JP2010069654A - 構造解析方法、構造解析装置、構造解析プログラム、構造解析のための物性値算出方法、構造解析のための物性値算出装置および構造解析のための物性値算出プログラム - Google Patents

構造解析方法、構造解析装置、構造解析プログラム、構造解析のための物性値算出方法、構造解析のための物性値算出装置および構造解析のための物性値算出プログラム Download PDF

Info

Publication number
JP2010069654A
JP2010069654A JP2008237570A JP2008237570A JP2010069654A JP 2010069654 A JP2010069654 A JP 2010069654A JP 2008237570 A JP2008237570 A JP 2008237570A JP 2008237570 A JP2008237570 A JP 2008237570A JP 2010069654 A JP2010069654 A JP 2010069654A
Authority
JP
Japan
Prior art keywords
information
physical property
structural analysis
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008237570A
Other languages
English (en)
Other versions
JP5264380B2 (ja
Inventor
Tomoko Oishi
智子 大石
Hiroo Sakamoto
博夫 坂本
Daisuke Echizenya
大介 越前谷
Hiromichi Aoki
普道 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008237570A priority Critical patent/JP5264380B2/ja
Publication of JP2010069654A publication Critical patent/JP2010069654A/ja
Application granted granted Critical
Publication of JP5264380B2 publication Critical patent/JP5264380B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/82Elements for improving aerodynamics

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】繊維状物質を含む材料を用いて射出成形した部材の構造解析について、短い時間で精度良く計算することができる構造解析方法を提供する。
【解決手段】細長い繊維状物質を含む材料を用いて射出成形される部材の構造解析をする方法であって、部材の形状を示す形状情報を取得する形状取得ステップと、部材の形状全体を複数の要素に分割し、分割した各要素を示す要素情報を生成する要素分割ステップ(S2)と、要素情報が示す各要素を用いて、材料を流し込む金型のゲートに対応する部分に熱源があるとして熱解析を行うことによって部材の熱特性を示す熱特性値を算出して、それを含む熱特性情報を生成する熱解析ステップ(S3)と、構造解析するための物性値を示す物性情報に熱特性情報を変換する変換ステップ(S4)と、物性情報と各要素を示す情報とを用いて部材の構造解析をする構造解析ステップ(S5)とを含む。
【選択図】図11

