JP2010080836A - 固体電解コンデンサの製造方法 - Google Patents

固体電解コンデンサの製造方法 Download PDF

Info

Publication number
JP2010080836A
JP2010080836A JP2008249887A JP2008249887A JP2010080836A JP 2010080836 A JP2010080836 A JP 2010080836A JP 2008249887 A JP2008249887 A JP 2008249887A JP 2008249887 A JP2008249887 A JP 2008249887A JP 2010080836 A JP2010080836 A JP 2010080836A
Authority
JP
Japan
Prior art keywords
sealing material
elastic sealing
capacitor element
solid electrolytic
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008249887A
Other languages
English (en)
Inventor
Makoto Hara
誠 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008249887A priority Critical patent/JP2010080836A/ja
Publication of JP2010080836A publication Critical patent/JP2010080836A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

【課題】コンデンサ素子に機械的ストレスがかかることなく、弾性封口材の貫通孔にリード部を容易に挿通することができ、陽極酸化皮膜の破損防止が可能で、漏れ電流特性を改善することができる固体電解コンデンサの製造方法を提供する。
【解決手段】固体電解コンデンサ1の製造工程で、表面に陽極酸化皮膜が形成された陽極箔2と陰極箔3にそれぞれリード部6を接続するとともに、陽極箔2と陰極箔3とをセパレータ4を介して巻回した後、これら電極箔2、3との間に固体電解質層を形成してコンデンサ素子10を作製する。次に、弾性封口材7を温度180〜250℃で加熱して弾性封口材7を軟化させた状態で、コンデンサ素子10から導出されたリード部6を、弾性封口材7に形成された貫通孔7aに挿通し、コンデンサ素子10に弾性封口材7を取り付けた後、コンデンサ素子10を有底筒状の外装ケース5に収納し、外装ケース5の開口部を弾性封口材7で封止する。
【選択図】図1

