JP2010083092A - 樹脂フィルムロールおよびその製造方法 - Google Patents

樹脂フィルムロールおよびその製造方法 Download PDF

Info

Publication number
JP2010083092A
JP2010083092A JP2008257077A JP2008257077A JP2010083092A JP 2010083092 A JP2010083092 A JP 2010083092A JP 2008257077 A JP2008257077 A JP 2008257077A JP 2008257077 A JP2008257077 A JP 2008257077A JP 2010083092 A JP2010083092 A JP 2010083092A
Authority
JP
Japan
Prior art keywords
film
resin film
resin
roll
film roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008257077A
Other languages
English (en)
Inventor
Atsushi Matsunaga
篤 松永
Yohei Kusunoki
洋平 楠
Naoko Iwata
奈穂子 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008257077A priority Critical patent/JP2010083092A/ja
Publication of JP2010083092A publication Critical patent/JP2010083092A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Winding Of Webs (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】裂けやすく脆いフィルムでも、切断端面にバリやクラックの発生が少なく、かつロール状に巻き取ったときの端部耳立ち等が原因による端面の割れやたるみが少なく、該フィルムロールおよびその後加工の工程における生産性安定性に優れた、特に偏光子保護フィルム等の光学用途に好適な樹脂フィルムおよびその製造方法を提供すること。
【解決手段】幅方向両端部における切断部の盛り上がり量が5μm〜30μmの樹脂フィルムと、少なくともその片面側に積層した、該樹脂フィルムよりも幅が狭い保護フィルムとが巻き取られた樹脂フィルムロールとする。
【選択図】 図1

Description

本発明は、樹脂フィルムロールおよびその製造方法に関する。詳しくは、裂けやすく脆いフィルムでも、切断端面にバリやクラックの発生が少なく、かつロール状に巻き取ったときの端部耳立ちが原因による端面の割れやたるみが少なく、該フィルムロールおよびその後加工の工程における生産性安定性を向上させた、例えば偏光子保護フィルムなどの光学フィルムに好適な樹脂フィルムロールおよびその製造方法に関する。
近年、光学用途やディスプレイにおいては、例えば、液晶テレビの薄型化、高輝度化、高精細化に伴い、表面硬度が高く平滑性に優れ、内部異物が少なく、かつ高い耐熱性や各方向の屈折率を精密に制御可能な高品位で高機能なフィルムが求められている。これらに対応するために、トリアセチルセルロース系フィルム、脂環式ポリオレフィン系樹脂フィルム、ラクトン環構造やグルタル酸無水物成分を有するアクリル系樹脂フィルムなどの各種フィルムが提案されている。
中でも、アクリル系樹脂フィルムについては、光学等方性や透明性など光学特性面で非常に優れており、画質向上に効果的であるものの、樹脂が割れやすいという特性を有するため、耐引き裂き性が低いフィルムとなり、製造中、特に両端部を切断する工程にて割れたり裂けたりしやすく、また、ロール状に巻き取った製品を例えば延伸など後工程で加工する際に、特に端部から割れや裂けが生ずるなど、フィルムロール端部からの割れや裂けに起因する生産安定性が低い問題がある。
これらの問題を解決するために、フィルム端部の切断方法として、例えばシェアカッターにて切断する方法(特許文献1)やフィルムを加熱して切断する方法(特許文献2,3)等が提案されている。しかしながら、カッターによる切断では脆く引き裂けやすいフィルムを、バリや裂けが無く安定して切断することができないという問題やフィルムを加熱することで、加熱部分の収縮により平面性が悪化するという問題がある。また、レーザービームを使用してフィルムを切断する方法も提案されている(特許文献4,5)。レーザービームを使用した場合、フィルムが溶断されるため、端部のバリや裂けが少なく効果的であるが、溶断による盛り上がりが発生するためロール状に巻き取る場合、切断端部が耳立ちとなり、端部の割れやたるみを発生させたりするため、後工程で使用する際の生産性が低下したり、また、特許文献4に提示されているような押圧処理は脆いフィルムの場合、切断端部にクラックを発生させる原因になる等の問題があった。
特開2007−75960号公報 特開2005−305637号公報 特開2004−174664号公報 特開昭64−34593号公報 特開2008−51964号公報
本発明の目的は、かかる従来技術の問題点に鑑み、裂けやすく脆いフィルムでも、切断端面にバリやクラックの発生が少なく、かつロール状に巻き取ったときの端部耳立ち等が原因による端面の割れやたるみが少なく、該フィルムロールおよびその後加工の工程における生産性安定性に優れた、特に偏光子保護フィルム等の光学用途に好適な樹脂フィルムロールおよびその製造方法を提供することにある。
上記目的を達成するための本発明は、以下の特徴を有している。
(1)幅方向両端部における切断部の盛り上がり量が5μm〜30μmの樹脂フィルムと、少なくともその片面側に積層した、該樹脂フィルムよりも幅が狭い保護フィルムとが巻き取られた樹脂フィルムロール。
(2)樹脂フィルムが引き裂き強度1,000mN/mm以下の熱可塑性樹脂フィルムである、上記(1)に記載の樹脂フィルムロール。
(3)樹脂フィルムが未延伸フィルムである、上記(1)または(2)に記載の樹脂フィルムロール。
(4)熱可塑性樹脂がガラス転移温度(Tg)100℃以上のアクリル系樹脂である、上記(2)または(3)に記載の樹脂フィルムロール。
(5)レーザービームを使用して樹脂フィルムの幅方向両端部を切断するに際し、その切断位置を樹脂フィルムの幅方向に0.3mm〜3mmの範囲で周期的にずらすと共に、切断された樹脂フィルムをその巻き取り端部が幅方向に周期的にずれるようにコアに巻き取る、上記(1)〜(4)のいずれかに記載の樹脂フィルムロールの製造方法。
本発明によれば、裂けやすく脆いフィルムでも、切断端面にバリやクラックの発生が少なく、かつロール状に巻き取ったときの端部耳立ち等が原因による端面の割れやたるみが少なく、該フィルムロールおよびその後加工の工程における生産性安定性に優れた、特に偏光子保護フィルム等の光学用途に好適な樹脂フィルムロールを得ることができる。
以下に本発明の好ましい実施の形態を説明する。
本発明の樹脂フィルムロールは、フィルム幅方向両端部における切断部の盛り上がり量が5μm〜30μmであり、好ましくは5〜20μmである。フィルムの切断部の断面図を図1に示す。ここでいう切断部の盛り上がり量とは、切断部における厚みが最も厚い部分2からフィルムの厚み1を差し引いた量であり、この盛り上がりは、通常はフィルム切断工程において形成されるものである。フィルム両端部をバリや割れの発生がなく安定して切断するためには、切断部近傍のフィルム温度をガラス転移点(Tg)以上の温度とし、樹脂を部分的に溶融状態又はゴム状態とすることで、割れの発生やその伝搬を防止することが可能となる。このような状態でフィルムを切断した場合、切断部に盛り上がりが発生するが、この盛り上がり量が5μm未満であった場合、切断部近傍にかかる熱量が不足しており、切断工程においてフィルム端部が割れやすくなったり、フィルムの搬送バタツキの影響で、端部が切断できない等の問題が発生することがある。また、盛り上がり量が30μmを超えた場合、ロールに巻き取った際に端部の耳立ちが大きくなることで、端部のフィルム割れが発生したり、端部がたるむなどの平面性不良を誘発し、後加工工程での生産安定性が低下する等の問題が発生することがある。