Description

本発明は、構造解析方法及び構造解析のための物性値算出方法に関し、特に繊維強化樹脂材料を用いた射出成形品の構造解析方法に関する。
射出成形した樹脂部材は、例えば、テレビ、エアコン、携帯電話の筐体、自動車のバンパ等といった日常の様々な部材に使用されている。樹脂部材の用途が広がるとともに、樹脂に要求される性能や性質も高度になってきている。例えば、携帯電話の軽量化の要請に応えるには、薄くて丈夫な材料が必要になる。このように、耐久性や耐衝撃性が要求される部材には、剛性や強度を向上させるために、樹脂にガラスや炭素等の繊維を添加した繊維強化樹脂がしばしば利用される。
部材や部材の強度を検証するために、有限要素法等を用いた構造解析が行われる。数値シミュレーションは、比較的低コストで種々の部材の性能を検証できるため、部材の低コスト化及び信頼性の向上に貢献する。樹脂部材においても構造解析は一般に行われており、特に繊維強化樹脂では、繊維の配向性を考慮した構造解析が提案されている(例えば、特許文献1及び特許文献2参照)。繊維強化樹脂では、繊維方向の強度と繊維に垂直な方向の強度とでは、前者が後者の3〜5倍程度強い。そのため、繊維の配向性を考慮した構造解析は、射出成形される繊維強化樹脂の強度予測の精度を向上させるために、重要な技術である。
具体的には、特許文献1に記載の構造解析は、大きく3つの工程を含む。まず、流動解析用の要素を用いて、金型を流れる樹脂の流動解析を行う。ここでは、各要素の流れ方向を各要素の繊維配向とすることによって、各要素の繊維配向を示す繊維配向情報を取得する。
次に、流動解析工程で取得した繊維配向情報を、構造解析用の繊維配向情報に変換する。流動解析と構造解析とでは、解析に用いるメッシュが異なる。例えば、流動解析では繊維の挙動を正確にシミュレートするために数百万要素の細かいメッシュが用いられるのに対して、構造解析では数十万要素の粗いメッシュが用いられる。そのため、流動解析用の要素に関連付けられた繊維配向情報を構造解析用の要素に関連付けられた繊維配向情報に変換することによって、繊維配向を考慮した物性値を構造解析に利用できる。
最後に、構造解析用の要素及び構造解析用の繊維配向情報を用いて構造解析を行う。構造解析では、繊維配向情報に基づいて、繊維配向を考慮した物性値が利用される。これにより、高精度の構造解析が可能になる。
特開2006−272928号公報 特開2004−25796号公報
しかしながら、従来の繊維配向を考慮した構造解析では、構造解析全体の計算に多くの時間を要するという問題がある。
すなわち、まず、流動解析に多くの時間が掛かる。解析ではメッシュを細かくする程、計算時間が多くなるところ、流動解析では、上述のように比較的細かいメッシュを用いて計算するからである。また、流動解析用の繊維配向情報を構造解析用の繊維配向情報に変換するために時間が掛かる。流動解析と構造解析とでは解析に用いるメッシュが異なるため、この変換では、流動解析用の要素と構造解析用の要素の対応付け、その後に、対応付けた各要素に適合するように、繊維配向情報を流動解析用のものから構造解析用のものへと変換する必要がある。上述のように流動解析用の要素が数百万要素程度、構造解析用の要素が数十万要素程度であるため、この計算に要する時間は大きい。
本発明は、上述の課題を解決するものであり、繊維状物質を含む材料を用いて射出成形した部材の構造解析について、従来の構造解析の精度を維持又は向上しながら、より短い時間で計算することができる構造解析方法、構造解析装置、構造解析プログラム、構造解析のための物性値算出方法、構造解析のための物性値算出装置および構造解析のための物性値算出プログラムを提供する。
上述の課題を解決するために、本発明に係る構造解析方法は、
繊維状物質を含む材料を用いて射出成形される部材の構造解析方法であって、
上記部材の形状情報を取得する形状取得ステップと、
上記部材を複数の要素に分割し、分割した各要素を示す要素情報を生成する要素分割ステップと、
上記要素情報が示す上記各要素を用いて、上記材料を流し込む金型のゲートに対応する部分に熱源があるとして熱解析を行うことによって上記部材の熱特性を示す熱特性値を算出し、算出した上記熱特性値を含む熱特性情報を生成する熱解析ステップと、
上記熱特性情報を取得し、取得した上記熱特性情報を構造解析に用いる物性値を含む物性情報に変換する変換ステップと、
上記物性情報に含まれる上記物性値と、上記要素情報が示す上記各要素とを用いて上記部材の構造解析を行う構造解析ステップとを含む。
なお、本発明は、構造解析方法として実現されるだけではなく、構造解析方法に含まれるステップを実行する機能を有する処理部を備える構造解析装置として実現することも、構造解析方法に含まれるステップをコンピュータに実行させるプログラムとして実現することもできる。また、本発明は、構造解析のための物性値算出方法として実現されるだけではなく、構造解析のための物性値方法に含まれるステップを実行する機能を有する処理部を備える構造解析のための物性値算出装置として実現することも、構造解析のための物性値算出方法に含まれるステップをコンピュータに実行させるプログラムとして実現することもできる。
本発明では、繊維状物質を含む材料を用いて射出成形した部材の構造解析について、従来の構造解析の精度を維持又は向上しながら、より短い時間で計算することができる。
本発明の実施の形態について図を参照して説明する。
(実施の形態1)
図1は、本発明の実施の形態1に係る構造解析装置の外観を示す。構造解析装置20aは、細長い繊維状物質を含む材料を用いて射出成形される部材の構造解析を行う装置であって、例えばソフトウェアプログラムを実行可能なコンピュータである。構造解析装置20aには、外部に、液晶ディスプレー等の表示部22、キーボード、マウス等の入力部24、CAD(Computer−aided design,図2参照)装置等が接続されている。本実施の形態では、構造解析を行う部材の一例としてファンを用いて説明する。図1の表示部22には、ファンを後述するように要素分割した状態が示されている。
なお、部材は、繊維状物質を含む樹脂を用いて作られるものであればよく、製品、半製品、部品等を含み、具体例としては上記ファンの他に、自動車のバンパ、テレビの外枠体、携帯電話の筐体等を挙げることができる。
図2は、実施の形態1に係る構造解析装置20aのブロック図である。本図に示すように、構造解析装置20aは、ユーザにより入力された情報を入力部24から取得する入力情報取得部52と、ハードディスク等の記憶媒体により実現される複数の記憶部とを備える。各記憶部には、詳細は後述するように、各処理部によって生成された情報、ユーザの入力に基づき入力情報取得部52が取得した情報等が所定の形式で保持されている。
要素記憶部32は、解析のために分割された各要素の位置関係を特定するための情報である要素情報32aを記憶している。図3は、実施の形態1に係る要素情報32aの具体例を示す。要素情報32aは、各要素を特定するための「要素番号」と、各要素の位置を示す情報とを含む。本実施の形態では、各要素は、「頂点1」から「頂点4」までの4つの頂点を含む四面体である。そのため、各要素の位置を示す情報には、部材に対して固定された座標系での各頂点の座標を示す情報が保持されている。なお、本実施の形態では、各要素が四面体の例を示すが、各要素の形状は四面体に限らず、直方体等が部材の形状に応じて適宜選択されてよい。
熱解析条件記憶部34は、熱解析のための境界条件を示す情報、熱源の位置を示す情報等の熱解析を行うために必要な条件を示す情報である熱解析条件情報34aを記憶している。熱解析条件情報34aは、入力情報取得部52を介してユーザが記憶させる情報である。図4は、実施の形態1に係る熱解析条件情報34aの具体例を示す。熱解析条件情報34aは、熱解析に用いるための熱伝導率、比熱、ゲート温度、節点温度、ゲート位置等を含む。本発明では、熱解析は部材の熱特性を得るために行われるため、熱伝導率、比熱は部材の材料の正確な値である必要はなく、任意の値、例えば1であってよい。ゲート温度は、射出成形のために樹脂が流し込まれる金型のゲートに対応する部分の温度であり、節点温度は、各要素の境界が交わる節点の温度である。これらの温度も適宜設定される任意の値である。図4では、ゲート温度を1とし、節点温度を0とする例を示している。ゲート位置は、金型のゲートに対応する部分の位置を示す。
熱特性記憶部36は、構造解析装置20aが行う熱解析によって算出される熱特性値を示す熱特性情報36a,36bを記憶している。本実施の形態の熱特性情報36a,36bは、熱流束ベクトル情報36aと温度情報36bとを含む。図5は、実施の形態1に係る熱流束ベクトル情報36aの具体例を示す。熱流束ベクトル情報36aは、熱解析によって算出された各要素の熱流束ベクトルを表す情報である。図6は、実施の形態1に係る温度情報36bの具体例を示す。温度情報36bは、熱解析によって算出された各要素の温度を表す情報である。
変換条件記憶部38は、熱解析によって算出された熱特性値を、部材の構造解析に用いる物性値に変換するための情報である変換条件情報38aを記憶している。変換条件情報38aは、入力情報取得部52を介してユーザが記憶させる情報である。図7は、実施の形態1に係る変換条件情報38aの具体例を示す。変換条件情報38aは、同図に示されるように、配向性を考慮した物性値に熱特性値を変換するための条件を含む。変換条件情報38aは、具体的には、繊維方向の弾性率EMD、繊維方向に垂直な方向の弾性率ETD及び密度ρのそれぞれについて、部材の中の局所的な最大値及び最小値を示す情報を含む。変換条件情報38aは、例えば、繊維方向の最大弾性率EMDmaxを140000(kg/cm)とする。
物性記憶部40は、構造解析に用いる各要素の物性値を示す情報である物性情報40aを記憶している。図8は、実施の形態1に係る物性情報40aの具体例を示す。物性情報40aは、各要素の熱特性値を変換することによって得られる各要素の物性値を含む。熱特性値及び物性値が算出される要素は、いずれも同一であり、両者は、本実施の形態では要素番号によって関連付けられる。
構造解析条件記憶部42は、構造解析をするための条件を示す情報である構造解析条件情報42aを記憶している。構造解析条件情報42aは、入力情報取得部52を介してユーザが記憶させる。構造解析条件情報42aの詳細は、図示しないが、例えば構造解析に用いる境界条件等を含む。
構造解析結果記憶部44は、構造解析によって算出された結果を示す情報である構造解析結果情報44aを記憶している。図9は、実施の形態1に係る構造解析結果情報44aの具体例を示す。構造解析結果情報44aは、構造解析の結果としての各要素の応力と変位とを示す情報を含む。ここでの要素は、上述の熱特性値及びそれに基づく特性値のそれぞれが算出される要素と同一であり、これらは、要素番号によって関連付けられている。
再び図2を参照すると、構造解析装置20aは、形状取得部56と、要素分割部58と、熱解析部60aと、変換部64aと、構造解析部66と、表示制御部70とを更に備える。ユーザによる各処理部への指示は、入力情報取得部52を介して引き渡される。
形状取得部56は、部材の形状を示す形状情報を取得する。本実施の形態の形状取得部56は、CAD装置26から接続回線を通じて形状情報を取得する。
要素分割部58は、形状取得部56から形状情報を取得すると、部材の全体を複数の要素に分割し、それによって、要素情報32aを生成する。
熱解析部60aは、熱解析条件記憶部34から熱解析条件情報34aを取得し、要素分割部58から部材の各要素を示す情報を取得し、これらの取得した情報に基づいて熱解析を行う。また、熱解析部60aは、熱解析により得られる解析結果を含む熱特性情報36a,36bを熱特性記憶部36に記憶させる。
変換部64aは、熱解析部60aによる熱解析処理が終了すると、変換条件記憶部38から変換条件情報38aを取得し、熱特性記憶部36から熱特性情報36a,36bを取得し、これらの取得した情報に基づいて、熱特性値を部材の物性値に変換する。
図10は、実施の形態1に係る変換部64aの詳細を示すブロック図である。図示するように、変換部64aは、熱特性情報取得部72aと、変換条件情報取得部78と、物性値算出部80とを有する。
熱特性情報取得部72aは、熱特性記憶部34から熱特性情報34aを取得する処理部であり、熱流束ベクトル情報36aを取得する熱流束ベクトル取得部74aと温度情報36bを取得する温度情報取得部74bとを有する。変換条件情報取得部78は、変換条件記憶部38から変換条件情報38aを取得する。物性値算出部80は、熱流束ベクトル情報36aと、温度情報36bと、変換条件情報38aとに基づいて、各要素の物性値を算出する。物性値算出部80は、変換して得られる物性値を含む物性情報40aを物性記憶部40に記憶させ、変換処理が終了したことを構造解析部66に通知する。
構造解析部66は、変換部64aによる変換処理が終了すると、要素記憶部32から要素情報32aを取得し、物性記憶部40から物性情報40aを取得し、構造解析条件記憶部42から構造解析条件情報42aを取得し、これらの取得した情報に基づいて、構造解析を行う。構造解析部66は、構造解析により得られる解析結果を含む構造解析結果情報44aを構造解析結果記憶部44に記憶させる。また、構造解析部66は、構造解析結果情報44aを表示処理部70に引き渡す。
表示処理部70は、構造解析結果情報44aに基づいて、構造解析の結果を表示部22に表示させる。
次に、実施の形態1に係る構造解析装置20aが実行する処理の詳細について、フローチャートを参照して説明する。
図11は、実施の形態1に係る構造解析装置20aが実行する処理のフローチャートである。形状取得部56は、CAD装置26から通信回線を介して形状情報を取得する(S1)。要素分割部58は、形状情報に基づいて、部材全体を重複のない複数の要素に分割し、それによって、要素情報32aを生成し、生成した要素情報32aを要素記憶部32に記憶させる(S2)。部材としてのファン90aを要素分割した例を図12に示す。
熱解析部60aは熱解析処理を実行する(S3)。図13は、熱解析処理(S3)の詳細を示すフローチャートである。熱解析部60aは、要素分割部58から要素情報32aを取得する(S11)。熱解析部60aは、熱解析条件記憶部34から熱解析条件情報34aを取得する(S12)。熱解析部60aは、各取得処理(S11及びS12)において取得した情報を用いて、例えば有限要素法による熱解析を行い、それによって、各要素の熱流束ベクトル及び温度を含む熱特性値を算出する(S13)。ここで、有限要素法は、熱解析及び後述する構造解析等に利用される数値解析手法の1つであって、物体を複数の小さい要素に分割し、各要素に単純化した方程式を組み合わせて適用し、適用した方程式を満足する解を数値的に得る手法である。有限要素法は、よく知られた手法であるため、これに関する詳細な説明は省略する。
熱解析部60aは、熱特性値の算出処理(S13)において算出した熱特性値を含む熱特性値情報(熱流束ベクトル情報36a,温度情報36b)を熱特性記憶部36に格納して記憶させる(S14)。
ここで、熱解析部60aが熱解析に用いる熱伝導の支配方程式を式(1)に示す。
Figure 2010069654
・・・式(1)
式(1)において、Κは熱伝導率、Tは温度,(上に点を3つ付した)qは単位体積あたりの内部発熱量、ρは密度、cは比熱、tは時間、V,V,Vは伝導媒体中の熱の速度をそれぞれ表す。
これに対して、流動解析に用いられる支配方程式を式(2)に示す。
Figure 2010069654