Description

本発明は、コンデンサ素子から導出されたリード部を、弾性封口材に形成された貫通孔に挿通して、コンデンサ素子に弾性封口材を取り付ける工程を有する固体電解コンデンサの製造方法に関する。
電解コンデンサは従来、電極を引き出すためのリード部が導出されたコンデンサ素子と、このコンデンサ素子を収納する有底筒状の外装ケースと、この外装ケースの開口部をリード部が外部に引き出された状態で封止する弾性封口材とを備えたものである(例えば、特許文献1参照)。
コンデンサ素子は、表面に陽極酸化皮膜が形成された陽極箔と陰極箔とがセパレータを介して巻回され、陽極箔と陰極箔との間に、固体または液体の電解質が保持された構造を有する。リード部は、陽極箔と陰極箔にそれぞれ接続されている。
一般に、このような電解コンデンサの製造工程では、コンデンサ素子のリード部を弾性封口材に形成された貫通孔に挿通し、該素子に弾性封口材を取り付けてから、外装ケースに収納するとともに、外装ケースの開口部に弾性封口材を挿入し、その後、外装ケースの開口部を巻き締めることにより弾性封口材を収縮させ、外装ケースを密閉している。
特開2008−060235公報
上述したような電解コンデンサは、例えばリフローはんだ付け等により高温下にさらされると、外装ケース内の空気が膨張し、この膨張した空気により弾性封口材が押圧され、弾性封口材が外装ケースの外部側へ突出するように変形する場合がある。
このような弾性封口材の変形が生じると、リード部が弾性封口材により外装ケースの外部側へ引っ張られるため、コンデンサ素子に機械的ストレスがかかり、陽極酸化皮膜が破損して漏れ電流特性が悪化するなどの問題が生じる。
そのため、弾性封口材としては、上述したような変形を抑制するために、硬度の高いものを用いることが望ましい。
また、上述したような電解コンデンサでは、外装ケースを密閉するために、リード部を挿通する前の状態での弾性封口材の貫通孔の径は、貫通孔に挿通されるリード部の外径よりも若干小さく形成されている。
そのため、弾性封口材として比較的硬度の高い(弾性率の高い)ものを用いた場合、リード部を貫通孔に挿入する際、貫通孔の周囲はリード部の挿入方向に比較的大きい力で引っ張られるため、弾性封口材はその弾性力により、上記挿入方向と逆方向に変形し、弾性封口材とコンデンサ素子とが接触する場合がある。この接触により、コンデンサ素子に機械的ストレスがかかり、陽極酸化皮膜が破損して、漏れ電流特性が悪化し、最悪の場合にはショートを引き起こすことがある。
また、さらに硬度の高い弾性封口材を用いた場合には、リード部を弾性封口材の貫通孔に挿入する際、貫通孔の内壁がリード部により削られてしまうため、外装ケースを密閉できず、電解コンデンサの信頼性が悪化するという問題が生じる。
しかしながら、液体電解質を用いた電解コンデンサは、リード部を弾性封口材の貫通孔に挿入する時、コンデンサ素子に機械的ストレスがかかり陽極酸化皮膜が破損したとしても、組立後のエージングで電解液による当該破損部分の修復が可能であるため、漏れ電流特性の悪化を抑えることができた。
一方で、近年、低ESR(等価直列抵抗)を特徴とする固体電解コンデンサが注目されているが、固体電解コンデンサに用いられる固体電解質は、陽極酸化皮膜の修復能力がほとんどないため、エージングで陽極酸化皮膜を十分修復できず、上記の問題が生じていた。
本発明の目的は、固体電解質を用いた電解コンデンサにおいて、コンデンサ素子に機械的ストレスがかかることなく、弾性封口材の貫通孔にリード部を容易に挿通することができ、陽極酸化皮膜の破損防止が可能で、漏れ電流特性を改善することができる固体電解コンデンサの製造方法を提供することにある。
本発明の固体電解コンデンサの製造方法は、表面に陽極酸化皮膜が形成された陽極箔と陰極箔にそれぞれリード部を接続するとともに、前記陽極箔と前記陰極箔とをセパレータを介して巻回した後、前記陽極箔と前記陰極箔との間に導電性高分子からなる固体電解質層を形成して、コンデンサ素子を作製するコンデンサ素子作製工程と、前記コンデンサ素子から導出された前記リード部を、弾性封口材に形成された貫通孔に挿通し、前記コンデンサ素子に前記弾性封口材を取り付ける取付工程と、前記コンデンサ素子を有底筒状の外装ケースに収納する収納工程と、前記外装ケースの開口部を、前記弾性封口材で封止する封止工程と、を備えた固体電解コンデンサの製造方法であって、前記取付工程において、前記弾性封口材を180〜250℃で加熱して前記弾性封口材を軟化させ、前記貫通孔に前記リード部を挿通することを特徴とする(第1の発明)。
この構成によると、取付工程において、弾性封口材を加熱して軟化させた状態で、弾性封口材の貫通孔にリード部を挿通するため、リード部を貫通孔に容易に挿通することができる。よって、コンデンサ素子に機械的ストレスがかかることがないため、陽極酸化皮膜の破損による、漏れ電流特性悪化を生じることがない。
また、たとえ硬度の高い弾性封口材を用いた場合であっても、貫通孔の内壁がリード部によって削られることなく、リード部を貫通孔に挿通することができる。よって、外装ケースの封止が十分に行われ、電解コンデンサの信頼性を向上させることができる。
前記弾性封口材の加熱手段として、熱風ヒータから供給される熱風を、弾性封口材に吹き付けて加熱する製造方法を挙げることができる(第2の発明)。
また、前記取付工程において、前記弾性封口材の前記貫通孔の周囲のみを加熱してもよい(第3の発明)。
この構成によると、弾性封口材全体を加熱した場合に比べて、加熱時間を短縮することができ、消費電力の低減を図ることができるとともに、弾性封口材の外形の変形を防止することができる。また、弾性封口材全体を加熱した場合、設備の封口材保持部にも熱が伝わり、設備に熱ストレスが加わる可能性があるが、前記貫通孔の周囲のみを加熱することにより、上記の熱ストレスを軽減することができる。
第3の発明における、前記弾性封口材の加熱手段として、熱風ヒータから供給される熱風を、弾性封口材に形成された貫通孔の内径よりも外径が小さいノズルから吹き付け、貫通孔内部を加熱する製造方法を挙げることができる(第4の発明)。