上記のような切断部形状を形成するための切断方法としては、特には限定されないが、切断部に刃などが接触することなく、フィルムを切断することが可能であることから、レーザービーム、特に大きな出力が得られ切断に好適であることから、炭酸ガスレーザービームを使用した溶断法が好ましい。
本発明において、レーザービームのスポット径は200μm以下が好ましく、更に好ましくは100μm以下、特に好ましくは50μm以下である。レーザービーム照射によりのスポット中心部では、樹脂フィルムが分解気化されて切断されるが、スポットの外周部では分解気化に至らず溶融状態にある樹脂が、切断の際に外側への力を受け盛り上がりが発生する。レーザービームのスポット径が大きい場合は、スポット径が小さい場合に比べて、レーザー出力の分布が広く、溶断時の盛り上がり量が大きくなる傾向がある。レーザースポット径の下限値は特には限定されないが、通常は30μm程度である。
本発明において、レーザービーム出力Q(W)は、切断されるフィルム厚みをd(μm)、フィルム速度をv(m/分)とすると、0.004dv〜0.015dvが好ましく、更に好ましくは0.005dv〜0.010dvである。出力が0.004dv未満の場合は、出力が弱くフィルムが溶断できない場合がある。また、出力が0.015dvを超える場合には、切断部の盛り上がり量が30μmを超えたり、気化される樹脂量が多く、工程を汚染させたり、切断部に泡が発生したりする傾向がある。
本発明においては、レーザービームによる樹脂フィルム端部の切断に際し、その切断位置を、樹脂フィルムの幅方向に0.3mm〜3mmの範囲で周期的にずらすと共に、切断された樹脂フィルムをその巻き取り端部が幅方向に周期的にずれるようにコアに巻き取ることが好ましい。例えば、レーザービームによる切断時に、フィルムの幅方向に周期的に1mmずらしながら切断し、コアに巻き取る際は巻き取り位置を固定して行えば、得られる樹脂フィルムロールの端部は、幅方向に周期的に1mmずれることになる。もちろん、上記した切断位置をずらすと共に、コアに巻き取る際にも、その巻き取り位置を適宜幅方向にずらしながら巻き取ってもよいし、レーザービームの幅方向の切断位置は固定しておいて、コアへの巻き取り時のみ幅方向にずらしても構わない。
上記の各ずらし量は、好ましくは0.3mm〜3mmの範囲であるが、さらには0.5mm〜2mmの範囲で、ずらすことが好ましい。切断位置と巻き取り位置が一定である場合(ずらさずに巻き取った場合)、端部位置が重なることにより、耳立ちが発生しやすくなる。周期的なずらし量が0.3mm未満である場合は、耳立ち防止の効果が少なくなる。またずらし量が3mmを超えると、フィルム端部のずれが大きくなり、後加工工程にて蛇行などの問題が発生することがある。
また、ずらす際の幅方向の速度ついては特に規定されないが、幅方向のずらし速度がフィルム長手方向の製膜速度の1/100〜1/10,000が好ましく、更には1/500〜1/5,000である。幅方向のずらし速度がフィルム長手方向の製膜速度の1/100を超える場合は端部のズレ周期が短くなりすぎるため、巻き取り工程でしわが発生したり、後加工工程で蛇行が発生したりすることがある。また、幅方向のずらし速度がフィルム長手方向の製膜速度の1/10,000未満である場合は、幅方向のずらし速度が遅すぎるため、ロール端部の耳立ち防止効果が落ちることがある。
本発明の樹脂フィルムロールは、樹脂フィルムの少なくともその片面側に、該樹脂フィルムより幅が狭い保護フィルムが積層された状態で巻き取られている。
保護フィルムの幅は好ましくは、樹脂フィルムの幅より3〜100mm狭いことが好ましく、更には5〜20mm樹脂フィルムの幅よりも狭いことが好ましい。樹脂フィルム幅より狭い幅の保護フィルムを積層させることにより、図2に示されるとおり、溶断された端部の盛り上がり部分には保護フィルムが積層されないため、盛り上がりによる樹脂フィルムロールの耳立ちが防止できる。保護フィルムの幅が樹脂フィルムの幅と同じかまたは超える場合は、樹脂フィルムの端部の盛り上がり部分を吸収できず、樹脂フィルムロールに耳立ちが発生しやすい傾向がある。また、樹脂フィルムと保護フィルムの中央位置がわずかにずれた場合でも、端部の耳立ちを防止できることから、保護フィルムの幅は樹脂フィルムの幅より3mm以上狭いことが好ましい。一方、保護フィルムの幅が樹脂フィルムの幅より100mmを超えて狭い場合は、樹脂フィルムの端部が輸送時や運搬などの取り扱い時にダメージを受けやすかったり、保護フィルムの端部にあたる部分の跡が製品部分に入る等生産性を損なうことがある。
本発明において、保護フィルムとして使用するフィルムの組成は特には限定されず、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリメチル(メタ)アクリレート等のアクリル系樹脂、ポリスチレンやアクリロニトリル・スチレン共重合体等のスチレン系樹脂、ポリカーボネート系樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体等のオレフィン系樹脂、塩化ビニル系樹脂、ナイロンや芳香族ポリアミド系樹脂、イミド系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルフォン系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、ポリオキシメチレン系樹脂、エポキシ系樹脂、またはこれらの樹脂のブレンド物などが挙げられる。本発明においては、樹脂フィルムの厚みムラを緩和し、良好な巻姿を得るためには、ポリエチレン、ポリプロピレン等のクッション性を有する素材が好ましく、また樹脂フィルムと保護フィルムの幅方向の位置がずれないことが重要であるため、搬送時に位置ズレがしないよう、樹脂フィルムとの積層面側に粘着機能を有するフィルムが好ましい。例えば、片面側に粘着層を有する、東レフィルム加工(株)製“トレテック”7332等が好適な例として挙げられる。
本発明において、保護フィルムの厚みは10〜100μmが好ましく、更に好ましくは30〜50μmである。保護フィルムの厚みが10μm未満では、樹脂フィルムロールの耳立ちを防止する機能が不十分であったり、保護フィルムの剛性が低くなり、樹脂フィルムとの間にしわを巻き込む等の問題が生じることがある。また、保護フィルムの厚みが100μmを超えると、保護フィルムのコストが高くなる。
本発明の樹脂フィルムに用いられる樹脂は、特には限定されず、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリメチル(メタ)アクリレート等のアクリル系樹脂、ポリスチレンやアクリロニトリル・スチレン共重合体等のスチレン系樹脂、ポリカーボネート系樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、ノルボルネン等の脂環式ポリオレフィン等のオレフィン系樹脂、塩化ビニル系樹脂、ナイロンや芳香族ポリアミド系樹脂、イミド系樹脂、ポリフェニレンスルフィド系樹脂、ポリエーテルスルフォン系樹脂、塩化ビニリデン系樹脂、ビニルアルコール系樹脂、ビニルブチラール系樹脂、アリレート系樹脂、ポリオキシメチレン系樹脂、エポキシ系樹脂、またはこれらの樹脂のブレンド物などが挙げられる。中でも、耐熱性があり表面硬度が高く、また、透明性や光学特性に優れた光学等方用途としては、例えばアクリル樹脂、ポリカーボネート、塩化ビニル、脂環式ポリオレフィンが好適であり、特に光学等方性からアクリル樹脂が好ましい例として挙げられる。