Figure 2010069654
・・・式(2)
式(2)において、V,V,Vは樹脂の流速、Pは圧力、τは表面力をそれぞれ表す。
式(2)の右辺第1項〜第5項は、それぞれ、熱伝導、圧縮による内部エネルギー、法線応力による仕事、せん断応力による仕事、内部発熱を表す。また、射出成形CAE(Computer Aided Engineering)において、式(2)は、以下に示す(a)〜(g)の仮定により、式(3)のように簡略化できる。
(a)流動塲は薄肉である。すなわち、肉厚に比べて流動長が十分に長く、そのため、肉厚方向の流動成分Vは無視できる。
(b)樹脂は高粘性流体であり、そのため、慣性項及び体積力項は表面力に比べて小さく無視できる。
(c)平面方向の速度勾配が肉厚方向の速度勾配に比べて十分に小さく、そのため、面内の表面力は無視できる。
(d)モデル形状が薄肉であるため、面方向の熱伝導率は肉厚方向の熱伝導に比べて十分に小さく、そのため、面方向の熱伝導率は無視できる。
(e)圧縮による内部エネルギーは、速度勾配が小さいので無視できる。
(f)法線応力による仕事は、断面急変部のみで内部発熱として考慮する。
(g)剪断応力による仕事は、肉厚方向の速度勾配成分のみを対象とする。
Figure 2010069654
・・・式(3)
式(3)の右辺は、熱伝導と、肉厚方向の速度勾配成分のせん断応力による仕事と、内部発熱の項とに簡略化される。これを式(1)と比較すると、熱伝導の支配方程式は、簡略化した流動解析の支配方程式において、肉厚方向の速度勾配成分のせん断応力の影響を無視したものである。従って、せん断応力を無視できる場合、すなわち、せん断応力を決定する粘度およびせん断速度を無視できる場合に、流動解析を伝熱解析で簡易的に近似できる。ここで、粘度は、せん断速度、温度及び圧力の関数で表されるため、これらが大きく変化しない単純な形状を部材が有している場合には、材料に含まれる繊維状物質の配向性、すなわち、金型に流し込まれた繊維の方向を解析するために熱伝導の支配方程式を利用することは有用である。
せん断速度、温度及び圧力が大きく変化しない形状の具体例としては、ゲート数が少ない形状、板厚の増減が少ない形状等を挙げることができる。また、流動過渡部(流動先端、金型から遠い成形品内部等)も、せん断速度、温度及び圧力が大きく変化しない部位であり、当該部分についても熱解析を用いても十分な精度で、繊維の配向性を取得することができる。この場合、熱流束ベクトルが繊維の配向性を示す値になる。
このように、熱解析を行うことによって、部材に含まれる樹脂の配向性を求める。式(2)で表される支配方程式の複雑さから分かるように、流動解析の計算は複雑であり、計算時間が多く掛かる。これに対して、熱解析の計算負荷は、流動解析の場合に比べて軽く、そのため、樹脂の配向性を算出するために要する時間を短縮することが可能になる。
図14は、ファン90aの熱解析によって得られた各要素の熱流束ベクトルの一部を示す。図14に示す各矢印の方向及び長さが、それぞれ、各要素の熱流束ベクトルの方向及び大きさを示す。成形時に金型のゲートが位置する部分であるゲート部分92aに樹脂が流し込まれると、樹脂がゲート部分92aから羽根の遠方へ向かって放射状に広がり、羽根の輪郭に沿って流れる様子が示されている。樹脂に含まれる繊維の向きは樹脂の流れ方向に沿うため、図14の矢印は繊維の配向性を示す。
図15は、ファン90aの正面を示す写真であり、図16は、図15に示される矩形部分94bのX線CT(Computed Tomography)装置による画像を拡大して示しており、図14の矩形部分94aに対応する部分である。図16に示す画像において、黒色の線状の物質が樹脂に含まれる繊維である。図16から分かるように、繊維は概ね右上から左下を向いている。
図17は、X線CT装置による画像に基づいて作成したファン90aの繊維の配向性を示す図である。図14の全体と比較すると、熱解析によって得られた繊維配向性、すなわち、図14に示す矢印の方向と、X線CT装置による画像に基づく実際の繊維の配向性とは、ほぼ一致していることがわかる。従って、熱解析によって、樹脂に含まれる繊維の配向性を精度よくシミュレートすることができる。
再び図11を参照する。変換部64は、熱解析で得られた熱特性値を構造解析に用いる物性値に変換する(S4)。図18は、実施の形態1の変換処理(S4)の詳細を示すフローチャートである。
熱特性情報取得部72aは、熱特性情報36a,36bを取得する(S21)。より詳細には、熱流束ベクトル取得部74aが熱流束ベクトル情報36aを、温度情報取得部74bが温度情報36bをそれぞれ取得する。変換条件情報取得部78は、変換条件記憶部38から変換条件情報38aを取得する(S22)。物性値算出部80は、熱流束ベクトル情報36aと、温度情報36bと、変換条件情報38aとに基づいて、物性値を算出する(S23)。
ここで、物性値算出部80による物性値算出処理(S23)について詳しく説明する。
まず、物性値算出部80は、各要素の温度を各要素の弾性率の大きさに変換する。この変換では、以下に示す式(4)を用いる。式(4)では、変換対象となる要素の温度をT、最高温度及び最低温度をそれぞれTmax及びTmin、要素の繊維方向の弾性率をEMD、繊維方向の最大弾性率及び最小弾性率をそれぞれEMDmax及びEMDminとする。
Figure 2010069654
・・・式(4)
なお、繊維と垂直な方向の弾性率ETDは、式(4)のEMDをETDに、EMDmaxをETDmaxに、EMDminをETDminにそれぞれ置き換えた式によって変換する。
このように、物性値算出部80は、温度情報36bに含まれる最高温度を変換条件情報38aに含まれる弾性率の最大値(例えば、EMDmax)に対応付け、温度情報36bに含まれる最低温度を変換条件情報38aに含まれる弾性率の最小値(例えば、EMDmin)に対応付け、温度情報36bに含まれる温度が高い要素である程、当該要素の上記弾性率が大きくなるように、温度情報36bに含まれる各要素の温度を各要素の弾性率に一対一で対応付ける。本実施の形態では、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記弾性率の最大値と上記弾性率の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の弾性率として算出する。
一般に、1つの部材においてゲートの近傍は弾性率が大きく、ゲートから離れるに従って弾性率が小さくなる。繊維を含む樹脂の弾性率の違いは、主に樹脂に含まれる繊維の長さの違いによって生じる。具体的には、繊維の長さが長い程、樹脂の弾性率は大きくなる。樹脂を金型に流す場合、長い繊維は、流れ難いためにゲート近傍に多くとどまる。これに対して、短い繊維は、流れ易いためにゲートから離れた部分にまで流れる。そのため、上述のような、ゲート近傍では弾性率が大きく、そこから離れる程小さくなるという弾性率の傾向が生じる。
他方、ゲートを熱源とした場合の部材の温度分布も、繊維の流れ易さと同様に、ゲートの近傍は温度が高く、ゲートから離れるに従って温度が低くなる。そのため、繊維の流動性の違いによって生じる弾性率の分布と、熱伝達の結果である温度分布とは、類似した傾向を示す。そして、各要素の温度と弾性率とは、上記式(4)のような簡単な変換によってほぼ対応付けられる。
次に、物性値算出処理(S23)において物性値算出部80は、各要素の熱流束ベクトルに基づいて弾性率の配向性を算出する。各要素の繊維方向が熱流束ベクトルの方向と一致するように、全体の座標系を各要素の座標系である要素座標系に変換するための係数(マトリクス)を算出する。この係数(マトリクス)が各要素の配向性を示す値(マトリクス)となる。
最後に、物性値算出部80は、各要素の温度を各要素の密度に変換する。この変換では、以下に示す式(5)を用いる。式(5)では、要素の温度をT、温度情報36bに含まれる最高温度及び最低温度をそれぞれTmax及びTmin、要素の密度をρ、変換条件情報38aの最大密度及び最小密度をそれぞれρmax及びρminとする。
Figure 2010069654
・・・式(5)
このように、物性値算出部80は、温度情報36bに含まれる最高温度を変換条件情報38aに含まれる密度の最大値ρmaxに対応付け、温度情報36bに含まれる最低温度を変換条件情報38aに含まれる密度の最小値ρminに対応付け、温度情報36bに含まれる温度が高い要素である程、当該要素の上記密度が大きくなるように、温度情報36bに含まれる各要素の温度を各要素の弾性率に一対一で対応付ける。本実施の形態では、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記密度の最大値と上記密度の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の弾性率として算出する。
一般に、均一な厚さを有する板のように単純な形状を有する部材の場合、金型のゲートからの距離が遠ざかる程、樹脂は流れにくくなる。金型のゲート付近では樹脂の温度は高いが、ゲートから離れるに従って樹脂の温度は低下し、それに伴って、樹脂の粘度が高くなるためである。このような金型を流れる樹脂の粘度が変化するために、部材の密度は、ゲート部分で大きく、ゲート部分離れるに従って小さくなる。従って、部材の密度分布は、ゲート部分を熱源とした場合の部材の温度分布と同様になる。そして、各要素の温度と密度とは、上記式(5)のような簡単な変換によってほぼ対応付けられる。
