53の各端部には、内側に部分層82が存在し、外側に主層81が存在するので、圧入接合によってFRP製筒体53に生ずる周方向の引張応力は、主として部分層82が受け持つことになる。また、FRP製筒体53の周方向の歪は、内側で最も大きく、外側ほど小さくなるが、補強繊維がフープ巻されているために引張破断伸度が大きい部分層82をそれよりも破断伸度の小さい主層81の内側に位置させているから、効果的な接合状態が発現されるようになる。
接合前における等速ジョイントの接合面64、74が形成されている部分の外径と、FRP製筒体53の内径に対する差、すなわち圧入代は、この差が大きいほど強い接合力が得られ、捩り強度が向上するので捩りトルクの伝達には都合がよい。
一方、接合力は、接合面64、74の面積や表面状態によっても変わる。通常、圧入代とFRP製筒体53の内径に対する比を0.001〜0.02の範囲に選定し、接合面64、74のFRP製筒体53の軸方向における長さを本体の内径の1/10以上にする。なお、接合力を向上させたり、滑りをよくして圧入を容易にしたり、接合面64、74と部分層82の内面との間隙を埋めたり、接合面64、74を外気から遮断して保護する等の目的で接合面64、74に接着剤を塗布しておくのもよい。
上述した等速ジョイントは、接合面64、74に隣接もしくは少し離れて隣接して、外径がFRP製筒体53の内径よりもやや大きいリング状凸部65、75と、部分層82の外端面と対向する立面66、76を備えて構成されている。凸部65、75の外径は、部分層82の外端面の外径に等しい。これら凸部65、75と立面66、76とが圧縮荷重伝達部を構成している。
このように構成されたプロペラシャフトにおいては、軸方向に加わった圧縮荷重は、部分層82に対向する立面66、76からその部分層82に伝達され、さらに主層81に伝達される。したがって、主層81も圧縮変形するが、主層81と部分層82とではポアソン比の差が大きいので両者の層間にそれを破壊させようとする剪断応力が作用し、この剪断応力と、圧縮荷重によって層間に生ずる剪断応力と、等速ジョイントの圧入によって生じている引張応力との2次元応力状態の下で層間が破壊し、以後、図9に示すように主層91の破壊が進行する。ただ、上述した態様のものとは異なり、主層91を押し拡げながら移動するのは部分層92であり、凸部65、75はこの押し拡げには関与しない。なお、凸部65、75の外径を部分層82のそれよりも小さくしておいても同様の作用が得られる。また、立面66、76は、部分層82に当接していてもよく、当接していなくてもよい。
また、破壊の進行過程に着目してみると、部分層82を、図8に示すように、外端面に対応する内端面側の部分をくさび形の縦断面形状を有するものとしておいたり、図10に示すように、外端面から内端面に向かって厚みを徐々に薄くしておくのも好ましいことである。
以上においては、本体がその長さ方向において対称形であるものについて説明したが、その必要は必ずしもない。というのは、後述するように、本体の破壊をその両端部から同時に進行させる必要は必ずしもないからである。等速ジョイントの接合の方法等にもよるが、いずれかの端部を部分層を有しないものとして構成することも可能である。
また、等速ジョイントは、その接合部にセレーションを有するものについて説明した。そのような等速ジョイントを用いると本体との接合がより強固になり、捩りトルクの伝達には都合がよい。しかしながら、接合の方法等にもよるが、セレーションを有しない等速ジョイントの使用も可能である。
さらに、等速ジョイントの接合は、圧入接合によるのが好ましいものの、接着剤による接着でもよく、また、圧入接合と接着剤による接合とを併用することもできる。
また、FRP製筒体53の破壊をその一端部および他端部の双方から同時に進行させる必要は必ずしもないので、他端部においては圧縮荷重伝達部を有しない等速ジョイントを使用してもよい。また、他端部の等速ジョイントを、全体としてみると図6、7に示すような形状ではあるが、凸部65、75 の外径がFRP製筒体53の外径以上で、主層81と部分層82 の外端面の双方に当接する立面を有する等速ジョイントに変えてもよい。このとき、立面は、圧入接合時におけるストッパとして、また、FRP製筒体53が圧縮荷重を受けたときにそれを受け止める台座として作用する。
(比較例、実施例)
次に、上記発明を実施するための最良の形態の項で説明した本発明の構成要件を満足するFRP製プロペラシャフトにおける効果を確認するため、軽量化効果、軸圧縮破壊荷重の評価を実施した。
(比較例)
フィラメントワインディング法によってFRP製筒体を成形した。すなわち、炭素繊維束(平均単糸径:7μm、単糸数:12,000本、引張強度36.7MPa(=360kgf/mm)、引張弾性率:2,398MPa(=23,500kgf/mm) )を6本引き揃え、これを、硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂を含浸しながら、外径70mm、長さ1,300mmのマンドレルに、まず、マンドレルの全長にわたって軸方向に対して±15゜の角度で4層巻き付けて厚み2.5mmの主層を形成し、さらに、マンドレルの全長にわたって軸方向に対して−80゜で1層フープ巻した。
次に、マンドレルを回転させながら180℃で6時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部50mmの部分を切断、除去して、外径が75mm、内径が70mm、長さが1,200mmの、図11に示すようなFRP製筒体を得た。
次に、上記FRP製筒体1の各端部に、凸部36、46の外径が75mm、接合面35、45 のセレーション歯先径が70.5mm、接合面35、45の長さが40mmの接合部用円筒体を有した金属製二股ヨーク11、31、41、フランジヨーク15、44、シャフトヨーク14、34、十字軸式ジョイント12、21を用意した。
続いて、得られたFRP製筒体に、接合面35、45のセレーション歯先径が70.5mm、接合面35、45の長さが40mmの接合部用円筒体を有した金属製二股ヨーク11、31、41を圧入接合し、十字軸式ジョイント12、21を介してフランジヨーク15、44、シャフトヨーク14、34を、取り付けカルダン式ジョイント接合部を形成した。重量はFRP製筒体1.3kg、金属製二股ヨーク1.3kg×2、十字軸式ジョイント0.3kg×2、フランジヨーク1.0kg、シャフトヨーク1.5kgでプロペラシャフト全体重量は7.1kgであった。
本プロペラシャフトの捩り試験をしたところ3500Nmであり、自動車用プロペラシャフトとして十分であったが、軸方向に圧縮荷重を負荷したところ35kNで主層の急激な高荷重で座屈破壊し、衝撃吸収効果は確認できなかった。
(実施例)
フィラメントワインディング法によってFRP製筒体を成形した。すなわち、炭素繊維束(平均単糸径:7μm、単糸数:12,000本、引張強度36.7MPa(=360kgf/mm)、引張弾性率:2,398MPa(=23,500kgf/mm) )を6本引き揃え、これを、硬化剤および硬化促進剤を含むビスフェノールA型エポキシ樹脂を含浸しながら、外径70mm、長さ1,300mmのマンドレルに、まず、その一端部100mmの部分に軸方向に対して±80゜の角度で8層巻き付けて厚み2.5mmの部分層を形成した後、他端部に移動して同様に部分層を形成し、引き続きマンドレルの全長にわたって軸方向に対して±15゜の角度で4層巻き付けて厚み2.5mmの主層を形成し、さらに、マンドレルの全長にわたって軸方向に対して−80゜で1層フープ巻した。
次に、マンドレルを回転させながら180℃で6時間加熱してエポキシ樹脂を硬化させ、マンドレルを引き抜いた後、各端部50mmの部分を切断、除去して、各端部の外径が80mm、内径が70mm、長さが1,200mmの、図12に示すようなFRP製筒体を得た。
次に、上記FRP製筒体の各端部に、凸部65、75の外径が75mm、接合面64、74の外径が70.5mm、接合面64、74の長さが40mmの接合部用円筒体を摩擦溶接等の手段にて連結固定した、図6に示すようなPlungタイプ(ベアリングが軸方向移動可)と、図7に示すようなFixタイプ(ベアリングが軸方向移動不可)の等速ジョイントを圧入接合し、この発明のプロペラシャフトを得た。圧入に要した力は7kN であった。
本等速ジョイントはそれ自体がユニバーサル機能を有しているため、FRP製筒体に圧入接合するだけで他に何も必要な部品はなくプロペラシャフトが完成となる。プロペラシャフトの重量はFRP製筒体1.4kg、外周面に軸方向に切り込み歯を有した等速ジョイント51、61:Plungタイプ1.3kg、等速ジョイント54、71:Fixタイプ1.8kgでプロペラシャフト全体重量は4.5kgとなり、上記比較例(現行モデル)より約35%の軽量化が実現できた。本プロペラシャフトの捩り試験をしたところ3500Nmであり、自動車用プロペラシャフトとして十分であった。次に軸方向に圧縮荷重を負荷したところ11kNで主層と部分層とが剥離して主層の破壊が始まり、破壊後は3.5kNの荷重で図9に示すように逐次破壊が進行し、比較例(現行モデル)より大幅に圧縮破壊荷重を低減することができた。
本発明に係るプロペラシャフトおよびその製造方法は、自動車用途に限定されるものではなく、トラックやバスといったあらゆる車両用プロペラシャフトに対して、好適に適用できるものである。
:従来のカルダン式ジョイントタイプの継手を接合したFRP製プロペラシャフトの概略全体図である。 :従来のカルダン式ジョイントタイプの継手に用いられる十字軸ジョイントの概略正面図である。 :従来のカルダン式ジョイントタイプの継手のうち、トランスミッション側に接合されたカルダン式ジョイントの概略全体図である。 :従来のカルダン式ジョイントタイプの継手のうち、ディファレンシャル側に接合されたカルダン式ジョイントの概略全体図である。 :本発明における等速ジョイント/切り込み歯一体型のFRP製プロペラシャフトの概略全体図である。 :本発明におけるPlungタイプ等速ジョイントのうち、(a)正面から見た概略部分断面図、(b)右側面図である。 :本発明におけるFixタイプ等速ジョイントのうち、(a)左側面図、(b)正面から見た概略部分断面図である。 :本発明における等速ジョイントを接合した状態を示すFRP製プロペラシャフト端部の詳細図である。 :図8に示したFRP製プロペラシャフトの破壊の進行状況を示したFRP製プロペラシャフト端部の詳細図である。 :本発明におけるFRP製プロペラシャフト部分層の別の実施態様を示すFRP製プロペラシャフト端部の詳細図である。 :比較例における部分層が存在しないFRP製筒体の端部の詳細図である。 :実施例における部分層、主層が存在する本発明のFRP製筒体の端部の詳細図である。
符号の説明
11、31、41 :二股ヨーク
12、21 :十字軸式ジョイント
13、53 :FRP製筒体
14、34 :シャフトヨーク
15、44、 :フランジヨーク
16、46、 :カップリング
17、57 :駆動軸
33、43、63、73 :切り込み歯
35、45、56、64、74:軸方向歯先長(接合長)
36、46、65、75 :凸部(圧縮荷重伝達部)
37、47、66、76 :立面(圧縮荷重伝達部)
51、61 :軸方向切り込み歯を有したPlung型等速ジョイント
52、62、72 :鋼球(ベアリングボール)
54、71 :軸方向切り込み歯を有したFix型等速ジョイント
65、91 :FRP製筒体端部
81、91 :FRP製筒体主層(ヘリカル巻)
82、92 :FRP製筒体部分層(フープ巻)

Claims (10)

  1. 端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
  2. 一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する主層と、上記本体の一端部において、上記主層と一体に、かつ、上記主層の内側に設けた部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
  3. 一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する、ヘリカル巻された補強繊維を含有する主層と、上記本体の一端部および他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含有する部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
  4. 一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、前記FRP製筒体はその本体の全長にわたって延在する、本体の軸方向に対して±5〜45°の角度でヘリカル巻された補強繊維を含有する主層と、上記本体の一端部及び他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含有する部分層とを含み、上記一端部及び他端部に設けた等速ジョイントは、その等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる圧縮荷重伝達部を備えているプロペラシャフト。
  5. 上記圧縮荷重伝達部は外径が上記部分層の外径以下でかつ、上記部分層の外端面と対向する立面を有している、請求項1〜4のいずれかのプロペラシャフト
  6. 一端部及び他端部に強化繊維による周方向補強巻層を含んでいるFRP製筒体と、駆動源の駆動軸に連結される等速ジョイントからなるプロペラシャフトであって、上記本体は、
    a.上記本体の全長にわたって設けた、上記本体の軸方向に対して±5〜45°の角度でヘリカル巻された補強繊維を含む主層と、
    b.上記本体の一端部および他端部において、上記主層と一体に、かつ、上記主層の内側に設けた、フープ巻された補強繊維を含む部分層と、を有し、上記一端部および他端部に設けた等速ジョイントは
    c.上記部分層に内接する接合面と、
    d.上記接合面に隣接して設けた、上記等速ジョイントの軸方向に作用する圧縮荷重を上記主層と上記部分層との層間に集中させてそれら主層と部分層とを上記層間において剥離させる、外径が上記部分層の外径以下で、かつ、上記部分層の外端面と対向する立面を備えた圧縮荷重伝達部と、を有しているプロペラシャフト。
  7. 上記等速ジョイントの接合が、圧入接合によって行われている、請求項1〜6のいずれかのプロペラシャフト。
  8. 上記等速ジョイントと上記FRP製筒体との接合面に、その等速ジョイントの軸方向に延びるセレーションが設けられている、請求項1〜7のいずれかのプロペラシャフト。
  9. 上記部分層は外端面に対応する内端面側の部分がくさび形の縦断面形状を有している請求項1〜8のいずれかのプロペラシャフト。
  10. 上記部分層は、外端面側から内端面側に向かって厚みが徐々に薄くなっている、請求項1〜9のいずれかのプロペラシャフト。
JP2008252831A 2008-09-30 2008-09-30 プロペラシャフト Pending JP2010083253A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252831A JP2010083253A (ja) 2008-09-30 2008-09-30 プロペラシャフト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252831A JP2010083253A (ja) 2008-09-30 2008-09-30 プロペラシャフト

Publications (1)

Publication Number Publication Date
JP2010083253A true JP2010083253A (ja) 2010-04-15

Family

ID=42247651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252831A Pending JP2010083253A (ja) 2008-09-30 2008-09-30 プロペラシャフト

Country Status (1)

Country Link
JP (1) JP2010083253A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042913A (zh) * 2015-04-14 2016-10-26 现代自动车株式会社 用于车辆传动轴的中间支撑装置
WO2019131549A1 (ja) 2017-12-27 2019-07-04 Ntn株式会社 動力伝達シャフト
WO2019181204A1 (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 動力伝達軸

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106042913A (zh) * 2015-04-14 2016-10-26 现代自动车株式会社 用于车辆传动轴的中间支撑装置
CN106042913B (zh) * 2015-04-14 2020-10-02 现代自动车株式会社 用于车辆传动轴的中间支撑装置
WO2019131549A1 (ja) 2017-12-27 2019-07-04 Ntn株式会社 動力伝達シャフト
US11767876B2 (en) 2017-12-27 2023-09-26 Ntn Corporation Power transmission shaft
WO2019181204A1 (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 動力伝達軸
JP2019163823A (ja) * 2018-03-20 2019-09-26 日立オートモティブシステムズ株式会社 動力伝達軸

Similar Documents

Publication Publication Date Title
US6190263B1 (en) Propeller shaft including compressive load transmitting section
JPH09175202A (ja) 車両用プロペラシャフト
JP2002039153A (ja) プロペラシャフトおよびその製造方法
US20160123376A1 (en) Telescopic drive shaft
EP0683328B1 (en) Propeller shaft
US20010051544A1 (en) Shock absorbing tube
JP2010083253A (ja) プロペラシャフト
US11940007B2 (en) Tubular body used for power transmission shaft and power transmission shaft
JPH06200951A (ja) 繊維強化樹脂製駆動力伝達用シャフトおよび繊維強化樹脂製パイプの接合方法
US20210190132A1 (en) Tubular body used for power transmission shaft and power transmission shaft
JP3063583B2 (ja) プロペラシャフト
JP7264665B2 (ja) 動力伝達軸
JP3218892B2 (ja) プロペラシャフト
JP2007271079A (ja) トルク伝達軸
JP3269287B2 (ja) Frp筒体およびその製造方法
JP3218891B2 (ja) プロペラシャフト
JP3578284B2 (ja) プロペラシャフト
JP2006125628A (ja) プロペラシャフト
WO2020174692A1 (ja) 動力伝達軸用の管体及び動力伝達軸
JP2006183728A (ja) プロペラシャフト
JP2010095208A (ja) ステアリング軸
Sivakandhan et al. Investigation of Hybrid Composite Drive Shaft under Tensile, Bending and Torsion Testing
JP7324589B2 (ja) 動力伝達軸に用いられる管体及び動力伝達軸
EP1620654A1 (en) Fibre composite propeller shaft
JP3296116B2 (ja) Frp筒体およびその製造方法