本発明によると、弾性封口材を加熱して軟化させた状態で、弾性封口材の貫通孔にリード部を挿通するため、リード部を貫通孔に容易に挿通することができる。よって、コンデンサ素子に機械的ストレスがかかることがなく、陽極酸化皮膜の破損による、漏れ電流特性悪化を生じることがない。
本発明の実施の形態について説明する。
図1に示すように、本実施形態の固体電解コンデンサ1は、コンデンサ素子10と、弾性封口材7と、外装ケース5とを備える。
図2に示すように、コンデンサ素子10は、陽極箔2と、陰極箔3とがセパレータ4を介して巻回された構造を有する。
陽極箔2と陰極箔3には平坦状のリードタブ(図示省略)がそれぞれ接続されており、このリードタブを介して陽極箔2と陰極箔3からそれぞれリード部6が引き出されている。2つのリード部6は、コンデンサ素子10の一方の端面から導出されており、各リード部6は、リードタブの先端に連結された丸棒状の接続部6aと、接続部6aの先端部に溶接されたリード線6bとから構成されている。
陽極箔2は、アルミニウム、タンタル、ニオブ等の弁作用金属で形成されている。図3に示すように、陽極箔2の表面は、エッチング処理により粗面化されるとともに、陽極酸化(化成)による陽極酸化皮膜2aが形成されている。
また、陰極箔3も、陽極箔2と同様にアルミニウム等で形成され、その表面は粗面化されるとともに自然酸化皮膜3aが形成されている。
また、図3に示すように、セパレータ4の両面には導電性高分子からなる固体電解質層8が保持されている。つまり、陽極箔2と陰極箔3との間(詳細には、陽極箔2とセパレータ4との間、および、陰極箔3とセパレータ4の間)には、固体電解質層8が形成されている。固体電解質層8を構成する導電性高分子としては、ポリアニリン、ポリピロール、ポリチオフェン、および、ポリエチレンジオキシチオフェン(PEDOT)等を用いることができ、これら導電性高分子は、モノマーの化学重合により生成される。
図1に示すように、コンデンサ素子10は、有底円筒状に形成された外装ケース5に収納されている。外装ケース5は、アルミニウム等により形成されている。
外装ケース5の開口部は、2つのリード部6が外部に引き出された状態で、弾性封口材7によって封止されている。弾性封口材7は、外装ケース5の開口部に形成された巻き締め部5aによって圧縮された状態で配置されている。
弾性封口材7には、2つのリード部6(接続部6a)がそれぞれ貫通される2つの貫通孔7aが形成されている。弾性封口材7に力が作用していない無負荷状態での貫通孔7aの径は、接続部6aの外径よりも若干小さい。
弾性封口材7は、ゴムまたは熱可塑性エラストマーを基材とする組成物により形成されている。弾性封口材7を構成するゴムとしては、具体的には、EPT(エチレンプロピレンターポリマー)、EPDM(エチレンプロピレンジエンモノマー共重合体)、IIR(イソプレンイソブチレンラバー)等が用いられる。また、
EPT、EPDM、IIRを用いた場合の弾性封口材4の軟化点は、添加物(カーボン等)の配合によって異なるが、150℃程度である。
次に、本発明の固体電解コンデンサ1の製造工程について、図4を参照して説明する。
まず、陽極箔2および陰極箔3を構成する金属箔の表面にエッチング処理を施して粗面化した後、粗面化された陽極箔2の表面に化成処理を施して陽極酸化皮膜2aを形成し、陰極箔3には、耐水性処理および/または熱処理にて自然酸化皮膜3aを形成した(酸化皮膜形成工程)。
そして、これら陽極箔2と陰極箔3とを所定の寸法に裁断後、それぞれにリードタブ(図示省略)を介してリード部6を接続するとともに、これら陽極箔2と陰極箔3とをセパレータ4を介して巻回した(巻回工程)。
このようにして作製された円柱状のコンデンサ素子10に、アジピン酸アンモニウム水溶液で電圧を印加して素子化成を行った後(切り口化成工程)、コンデンサ素子10を加熱して、セパレータ4の炭化処理を行った。
次に、このコンデンサ素子10に酸化剤溶液を含浸させてから、乾燥し(酸化剤含浸工程)、その後、コンデンサ素子10にモノマー溶液を含浸させた(モノマー含浸工程)。
続いて、コンデンサ素子10を所定の温度で一定時間加熱し、含浸された酸化剤とモノマーとを化学重合させて、電極箔2、3の間に、導電性高分子からなる固体電解質層8を形成した(固体電解質層形成工程)。
なお、上記の巻回工程から固体電解質層形成工程までが、本発明のコンデンサ素子作製工程に相当する。
次に、固体電解コンデンサ1の組立を行った。
まず、弾性封口材7の貫通孔7aの周囲を、弾性封口材7の軟化点を超える温度(具体的には、180〜250℃)で1〜5秒間加熱し、弾性封口材7を一時的に軟化させた。この状態で、弾性封口材7の貫通孔7aに、コンデンサ素子10から導出されたリード部6を挿通し、コンデンサ素子2に弾性封口材7を取り付けた(取付工程)。
また、弾性封口材7の加熱方法として、熱風ヒータから供給される熱風を、貫通孔7aの内径よりも外径が小さいノズルから吹き付け、貫通孔7a内部を加熱する方法を用いた。
また、予め、80〜150℃の予備加熱を行ってもよい。
次に、弾性封口材7を取り付けたコンデンサ素子10を外装ケース5に収納した(収納工程)。そして、外装ケース5の開口部に巻き締め加工を施し、外装ケース5の開口部を弾性封口材7で封止した(封止工程)。
以上の組立工程により作製された固体電解コンデンサ1に、高温雰囲気下において、所定の電圧を印加してエージング処理を行い、固体電解コンデンサ1の製造工程を完了した。
以上、説明した固体電解コンデンサ1の製造方法によると、取付工程において、弾性封口材7を加熱して軟化させた状態で、弾性封口材7の貫通孔7aにリード部6を挿通するため、リード部6を貫通孔7aに容易に挿通することができる。
また、弾性封口材7を軟化させずにリード部6を挿通した場合、弾性封口材7の弾性力に起因してコンデンサ素子10と弾性封口材7との接触が生じ、陽極酸化皮膜2aが破損する場合があるが、本実施形態では、弾性封口材7を軟化させた状態でリード部6を貫通孔7aに挿入するため、上述したようなコンデンサ素子10と弾性封口材7との接触を防止でき、その結果、陽極酸化皮膜2aの破損による、漏れ電流特性の悪化を防止できるともに、ショートの発生を防止できる。
また、硬度の高い弾性封口材7を用いた場合であっても、貫通孔7aの内壁がリード部6(接続部6a)によって削られることなく、リード部6を貫通孔7aに挿通することができるため、外装ケース5を十分封止でき、信頼性に優れた固体電解コンデンサを得ることができる。
さらに、硬度の高い弾性封口材7が使用可能となったため、固体電解コンデンサ1が高温下に配置されて、外装ケース5内の膨張した空気により弾性封口材7が押圧された場合であっても、弾性封口材7が変形するのを抑制することができる。
そのため、このような弾性封口材7の変形に起因するコンデンサ素子10への機械的ストレスが低減でき、その結果、漏れ電流特性が安定するとともに、ショートの発生を防止できる。
また、弾性封口材7の貫通孔7aの周囲のみを加熱することで、弾性封口材7全体を加熱した場合に比べて、加熱時間を短縮することができ、消費電力の低減を図ることができるとともに、弾性封口材7の外形が変形するのを防止することができる。また、弾性封口材7全体を加熱した場合、設備の封口材保持部(図示省略)にも熱が伝わり、設備に熱ストレスが加わる可能性があるが、貫通孔7aの周囲のみを加熱することにより、上記の熱ストレスを軽減することができる。
なお、前記実施形態では、取付工程において、弾性封口材7の貫通孔7aの周囲のみを加熱し、貫通孔7aの周囲のみを軟化させた状態で、リード部6を貫通孔7aに挿通しているが、弾性封口材7全体を加熱し、弾性封口材7全体を軟化させた状態で、リード部6を貫通孔7aに挿通してもよい。この場合、弾性封口材7の加熱手段としては、熱風ヒータから供給される熱風を、弾性封口材7全体に吹き付けて加熱する方法を挙げることができる。
また、前記実施形態では、組立工程において、コンデンサ素子10に弾性封口材7を取り付ける取付工程の後、外装ケース5に収納する収納工程を行い、その後、外装ケース5の開口部を弾性封口材7により封止する封止工程を行っているが、この順序に必ずしも限定されるものではない。
例えば、弾性封口材7を取り付ける前のコンデンサ素子10を外装ケース5に収納した後、加熱により軟化した弾性封口材7の貫通孔7aにリード部6を挿通して、コンデンサ素子10に弾性封口材7を取り付けてから、外装ケース5の開口部を弾性封口材7で封止してもよい。
次に、本発明のより具体的な実施例を比較例を用いて説明する。
[実施例1−1〜1−6、2−1〜2−6]硬度、加熱温度の比較
表1に示すEPT、IIRの封口ゴム材料を用い、硬度70、85Hsとした弾性封口材を、熱風ヒータから供給される熱風を、弾性封口材の貫通孔の内径よりも外径が小さいノズルから吹き付けることにより、温度180、220、250℃で、1〜5秒間、貫通孔内部を加熱し軟化させた。この状態で、弾性封口材の貫通孔にリード部を挿通して、コンデンサ素子に弾性封口材を取り付け、表1に示す実施例1−1〜1−6、実施例2−1〜2−6の固体電解コンデンサ試料を各20個作製した。
なお、固体電解質層を構成する導電性高分子としては、PEDOTを使用し、各固体電解コンデンサは、定格電圧4.0V、静電容量100μF(サイズ:φ5×6L(mm))とした。
(比較例1−1〜1−4、2−1〜2−4)硬度、加熱温度の比較
表1に示すEPT、IIRの封口ゴム材料を用い、硬度70、85Hsとした弾性封口材を、温度170、260℃とした以外は、上記実施例と同様にして、コンデンサ素子に取り付け、表1に示す比較例1−1〜1−4、2−1〜2−4の固体電解コンデンサ試料を各20個作製した(上限、下限を超える場合の比較)。
(比較例1−A、1−B、2−A、2−B)加熱なしの場合の比較
表1に示すEPT、IIRの封口ゴム材料を用い、硬度70、85Hsとした弾性封口材を、加熱による軟化を行わなかった以外は、上記実施例と同様にして、固体電解コンデンサ試料を各20個作製した。
Figure 2010080836
上記の実施例1−1〜1−6、2−1〜2−6、および比較例1−1〜1−4、2−1〜2−4、1−A、1−B、2−A、2−Bの固体電解コンデンサについて、定格電圧印加、2分後の漏れ電流値を測定した。その平均値を表1に示す。
また、ゴム硬度が85Hsの実施例1−4〜1−6、2−4〜2−6、および比較例1−3、2−3については、リード部を弾性封口材の貫通孔に挿入した際の、貫通孔の内壁の削れの有無を確認した。その結果も表1に示す。
表1から明らかなように、実施例1−1〜1−6、2−1〜2−6の固体電解コンデンサは、弾性封口材の加熱温度を170℃とした比較例1−1、1−3、2−1、2−3の固体電解コンデンサと比較して、漏れ電流が低減されている。
よって、弾性封口材の加熱温度は180℃以上とするのが好ましい。180℃を下回ると弾性封口材を十分軟化させることができず、コンデンサ素子に機械的ストレスによる漏れ電流特性悪化が生ずる。また、250℃を超えると弾性封口材の変質、劣化が生じるので好ましくない。よって、弾性封口材の加熱温度は180〜250℃とするのが好ましく、より好ましくは、220〜250℃である。
そして、弾性封口材の加熱時間は加熱温度より適宜選択すればよいが、生産性を考慮すれば短時間の方が好ましく、1〜5秒とするのがより好ましい。
また、実施例1−4〜1−6、2−4〜2−6の固体電解コンデンサは、比較例1−B、2−Bの固体電解コンデンサと比較して、弾性封口材の削れを抑えることができる。
なお、上記実施例では、弾性封口材全体を加熱したが、貫通孔の周囲のみを加熱した場合でも同様の効果が得られる。
本発明の実態の形態に係る固体電解コンデンサの内部構造を示す概略図である。 本発明の実施の形態に係る固体電解コンデンサにおけるコンデンサ素子の分解斜視図である。 本発明の実施の形態に係る固体電解コンデンサ構成を示す概念図である。 本発明の実施の形態に係る固体電解コンデンサの製造工程を示すフローチャートである。
符号の説明
1 固体電解コンデンサ
2 陽極箔
2a 陽極酸化皮膜
3 陰極箔
3a 自然酸化皮膜
4 セパレータ
5 外装ケース
5a 巻き締め部
6 リード部
6a 接続部
6b リード線
7 弾性封口材
7a 貫通孔
8 固体電解質層
10 コンデンサ素子