図18の変換処理の説明に戻って、最後に、物性値算出部80は、算出した物性値を示す物性情報40aを物性記憶部40に格納する(S24)。ここでの物性値は、上述のような繊維方向及びそれに垂直な方向の弾性値、配向性、密度等を含む(図8には、要素番号「1000」である要素に関する繊維方向及びそれに垂直な方向の弾性値と、密度とを例示する。)。繊維方向及びそれに垂直な方向の弾性値、並びに、配向性を示す値をまとめて、以下、配向性弾性値という。
このように、変換処理において、分割要素の違いを考慮しておらず、すなわち、分割要素が異なるために生じる要素のマッピング、各要素の値の統合や分配等を行わない。後述するように、本発明では熱解析と構造解析とで同一の分割要素を用いることができるためである。従って、変換処理を簡単にすることができ、処理時間を短くすることが可能になる。
再び図11を参照する。構造解析部66は、変換処理(S4)において算出された物性値を用いて部材の構造解析を行う(S5)。図19は、構造解析処理(S5)の詳細を示すフローチャートである。
構造解析部66は、要素記憶部32から要素情報32aを取得する(S31)。ここで取得する要素情報32aは、要素分割処理(S2)において要素分割部58により生成された要素情報である。すなわち、熱解析処理(S3)に利用された要素情報と同一である。
構造解析部66は、物性記憶部40から物性情報40aを取得する(S32)。ここで取得する物性情報40aは、変換処理(S4)において算出された物性値であり、すなわち、本実施の形態では配向性弾性値及び密度を含む。
構造解析部66は、構造解析条件記憶部42から構造解析条件情報42aを取得する(S33)。構造解析条件情報42aは、構造解析に必要な境界条件等の条件を含む情報であり、詳しくは、分割された各要素又は各要素の節点に、例えば変位及び回転の拘束、荷重、応力等の解析条件を想定する状況に応じてユーザが適宜設定する条件を含む情報である。
ファン90aの場合、構造解析条件情報42aは、例えば、ファン90aの中心に挿入される回転軸と嵌り合う部分を固定端とし、その他の表面を自由端とする情報を含む。また、この場合の構造解析条件情報42aは、回転速度に応じた遠心力及びファンが受ける空気圧を示す情報を含んでもよい。
構造解析部66は、熱解析処理(S3)と同様に、要素情報32aに含まれる要素を用いて、例えば有限要素法等の手法によって構造解析を行う。それによって、構造解析部66は、構造解析結果を算出し、算出した構造解析結果を含む構造解析結果情報44aを生成する(S34)。本実施の形態では、構造解析結果は部材の応力及び変位を含む。構造解析結果によって、例えば、最大回転速度に耐えられるファン90の羽根の厚さ等を繊維の配向性を考慮した構造解析に基づいて検討できる。従って、
このように、構造解析と熱解析とで、同一の分割要素を用いる。そのため、異なる要素間でのマッピング、すなわち、熱解析の結果に基づいて算出された各要素の物性値を異なる要素に変換する必要がなくなる。そのため、構造解析処理を簡単にすることができ、当該処理に要する計算時間を短縮することが可能になる。また、構造解析には、繊維の配向性を考慮した物性情報が用いられる。そのため、高精度の構造解析が可能になり、部材及び射出成形のための金型の緻密で高度な設計が可能になる。
図19の構造解析処理の説明に戻って、最後に、構造解析部66は、構造解析結果情報44aを構造解析結果記憶部44に格納する(S35)。これにより、ユーザは構造解析の結果が保持され、それを随時参照できる。
再び図11に戻る。表示制御部70は、構造解析部66から構造解析結果情報44aを取得し、構造解析結果情報44aを示す画像を表示部22に表示する。これによって、構造解析装置20aは処理を終了する。
以上のように、繊維特性情報の算出工程及び繊維特性情報を物性情報に変換する工程で計算負荷を軽減できる。そのため、各工程に要する処理時間が短縮される。また、繊維の配向性を考慮した物性情報に基づいて構造解析を行うため、高精度の構造解析の結果を得ることができる。従って、高精度な構造解析を、従来の技術によって計算する場合よりも短時間で行うことが可能になる。
(実施の形態2)
実施の形態2では、熱解析によって算出される熱特性値を変換することによって構造特性値を算出する。ここで、構造特性値とは、部材の構造上の特性を示す値であって、本実施の形態では部材の各要素の強度である。
また、実施の形態2では、ウェルドが発生する部材において、ウェルドが発生する位置(ウェルド位置)を考慮して強度を算出する。
ウェルドとは、金型に流し込まれた材料の流れが合流して融着する部分であり、線状又は帯状に表れることが多いが形状はこれに限られない。ウェルドは、複数のゲートから材料が流し込まれる場合に、各ゲートから流入する材料が衝突する位置で生じる。また例えば、部材の中に窓や孔が設けられる場合に、ウェルドはその周辺で生じる。ウェルドは部材の美観を損ない、またウェルド位置では強度が低下する。そのため、ウェルドが部材の不良の原因となることがある。
ウェルドによる不良を防止するために、成形用の金型や部材には種々の工夫がなされる。例えば、部材の強度に与える影響が少ない位置にウェルドが生じるように、金型のゲートが設けられ、また金型及び部材の形状が設計される。また、ウェルドの発生を抑えられるように、流し込まれる材料の温度は調整される。このように、ウェルドが生じる部材では、ウェルドによる不良を防ぐ前提として、ウェルド位置の予測が重要である。
以下、本発明の実施の形態2について図を参照して説明する。本実施の形態では、全図を通して、実施の形態1と同一の部位及び処理部には同じ参照符号を付している。
図20は、本発明の実施の形態2に係る構造解析装置の外観を示す。構造解析装置20bは、細長い繊維状物質を含む材料を用いて射出成形される部材の強度を算出する装置である。本実施の形態では、図20に示す表示部22に表示されている板90bを部材の例として説明する。板90bは、図示するように、金型のゲートに対応する2つのゲート部分92b,92cを有する。部材が複数のゲート部分を有するため、板90bにはウェルドが発生する。
図21は、実施の形態2に係る構造解析装置20bのブロック図である。以下、本実施の形態に特徴的な情報を記憶している記憶部及び本実施の形態に特徴的な処理を行う処理部について説明し、実施の形態1と同様の情報を記憶している記憶部及び処理を行う処理部に関するここでの説明は省略する。
要素記憶部32は、実施の形態1と同様に要素情報32bを記憶している。要素情報32bは、図22に示すように、各要素のx方向、y方向及びz方向の大きさと、各要素を特定するための「要素番号」に対応付けられた各要素の基準位置とを含む。本実施の形態の各要素は、図21の表示部22に示すように、立方体であるため、要素情報32bによって各要素の位置関係が特定できる。本実施の形態では、x方向の大きさ(Δx)、y方向の大きさ(Δy)及びz方向の大きさ(Δz)を全て「0.5」とし、また、例えば要素番号が「1」である要素の基準位置を「(0,0,0)」としている。なお、この要素は、実施の形態1と同様に、熱解析等の計算に用いられるが、要素の形状は、四面体、立方体等が適宜選択的に使用されてよい。
熱解析条件記憶部34は、熱解析条件情報34bを記憶している。本実施の形態の熱解析条件情報34bは、図23に示すように、実施の形態1に係る熱解析条件情報34aと異なり、2つのゲート位置を含む。
熱特性記憶部36は、熱特性情報36c〜36eを記憶している。図24〜図26は、それぞれ熱特性情報のうち、温度勾配情報36c、熱流束ベクトル情報36d及び温度情報36eの具体例を示す。温度勾配情報36cは、各要素における温度勾配を示す情報を含む。熱流束ベクトル情報36d及び温度情報36eはそれぞれ、実施の形態1と同様に、各要素の熱流束ベクトル及び温度を示す情報である。
変換条件記憶部38は、変換条件情報38bを記憶している。変換条件情報38bは、入力情報取得部52を介してユーザが記憶させる情報である。図27は、実施の形態2に係る変換条件情報38bの具体例を示す。変換条件情報38bは、同図に示されるように、熱特性値を強度に変換するための条件を含む。強度には、引張り強さ、降伏点強度、引張強さの70%か降伏点強度のうち小さい方等が用いられてよい。繊維を含む樹脂の強度は、繊維の方向とそれに垂直な方向とでは大きく異なる。そのため、繊維を含む樹脂の強度は配向性を有する。以下、繊維に沿った方向の強度をσMD、繊維に垂直な方向の強度をσTDとする。
変換条件情報38bは、具体的には、各要素の温度を各要素の強度(繊維方向の強度σMD及び繊維方向に垂直な方向の強度σTD)を得るために、部材中の強度の最大値及び最小値(最大強度σMDmax、最小強度σMDmin)を示す情報を含む。図27に示す変換条件情報38bは、繊維方向の最大強度σMDmaxを1800(kg/cm)とする例を示す。また、変換条件情報38bは、ウェルド位置での強度を算出するための係数であるウェルド強度倍率も含む。
ウェルド強度倍率は、材料自体の強度に対するウェルド部分での強度が倍率であり、すなわち、材料でウェルドが発生した部分の強度が材料自体の強度に比べてどの程度であるかを示す。図27に示す変換条件情報38bは、ウェルド強度倍率を1/3とする例を示す。
再び図21を参照する。本実施の形態の熱解析部60bは、熱解析条件記憶部34から熱解析条件情報34bを取得し、要素分割部58から部材の各要素を示す情報を取得し、これらの取得した情報に基づいて熱解析を行い、これによって、温度勾配情報36cと熱流束ベクトル情報36dと温度情報36eとを含む熱特性情報36c〜36eを算出する。
変換部64bは、熱解析部60bによる熱解析処理が終了すると、変換条件記憶部38から変換条件情報38bを取得し、熱特性記憶部36から熱特性情報36c〜36eを取得し、これらの取得した情報に基づいて、熱特性値を強度に変換する。