ここでいう光学等方用途とは、その素材の内部で光学的等方性が求められる用途で、具体的には偏光板保護フィルム、レンズ、光導波路コアなどが例示できる。液晶テレビにおいて、偏光板は2枚を直交または平行して使用されるが、偏光板保護フィルムが存在しないか、光学等方である場合、偏光板2枚を直交した状態では黒が表示され、偏光板2枚を平行した状態では白が表示される。一方、偏光板保護フィルムが光学等方でない場合、偏光板2枚を直交した状態では黒ではなく例えば濃い紫が表示され、偏光板2枚を平行した状態では白ではなく例えば黄色が表示される。この着色は偏光板保護フィルムの異方性によって異なる。偏光板保護フィルムは光学的には存在しないことが理想であるが、外からの応力および水分から偏光子を保護する目的で必要不可欠である。また、レンズの場合、レンズはその界面で光を屈折することを目的とするが、レンズ内は均一に光が進むことが必要である。レンズ内が光学等方でないと、像が歪むなどの問題がある。光導波路コアの場合、光学等方でないと例えば、横方向の波と、縦方向の波の信号の伝達速度に差が生じるため、ノイズ、混信の問題を起こす原因となる。他の光学等方用途としては、プリズムシート基材、光ディスク基板、フラットパネルディスプレイ基板などが挙げられる。
脂環式ポリオレフィン樹脂とは、主鎖及び/又は側鎖に脂環式構造を有するポリオレフィン樹脂であり、例えば、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物などを挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため特に好ましい。
アクリル樹脂とは、アクリル酸およびその誘導体を重合して得られる樹脂であり、透明性・光学等方性において、ポリメタクリル酸メチル(PMMA)等が好適な例として挙げられる。また、耐熱性の向上および更なる光学等方性の発現のために、分子中に下記一般式(1)で表されるグルタル酸無水物単位を3〜30mol%含有するアクリル樹脂を用いてもよい。
Figure 2010083092
(上記式中、R、Rは、同一または相異なる水素原子または炭素数1〜5のアルキル基を表す。)
耐熱性を向上させるためには、分子内に環構造を導入することが効果的であるが、ここでπ電子を多く持つ芳香環を導入すると、耐熱性は脂環構造を導入する以上に向上するが、同時に複屈折が大きくなり、位相差が発現しやすくなる問題がある。このため、光学等方性を保ったまま、耐熱性を向上させるためには脂環構造を含有することが最も好ましい。脂環構造としてはグルタル酸無水物構造、イミド環構造、ラクトン環構造、ノルボルネン構造、シクロペンタン構造などが挙げられる。光学等方と耐熱性については、どの構造を用いても同様の効果が得られるが、ラクトン環構造、ノルボルネン構造、シクロペンタン構造などの導入にはこれら構造を有する高価な原料を使用するか、またはこれら構造の前駆体となる高価な原料を使用し、数段階の反応を経て、目的の構造にする必要があるため、工業的に不利である。一方、グルタル酸無水物単位およびグルタルイミド単位は一般的なアクリル原料から1段階の脱水および/または脱アルコール反応により得られるため工業的に非常に有利であり、特に、グルタル酸無水物単位を有するアクリル樹脂が生産性や製造コストの観点から好ましい。また、メタクリル酸メチル単位およびグルタル酸無水物単位以外に、透明性・耐熱性・光学等方性が失われない範囲で、例えば、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸t−ブチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2−クロロエチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6−ペンタヒドロキシヘキシルおよび(メタ)アクリル酸2,3,4,5−テトラヒドロキシペンチルなどのアクリル系単位や、スチレン、α−メチルスチレン、o−メチルスチレン、p−メチルスチレン、o−エチルスチレン、p−エチルスチレンおよびp−t−ブチルスチレンなどの芳香族ビニル系単量体、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどのシアン化ビニル系単量体、アリルグリシジルエーテル、スチレン−p−グリシジルエーテル、p−グリシジルスチレン、無水マレイン酸、無水イタコン酸、N−メチルマレイミド、N−エチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、アクリルアミド、メタクリルアミド、N−メチルアクリルアミド、ブトキシメチルアクリルアミド、N−プロピルメタクリルアミド、アクリル酸アミノエチル、アクリル酸プロピルアミノエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸エチルアミノプロピル、メタクリル酸フェニルアミノエチル、メタクリル酸シクロヘキシルアミノエチル、N−ビニルジエチルアミン、N−アセチルビニルアミン、アリルアミン、メタアリルアミン、N−メチルアリルアミン、p−アミノスチレン、2−イソプロペニル−オキサゾリン、2−ビニル−オキサゾリン、2−アクロイル−オキサゾリンおよび2−スチリル−オキサゾリンなどビニル系単位を有しても良い。
また、本発明の目的を損なわない範囲で、他の熱可塑性樹脂(例えばポリエチレン、ポリプロピレン、アクリル樹脂、ポリアミド、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリエーテルイミドなど)、熱硬化性樹脂(例えばフェノール樹脂、メラミン樹脂、ポリエステル樹脂、シリコーン樹脂、エポキシ樹脂など)の一種以上をさらに含有させることができ、さらに、ベンゾトリアゾール系、サリチル酸エステル系、ベンゾフェノン系、オキシベンゾフェノン系、シアノアクリレート系、高分子系、無機系等の紫外線吸収剤、ヒンダードフェノール系、ベンゾエート系、およびシアノアクリレート系の酸化防止剤、高級脂肪酸や酸エステル系および酸アミド系、さらに高級アルコールなどの滑剤および可塑剤、モンタン酸およびその塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびエチレンワックスなどの離型剤、亜リン酸塩、次亜リン酸塩などの着色防止剤、ハロゲン系難燃剤、リン系やシリコーン系の非ハロゲン系難燃剤、核剤、アミン系、スルホン酸系、ポリエーテル系などの帯電防止剤、顔料などの着色剤、アクリル弾性体粒子などの添加剤を任意に含有させてもよい。ただし、適用する用途が要求する特性に照らし、その添加剤保有の色が製品に悪影響を及ぼさず、かつ透明性が低下しない範囲で添加する必要がある。
本発明の樹脂フィルムに使用することが好ましいアクリル系樹脂は、質量平均分子量が8万〜15万であることが好ましい。質量平均分子量が、15万を超える場合、粘度が高くなりすぎるため、濾過精度が上げらないなど溶融押出し製膜における工程適性が劣る傾向が見られる。一方、質量平均分子量が5万未満の場合、アクリル樹脂フィルムの機械的強度が低下する傾向が見られる。
本発明において用いられる熱可塑性樹脂のガラス転移温度(Tg)は100℃以上であることが好ましく、より好ましくは110℃以上である。Tgが100℃未満である場合は、耐熱性が劣るため、例えばフィルム上にハードコート等の加工を施す場合に、平面性不良が発生したり、縮みによるカールが大きくなる等の問題が発生したり、またディスプレイ内部に使用された場合、内部の熱による寸法変化や平面性の悪化等で画像が劣化したりすることがある。また、ガラス転移温度(Tg)の上限については特に規定されないが、樹脂の製造上の問題およびフィルム製造時の溶融押出性から、通常200℃以下である。ガラス転移温度(Tg)を上記範囲に制御する方法については、特に限定されないが、例えばアクリル樹脂の立体構造や組成・分子量などで適宜調整することが可能である。特にアクリル系樹脂に関しては例えば上述の通り、分子内に導入する環化構造の割合によりガラス転移温度(Tg)の調整が可能である。