Claims (4)

  1. 表面に陽極酸化皮膜が形成された陽極箔と陰極箔にそれぞれリード部を接続するとともに、前記陽極箔と前記陰極箔とをセパレータを介して巻回した後、前記陽極箔と前記陰極箔との間に導電性高分子からなる固体電解質層を形成して、コンデンサ素子を作製するコンデンサ素子作製工程と、
    前記コンデンサ素子から導出された前記リード部を、弾性封口材に形成された貫通孔に挿通し、前記コンデンサ素子に前記弾性封口材を取り付ける取付工程と、
    前記コンデンサ素子を有底筒状の外装ケースに収納する収納工程と、
    前記外装ケースの開口部を、前記弾性封口材で封止する封止工程と、
    を備えた固体電解コンデンサの製造方法であって、
    前記取付工程において、
    前記弾性封口材を180〜250℃で加熱して前記弾性封口材を軟化させ、前記貫通孔に前記リード部を挿通することを特徴とする固体電解コンデンサの製造方法。
  2. 前記弾性封口材の加熱手段として、熱風ヒータから供給される熱風を、弾性封口材に吹き付けて加熱することを特徴とする請求項1に記載の固体電解コンデンサの製造方法。
  3. 前記取付工程において、
    前記弾性封口材の前記貫通孔の周囲のみを加熱することを特徴とする請求項1に記載の固体電解コンデンサの製造方法。
  4. 前記弾性封口材の加熱手段として、熱風ヒータから供給される熱風を、弾性封口材に形成された貫通孔の内径よりも外径が小さいノズルから吹き付け、貫通孔内部を加熱することを特徴とする請求項3に記載の固体電解コンデンサの製造方法。
JP2008249887A 2008-09-29 2008-09-29 固体電解コンデンサの製造方法 Pending JP2010080836A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008249887A JP2010080836A (ja) 2008-09-29 2008-09-29 固体電解コンデンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008249887A JP2010080836A (ja) 2008-09-29 2008-09-29 固体電解コンデンサの製造方法

Publications (1)

Publication Number Publication Date
JP2010080836A true JP2010080836A (ja) 2010-04-08

Family

ID=42210904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008249887A Pending JP2010080836A (ja) 2008-09-29 2008-09-29 固体電解コンデンサの製造方法

Country Status (1)

Country Link
JP (1) JP2010080836A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316308A (ja) * 1991-04-15 1992-11-06 Elna Co Ltd アルミニウム電解コンデンサの製造方法
JPH0794365A (ja) * 1993-07-29 1995-04-07 Nec Corp 固体電解コンデンサおよびその製造方法
JP2004103749A (ja) * 2002-09-09 2004-04-02 Fujitsu Media Device Kk 固体電解コンデンサ
JP2006286975A (ja) * 2005-03-31 2006-10-19 Nippon Chemicon Corp コンデンサ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316308A (ja) * 1991-04-15 1992-11-06 Elna Co Ltd アルミニウム電解コンデンサの製造方法
JPH0794365A (ja) * 1993-07-29 1995-04-07 Nec Corp 固体電解コンデンサおよびその製造方法
JP2004103749A (ja) * 2002-09-09 2004-04-02 Fujitsu Media Device Kk 固体電解コンデンサ
JP2006286975A (ja) * 2005-03-31 2006-10-19 Nippon Chemicon Corp コンデンサ及びその製造方法

Similar Documents

Publication Publication Date Title
JPWO2011121995A1 (ja) 固体電解コンデンサ
JPH11168034A (ja) 導電性高分子を用いた固体電解コンデンサ及びその製造方法
JP2007189038A (ja) 巻回型コンデンサおよびその製造方法
JPWO2009113285A1 (ja) 固体電解コンデンサとその製造方法
JP2009182157A (ja) 固体電解コンデンサ
JP5075466B2 (ja) 電解コンデンサの製造方法
JP2008130859A (ja) 電解コンデンサ
JP4258861B2 (ja) 固体電解コンデンサとその製造方法
JP2010080836A (ja) 固体電解コンデンサの製造方法
JP5235599B2 (ja) 電解コンデンサおよび電解コンデンサの製造方法
JP2019201109A (ja) 電解コンデンサ
JP4683176B2 (ja) 固体電解コンデンサの製造方法
JP2000058389A (ja) 固体電解コンデンサの製造方法
JP2008034440A (ja) 固体電解コンデンサの製造方法
JP4900598B2 (ja) 電解コンデンサおよびその製造方法
JP2006108192A (ja) 固体電解コンデンサの製造方法
JP7273368B2 (ja) 固体電解コンデンサの製造方法と固体電解コンデンサ及び電子部品モジュールの製造方法
JP2002313683A (ja) 固体電解コンデンサの製造方法
JP2023059576A (ja) 電解コンデンサの製造方法
JP2006210837A (ja) 固体電解コンデンサおよびその製造方法。
JP2023059574A (ja) 電解コンデンサの製造方法
JP5123136B2 (ja) 巻回型電解コンデンサおよびその製造方法
JP2001284190A (ja) 固体電解コンデンサ
JP2010278200A (ja) 固体電解コンデンサ
JP5268591B2 (ja) 電解コンデンサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304