図28は、実施の形態2に係る変換部64bの詳細を示すブロック図である。図示するように、変換部64bは、熱特性情報取得部72bと、変換条件情報取得部78と、ウェルド位置特定部82と、強度算出部84aとを有する。
熱特性情報取得部72bは、熱特性記憶部36から熱流束ベクトル情報36dを取得する熱流束ベクトル情報取得部74aと、熱特性記憶部36から温度情報36eを取得する温度情報取得部74bと、熱特性記憶部36から温度勾配情報36cを取得する温度勾配情報取得部74cとを有する。変換条件情報取得部78は、実施の形態1と同様に、変換条件記憶部38から変換条件情報38bを取得する。
ウェルド位置特定部82は、温度勾配情報取得部74cを介して温度勾配情報74cを取得し、取得した温度勾配情報74cに基づいて部材のウェルド位置を特定する。図29は、2つのゲート部分を熱源として熱解析によって算出された温度分布を示す図である。29を参照すると、部材90bにおけるウェルド位置100は、ゲート92b,92cから流入した樹脂等の材料の流れが合流する場所であり、熱の伝わりに置き換えて考えると、ゲート92b,92cを熱源として隣接する要素間で温度が等しい場所である。そのため、温度勾配が閾値以下になる要素が、ウェルド位置100であるとして特定される。
ウェルド位置特定部82は、特定したウェルド位置の要素を示す情報をウェルド位置情報として生成し、強度算出部84aに引き渡す。
なお、ウェルド位置を特定するための温度勾配の閾値は、「0」であってもよい。この場合、温度勾配が0である要素が、ウェルド位置として特定される。
なお、温度勾配ではなく、例えば温度情報を用いてもよい。例えば図29の等しい温度を結んだ等温線96a〜96eから分かるように、ゲートから金型に流入した材料の温度は、ゲート部分92b及び92cから離れるに従って次第に低くなる。そのため、ウエルド位置は、温度が低い位置に対応する。従って、ウエルド位置は、閾値よりも温度の低い位置として特定することもできる。
強度算出部84aは、変換条件情報38bと、温度情報36eと、熱流束ベクトル情報36dと、ウェルド位置情報とを取得し、これらの取得した情報に基づいて強度を算出する。
次に、実施の形態2に係る構造解析装置20bが実行する処理の詳細について、フローチャートを参照して説明する。
図30は、実施の形態2に係る構造解析装置20bが実行する処理のフローチャートである。形状取得部56及び要素分割部58は、それぞれ、実施の形態1の形状情報取得処理(S1)及び要素分割処理(S2)と同様に、形状情報取得処理(S41)及び要素分割処理(S42)を実行する。本実施の形態に係る板90bの要素分割の例を図20に示す。
熱解析部60bは熱解析処理を実行する(S43)。図31は、実施の形態2に係る熱解析処理(S43)の詳細を示すフローチャートである。熱解析部60bは、要素分割部58から要素情報32bを取得する(S51)。熱解析部60aは、熱解析条件記憶部34から熱解析条件情報34aを取得する(S52)。熱解析部60aは、各取得処理(S51及びS52)において取得した情報を用いて、例えば有限要素法による熱解析を行い、それによって、各要素の熱流束ベクトル、温度勾配及び温度を含む熱特性値を算出する(S53)。熱解析部60aは、熱特性値の算出処理(S53)において算出した熱特性値を含む熱特性情報36c〜36eを熱特性記憶部36に格納する(S14)。
再び図30を参照して、変換部64bは、熱特性値を強度に変換する(S44)。図32は、実施の形態2の変換処理(S44)の詳細を示すフローチャートである。
熱特性情報取得部72bは、熱特性情報36c〜36eを取得する(S61)。より詳細には、熱流束ベクトル取得部74aが熱流束ベクトル情報36dを、温度情報取得部74bが温度情報36eを、温度勾配情報取得部74cが温度勾配情報36cをそれぞれ取得する。
ウェルド位置特定部82は、温度勾配情報36cに基づいてウェルド位置を特定する(S62)。ここで、ウェルド位置特定部82は、上述のように、各要素の温度勾配が閾値以下であるか否かを判断し、閾値以下である要素をウェルド位置と特定する。
なお、上述のように、ウェルド位置は、閾値よりも温度が低い位置として特定することもできる。この場合、ウェルド位置特定部82は、温度勾配情報36cに基づいてウェルド位置を特定する処理(S62)に代えて、温度分布(各要素の温度)からウエルド位置を特定する。すなわち、ウェルド位置特定部82は、各要素の温度を含む温度情報36eを参照して、板90bの中の最低温度を特定するとともに、各要素の温度が最低温度と等しいか又は閾値以下であるか否かを判断し、最低温度と等しい又は閾値以下である要素をウェルド位置として特定する。ここで、板90bの中の最低温度とは、板90bに含まれる各要素の温度の中で最も低い温度をいう。
変換条件情報取得部78は、変換条件記憶部38から変換条件情報38bを取得する(S63)。強度算出部84aは、熱流束ベクトル情報36aと、温度情報36bと、変換条件情報38aとに基づいて強度を算出する(S64)。
ここで、強度算出部84aによる強度算出処理(S64)について詳しく説明する。
強度算出部84aは、各要素の温度を各要素の強度に変換する。ここで、強度には、繊維方向の強度の大きさ、繊維と垂直な方向の強度の大きさ、及び、繊維方向に従って強度の配向性を示す値を含む。
強度算出処理(S64)では、強度の各方向の大きさを算出するために、以下に示す式(6)を用いる。式(6)は、式(4)の弾性値Eを強度σに置き換えたものであり、要素の温度をT、最高温度及び最低温度をそれぞれTmax及びTmin、要素の繊維方向の強度をσMD、繊維方向の最大強度及び最小強度のそれぞれの大きさをσMDmax及びσMDminとする。
Figure 2010069654
・・・式(6)
なお、繊維と垂直な方向の弾性率σTDは、式(6)のσMDをσTDに、σMDmaxをσTDmaxに、σMDminをσTDminにそれぞれ置き換えた式によって変換する。
このように、強度算出部84aは、温度情報36bに含まれる最高温度を変換条件情報38bに含まれる最大強度(例えば、繊維方向の最大強度σMDmax)に対応付け、温度情報36bに含まれる最低温度を変換条件情報38aに含まれる最小強度(例えば、繊維方向の最小強度σMDmin)に対応付け、温度情報36bに含まれる温度が高い要素である程、当該要素の上記強度が大きくなるように、温度情報36bに含まれる各要素の温度を各要素の強度に一対一で対応付ける。本実施の形態では、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の強度が得られる場合に、上記最大強度と上記最小強度とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の強度として算出する。
上述のように、1つの部材においてゲートの近傍は長い長さを有する繊維を多く含み、そのため樹脂の強度は強い。そして、ゲートから離れるに従って、含まれる繊維の長さが短くなり、そのため強度は弱くなる。また、ゲートを熱源とした場合の部材の温度分布は、ゲート近傍程温度が高く、ゲートから離れる程温度が低くなる。そのため、繊維の流動性の違いによって生じる樹脂の強度の大きさの分布と、熱伝達の結果である温度分布とは、類似した傾向を有しており、上記式(6)のような簡易な変換によってほぼ対応付けられる。
次に、強度算出処理(S64)において強度算出部84aは、各要素の熱流束ベクトルに基づいて強度の配向性を算出する。各要素の繊維方向が熱流束ベクトルの方向と一致するように、全体の座標系を各要素の座標系である要素座標系に変換するための係数(マトリクス)を算出する。この係数(マトリクス)が各要素の強度の配向性を示す値(マトリクス)となる。
強度算出部84aは、ウェルド位置の強度を算出する(S65)。強度算出部84aは、ウェルド位置特定処理(S62)において特定されたウェルド位置に対応する要素について、強度算出処理(S64)において算出された繊維方向及びそれに垂直な方向の強度のそれぞれの大きさにウェルド強度倍率を掛けることによって、ウェルド位置に対応する要素の各方向の強度の大きさを修正する。
強度算出部84aは、ウェルド位置に対応する要素については、ウェルド位置の強度算出処理(S65)において修正された強度を含み、又その他の要素については、強度算出処理(S64)において算出された強度を含む強度情報を構造解析結果情報44bとして構造解析結果記憶部44に格納する(S66)。
以上のように、熱解析によって得られる温度分布を変換することによって、温度分布から直接的に部材の強度を算出する。しかも、変換は上記式(6)のように簡単な式に従って処理され、そのため、変換に要する処理時間は短い。従って、部材の強度を十分な精度でかつ非常に短い時間で行うことが可能になる。
(実施の形態3)
本実施の形態では、実施の形態1と同様の方法によって応力分布を算出し、また実施の形態2と同様の方法によって強度分布を算出し、これらの算出された応力分布と強度分布をと用いて部材の安全率分布を作成する。
以下、本発明の実施の形態3について図を参照して説明する。本実施の形態では、全図を通して、実施の形態1及び実施の形態2と同一の部位及び処理部には同じ参照符号を付している。
実施の形態3に係る構造解析装置20cの外観は、図1に示す実施の形態1に係る構造解析装置20aの外観と同様であり、実施の形態3に係る構造解析装置20cは、例えばコンピュータ及びそれに接続されたモニタ等の表示部22とキーボード、マウス等の入力部24により実現される。
図33は、本発明の実施の形態3に係る構造解析装置20cのブロック図である。