本発明の樹脂フィルムロールの製造方法には、種々の方法を使用することができる。すなわち、インフレーション法、T−ダイ法、カレンダー法、切削法、溶液製膜法(流延法)、エマルション法、ホットプレス法等の製造法が使用できるが、T−ダイ法が好ましい。インフレーション法やT−ダイ法による製造法の場合、単軸あるいは二軸押出スクリューのついたエクストルーダ型溶融押出装置等が使用できる。
本発明のフィルムを製造するための溶融押出温度は、好ましくは150〜350℃、より好ましくは200〜300℃である。溶融剪断速度は1,000S−1以上5,000S−1以下が好ましい。また、溶融押出装置を使用し溶融混練する場合、着色抑制の観点から、ベントを使用し減圧下での溶融混練あるいは窒素気流下での溶融混練を行うことが好ましい。押出機により溶融押出しされた樹脂はギアーポンプで計量した後に異物を取り除く目的で、例えば、焼結金属、多孔性セラミック、サンド、金網等のフィルターを用いて濾過することが好ましい。キャスト方法は溶融した樹脂をTダイ口金から吐出させ、冷却されたドラム上に冷却固化させて、未延伸のフィルムを得ることが好ましい。また、冷却ドラム上での冷却固化させる工程において、静電印加法、エアーチャンバー法、エアーナイフ法、プレスロール法などで冷却ドラムに密着させる方法を用いてもよい。得られた未延伸フィルムの両端部を上述の方法で切断し、保護フィルムを積層した後に円筒形のコアに巻き取り樹脂フィルムロールとすることが好ましい。なお、保護フィルムは両端部の切断前に積層しても、切断後に積層してもよいが、保護フィルムが粘着機能を有する場合は、均一な貼り付けの観点から、樹脂フィルムの両端部を切断後に保護フィルムを積層する方法が好ましい。
こうして得られた未延伸樹脂フィルムロールは、そのまま表面処理や他素材との積層などの後加工を施してもよいが、樹脂フィルムロールの靱性や耐引き裂き性を向上させるために、上記の後加工前に延伸を施してもよい。アクリル系樹脂フィルムの場合、透明性や光学等方性などの光学特性には優れているが、靱性や耐引き裂き性に劣るため、引き裂き強度を上げ、後加工工程の安定性を向上させる観点から延伸を実施することが好ましい。
樹脂フィルムの延伸方法としては、特に限定されるものではなく、種々の方法を適用することが可能である。具体的には、未延伸樹脂フィルムロールから巻きだしたフィルムを加熱したロール間の周速の差を利用して長手方向に1軸延伸する方法、テンターを用いて幅方向に1軸延伸する方法等の1軸延伸法、固定するクリップの間隔が開かれて長手方向の延伸と同時にガイドレールの広がり角度により幅方向に延伸する同時2軸延伸法や、ロール間の周速の差を利用して長手方向に延伸した後にその両端部をクリップ把持してテンターを用いて幅方向に延伸する逐次2軸延伸法などの2軸延伸法が挙げられる。
長手方向に延伸する方法としては、ロール間でのIR加熱方式、オーブンを利用したフロート方式などが挙げられるが、光学的にバラツキが少ないフィルムを得たり、表面のキズ防止のためには、後者のオーブンによるフロート方式が好ましい。長手方向に延伸する際の延伸条件は特には限定されないが、延伸温度としてはフィルムを形成する樹脂のガラス転移温度をTgcとした場合、Tgc〜Tgc+30℃の範囲が好ましい。また、延伸倍率についても、その目的により適宜調整することが可能であるが、1.1〜5.0倍が好ましい範囲として挙げられる。
幅方向に延伸する方法としては、テンター法が挙げられる。この場合も長手方向の延伸と同様に、延伸条件は特には限定されないが、延伸温度としてはフィルムを形成する樹脂のガラス転移温度をTgcとした場合、Tgc〜Tgc+30℃の範囲が好ましい。また、延伸倍率についても、その目的により適宜調整することが可能であるが、1.1〜5.0倍が好ましい範囲として挙げられる。
本発明における延伸フィルムの製造方法については、未延伸フィルムを得る工程と延伸工程を分離し、一度未延伸フィルムを巻き上げた後に、1軸あるいは必要に応じて2軸方向に延伸するセパレート方式をとってもよいし、未延伸フィルムの製膜から延伸工程までを一貫して実施し延伸フィルムを巻き取る一貫製膜方式としてもよい。セパレート方式では、各製造工程において条件を最適化することができるため、屈折率を精密に制御できる長所があり、より好ましい。
樹脂フィルムの後加工工程での破れや裂けを防止し工程を安定化させるためには、切断端部にバリやクラックの発生がなく、かつ樹脂フィルムの引き裂き強度が1,000mN/mmより大きく、さら好ましくは1,500mN/mmより大きいことが好ましい。切断端部にバリやクラックがある場合は、そこを起点としてフィルムの破れや裂けが発生することがあるため、本発明の樹脂フィルムロールならびのその製造方法は切断端部のバリやクラックを防止するために好適である。また樹脂フィルムの引き裂き強度が1,000mN/mm以下の場合は、貼り合わせや型抜きなどの工程で破れや裂けが発生しやすい。樹脂フィルムの引き裂き強度を上げるためには、例えば、延伸等の手法が好ましい方法としてあげられる。
本発明における樹脂フィルムロールおよびその製造方法は、引き裂き強度が1,000mN/mm以下の未延伸フィルムである場合に、特に好適である。特に光学等方性に優れたアクリル系樹脂フィルムの場合、一般的に未延伸フィルムの引き裂き強度は1,000mN/mm以下と低く、延伸により、引き裂き強度を向上させる手法が採られ、上述のようにセパレート方式による延伸が好ましく用いられる。セパレート延伸を実施するためには、引き裂き強度が1,000mN/mm以下と引き裂き強度が低い未延伸フィルムの両端部を切断し、ロール状に巻き上げた未延伸樹脂フィルムロールを得ることが好ましく、本発明はこの様な靱性や耐引き裂き性が低いフィルムロールを安定して、良好な巻姿で得るために、特に有用である。フィルムの引き裂き強度を上げるために、未延伸フィルム製造工程と延伸工程を一貫して実施した場合は、フィルムエッジの影響により、光学特性にムラができやすくなる。また、樹脂の分子量を上げた場合は、溶融粘度が高くなることで、押出し製膜が困難となったり、フィルターによる異物の濾過が困難となり欠点が増加したりすることがある。更に、アクリル弾性体粒子や他の樹脂を混合する手法を採った場合、光学等方性が失われたり、混合した粒子や樹脂が凝集しフィルム欠点となることもある。
本発明の樹脂フィルム厚みは特に限定されないが、1〜500μmが好ましく、より好ましくは、10〜250μm、さらに好ましくは20〜150μm、特に好ましくは30〜80μmである。フィルム厚みが薄くなりすぎると強度が不足したり、生産性が劣る問題が発生することがあり、また、フィルム厚みが厚くなりすぎると、製造コストが上昇したり、位相差が悪化したり、生産性が劣るなどの問題が発生することがある。
本発明の樹脂フィルムのヘイズ値は1.5%以下であることが好ましく、より好ましくは1.0%以下、さらに好ましくは0.8%以下である。また、フィルムの全光線透過率は90%以上であることが好ましく、より好ましくは92%以上である。ヘイズ値および光線透過率が上記範囲を超える場合は、画像がぼやけたり、画面が暗くなるなどの傾向が見られる。ヘイズ値の下限値は特には限定されないが、巻き姿、取り扱い性の観点から通常0.1%程度である。また、全光線透過率の上限値も特には限定されないが、フィルム表面において空気層との屈折率の差異により反射される光の成分があるため、通常95%程度である。
樹脂フィルムのヘイズ値および全光線透過率を所望の範囲とする方法は特には限定されないが、例えば、熱可塑性樹脂組成としては、樹脂中に大きさ0.01μm以上の粒子を含有しないものを使用する方法や、含有する場合は、熱可塑性樹脂との屈折率差が0.010以下の粒子に限定する方法が挙げられる。また、フィルム製造方法としては、樹脂の分解や含有する粒子の凝集を防止するために、口金から吐出される溶融樹脂の温度を、その主成分のガラス転移点(Tg)+100〜160℃の範囲とし、かつ溶融樹脂の押出機出口〜口金出口までの平均滞留時間を90分間以下とする方法などが好ましい方法として例示される。
本発明における樹脂フィルムの面内位相差(Re)は、好ましくは10nm以下、さらに好ましくは5nm以下である。また、樹脂フィルムの厚み方向位相差(Rth)は、好ましくは−10〜10nmであり、より好ましくは−5〜5nmである。面内位相差(Re)や厚み方向位相差(Rth)の絶対値が10nmを超える場合は、光学等方性が悪化するため、偏光子保護フィルムなどの液晶ディスプレイ用途や光ディスク保護フィルムなどに用いた場合、画面にムラが生じたり、データエラー頻度が悪化するなどの問題が発生することがある。光学等方性が要求される用途において、面内位相差(Re)および厚み方向位相差(Rth)の絶対値は小さい方が好ましく理想的には0nmである。このような光学等方性の熱可塑性樹脂フィルムを得るためには、上述の通り、樹脂中にグルタル酸無水物構造、ラクトン環構造、ノルボルネン構造、シクロペンタン構造等の脂環構造を含有することが最も好ましく、また、位相差を発現させる添加剤や共重合成分を導入しないようにすること等が有効である。
本発明の樹脂フィルムロールから得られる樹脂フィルムは、その優れた、耐熱性、透明性、光学等方性により、光学用途として好適である。ここでの光学用途とはディスプレイ機器用の部材であり、特に液晶ディスプレイ、プラズマディスプレイ、フィールドエミッションディスプレイ、エレクトロルミネッセンスディスプレイなどフラットパネルディスプレイに用いられる部材を示す。例えば、プラスチック基板、レンズ、偏光板、偏光板保護フィルム、紫外線吸収フィルム、赤外線吸収フィルム、電磁波シールドフィルムや、プリズムシート、プリズムシート基材、フレネルレンズ、光ディスク基板、光ディスク基板保護フィルム、導光板、位相差フィルム、光拡散フィルム、視野角拡大フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、プリズムシート、タッチパネル用導電フィルムが例示でき、特に偏光板保護フィルムとして有用である。
[物性の測定法]
以下、実施例により本発明の構成、効果をさらに具体的に説明する。もちろん、本発明は下記実施例に限定されるものではない。各実施例の記述に先立ち、実施例で採用した各種物性の測定方法を記載する。
(1)樹脂フィルム切断面端部の盛り上がり量
フィルム端部切断部分の断面を切り出し、デジタルマイクロスコープVHX−600 (キーエンス(株)製)にて、断面を500倍の倍率にて観察し、樹脂フィルム部の厚み、切断部における最も厚い部分の厚みを測定した。なお、それぞれの測定点での切断部の盛り上がり量は、切断部における最も厚い部分の厚みから樹脂フィルム部の厚みの差とした。本測定をフィルム端部片側につき任意の位置で5点、両側計10点測定し、その平均値を樹脂フィルム両端部における切断部の盛り上がり量とした。
(2)フィルムの幅
樹脂フィルムおよび保護フィルムの幅については以下の方法にて測定した。フィルムをロールより切り出し、平面台の上で伸ばし、しわのない状態にして、JIS1級の金尺を用いてフィルムの幅を測定した。
(3)フィルムロールの端部耳立ち量
フィルムロールの幅方向最端部とそこから10mm内側の部分の高さの差をフィルムロールの端部耳立ち量とした。ダイヤルゲージ((株)ミツトヨ製)をフィルムロール上に平衡におくことが出来かつ平行にスライド出来る台座に取り付け、まず最端部から10mm内側の部分にダイヤルゲージの触点を当て、目盛りを0に調整した。次に最端部まで触点をフィルムロールに接触させたまま最端部まで移動し、目盛りを読みとった。両端側とも任意の位置で各5ヶ所ずつ測定をし、計10点の平均値をフィルムロール端部耳立ち量とした。
(4)引き裂き強度
樹脂フィルムより、75mm×63mmの長方形試験片を切り出した後に、JIS K7128−2(1998)図3に従い、20mmのスリットを入れた。得られた試験片を軽荷重引き裂き試験器((株)東洋精機製)を用いて、JIS K7128−2(1998)エレメンドルフ引き裂き法に従いフィルムの引き裂き荷重を測定し、以下の計算式により引き裂き強度を算出した。なお、測定は長手方向、幅方向各N=5について行い、その平均値を引き裂き強度とした。
引き裂き強度(mN/mm)=(Nt/T)×(43/L)
ただし、Ntは引き裂き荷重(mN)、Tはフィルム厚み(mm)、Lは引き裂き長さ(mm)である。
(5)平面性
樹脂フィルムロールを巻き取った後、23℃60RH%の環境下で72時間エージングをした。次にロール最表層1枚分を廃棄し、その内側より長手方向に約1m長のサンプルを採取した。採取したフィルムサンプルを平面台の上に伸ばして置き、蛍光灯反射にて端部たるみを確認し、下記の通り判定した。
○:たるみが見られない。
△:幅10mm未満のたるみが見られる。
×:幅10mm以上のたるみが見られる。
なお、△、○が合格範囲である。
(6)ガラス転移温度(Tg)
樹脂フィルムをデシケーター中にて24時間保管後、試料約10mgを密閉式パン中に封入し、示差走査熱量計(TAインスツルメント社製 Q100型)を用い、窒素雰囲気下、20℃/minの昇温速度にて測定した。測定は2回の平均値とした。なおガラス転移温度(Tg)としてはJIS K7121(1987)の中間点ガラス転移温度(Tmg)を採用する。
(7)ヘイズ
JIS K7105(1981)6.4ヘーズ(曇価)に基づいて測定した。測定は3回行い平均値をヘイズ値とした。
(8)全光線透過率
JIS K7105(1981)5.5.2 測定法Aに基づいて測定した。測定は3回行い平均値を全光線透過率とした。
(9)面内位相差(Re)、厚み方向位相差(Rth)
王子計測(株)社製の楕円偏光測定装置(KOBRA−WPR)と位相差測定装置KOBRA−RE(KOBRA−WR用ソフトウェア)Ver.1.21を用いた。測定は、入射角依存性測定の単独N計算モードにて、低位相差測定法を用い、遅相軸を傾斜中心軸とし、入射角40°(波長590nm)の条件にて行い、面内位相差(Re)および厚み方向位相差(Rth)を得た。なお、入射角0°の時の位相差であるR0値を面内位相差(Re)とした。また、測定はデシケーター中にて24時間保管したサンプルにて行い、N=5回の平均値を面内位相差(Re)および厚み方向位相差(Rth)とした。
(10)質量平均分子量(絶対分子量)
試料をジメチルホルムアミドに溶解して0.3質量%の測定サンプル溶液とした。ジメチルホルムアミドを溶媒として、DAWN−DSP型多角度光散乱光度計(Wyatt Technology社製)を備えたゲルパーミエーションクロマトグラフ(ポンプ:515型,Waters社製、カラム:TSK−gel−GMHXL,東ソー社製、流速:0.8ml/分)を用いて、質量平均分子量(絶対分子量)を測定した。
(11)各成分組成
フィルムをアセトンに溶解し、この溶液を9,000rpmで30分間遠心分離して、アセトン可溶成分とアセトン不溶成分とに分離した。アセトン可溶成分を60℃で5時間減圧乾燥し、各成分単位を定量してアクリル樹脂の各成分組成を特定した。