変換条件記憶部38は、図34に示すように、弾性率E、密度ρ及び強度σを算出するための条件を含む変換条件情報38cを記憶している。弾性率Eを算出するための変換条件として変換条件情報38cは、繊維方向及びそれに垂直な方向の最大弾性率EMDmax,TDmax及び最小弾性率EMDmin,TDminを含む。密度ρを算出するための変換条件として変換条件情報38cは、最大密度ρmaxと最小密度ρminを含む。強度σを算出するための変換条件として変換条件情報38cは、繊維方向及びそれに垂直な方向の最大弾性率σMDmax,σTDmax及び最小弾性率σMDmin,σTDminを含む。
構造解析結果記憶部44は、構造解析の結果としての各要素の応力を示す情報と、各要素の強度を示す情報とを含む構造解析結果情報44cを記憶している。本実施の形態では、ウェルド位置を考慮しない強度を例に説明するが、実施の形態2と同様にウェルド位置を考慮した強度を算出し、それによって、ウェルド位置を考慮した強度を用いて、後述する安全率を算出してもよい。また、構造解析結果情報44cには、変位を示す情報が含まれてもよい。
また、構造解析結果記憶部44は、応力及び強度を用いて算出された各要素の安全率を示す情報を更に含む構造解析結果情報44cを記憶している。
変換部64cは、熱解析部60aによる熱解析処理が終了すると、変換条件記憶部38から変換条件情報38aを取得し、熱特性記憶部36から熱特性情報36a,36bを取得し、これらの取得した情報に基づいて、熱特性値を物性値及び強度に変換する。
図35は、実施の形態3に係る変換部64cの詳細を示すブロック図である。変換部64cは、図示するように、実施の形態1に係る変換部64aが有する各処理部に加えて、強度算出部84bを有する。
強度算出部84bは、熱特性情報取得部72aから熱流束ベクトル情報と温度情報と取得し、変換条件情報取得部78から変換条件情報の強度σに関する情報を取得し、取得したこれらの情報に基づいて部材の各要素の強度を算出する。
再び図33を参照する。安全率算出部86は、変換部64aで算出された各要素の強度と構造解析部により算出された各要素の応力とを構造解析部66から取得し、取得した各要素の強度と各要素の応力とを用いて、対応する要素の応力に対する強度の倍率(強度/応力)を各要素について算出する。
次に、実施の形態3に係る構造解析装置20cが実行する処理について説明する。図36は、実施の形態3に係る構造解析装置20cが実行する処理のフローチャートである。
形状取得部56及び要素分割部58は、それぞれ、実施の形態1の形状情報取得処理(S1)及び要素分割処理(S2)と同様に、形状情報取得処理(S71)及び要素分割処理(S72)を実行する。
熱解析部60aは、実施の形態1の熱解析処理(図11のS3)と同様に、熱解析処理(S73)を実行する。熱解析処理(S73)の詳細は、実施の形態1の熱解析処理の詳細(図13参照)と同じであるため、ここでの詳細な説明は省略する。
変換部64cは、図18に詳細を示す熱特性値−物性値の変換処理(図11のS4)と同様の処理を行い、これによって、熱特性値を物性値に変換する(S74)。
更に、変換部64cは、熱特性値を強度に変換する(S75)。実施の形態3に係る熱特性値−強度変換処理(S75)の詳細を図37に示すフローチャートを参照して、説明する。
熱特性情報取得部72aは、熱特性情報36a,36bを取得する(S81)。より詳細には、熱流束ベクトル取得部74aが熱流束ベクトル情報36aを、温度情報取得部74bが温度情報36bをそれぞれ取得する。
変換条件情報取得部78は、変換条件記憶部38から変換条件情報38bを取得する(S82)。強度算出部84bは、熱流束ベクトル情報36aと、温度情報36bと、変換条件情報38aとに基づいて、各要素の強度を算出する(S83)。ここで算出される強度は、実施の形態2の強度算出処理(S64)において算出される強度と同じであり、繊維方向の強度の大きさ、繊維と垂直な方向の強度の大きさ、及び、繊維方向に従って強度の配向性を示す値を含む。続けて、強度算出部84bは、算出した各要素の強度を構造解析結果情報44cとして構造解析結果記憶部44に格納する(S84)。
再び図36を参照すると、構造解析部66は、熱特性値−物性値変換処理(S74)において算出された物性値を用いて部材の構造解析を行い、それによって、ユーザが想定する条件下での部材の応力及び変位を算出する(S76)。構造解析処理(S76)の詳細は、図19に示す実施の形態1の構造解析処理と同様であるため、ここでの詳細な説明は省略する。
安全率算出部86は、各要素の安全率を算出する(S77)。実施の形態3に係る安全率算出処理(S77)の詳細なフローチャートを図38に示す。安全率算出部86は、構造解析部66から各要素の強度を含む強度情報を取得する(S91)。安全率算出部86は、構造解析結果記憶部44から各要素の応力情報を取得する(S92)。
安全率算出部86は、各要素の強度を対応する要素の応力で割ることによって、各要素の安全率を算出する(S93)。
ここで、強度は、上述のように配向性を有する。また、応力も各方向について算出できる。そのため、各要素の安全率は、例えば、各要素の繊維の方向とそれに垂直な方向とのそれぞれについて算出され、小さい方を当該要素の安全率とする。
なお、安全率の算出には、例えば、各方向の強度を1つの大きさに変換した強度を用いてもよい。この場合、安全率の算出に用いる応力には、各要素に生じる応力の絶対値を用いるとよい。
安全率算出部86は、算出した各要素の安全率を構造解析結果記憶部44に格納する(S94)。
再び図36を参照する。表示制御部70は、例えば各要素の安全率の大きさの違いを色の変化に対応付けて表すコンタ図、各要素における安全率の絶対値のリスト等の形式で表示部22に表示させ(S78)、処理を終了する。
以上のように、本実施の形態では、繊維を含む部材の要素毎の安全率を算出する。そのため、安全率の高精度なシミュレーションが実現できる。また、このような安全率の算出に用いる要素毎の弾性率及び強度は熱解析に基づいて算出されるため、その算出に要する時間は、流動解析等によって算出する場合よりも短い。従って、部材の安全率について、短時間で算出することが可能になる。さらに、各要素の繊維の配向性を考慮した安全率を算出できる。そのため、高精度な安全率の算出が可能になり、製品及び製品を射出成形するための金型の高精度な設計が可能になる。
なお、本発明の各実施の形態において、解析の結果は、要素毎に算出されることとしたが、各要素を分割する境界の交点である節点毎に算出されてもよい。これにより、適切な計算方法を適宜選択することが可能になる。
本発明は、繊維状の物質を含み、射出成形される材料を用いて作られる部材等の構造解析に利用することができる。
本発明の実施の形態1に係る構造解析装置の外観を示す図。 実施の形態1に係る構造解析装置のブロック図。 実施の形態1に係る要素情報の具体例を示す図。 実施の形態1に係る熱解析条件情報の具体例を示す図。 実施の形態1に係る熱流束ベクトル情報の具体例を示す図。 実施の形態1に係る温度情報の具体例を示す図。 実施の形態1に係る変換条件情報の具体例を示す図。 実施の形態1に係る物性情報の具体例を示す図。 実施の形態1に係る構造解析結果情報の具体例を示す図。 実施の形態1に係る変換部の詳細を示すブロック図。 実施の形態1に係る構造解析装置が実行する処理のフローチャート。 部材としてのファン90aを要素分割した例を示す図。 熱解析処理S3の詳細を示すフローチャート。 ファンの熱解析によって得られた各要素の熱流束ベクトルの一部を示す図。 実施の形態1で例示するファンの正面を示す写真。 図15に示される矩形部分のX線CT装置による画像を拡大して示す図。 X線CT装置による画像に基づいて作成したファンの繊維の配向性を示す図。 実施の形態1の変換処理の詳細を示すフローチャート。 構造解析処理S5の詳細を示すフローチャート。 本発明の実施の形態2に係る構造解析装置の外観を示す図。 実施の形態2に係る構造解析装置のブロック図。 実施の形態2に係る要素情報の具体例を示す図。 実施の形態2に係る熱解析条件情報の具体例を示す図。 実施の形態2に係る温度勾配情報の具体例を示す図。 実施の形態2に係る熱流束ベクトル情報の具体例を示す図。 実施の形態2に係る温度情報の具体例を示す図。 実施の形態2に係る変換条件情報の具体例を示す図。 実施の形態2に係る変換部の詳細を示すブロック図。 2つのゲートを熱源として熱解析によって算出された温度分布を示す図。 実施の形態2に係る構造解析装置が実行する処理のフローチャート。 実施の形態2に係る熱解析処理S43の詳細を示すフローチャート。 実施の形態2の変換処理S44の詳細を示すフローチャート。 実施の形態3に係る構造解析装置20cのブロック図。 実施の形態3に係る変換条件情報の具体例を示す図。 実施の形態3に係る変換部の詳細を示すブロック図。 実施の形態3に係る構造解析装置が実行する処理のフローチャート。 実施の形態3に係る熱特性値−強度変換処理の詳細を示すフローチャート。 実施の形態3に係る安全率算出処理S77の詳細を示すフローチャート。
符号の説明
20a,20b,20c 構造解析装置、22 表示部、24 入力部、26 CAD装置、32 要素記憶部、34 熱解析条件記憶部、36 熱特性記憶部、38 変換条件記憶部、40 物性記憶部、42 構造解析条件記憶部、44 構造解析結果記憶部、52 入力情報取得部、56 形状取得部、58 要素分割部、60a,60b 熱解析部、64a,64b,64c 変換部、66 構造解析部、70 表示制御部、72a,72b 熱特性情報取得部、74a 熱流束ベクトル情報取得部、74b 温度情報取得部、74c 温度勾配情報取得部、78 変換条件情報取得部、80 物性値算出部、82 ウェルド位置特定部、84a,84b 強度算出部、86 安全率算出部。

Claims (13)

  1. 繊維状物質を含む材料を用いて射出成形される部材の構造解析方法であって、
    上記部材の形状情報を取得する形状取得ステップと、
    上記部材を複数の要素に分割し、分割した各要素を示す要素情報を生成する要素分割ステップと、
    上記要素情報が示す上記各要素を用いて、上記材料を流し込む金型のゲートに対応する部分に熱源があるとして熱解析を行うことによって上記部材の熱特性を示す熱特性値を算出し、算出した上記熱特性値を含む熱特性情報を生成する熱解析ステップと、
    上記熱特性情報を取得し、取得した上記熱特性情報を構造解析に用いる物性値を含む物性情報に変換する変換ステップと、
    上記物性情報に含まれる上記物性値と、上記要素情報が示す上記各要素とを用いて上記部材の構造解析を行う構造解析ステップとを含むことを特徴とする構造解析方法。
  2. 上記熱解析ステップにおいて、上記各要素の熱流束ベクトルを示す熱流束ベクトル情報を含む上記熱特性情報を生成し、
    上記変換ステップにおいて、
    上記熱流束ベクトルを含む上記熱特性情報を取得するステップと、
    上記熱流束ベクトルを上記繊維状物質の配向性とすることによって、上記繊維状物質の配向性を考慮した物性値を含む物性情報に変換するステップとを含むことを特徴とする請求項1に記載の構造解析方法。
  3. 上記熱解析ステップにおいて、上記各要素の温度を示す温度情報を更に含む上記熱特性情報を生成し、
    上記変換ステップは、
    上記温度情報を含む上記熱特性情報を取得するステップと、
    上記部材における物性値の最大値及び最小値を含む変換条件情報を取得するステップと、
    上記温度情報に含まれる温度が高い要素である程、当該要素の上記物性値が大きくなるように、上記温度を上記物性値に一対一で対応付けて変換するとを含むことを特徴とする請求項2に記載の構造解析方法。
  4. 上記構造解析ステップにおいて、ユーザによって設定された境界条件及び算出された上記各要素の物性値を参照して、上記各要素の応力及び/又は変位を算出することを特徴とする請求項1から請求項3のいずれか1項に記載の構造解析方法。
  5. 上記変換ステップは、
    上記部材における弾性率の最大値及び最小値と、密度の最大値及び最小値とを含む変換条件情報を取得するステップと、
    上記温度情報に含まれる最高温度を上記弾性率の最大値に、最低温度を上記弾性率の最小値に対応付け、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記弾性率の最大値と上記弾性率の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の弾性率として算出するステップと、
    上記熱流束ベクトルを上記繊維状物質の配向性とすることによって、上記繊維状物質の配向性を考慮した前記各要素の弾性率を含む物性情報に変換するステップと、
    上記温度情報に含まれる最高温度を上記密度の最大値に、最低温度を上記密度の最小値にそれぞれ対応付け、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記密度の最大値と上記密度の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の密度として算出するステップとを含むことを特徴とする請求項3又は4に記載の構造解析方法。
  6. 上記変換ステップは、
    上記部材における物性値の最大値及び最小値と、上記部材における強度の最大値及び最小値とを含む変換条件情報を取得するステップと、
    上記温度情報に含まれる最高温度を上記物性値の最大値に、最低温度を上記物性値の最小値にそれぞれ対応付け、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記物性値の最大値と上記物性値の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の物性値として算出するステップと、
    上記温度情報に含まれる最高温度を上記強度の最大値に、最低温度を上記強度の最小値にそれぞれ対応付け、上記最高温度と上記最低温度とのそれぞれに重み付けをして各要素の温度が得られる場合に、上記構造特性値の最大値と上記強度の最小値とに上記各要素の温度を得た場合と同じ重み付けをして得られる値を前記各要素の強度として算出するステップとを含み、
    上記構造解析ステップにおいて、予め設定された境界条件及び算出された上記各要素の各物性値を参照して、上記各要素の応力を算出し、
    更に、
    上記各要素について上記強度を上記応力で割ることによって、上記各要素の安全率を算出するステップとを含むことを特徴とする請求項5に記載の構造解析方法。
  7. 上記変換ステップは、
    上記材料でウェルドが発生した部分の強度が上記材料の強度に比べてどの程度であるがを示す強度倍率を更に含む変換条件情報を取得するステップと、
    上記温度情報に含まれる上記各要素の温度が上記最低温度と等しいか又は閾値以下であるかを判断し、上記最低温度と等しい又は上記閾値以下である要素をウェルド位置として特定するステップと、
    ウェルド位置であると特定された要素について、上記温度情報に基づいて得られた強度に上記強度倍率を掛けることによって上記ウェルド位置の強度を修正し、修正したウェルド位置の強度を含む強度情報を生成するステップとを含むことを特徴とする請求項6に記載の構造解析方法。
  8. 上記熱解析ステップにおいて、上記各要素の温度勾配を示す温度勾配情報を含む上記熱特性情報を生成し、
    上記変換ステップは、
    上記温度勾配情報を含む上記熱特性情報を取得するステップと、
    上記材料でウェルドが発生した部分の強度が上記材料の強度に比べてどの程度であるがを示す強度倍率を更に含む変換条件情報を取得するステップと、
    上記温度勾配情報に含まれる上記各要素の温度勾配が閾値以下であるかを判断し、上記閾値以下である要素をウェルド位置として特定するステップと、
    ウェルド位置であると特定された要素について、上記温度情報に基づいて得られた強度に上記強度倍率を掛けることによって上記ウェルド位置の強度を修正し、修正したウェルド位置の強度を含む強度情報を生成するステップとを含むことを特徴とする請求項6に記載の構造解析方法。
  9. 射出成形された部材を複数の要素に分割し、分割した当該複数の要素を用いて当該部材について構造解析を行うための物性値を算出する物性値算出方法であって、
    上記構造解析と同一の上記複数の要素を用いた熱解析によって得られた部材の熱特性を示す熱特性情報を、上記構造解析をするための上記各要素の物性値を示す物性情報に変換することを特徴とする構造解析のための物性値算出方法。
  10. 繊維状物質を含む材料を用いて射出成形される部材の構造解析装置であって、
    上記部材の形状情報を取得する形状取得手段と、
    上記部材を複数の要素に分割し、分割した各要素を示す要素情報を生成する要素分割手段と、
    上記要素情報が示す上記各要素を用いて、上記材料を流し込む金型のゲートに対応する部分に熱源があるとして熱解析を行うことによって、上記部材の熱特性を示す熱特性情報を生成する熱解析手段と、
    上記熱特性情報を取得し、取得した上記特性情報を構造解析に必要な物性値を含む物性情報に変換する変換手段と、
    上記物性情報に含まれる上記物性値と、上記要素情報が示す上記各要素とを用いて上記部材の構造解析を行う構造解析手段とを含むことを特徴とする構造解析装置。
  11. 繊維状物質を含む材料を用いて射出成形される部材の構造解析プログラムであって、
    上記部材の形状情報を取得する形状取得ステップと、
    上記部材を複数の要素に分割し、分割した各要素を示す要素情報を生成する要素分割ステップと、
    上記要素情報が示す上記各要素を用いて、上記材料を流し込む金型のゲートに対応する部分に熱源があるとして熱解析を行うことによって、上記部材の熱特性を示す熱特性情報を生成する熱解析ステップと、
    上記熱特性情報を取得し、取得した上記特性情報を構造解析に必要な物性値を含む物性情報に変換する変換ステップと、
    上記物性情報に含まれる上記物性値と、上記要素情報が示す上記各要素とを用いて上記部材の構造解析を行う構造解析ステップとをコンピュータに実行させることを特徴とする構造解析プログラム。
  12. 射出成形された部材を複数の要素に分割し、分割した当該複数の要素を用いて当該部材を構造解析するための物性値を算出する物性値算出装置であって、
    上記構造解析と同一の上記複数の要素を用いた熱解析によって得られた部材の熱特性を示す熱特性情報を、上記構造解析をするための上記各要素の物性値を示す物性情報に変換することを特徴とする構造解析のための物性値算出装置。
  13. 射出成形された部材を複数の要素に分割し、分割した当該複数の要素を用いて当該部材を構造解析するための物性値を算出する物性値算出プログラムであって、
    上記構造解析と同一の上記複数の要素を用いた熱解析によって得られた部材の熱特性を示す熱特性情報を、上記構造解析をするための上記各要素の物性値を示す物性情報に変換することをコンピュータに実行させることを特徴とする構造解析のための物性値算出プログラム。
JP2008237570A 2008-09-17 2008-09-17 構造解析方法 Expired - Fee Related JP5264380B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237570A JP5264380B2 (ja) 2008-09-17 2008-09-17 構造解析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237570A JP5264380B2 (ja) 2008-09-17 2008-09-17 構造解析方法