各成分単位の定量は、プロトン核磁気共鳴(H−NMR)法により行った。H−NMR法では、例えば、グルタル酸無水物単位、メタクリル酸、メタクリル酸メチルからなる共重合体の場合、ジメチルスルホキシド重溶媒中でのスペクトルの帰属を、0.5〜1.5ppmのピークがメタクリル酸、メタクリル酸メチルおよびグルタル酸無水物環化合物のα−メチル基の水素、1.6〜2.1ppmのピークはポリマー主鎖のメチレン基の水素、3.5ppmのピークはメタクリル酸メチルのカルボン酸エステル(−COOCH)の水素、12.4ppmのピークはメタクリル酸のカルボン酸の水素と、スペクトルの積分比から共重合体組成を決定することができる。また上記に加えて、他の共重合成分としてスチレンを含有する共重合体の場合、6.5〜7.5ppmにスチレンの芳香族環の水素が見られ、同様にスペクトル比から共重合体組成を決定することができる。
[実施例1]
(1)アクリル樹脂の調製
(A)アクリル樹脂(A)
メタクリル酸メチル20質量部、アクリルアミド80質量部、過硫酸カリウム0.3質量部、イオン交換水1,500質量部を反応器中に仕込み反応器中を窒素ガスで置換しながら70℃に保った。反応は単量体が完全に、重合体に転化するまで続け、メタクリル酸メチル/アクリルアミド共重合体系懸濁剤を得た。上記の方法で得られたメタクリル酸メチル/アクリルアミド共重合体系懸濁剤0.05質量部をイオン交換水165質量部に溶解した溶液を反応溶液として反応器中に供給し、撹拌しながら、系内を窒素ガスで置換した。次に、下記原料モノマー混合物質を反応系を撹拌しながら添加し、70℃に昇温した。内温が70℃に達した時点を重合開始として、180分間保ち、重合を終了した。以降、通常の方法に従い、反応系の冷却、ポリマーの分離、洗浄、乾燥を行い、ビーズ状の共重合中間体(a−1)を得た。この共重合体(a−1)の重合率は98%であった。
メタクリル酸 :15質量部
メタクリル酸メチル :85質量部
t−ドデシルメルカプタン : 1.5質量部
2,2’−アゾビスイソブチロニトリル: 0.4質量部
これに添加剤(NaOCH)を配合し、2軸押出機(L/D=44.5)を用いて、ホッパー部より窒素をパージしながら、スクリュー回転数100rpm、シリンダ温度290℃で分子内環化反応を行い、次に、平均目開き3μmのステンレス鋼繊維を焼結圧縮したフィルターにて異物を濾過し、ペレット状のアクリル樹脂(A)を得た。このアクリル樹脂(A)中のメタクリル酸メチル単位の組成比は86mol%、メタクリル酸単位の組成比は2mol%、グルタル酸無水物単位の組成比は12mol%、質量平均分子量は10万、ガラス転移温度(Tg)は124℃であった。
(B)アクリル樹脂(B)
株式会社クラレ製アクリル樹脂、パラペット HR−L(メタクリル酸メチル、アクリル酸メチルの共重合体、以下アクリル樹脂(B))を使用した。このアクリル樹脂(B)のガラス転移温度(Tg)は110℃であった。
(2)アクリル樹脂未延伸フィルムの製造方法
アクリル樹脂(A)を、露点−30℃、温度100℃のドライエアーで8時間乾燥した後、φ90mmベント式一軸押出機に供給し、ベント圧3kPa、押出し設定温度250℃にて押し出した。次に、ギアポンプを介して樹脂の計量を行った後に、平均目開き3μmのステンレス鋼繊維を焼結圧縮したフィルターにて異物を濾過し、幅1,780mmのTダイ口金に導入した。
次いで、シート状に共押出して溶融積層シートとし、該溶融積層シートを、表面温度90℃に保たれたドラム上にて冷却固化させて未延伸フィルムとした。次に両端部を、(株)キーエンス製3次元COレーザーマーカー ML−Z9550(波長10.6μm、レーザースポット径40μm)を用いて、出力5.6W、マーカーとフィルムとの距離92mmの条件で、切断部の雰囲気を吸引、排気しながら両端部を切断し、幅1,330mmのフィルムとした。なお、切断部を幅方向に速度0.5mm/秒、振幅1.8mmの条件で周期的に幅方向にずらした。得られた1,330mm幅のアクリルフィルムの片面側に、保護フィルムとして幅1,320mm、厚み30μmの“トレテック”7332(東レフィルム加工(株)製)を“トレテック”の粘着面側を合わせてニップロールにて貼り合わせを実施後、内径6インチ、肉厚7mm、幅1,450mmの樹脂製コアに、張力80N/m、押さえ圧80N/m(φ150mmの押さえロール)の条件でロール状に3,000m巻き取り、厚み40μmの未延伸フィムロールを得た。なお、製膜速度は20m/分であった。
得られた未延伸フィルムロールの特性は、表1の通りであり、引き裂き強度が1,000mN/mm以下と裂けやすいフィルムであるにも関わらず、エッジ切断時のフィルム破れ等無く、生産安定性に優れており、かつロールの耳立ちが無く、平面性も良好なものであった。
(3)延伸フィルムの製造方法
得られた厚み40μm、1,330mm幅の未延伸フィルムを、オーブンを利用したフロート方式を用いて、135℃にて長手方向に1.4倍に延伸した。延伸後のフィルムの全幅は1,125mmであった。得られた長手方向1軸延伸フィルムを連続してテンターにより135℃にて幅方向に1.67倍延伸し、長手方向および幅方向に延伸され幅1,880mmの2軸延伸フィルムを得た。次に両端部を(株)キーエンス社製3次元COレーザーマーカー ML−Z9550(波長10.6μm、レーザースポット径40μm)を用いて、出力2.4W、マーカーとフィルムとの距離92mmの条件で、切断部の雰囲気を吸引、排気しながら両端部を切断し、幅1,480mmのフィルムとした。なお、切断部を幅方向に速度0.1mm/秒、振幅1.0mmの条件で周期的に幅方向にずらした。得られた1,480mm幅のアクリルフィルムの片面側に、保護フィルムとして幅1,475mm、厚み30μmの“トレテック”7332(東レフィルム加工(株)製)を“トレテック”の粘着面側を合わせてニップロールにて貼り合わせを実施後、内径6インチ、肉厚7mm、幅1,450mmの樹脂製コアに、張力80N/m、押さえ圧80N/m(φ150mmの押さえロール)の条件でロール状に3,000m巻き取り、厚み20μmの2軸延伸フィムロールを得た。なお、延伸速度は15m/分であった。
得られた延伸フィルムロールの特性は、表2の通りであり、延伸時の破れ等が無く、生産安定性に優れ、ロール耳立ちや平面性も良好なものであった。また低ヘイズで透明性に優れ、位相差も小さく、光学フィルムとして良好な特性を有していた。
[実施例2]
未延伸フィルム製膜条件、延伸フィルムの製造条件を表1,表2の通りとした以外は、実施例1と同様にして、厚み40μmの未延伸アクリル樹脂フィルムロールおよび厚み20μmの延伸アクリル樹脂フィルムロールを得た。
得られた未延伸フィルムロールの特性は、表1の通りであり、引き裂き強度が1,000mN/mm以下と裂けやすいフィルムであるにも関わらず、エッジ切断時のフィルム破れ等無く、生産安定性に優れており、かつロールの耳立ちが無く、平面性も良好なものであった。また、得られた延伸フィルムロールの特性は、表2の通りであり、延伸時の破れ等が無く、生産安定性に優れ、ロール耳立ちや平面性も良好なものであった。また低ヘイズで透明性に優れ、位相差も小さく、光学フィルムとして良好な特性を有していた。
[実施例3]
未延伸フィルム製膜条件、延伸フィルムの製造条件を表1,表2の通りとした以外は、実施例1と同様にして、厚み80μmの未延伸アクリル樹脂フィルムロールおよび厚み40μm延伸アクリル樹脂フィルムロールを得た。
得られた未延伸フィルムロールの特性は、表1の通りであり、引き裂き強度が1,000mN/mm以下と裂けやすいフィルムであるにも関わらず、エッジ切断時のフィルム破れ等無く、生産安定性に優れていた。ロール端部にはやや耳立ちがみられ平面性もやや悪化したが合格レベルであった。また、得られた延伸フィルムロールの特性は、表2の通りであり、延伸時の破れ等が無く、生産安定性に優れ、ロール耳立ちや平面性も良好なものであった。また低ヘイズで透明性に優れ、位相差も小さく、光学フィルムとして良好な特性を有していた。
[実施例4]
株式会社クラレ製アクリル樹脂、パラペット HR−Lを原料として使用し、端部切断用レーザーマーカーをサンクス(株)製LP−430(波長10.6μm、スポット径150μm)、マーカーとフィルムの距離185mmとし、未延伸フィルム製膜条件、延伸フィルムの製造条件を表1,表2の通りとした以外は、実施例1と同様にして、厚み40μm未延伸アクリル樹脂フィルムロールおよび厚み20μm延伸アクリル樹脂フィルムロールを得た。
得られた未延伸フィルムロールの特性は、表1の通りであり、エッジ切断時での切断不良によるフィルム破れが発生する事があったが、生産可能なレベルであった。ロール耳立ちや平面性は良好なものであった。生産安定性に優れていた。また、得られた延伸フィルムロールの特性は、表2の通りであり、延伸時の破れ等が無く、生産安定性に優れ、ロール耳立ちや平面性も良好なものであった。位相差は厚み方向でやや0からの乖離が大きくなったが使用可能な範囲であり、低ヘイズで透明性に優れ、光学フィルムとして良好な特性を有していた。
[実施例5]
株式会社クラレ社製アクリル樹脂、パラペット HR−Lを原料として使用し、端部切断用レーザーマーカーをサンクス(株)製LP−430(波長10.6μm、スポット径150μm)、マーカーとフィルムの距離185mmとし、未延伸フィルム製膜条件、延伸フィルムの製造条件を表1,表2の通りとした以外は、実施例1と同様にして、厚み60μmの未延伸アクリル樹脂フィルムロールおよび厚み30μmの延伸アクリル樹脂フィルムロールを得た。
得られた未延伸フィルムロールの特性は、表1の通りであり、引き裂き強度が1,000mN/mm以下と裂けやすいフィルムであるにも関わらず、エッジ切断時のフィルム破れ等無く、生産安定性に優れており、かつロールの耳立ちが無く、平面性も良好なものであった。また、得られた延伸フィルムロールの特性は、表2の通りであり、延伸時の破れ等が無く、生産安定性に優れ、ロール耳立ちや平面性も良好なものであった。位相差は厚み方向でやや0からの乖離が大きくなったが使用可能な範囲であり、低ヘイズで透明性に優れ、光学フィルムとして良好な特性を有していた。
[比較例1]
未延伸フィルムの端部切断方法をシェアカッターとし、未延伸フィルム製膜条件を表1の通りとした以外は、実施例1と同様の条件での製膜を試みたが、端部切断時でのフィルム裂けや割れが多発し、フィルムロールを得ることが出来なかった。
[比較例2]
端部切断用レーザーマーカーをサンクス(株)製LP−430(波長10.6μm、スポット径150μm)、マーカーとフィルムの距離185mm、切断部の幅方向ずらし量を0とし、未延伸フィルム製膜条件、延伸フィルムの製造条件を表1,表2の通りとした以外は、実施例1と同様にして、厚み40μmの未延伸アクリル樹脂フィルムロールおよび厚み20μmの延伸アクリル樹脂フィルムロールを得た。
得られた未延伸フィルムロールの特性は、表1の通りであり、ロールの耳立ちがあり、平面性に劣るものであった。また、得られた延伸フィルムロールの特性は、表2の通りであり、延伸時に未延伸フィルムの端部のたるみ、割れが原因の破れが発生し、生産安定性に劣るものであった。また、ロール耳立ちが見られ平面性に劣るものであった。
[比較例3]
端部切断用レーザーマーカーをサンクス(株)製LP−430(波長10.6μm、スポット径150μm)、マーカーとフィルムの距離185mmとし、未延伸フィルム製膜条件を表1の通りとした以外は、実施例1と同様にして、厚み80μmの未延伸アクリル樹脂フィルムロールを得た。得られた未延伸フィルムロールの特性は、表1の通りであり、ロールの耳立ちがあり、平面性に劣るものであった。
次に端部切断用レーザーマーカーをサンクス(株)製LP−430(波長10.6μm、スポット径150μm)、マーカーとフィルムの距離185mmとし、延伸フィルムの製造条件を表2の条件とした以外は実施例1と同様にして延伸を試みたが、巻き出した未延伸フィルム端部の割れやクラックを起因とした破れが多発し、フィルムロールを得ることが出来なかった。
[比較例4]
株式会社クラレ製アクリル樹脂、パラペット HR−Lを原料として使用し、未延伸フィルムの製膜条件を表1の通りとした以外は、実施例1と同様の条件での製膜を試みたが、端部切断不良によるフィルム破れが多発し、フィルムロールを得ることが出来なかった。
[比較例5]
株式会社クラレ製アクリル樹脂、パラペット HR−Lを原料として使用し、保護フィルムを使用せず、未延伸フィルム製膜条件を表1とした以外は、実施例1と同様にして、厚み40μmの未延伸アクリル樹脂フィルムロールを得た。得られた未延伸フィルムロールの特性は、表1の通りであり、ロールの耳立ちが大きく、平面性にも劣るものであった。
次に延伸フィルムの製造条件を表2の条件とした以外は実施例1と同様にして延伸を試みたが、巻き出した未延伸フィルム端部の割れやクラックを起因とした破れが多発し、フィルムロールを得ることが出来なかった。
Figure 2010083092
Figure 2010083092
本発明の一実施態様に係るフィルム両端切断部におけるフィルム断面例の概略図である。 本発明の一実施態様に係るフィルムロールの巻き取り端部における断面例の概略図である。
符号の説明
1 樹脂フィルム厚み
2 切断部における最も厚い部分の厚み
3 切断部における盛り上がり部の幅
4 樹脂フィルムロール
5 樹脂フィルム
6 保護フィルム

Claims (5)

  1. 幅方向両端部における切断部の盛り上がり量が5μm〜30μmの樹脂フィルムと、少なくともその片面側に積層した、該樹脂フィルムよりも幅が狭い保護フィルムとが巻き取られた樹脂フィルムロール。
  2. 樹脂フィルムが引き裂き強度1,000mN/mm以下の熱可塑性樹脂フィルムである、請求項1に記載の樹脂フィルムロール。
  3. 樹脂フィルムが未延伸フィルムである、請求項1または2に記載の樹脂フィルムロール。
  4. 熱可塑性樹脂がガラス転移温度(Tg)100℃以上のアクリル系樹脂である、請求項2または3に記載の樹脂フィルムロール。
  5. レーザービームを使用して樹脂フィルムの幅方向両端部を切断するに際し、その切断位置を樹脂フィルムの幅方向に0.3mm〜3mmの範囲で周期的にずらすと共に、切断された樹脂フィルムをその巻き取り端部が幅方向に周期的にずれるようにコアに巻き取る、請求項1〜4のいずれかに記載の樹脂フィルムロールの製造方法。
JP2008257077A 2008-10-02 2008-10-02 樹脂フィルムロールおよびその製造方法 Pending JP2010083092A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257077A JP2010083092A (ja) 2008-10-02 2008-10-02 樹脂フィルムロールおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257077A JP2010083092A (ja) 2008-10-02 2008-10-02 樹脂フィルムロールおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2010083092A true JP2010083092A (ja) 2010-04-15

Family

ID=42247518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257077A Pending JP2010083092A (ja) 2008-10-02 2008-10-02 樹脂フィルムロールおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2010083092A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121144A (ja) * 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd 表面プロテクトフィルム付きフィルム並びに偏光板及びその製造方法
JP2014203335A (ja) * 2013-04-08 2014-10-27 日本写真印刷株式会社 タッチパネル用加飾カバー基材及びその製造方法
JP2016029721A (ja) * 2014-07-24 2016-03-03 日東シンコー株式会社 絶縁放熱シートの製造方法、半導体モジュールの製造方法、及び、原料シート
JP2016075939A (ja) * 2015-12-11 2016-05-12 住友化学株式会社 偏光板の製造方法
WO2016158275A1 (ja) * 2015-03-30 2016-10-06 日本ゼオン株式会社 光学フィルム巻回体、その保管方法、及び基材フィルム/偏光板積層体の製造方法
WO2018062031A1 (ja) * 2016-09-30 2018-04-05 住友化学株式会社 光学フィルム及びその製造方法
JP2018059069A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びそれを用いた積層フィルム、並びに光学フィルムの製造方法
JP2019061682A (ja) * 2018-10-10 2019-04-18 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP2019137555A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 フィルムロール
KR20200007531A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 편광판의 가공 방법
JP2020144168A (ja) * 2019-03-04 2020-09-10 住友化学株式会社 光学積層体及びその製造方法
TWI716928B (zh) * 2018-08-01 2021-01-21 日商日東電工股份有限公司 偏光件、偏光板及影像顯示裝置
WO2021182005A1 (ja) * 2020-03-10 2021-09-16 住友化学株式会社 積層シートおよびその製造方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012121144A (ja) * 2010-12-06 2012-06-28 Sumitomo Chemical Co Ltd 表面プロテクトフィルム付きフィルム並びに偏光板及びその製造方法
JP2014203335A (ja) * 2013-04-08 2014-10-27 日本写真印刷株式会社 タッチパネル用加飾カバー基材及びその製造方法
JP2016029721A (ja) * 2014-07-24 2016-03-03 日東シンコー株式会社 絶縁放熱シートの製造方法、半導体モジュールの製造方法、及び、原料シート
WO2016158275A1 (ja) * 2015-03-30 2016-10-06 日本ゼオン株式会社 光学フィルム巻回体、その保管方法、及び基材フィルム/偏光板積層体の製造方法
CN107407767A (zh) * 2015-03-30 2017-11-28 日本瑞翁株式会社 光学膜卷绕体、其保管方法、以及基材膜/偏振片层叠体的制造方法
JPWO2016158275A1 (ja) * 2015-03-30 2018-01-25 日本ゼオン株式会社 光学フィルム巻回体、その保管方法、及び基材フィルム/偏光板積層体の製造方法
JP2016075939A (ja) * 2015-12-11 2016-05-12 住友化学株式会社 偏光板の製造方法
JP2018059070A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びその製造方法
WO2018062031A1 (ja) * 2016-09-30 2018-04-05 住友化学株式会社 光学フィルム及びその製造方法
JP2018059069A (ja) * 2016-09-30 2018-04-12 住友化学株式会社 光学フィルム及びそれを用いた積層フィルム、並びに光学フィルムの製造方法
JP7021887B2 (ja) 2016-09-30 2022-02-17 住友化学株式会社 光学フィルムの製造方法
JP7112838B2 (ja) 2016-09-30 2022-08-04 住友化学株式会社 光学フィルム及びそれを用いた積層フィルム、並びに光学フィルムの製造方法
JP2019137555A (ja) * 2018-02-14 2019-08-22 住友化学株式会社 フィルムロール
KR20200007531A (ko) * 2018-07-13 2020-01-22 주식회사 엘지화학 편광판의 가공 방법
KR102566055B1 (ko) * 2018-07-13 2023-08-10 산진 옵토일렉트로닉스 (쑤저우) 컴퍼니 리미티드 편광판의 가공 방법
TWI716928B (zh) * 2018-08-01 2021-01-21 日商日東電工股份有限公司 偏光件、偏光板及影像顯示裝置
JP2019061682A (ja) * 2018-10-10 2019-04-18 日東電工株式会社 表面保護フィルム、表面保護フィルムの製造方法、及び、光学部材
JP2020144168A (ja) * 2019-03-04 2020-09-10 住友化学株式会社 光学積層体及びその製造方法
WO2021182005A1 (ja) * 2020-03-10 2021-09-16 住友化学株式会社 積層シートおよびその製造方法

Similar Documents

Publication Publication Date Title
JP2010083092A (ja) 樹脂フィルムロールおよびその製造方法
JP4686261B2 (ja) 偏光子保護フィルムおよびその製造方法、ならびにそれを用いた偏光板
JP2014206725A (ja) 偏光板および液晶表示装置
JP2006317560A (ja) 偏光子保護フィルムならびにそれを用いた偏光板
KR101042213B1 (ko) 위상차 필름, 이의 제조방법, 및 이를 포함하는 액정 표시 장치
WO2005105918A1 (ja) アクリル樹脂フィルムおよび製造方法
KR102226092B1 (ko) 편광판 및 액정 표시 장치
JP2008239739A (ja) 熱可塑性樹脂フィルムおよびその製造方法
JP2009052036A (ja) アクリル系フィルム、積層フィルムおよび偏光板
JP2007171577A (ja) フィルム、偏光子保護フィルムおよび表示装置
KR102444730B1 (ko) 필름 롤 및 그의 제조 방법
JP2010031141A (ja) アクリル系樹脂フィルムおよび積層体
JP4696542B2 (ja) 偏光子保護フィルムおよび偏光板
JP5481338B2 (ja) 光学フィルムとその製造方法、偏光板および液晶表示装置
JP2014071251A (ja) 光学フィルムロール
JP2009227908A (ja) 熱可塑性樹脂フィルムおよびその製造方法
WO2013021872A1 (ja) 光学樹脂材料及び光学樹脂材料の製造方法
CN109844580B (zh) 偏振片和液晶显示装置
JP2010007036A (ja) ノルボルネン系重合体混合物およびその製造方法、並びにノルボルネン系重合体混合物を用いた光学材料
JP2007178992A (ja) 偏光板及び液晶表示装置
JP2011224934A (ja) 光学フィルムの製造方法
JP2009041007A (ja) 光学等方性アクリル樹脂フィルムの製造方法およびその製造方法
JP2008239741A (ja) アクリル樹脂フィルムおよびその製造方法
JP2017102368A (ja) 偏光板保護フィルム及びそれを具備した偏光板
JP2008242167A (ja) 光学用フィルム及び偏光板