Publications (2)

Publication Number Publication Date
JP2010069654A true JP2010069654A (ja) 2010-04-02
JP5264380B2 JP5264380B2 (ja) 2013-08-14

Family

ID=42201901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237570A Expired - Fee Related JP5264380B2 (ja) 2008-09-17 2008-09-17 構造解析方法

Country Status (1)

Country Link
JP (1) JP5264380B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000758A (ja) * 2009-06-17 2011-01-06 Polyplastics Co 配向状態予測方法及び変形挙動解析方法
CN102508978A (zh) * 2011-11-18 2012-06-20 东南大学 一种基于群论的对称杆系结构的可动性判定方法
CN102779113A (zh) * 2012-01-19 2012-11-14 东南大学 基于群集理论的可动结构广义坐标的违约修正方法
JP2016198997A (ja) * 2015-04-14 2016-12-01 本田技研工業株式会社 コンピュータ支援の樹脂挙動解析装置
EP3974807A1 (en) * 2020-09-23 2022-03-30 Konica Minolta, Inc. Information processing apparatus, learning device, information processing system, information processing method, program, and non-transitory storage medium
WO2023195419A1 (ja) * 2022-04-08 2023-10-12 ポリプラスチックス株式会社 成形不良予測方法、成形不良低減方法、成形不良予測プログラム及び成形不良低減プログラム

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128818A (ja) * 1996-11-01 1998-05-19 Denki Kagaku Kogyo Kk 成形品のウェルドライン長さ予測方法
JP2002273772A (ja) * 2001-03-22 2002-09-25 Toray Ind Inc 射出成形品の構造強度シミュレーション方法及び装置
JP2002292707A (ja) * 2001-03-29 2002-10-09 Toyoda Gosei Co Ltd 樹脂射出成形品のそり変形予測方法
JP2002321265A (ja) * 2001-04-25 2002-11-05 Toray Ind Inc ウェルドライン予測方法および装置
JP2003145571A (ja) * 2001-11-13 2003-05-20 Kanto Auto Works Ltd 繊維強化反応射出成形品の物性解析及び構造解析方法
JP2004025796A (ja) * 2002-06-28 2004-01-29 Canon Inc 樹脂成形品の機械物性予測方法及び機械物性予測システム
JP2005144860A (ja) * 2003-11-14 2005-06-09 Toyota Motor Corp 射出成形方法および射出成形条件設定方法
JP2005169909A (ja) * 2003-12-12 2005-06-30 Fujitsu Ten Ltd 樹脂成形品衝撃解析方法
JP2006213015A (ja) * 2005-02-07 2006-08-17 Kochi Univ Of Technology 金型内高分子液晶流動解析装置、金型内高分子液晶流動解析方法及び金型内高分子液晶流動解析プログラム
JP2006273655A (ja) * 2005-03-29 2006-10-12 Seiko Epson Corp 金型の成形面形状の設計方法
JP2006523351A (ja) * 2003-03-03 2006-10-12 モルドフロウ アイルランド リミテッド 加工される材料の性質を予測する装置および方法
JP2006272928A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd 射出成型品の形状予測方法、形状予測装置、形状予測プログラム及び記憶媒体
JP2008001088A (ja) * 2006-05-23 2008-01-10 Toray Eng Co Ltd 2次ウェルドライン予測方法および装置、そのプログラム、記憶媒体およびそれらを用いた成形品の製造方法
JP2008012814A (ja) * 2006-07-06 2008-01-24 Denso Corp 成形プロセスシミュレーション装置、成形プロセスシミュレーションプログラム及び成形品の変形解析方法
JP2008037007A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 射出成形のシュミレーションコンピュータ等と射出成形方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128818A (ja) * 1996-11-01 1998-05-19 Denki Kagaku Kogyo Kk 成形品のウェルドライン長さ予測方法
JP2002273772A (ja) * 2001-03-22 2002-09-25 Toray Ind Inc 射出成形品の構造強度シミュレーション方法及び装置
JP2002292707A (ja) * 2001-03-29 2002-10-09 Toyoda Gosei Co Ltd 樹脂射出成形品のそり変形予測方法
JP2002321265A (ja) * 2001-04-25 2002-11-05 Toray Ind Inc ウェルドライン予測方法および装置
JP2003145571A (ja) * 2001-11-13 2003-05-20 Kanto Auto Works Ltd 繊維強化反応射出成形品の物性解析及び構造解析方法
JP2004025796A (ja) * 2002-06-28 2004-01-29 Canon Inc 樹脂成形品の機械物性予測方法及び機械物性予測システム
JP2006523351A (ja) * 2003-03-03 2006-10-12 モルドフロウ アイルランド リミテッド 加工される材料の性質を予測する装置および方法
JP2005144860A (ja) * 2003-11-14 2005-06-09 Toyota Motor Corp 射出成形方法および射出成形条件設定方法
JP2005169909A (ja) * 2003-12-12 2005-06-30 Fujitsu Ten Ltd 樹脂成形品衝撃解析方法
JP2006213015A (ja) * 2005-02-07 2006-08-17 Kochi Univ Of Technology 金型内高分子液晶流動解析装置、金型内高分子液晶流動解析方法及び金型内高分子液晶流動解析プログラム
JP2006273655A (ja) * 2005-03-29 2006-10-12 Seiko Epson Corp 金型の成形面形状の設計方法
JP2006272928A (ja) * 2005-03-30 2006-10-12 Fujitsu Ltd 射出成型品の形状予測方法、形状予測装置、形状予測プログラム及び記憶媒体
JP2008001088A (ja) * 2006-05-23 2008-01-10 Toray Eng Co Ltd 2次ウェルドライン予測方法および装置、そのプログラム、記憶媒体およびそれらを用いた成形品の製造方法
JP2008012814A (ja) * 2006-07-06 2008-01-24 Denso Corp 成形プロセスシミュレーション装置、成形プロセスシミュレーションプログラム及び成形品の変形解析方法
JP2008037007A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 射出成形のシュミレーションコンピュータ等と射出成形方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000758A (ja) * 2009-06-17 2011-01-06 Polyplastics Co 配向状態予測方法及び変形挙動解析方法
CN102508978A (zh) * 2011-11-18 2012-06-20 东南大学 一种基于群论的对称杆系结构的可动性判定方法
CN102779113A (zh) * 2012-01-19 2012-11-14 东南大学 基于群集理论的可动结构广义坐标的违约修正方法
JP2016198997A (ja) * 2015-04-14 2016-12-01 本田技研工業株式会社 コンピュータ支援の樹脂挙動解析装置
EP3974807A1 (en) * 2020-09-23 2022-03-30 Konica Minolta, Inc. Information processing apparatus, learning device, information processing system, information processing method, program, and non-transitory storage medium
WO2023195419A1 (ja) * 2022-04-08 2023-10-12 ポリプラスチックス株式会社 成形不良予測方法、成形不良低減方法、成形不良予測プログラム及び成形不良低減プログラム

Also Published As

Publication number Publication date
JP5264380B2 (ja) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5264380B2 (ja) 構造解析方法
KR101355839B1 (ko) 덴드라이트 암 스페이싱 및 기공도 기반 모델을 이용한 피로 수명 계산을 위한 재료 물성 분포 결정
KR101383663B1 (ko) 가상 테스트에 근거한 파라미터화 재료 및 성능 특성
US6799081B1 (en) Fiber placement and fiber steering systems and corresponding software for composite structures
Shephard et al. Adaptive mesh generation for curved domains
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
JP3848602B2 (ja) 樹脂成形品の設計支援装置および方法
Távara et al. Mixed-mode failure of interfaces studied by the 2d linear elastic–brittle interface model: macro-and micro-mechanical finite-element applications in composites
JP4592471B2 (ja) 射出成型品の形状予測方法、形状予測装置、形状予測プログラム及び記憶媒体
JPWO2013042600A1 (ja) Chabocheモデルを用いた応力−ひずみ関係シミュレーション方法、応力−ひずみ関係シミュレーションシステム、応力−ひずみ関係シミュレーションプログラム
JP2006205740A (ja) 樹脂成形品の設計支援装置および方法
Cremonesi et al. A Lagrangian finite element method for 3D compressible flow applications
Toukhtarian et al. Modeling polymer extrusion with varying die gap using Arbitrary Lagrangian Eulerian (ALE) method
JP5235573B2 (ja) 強度解析方法、強度解析装置及び強度解析プログラム
US11230043B2 (en) Method for setting molding conditions of injection-molding equipment
Ródenas et al. A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis
Zhou et al. Integrated simulation of the injection molding process with stereolithography molds
Beiter et al. Incorporating dimensional requirements into material selection and design of injection molded parts
Nagengast et al. Design for sustainable additive manufacturing (DfsAM): preperation and validation of a transversely isotropic simulation model for FFF components made from virgin and recycled polypropylene filaments
Durai Prabhakaran et al. Quality modeling and analysis of polymer composite products
JP3023969B2 (ja) 冷熱サイクル構造体温度の解析方法および金型装置系の設計装置
Mehl et al. Design for Injection Molding: Using Dimensional Analysis to Assess Fillability
Su et al. Product Design optimization through seamless integration of CAD and CAE
JP2012073973A (ja) 機能解析方法、機能解析装置、ならびに機能解析プログラム
US20160342716A1 (en) Computer-aided resin behavior analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees