JP2006205740A - 樹脂成形品の設計支援装置および方法 - Google Patents

樹脂成形品の設計支援装置および方法 Download PDF

Info

Publication number
JP2006205740A
JP2006205740A JP2006115318A JP2006115318A JP2006205740A JP 2006205740 A JP2006205740 A JP 2006205740A JP 2006115318 A JP2006115318 A JP 2006115318A JP 2006115318 A JP2006115318 A JP 2006115318A JP 2006205740 A JP2006205740 A JP 2006205740A
Authority
JP
Japan
Prior art keywords
dimensional solid
temperature
resin
elastic modulus
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006115318A
Other languages
English (en)
Inventor
Osami Kaneto
修身 兼頭
Toshiya Teramae
俊哉 寺前
Junichi Saeki
準一 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006115318A priority Critical patent/JP2006205740A/ja
Publication of JP2006205740A publication Critical patent/JP2006205740A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】熱硬化樹脂を用いた樹脂成形品の強度を精度よく予測する。
【解決手段】流動解析部13は、3次元流動解析に用いる第1の3次元ソリッド要素毎に、熱硬化性樹脂の熱硬化時の弾性率と歪み成分を算出する。残留歪み(応力)推定部14は、3次元強度解析に用いる第2の3次元ソリッド要素各々および第1の3次元ソリッド要素各々の対応関係と、流動解析部13により第1の3次元ソリッド要素毎に求めた弾性率および歪み成分とを用いて、第2の3次元ソリッド要素各々に、弾性率および歪み成分を設定し、第2の3次元ソリッド要素各々の熱収縮後の残留歪みを計算する。強度解析部15は、第2の3次元ソリッド要素各々に、残留歪み(応力)推定部14により求めた残留歪み(応力)を設定して、樹脂成形品の強度を解析する。
【選択図】図3

Description

本発明は、ダイオードパッケージなどの熱硬化樹脂を用いた樹脂成形品の設計支援技術に関する。
ダイオードパッケージなどの熱硬化樹脂を用いた樹脂成形品の設計を支援するシステムとして、流動解析システムおよび強度解析システムが知られている。流動解析システムは、有限差分法あるいは有限要素法を利用して、樹脂の流動を解析する。また、強度解析システムは、有限要素法を利用して、樹脂成形品の強度を解析する。流動解析については、例えば、特開平7-334484号公報や特開平6-187321号公報に、また、強度解析については、例えば、MSC Software ソリューション フォーラム2000 事例・論文集 三木孝夫、荻野恭久著 「MSCプロダクツにおける「要素結合機能」および「接触解析機能」についての一考察」や、MSC Software ソリューション フォーラム2000 事例・論文集 岩津聡、沢田浩一著 「両面実装基板におけるCSPの配置と熱疲労寿命の相関解析」や、第17回MSCユーザ会議 論文集 中村吉孝著 「PETボトルの底部強度評価システムの開発」に、開示されている。
ところで、熱硬化樹脂は、熱硬化する際に容積が収縮する(硬化収縮)。また、熱硬化後においても、樹脂温度が硬化温度から室温へ変化する際に容積が収縮する(熱収縮)。このため、熱硬化樹脂を用いた樹脂成形の完成品には、硬化収縮および熱収縮による残留歪み(応力)が存在する。
従来の強度解析システムは、このような残留歪み(応力)を考慮しないで、強度解析を行なっている。このため、強度を精度よく予測することができず、場合によっては、強度解析システムによる強度解析結果と、試作品の強度試験結果とに、大きなずれが生じ、設計をやり直して、流動解析および強度解析を繰り返し行なわなければならない事態が生じていた。
本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、熱硬化樹脂を用いた樹脂成形品の強度を精度よく予測することにある。
上記課題を解決するために、本発明の設計支援装置は、有限差分法あるいは有限要素法を用いて、熱硬化樹脂を用いた樹脂成形品を成形するために、樹脂充填空間へ注入される熱硬化性樹脂の流動を解析する流動解析手段と、前記樹脂成形品を成形するために樹脂充填空間へ注入される熱硬化性樹脂の、熱収縮後の残留歪み(または応力)を計算する残留歪み算出手段と、有限要素法を用いて前記樹脂成形品の強度を解析する強度解析手段と、を有する。
ここで、前記流動解析手段は、流動解析に用いる第1の3次元ソリッド要素毎に、熱硬化性樹脂の熱硬化時の弾性率と歪み(または応力)成分を算出する。
例えば、時間の関数で表される温度、反応率、および、反応率の関数で表される粘度のタイムステップ毎の変化を、前記第1の3次元ソリッド要素毎に算出する。そして、反応率がゲル化に達した第1の3次元ソリッド要素各々について、反応率と比容積との関係から熱硬化時における歪み(応力)成分を算出すると共に、反応率、温度と弾性率との関係から熱硬化時における弾性率を算出する。
また、前記残留歪み算出手段は、前記強度解析手段での強度解析に用いる第2の3次元ソリッド要素各々および前記第1の3次元ソリッド要素各々の対応関係と、前記流動解析手段により前記第1の3次元ソリッド要素毎に求めた温度、弾性率および歪み(または応力)成分とを用いて、前記第2の3次元ソリッド要素各々に、熱硬化時における弾性率および歪み(または応力)成分を設定する。そして、前記第2の3次元ソリッド要素各々の熱収縮後の残留歪み(または応力)を計算する。
例えば、前記第1の3次元ソリッド要素および前記第2の3次元ソリッド要素の各々に代表点を設定する。そして、前記第2の3次元ソリッド要素各々について、自身の代表点に近接する代表点を持つ少なくとも1つの前記第1の3次元ソリッド要素の温度、弾性率および歪み(または応力)成分の平均を、前記近接する代表点の前記自身の代表点までの距離に応じた重み付けを行なって算出し、これらを対応する前記第2の3次元ソリッド要素に設定する。
また、例えば、前記第2の3次元ソリッド要素各々について、設定された温度、歪み(または応力)成分および弾性率と、前記温度から所定温度まで冷却された場合における弾性率の変化分とを用いて、残留歪みを算出する。
そして、前記強度解析手段は、前記第2の3次元ソリッド要素各々に、前記残留歪み算出手段により求めた残留歪み(または応力)を設定して、前記樹脂成形品の強度を解析する。
本発明によれば、第2の3次元ソリッド要素各々に、硬化収縮および熱収縮による残留歪みが設定され、この第2の3次元ソリッド要素を用いた有限要素法により、樹脂成形品の強度が解析される。したがって、従来に比べて樹脂成形品の強度を精度よく予測することが可能となる。
以上説明したように、本発明によれば、熱硬化樹脂を用いた樹脂成形品の強度を精度よく予測することができる。
先ず、本発明の一実施形態が適用された設計支援装置の説明に先立ち、当該装置が設計支援の対象とする樹脂成形品について説明する。
図1は、本発明の一実施形態が適用された設計支援装置が設計支援の対象とする熱硬化樹脂を用いた樹脂成形品の一例を示している。
この例は、一般的なダイオードパッケージであり、フレーム91およびSiチップのペレット92が、熱硬化樹脂であるレジン93により封止されて構成されている。このような構造を有するダイオードパッケージは、金型の内部にフレーム91およびペレット92を配置した後、この金型内にレジン93を流し込んで充填し、熱硬化反応を行なわせて充填したレジン93を固体化させ、それから、この金型から取り出すことで成形される。
図2は、熱硬化樹脂の成形工程における比容積と温度との関係を示す図である。ここで、縦軸は比容積Vを、横軸は樹脂温度Tを表している。
図示するように、熱硬化樹脂は、樹脂温度Tを室温(A点)から上昇させていくと、熱膨張により比容積Vが大きくなると共に、軟化温度より高い温度(溶融温度、図示せず)で溶融が起こる。それから、樹脂温度Tが硬化温度(B点)に達すると、熱反応による硬化が始まる。そして、熱反応率がある領域まで達すると、熱硬化樹脂は、溶融状態からゲル化状態になり(C点)、さらに熱反応が進行すると、完全に固体化する(D点)。この溶融状態から固体状態に変化する過程で熱反応硬化による収縮が生じる(硬化収縮)。硬化収縮の収縮量は、C点からD点までの比容積Vの変化量となる。
さらに、熱硬化樹脂は、硬化温度(D点)から、ガラス転位温度Tg(E点)を経由して、室温(F点)まで温度を下げる過程において、温度低下による収縮が生じる(熱収縮)。熱収縮の収縮量はD点からF点までの比容積Vの変化量となる。
このため、熱硬化前の室温状態における熱硬化樹脂の比容積V(A点での比容積V)と、熱硬化後の室温状態における熱硬化樹脂の比容積V(F点での比容積V)に変化が生じ、このような変化により残留歪みが発生する。そして、この残留歪みに伴う残留応力が発生する。この残留応力の発生個所、大きさによっては、成形後の製品強度が大きく損なわれることになる。
本実施形態の設計支援装置は、3次元強度解析に用いる3次元ソリッド要素毎に、このような残留歪みを推定して設定することにより、熱硬化樹脂成形品の強度を精度よく予測できるようにしている。
次に、本発明の一実施形態が適用された設計支援装置について説明する。
図3は、本発明の一実施形態が適用された設計支援装置の概略構成図である。
図示するように、本実施形態の設計支援装置は、GUI(Graphical User Interface)部11と、モデル作成部12と、流動解析部13と、残留歪み(応力)推定部14と、強度解析部15と、を有する。
GUI部11は、表示画面およびキーボード、マウス等の入力装置を介して、ユーザより各種指示や情報などの入力を受け付けたり、熱硬化樹脂の3次元流動解析や3次元強度解析の結果などを表示したりする。
モデル作成部12は、GUI部11を介して受け付けたユーザの指示に従い、設計支援の対象とする熱硬化樹脂を用いた樹脂成形品の形状データ(モデルデータ)を作成する。モデル作成部12には、3D-CAD、CAM、CAEなどを利用することができる。
流動解析部13は、有限差分法あるいは有限要素法を用いて、熱硬化樹脂の成形工程における金型空間内の流れを解析する(3次元流動解析)。この際、3次元流動解析に用いる3次元ソリッド要素(第1の3次元ソリッド要素と呼ぶ)毎に、硬化収縮後(図2のD点)における熱硬化樹脂の温度、弾性率および歪み(応力)成分を算出する。
残留歪み(応力)推定部14は、強度解析部15での3次元強度解析に用いる3次元ソリッド要素(第2の3次元ソリッド要素と呼ぶ)各々および第1の3次元ソリッド要素各々の対応関係と、流動解析部13が第1の3次元ソリッド要素毎に求めた温度、弾性率および歪み(応力)成分とを用いて、第2の3次元ソリッド要素各々に、温度、弾性率および歪み(応力)成分を設定する。また、温度、弾性率および歪み(応力)成分が設定された第2の3次元ソリッド要素各毎に、熱収縮後(図2のF点)における熱硬化樹脂の残留歪み(応力)を算出する。
強度解析部15は、第2の3次元ソリッド要素各々に、残留歪み(応力)推定部14が算出した残留歪み(または応力)を設定し、有限要素法を用いて、樹脂成形品の強度を解析する。
上記構成の設計支援装置は、例えば図4に示すような、CPU21と、メモリ22と、HDD等の外部記憶装置23と、CD-ROMやDVD-ROM等の可搬性を有する記憶媒体24から情報を読み出す読取装置25と、キーボードやマウスなどの入力装置26と、CRTやLCDなどの表示装置27と、インターネットなどのネットワークと通信を行なうための通信装置28と、を備えた一般的なコンピュータシステムにおいて、CPU21がメモリ22上にロードされた所定のプログラム(モデル作成部12を実現する3D-CAD、CAMあるいはCAEプログラム、流動解析部13を実現する3次元流動解析プログラム、残留歪み(応力)推定部14を実現する残留歪み(応力)推定プログラム、および、強度解析部15を実現する3次元強度解析プログラム)を実行することで実現できる。これらのプログラムは、読取装置25を介して記憶媒体24から、あるいは、通信装置28を介してインターネットなどの通信媒体から、メモリ22に直接ロードしてもよいし、あるいは、一旦、外部記憶装置23にダウンロードしてから、メモリ22にロードしてもよい。
次に、上記構成の設計支援装置の動作について説明する。
図5は、本発明の一実施形態が適用された設計支援装置の動作の概略を説明するためのフロー図である。
図示するように、本実施形態の設計支援装置による設計支援は、大まかに分けて、5つのステップS1〜S5を有する。
ステップS1:モデルデータ作成処理
モデル作成部12は、GUI部11を介して受け付けたユーザの指示に従い、設計支援の対象とする樹脂成形品のモデルデータを作成する。モデルデータは、少なくとも、成形に用いる金型の内部空間と、この内部空間に注入する熱硬化樹脂の注入口(ノズル)と、成形の際にこの内部空間に配置される熱硬化樹脂以外の部材(樹脂封止される部材、以下、被封止部材と呼ぶ)との形状および位置データを含むものとする。
ステップS2:3次元流動解析処理
流動解析部13は、GUI部11を介して受け付けたユーザの指示に従い、ステップS1で作成したモデルデータにより特定される金型の内部空間を複数の第1の3次元ソリッド要素に分割する。そして、GUI部11を介してユーザより熱硬化性樹脂の物性値、境界条件および解析条件(成形条件など)を受け付け、これらのデータに基づいて、有限差分法あるいは有限要素法により、前記モデルデータにより特定される注入口から前記内部空間に熱硬化性樹脂を注入した場合における熱硬化性樹脂の流れ(第1の3次元ソリッド要素各々のタイムステップ毎の樹脂流動先端位置)を解析する。そして、解析結果をGUI部11を介してユーザに提示する。
この際、時間と温度の関数で表される反応率、および、反応率と温度の関数で表される粘度のタイムステップ毎の変化を、連続の式、運動方程式およびエネルギー保存式(これらの式については後述する)に代入し、第1の3次元ソリッド要素毎に、熱硬化樹脂の少なくとも温度、粘度および反応率を、タイムステップ毎に算出する。そして、反応率がゲル化に達した第1の3次元ソリッド要素各々について、反応率と比容積との関係から熱硬化時における歪み(応力)成分を算出すると共に、反応率および温度と弾性率との関係から熱硬化時における弾性率を算出する。
ステップS3:残留歪み(応力)算出処理
残留歪み(応力)推定部14は、GUI部11を介して受け付けたユーザの指示に従い、ステップS1で作成したモデルデータにより特定される樹脂成形品(金型の内部空間)を複数の第2の3次元ソリッド要素に分割する。そして、第2の3次元ソリッド要素各々に、ステップS2で生成した第1の3次元ソリッド要素を少なくとも1つ対応付ける。
次に、残留歪み(応力)推定部14は、第2の3次元ソリッド要素各々について、当該第2の3次元ソリッド要素に対応付けられた第1の3次元ソリッド要素各々の温度、弾性率および歪み(応力)成分に基づいて、当該第2の3次元ソリッド要素に温度、弾性率および歪み(応力)成分を設定する。
それから、残留歪み(応力)推定部14は、第2の3次元ソリッド要素各々について、設定された温度、歪み(応力)成分および弾性率と、熱硬化樹脂の弾性率の温度依存性により定まる、設定された温度から室温まで冷却された場合における弾性率の変化分とを用いて、残留歪み(応力)を算出する。
ステップS4:3次元強度解析処理
強度解析部15は、GUI部11を介して受け付けたユーザの指示に従い、ステップS3で作成した第2の3次元ソリッド要素各々に、ステップS3で算出した残留歪み(または応力)を設定する。そして、GUI部11を介してユーザより熱硬化性樹脂、被封止部材の物性値、境界条件および解析条件(熱、荷重などの製品としての使用時に発生することが予想される条件)を受け付け、これらのデータに基づいて、有限要素法により、樹脂成形品の強度を解析する。
次に、上記の各ステップS2〜S4をより詳細に説明する。
なお、ステップS1で行なわれるモデルデータ作成処理は、既存の3次元流動解析や3次元強度解析の前処理として行なわれるモデルデータ作成処理と同じであるので、その詳細な説明は省略する。
まず、ステップS2で行なわれる3次元流動解析処理について説明する。
図6は、3次元流動解析処理を説明するためのフロー図である。
流動解析部13は、GUI部11を介してユーザより3次元流動解析指示を受け付けると、GUI部11を介してユーザよりモデルデータの指定を受け付ける。それから、指定されたモデルデータを、モデル作成部12から取り込む(S201)。
次に、流動解析部13は、取り込んだモデルデータが特定する金型内部空間(樹脂充填領域)を、有限差分法あるいは有限要素法における3次元解析領域に設定する。そして、この3次元解析領域を複数の第1の3次元ソリッド要素に分割する際の条件(分割数や要素サイズなど)を、GUI部11を介してユーザより受け付ける(S202)。そして、受け付けた分割条件に従い、3次元解析領域を複数の第1の3次元ソリッド要素に分割する(S203)。
次に、流動解析部13は、GUI部11を介してユーザより、3次元流動解析および残留歪み(応力)算出のために必要な、熱硬化樹脂の物性値を受け付ける(S204)。本実施形態では、熱硬化樹脂の物性値として、熱硬化性樹脂の熱硬化収縮係数、ガラス転位温度、線膨張係数、熱硬化が終了した場合の反応率、ゲル化した場合の反応率、弾性率、初期粘度、および、3次元流動解析と熱硬化時における歪み(応力)成分、弾性率とを算出するための後述する各式(熱反応式、粘度式、連続の式、運動方程式、エネルギ保存式、弾性率変化式、反応硬化収縮式)で使用される各種係数を、少なくとも受け付けるようにしている。
次に、流動解析部13は、GUI部11を介してユーザより、3次元流動解析のための各種条件(境界条件、解析条件および初期条件)を受け付ける(S205)。各種条件には、熱硬化性樹脂の初期温度、流入速度、金型温度、ノズルのデータ(位置およびサイズ)などが含まれる。
さて、流動解析部13は、以上のようにして、3次元流動解析および熱硬化時における歪み(応力)成分、弾性率の算出に必要な各種データを入手すると、タイムステップΔt毎の樹脂流動変化の解析(3次元流動解析)、および、第1の3次元ソリッド要素各々の熱硬化収縮による歪み(応力)成分および弾性率の算出を開始する。
まず、流動解析部13は、時間tを初期時間にセットする。それから、流動解析部13は、第1の3次元ソリッド要素毎に、この時間tにおける反応率および粘度を、熱反応式および粘度式を用いて算出する(S206)。
なお、熱反応式は、数1〜数5で表される。
Figure 2006205740
Figure 2006205740
Figure 2006205740
Figure 2006205740
Figure 2006205740
ここで、Aは反応率、tは時間、Tは温度、∂A(t)/∂tは反応速度、K1(T)、K2(T)は温度の関数で表される係数、N、M、Ka、Kb、Ea、Ebは材料の固有係数、Q(t)は時刻tまでの発熱量、Q0は反応終了までの総発熱量、そして、∂Q(t)/∂tは発熱速度を示している。そのうち、材料固有係数N、M、Ka、Kb、Ea、Ebは、ステップS204で受け付けた熱硬化樹脂の物性値である。また、温度Tは、ステップS205で受け付けた成形条件であり、時間tの関数(但し、図2のA点からC点まで)で表される。
また、粘度式は、数6〜数8で表される。
Figure 2006205740
Figure 2006205740
Figure 2006205740
ここで、ηは粘度、η0は初期粘度、Tは温度、Aは反応率、Agelはゲル化時の反応率、Cは温度上昇係数、そして、a、b、f、gは、材料の固有粘度パラメータを示している。そのうち、ゲル化時の反応率Agel、材料の固有粘度パラメータa、b、f、gは、ステップS204で受け付けた熱硬化樹脂の物性値である。また、温度Tの一部(金型や樹脂の初期温度)は、ステップS205で受け付けた成形条件であり、時間tの関数(但し、図2のA点からC点まで)で表される。そして、反応率Aは、数1〜数5で求めた時間tでの反応率である。
次に、流動解析部13は、第1の3次元ソリッド要素毎に、時間tにおける温度、流動速度および圧力を、連続の式、運動方程式およびエネルギー保存式を用いて算出する(S207)。
なお、連続の式は、数9で表される。
Figure 2006205740
また、運動方程式は、x方向が数10、y方向が数11、そして、z方向が数12で表される。
Figure 2006205740
Figure 2006205740
Figure 2006205740
また、エネルギー保存式は、数13で表される。
Figure 2006205740
ここで、ρは密度、uはx方向速度、υはy方向速度、ωはz方向速度、γはせん断速度、Tは温度、Pは圧力、tは時間、ηは粘度、Cpは定圧比熱、βは体積膨張係数、λは熱伝導率、gxはx方向加速度、gyはy方向加速度、gzはz方向加速度を示している。そのうち、体積膨張係数β、熱伝導率λは、ステップS204で受け付けた熱硬化樹脂の物性値である。また、密度ρはステップS204で受け付けた熱硬化樹脂の物性値であり、その変化は時間tの関数(但し、図2のA点からC点まで)で表される。また、せん断速度γは隣り合う位置の速度差と距離から求められる値である。そして、粘度ηは数6〜数8で求めた時間tでの粘度である。
さらに、流動解析部13は、ステップS207で求めた第1の3次元ソリッド要素毎の流動速度を用いて、第1の3次元ソリッド要素毎に、時間tにおける樹脂流動先端位置を求める(S208)。
以上のようにして求めた第1の3次元ソリッド要素毎の各種データは、時間tにおける熱硬化樹脂の流動解析データとしてメモリ等に登録される。
次に、流動解析部13は、ステップS206で求めた反応率Aが、ステップS204において樹脂の物性値として受け付けたゲル化時の反応率Agelに達した第1の3次元ソリッド要素があるか否かを調べる(S209)。そのような第1の3次元ソリッド要素が1つもないならば、時間tをタイムステップΔt分進めて(S214)、ステップS206に戻る。一方、ゲル化が開始された第1の3次元ソリッド要素が1つでもあるならば、これらの要素各々について、時間tにおける歪み(応力)成分および弾性率を算出する。
ここで、溶融状態にある熱硬化樹脂の成形時間に対する反応率A、粘度η、弾性率E及び比容積Vの変化について説明する。
図7は、溶融状態にある熱硬化樹脂の成形時間に対する反応率A、粘度η、弾性率Eおよび比容積Vの変化を説明するための図である。
図示するように、溶融状態において、反応率Aは、完全反応(完全な硬化状態)を1とした場合、成形時間と共に増加し(初期段階は増加速度が速く、後半は増加速度が遅い)、反応率は1に近づく。また、粘度ηは、金型内を流動している間は小さく、金型に充填された後(1次キュア)は急激に増加し無限に大きくなる。この粘度ηが無限に大きくなった時点がゲル化点であり、ゲル化点に反応率Aが到達すると、熱硬化樹脂は、ゼリー状に変化を始め固体化が開始される。
そして、熱硬化樹脂は、金型内の1次キュアの間に固体化が完了する。この間、比容積Vは緩やかに縮小し、材料の弾性率Eは急激に増加する。その後、金型から成形品を取り出し冷却する過程(2次キュア)で、比容積Vは急激に縮小し、弾性率Eの方は緩やかに増加する。
熱硬化樹脂の流動後の硬化に伴う残留歪み(応力)の発生は、ゲル化点からの比容積Vの縮小現象に起因している。そこで、流動解析部13は、ゲル化が開始された各第1の3次元ソリッド要素について、熱硬化収縮による歪み(応力)成分および弾性率を算出するようにしている。
先ず、流動解析部13は、ゲル化が開始された各第1の3次元ソリッド要素について、粘度ηを、ゲル化が開始されていることを示すのに十分な高さを持つ一定粘度値に設定する(S210)。流動途中である第1の3次元ソリッド要素がゲル化すると、その要素の粘度ηが無限大となってその要素に対する計算がストップする。しかし、実際は、他の第1の3次元ソリッド要素がゲル化していなければ、その要素でも樹脂が流れ続ける。ここでは、実際の状況を表す手段として、ゲル化した第1の3次元ソリッド要素がでた場合には、その要素の粘度ηを非常に高い一定値に設定して樹脂を流動させ、その要素に対する計算のストップを防止している。
次に流動解析部13は、ゲル化が開始された各第1の3次元ソリッド要素について、弾性率変化式を用いて時間tにおける弾性率Eを算出する(S211)。
ここで、弾性率変化式について説明する。図8は、等温状態における熱硬化樹脂の弾性率と反応率の時間との関係を説明するための図である。
図示するように、熱硬化樹脂は、熱硬化反応の進行(時間tの進行)により、分子が3次元のネットワークを形成して硬くなる。このため等温状態でも弾性率Eは増加する。また、同じ反応率Aでも温度Tが高いと、分子が動きやすく弾性率Eは低下する。一方、温度Tが低いと分子が動きにくく弾性率Eは増加する。したがって、弾性率Eは、反応率Aと温度Tの関数で表される。
等温状態での反応率Aに対する弾性率Eの関係は、単純化すると図9に示す無次元弾性率と反応式との関係で表すことができる。したがって、温度Tの場合における反応率Aの変化に対する弾性率E(T)の関係は、数14で表される。
Figure 2006205740
なお、Egel(T)は温度Tにおけるゲル化の弾性率、E0(T)は温度Tにおける反応終了時の弾性率、そして、Agelはゲル化時の反応率である。これらは、ステップS204で受け付けた熱硬化樹脂の物性値である。また、温度T、反応率Aは、ステップS206、S207、あるいは、後述するステップS217、S218で算出した時間tにおける温度、反応率である。
一方、反応率Aを一定とした場合における温度Tの変化に対する弾性率Eの関係は、実際には、図10に示す関係にある。ここで、E0は反応終了時の弾性率、そして、Egelはゲル化の弾性率を示している。図示するように、樹脂流動時の温度変化および流動後の冷却による温度変化により変化し、ガラス転移点より低い温度では高い値を示し、ガラス転移点より高い温度では低い値を示す。
しかし、ガラス点移転点を境にした前後の温度変化各々において、弾性率Eの変化は小さい。このため、反応率Aを一定とした場合における温度Tの変化に対する弾性率Eの関係は、図11に示すように単純化できる。ここで、E01は、温度Tがガラス点移転Tg未満の場合における反応終了時の弾性率、E02は、温度Tがガラス点移転Tg以上の場合における反応終了時の弾性率、Egel1は、温度Tがガラス点移転Tg未満の場合におけるゲル化時の弾性率、そして、Egel2は、温度Tがガラス点移転Tg以上の場合におけるゲル化時の弾性率である。
したがって、弾性率Eの関係は、温度Tがガラス点移転Tg未満の場合は数15で、そして、温度Tがガラス点移転Tg以上の場合は、数16で表される。
Figure 2006205740
Figure 2006205740
なお、温度Tがガラス移転点Tg未満の場合における反応終了時の弾性率E01と、温度Tがガラス点移転Tg以上の場合における反応終了時の弾性率E02と、温度Tがガラス点移転Tg未満の場合におけるゲル化時の弾性率Egel1と、温度Tがガラス点移転Tg以上の場合におけるゲル化時の弾性率Egel2と、ゲル化時の反応率Agelとは、ステップS204で受け付けた熱硬化樹脂の物性値である。また、温度T、反応率Aは、ステップS206、S207、あるいは、後述するステップS217、S218で算出した時間tにおける温度、反応率である。
上記の数15、数16が弾性率変化式である。ゲル化開始された第1の3次元ソリッド要素毎に、時間tにおける反応率Aをこの式に設定することで、熱硬化収縮時における弾性率Eを算出する。
次に、流動解析部13は、ゲル化が開始された各第1の3次元ソリッド要素について、反応硬化収縮式および熱収縮式を用いて時間tにおける残留歪み(応力)成分εを算出する(S212)。
図12は、ゲル化後の反応率A、比容積Vと成形時間との関係を説明するための図である。また、図13は、異なる樹脂温度(T1>T2>T3)における比容積Vと成形時間との関係を説明するための図である。
図12に示すように、ゲル化後の樹脂の比容積Vは、反応率Aの増加に反比例して減少する。この比容積Vの変化が反応硬化収縮に伴う硬化収縮歪み成分である。また、図13に示すように,ゲル化後の時間経過に伴う比容積Vの変化は、樹脂温度が高いほど反応が早く進むため、反応終了時間tendが速くなる。また、同一時間で比較すると、温度が高いほど比容積Vが大きくなる。しかし、温度が異なっても、時間経過に伴う比容積Vの変化は殆ど同じである。以上のような、ゲル化後の比容積Vと反応率Aとの関係をより簡略化し、線硬化歪み成分ε1と反応率Aとの関係で表すと、図14に示すようになる。
熱硬化性樹脂成形に際し、熱硬化時(図2のD点)にて、第1の3次元ソリッド要素各々に生じる歪み成分εは、ゲル化後の反応硬化及び温度変化による収縮によって生じるため、数17で表される。
Figure 2006205740
ここで、ε1は線硬化収縮歪み成分、ε2は温度歪み成分である。
線硬化収縮歪み成分ε1は、図14に示す関係から、数18〜数21に示す反応硬化収縮式より求めることができる。
Figure 2006205740
Figure 2006205740
Figure 2006205740
Figure 2006205740
ここで、ψは線硬化収縮係数、ΔAは硬化時点の反応率−ゲル化時点の反応率、φは比容積の反応率に対する変化率、TRは室温、t2は時間t、t1は時間t2よりタイムステップΔt前の時間、T1は時間t1のときの温度、T2は時間t2のときの温度、V0(TR)は温度TRでの熱硬化反応終了時における比容積、A(t1,T1)は時間t1、温度T1のときの反応率、A(t2,T2)は時間t2、温度T2のときの反応率、K1、K2は温度の関数となる係数、N、Mは材料の固有係数、そして、Agelはゲル化時の反応率である。そのうち、N、M、Ka、Kb、Ea、Eb、Q0、ゲル化時の反応率Agelは、ステップS204にて樹脂の物性値として入力される。また、初期温度は、ステップS205にて各種条件として入力される。一方、温度歪み成分ε2は数22より求めることができる。
Figure 2006205740
ここで、α線膨張係数、そして、ΔTは、ステップS206、S207、あるいは後述するステップS217、S218で算出した時間tにおける温度の硬化温度からの温度差を示している。
なお、線膨張係数αは、図15に示すように、ガラス転移点Tgを境にして値が数倍程度異なる。このため、硬化温度がガラス転移点Tgより高い場合と低い場合とで、線膨張係数を変える必要がある。また、温度歪み成分の式(数22)も変える必要がある。このガラス転移点の影響を考慮した温度歪み成分は、数23〜数26に示す熱収縮式で求めることができる。
なお、数23〜数26において、α1はガラス転移点未満での線膨張係数、α2はガラス転移点以上での線膨張係数、Tgはガラス転移点温度、T1は残留歪みを求める温度、つまり、ステップS206、S207、あるいは後述するステップS217、S218で算出した時間tにおける温度である。また、Tgelは、ゲル化温度、つまり、ステップS209でゲル化が開始されたと判断される直前に、ステップS206、S207、あるいは後述するステップS217、S218で算出した温度を示している。なお、線膨張係数α1、α2、ガラス移転点温度Tgは、ステップS204にて樹脂の物性値として入力される。
(1)T1、Tgel≧Tgの場合は、数23により温度歪み成分ε2を求める。
Figure 2006205740
(2)T1、Tgel≦Tgの場合、数24により温度歪み成分ε2を求める。
Figure 2006205740
(3)T1>Tgel>Tgの場合、数25により温度ひずみ成分ε2を求める。この場合、ひずみは膨張方向になる。
Figure 2006205740
(4)Tgel>Tg>T1の場合、数26により温度ひずみ成分ε2を求める。この場合、ひずみは収縮方向になる。
Figure 2006205740
このように、流動解析部13は、熱硬化樹脂のゲル化温度、硬化温度およびガラス点移転温度の条件にあった数23〜数26を選択し、この選択した数式を用いて温度歪み成分ε2を求める。
さて、流動解析部13は、以上のようにして、ゲル化した第1の3次元ソリッド要素各々について、時間tにおける弾性率Eおよび歪み成分εを算出したならば、例えば、S208で算出した第1の3次元ソリッド要素各々の流動先端位置に基づいて、3次元解析領域に対する熱硬化樹脂の充填が完了したか否かを判断する(S213)。完了していないならば、時間tをタイムステップΔt分進めて(S214)、ステップS206に戻る。一方、完了しているならば、時間tが成形終了時間に到達したか否かを判断する(S215)。
ここで、成形終了時間は、ステップS205にて各種条件として入力されるものであり、全ての第1の3次元ソリッド要素が熱硬化するのに十分な時間に設定しておく必要がある。
S215において、時間tが成形終了時間に到達していない場合、流動解析部13は、時間tをタイムステップΔt分進め(S217)、それから、上記のステップS206、S207と同様に、各第1の3次元ソリッド要素の各種データ(反応率、粘度、温度、流動速度および圧力)を算出する(S217、S218)、それから、S209に戻って処理を続ける。
一方、S215において、時間tが成形終了時間に到達した場合は、略全ての第1の3次元ソリッド要素について、成形終了時間における弾性率および歪み成分されたことになり、この弾性率および歪み成分が熱硬化収縮時の弾性率および歪み成分に相当する。流動解析部13は、第1の3次元ソリッド要素各々について、各タイムステップΔt毎の反応率、粘度、温度、流動速度、圧力および流動先端位置を、流動解析結果としてメモリ等の記憶装置に保存する。また、第1の3次元ソリッド要素各々について、熱硬化収縮時の温度、弾性率および歪み成分を、残留歪み(応力)算出処理(S3)で使用する入力値としてメモリ等の記憶装置に保存する。そして、この3次元流動解析処理(S2)を終了する。
なお、流動解析結果は、流動解析部13により、GUI部11を介してユーザに提示される。流動解析結果の一例を図16〜図20に示す。
図16は、3次元解析領域に対する熱硬化樹脂の充填開始から充填完了までの樹脂流れの状態を示す分布図である。ここで、符号85は金型、符号84は3次元解析領域である金型空間、符号86は樹脂注入口(ノズル)、そして、符号86が注入された熱硬化樹脂である。図17、図18は、それぞれ、樹脂充填完了時、熱硬化終了時における歪み成分の状態を示す分布図である。そして、図19、図20は、それぞれ、樹脂充填完了時、熱硬化終了時における弾性率の状態を示す分布図である。
次にステップS3で行なわれる残留歪み(応力)算出処理について説明する。
図21は、残留歪み(応力)算出処理を説明するためのフロー図である。
残留歪み(応力)推定部14は、GUI部11を介してユーザより残留歪み算出指示を受け付けると、GUI部11を介してユーザよりモデルデータの指定を受け付ける。それから、指定されたモデルデータを、モデル作成部12から取り込む(S301)。
次に、残留歪み(応力)推定部14は、取り込んだモデルデータが特定する樹脂成形品の占有領域を、有限要素法における3次元解析領域に設定する。そして、この3次元解析領域を複数の第2の3次元ソリッド要素に分割する際の条件(分割数や要素サイズなど)を、GUI部11を介してユーザより受け付ける(S302)。そして、受け付けた分割条件に従い、3次元解析領域を複数の第2の3次元ソリッド要素に分割する(S303)。
次に、残留歪み(応力)推定部14は、GUI部11を介してユーザより、流動解析結果の指定を受け付ける。それから、指定された流動解析結果に用いられた熱硬化樹脂の物性値を、流動解析部13から取り込む(S304)。また、指定された流動解析結果に用いられた各第1の3次元ソリッド要素のデータと、各第1の3次元ソリッド要素の熱硬化収縮時における温度、弾性率および歪み成分とを、流動解析部13から取り込む(S305)。
次に、残留歪み(応力)推定部14は、ステップS303で作成した第2の3次元ソリッド要素各々に、ステップS305で流動解析部13から取り込んだ第1の3次元ソリッド要素のデータを少なくとも1つ対応付ける(S306)。
例えば、第1、第2の3次元ソリッド要素の各々に、代表点(例えば重心)を設定する。それから、第2の3次元ソリッド要素各々について、所定数の第1の3次元ソリッド要素を代表点の近いものから順番に選択し、選択した第1の3次元ソリッド要素を、当該第2の3次元ソリッド要素に対応付ける。
次に、残留歪み(応力)推定部14は、第2の3次元ソリッド要素各々について、当該第2の3次元ソリッド要素に対応付けられている第1の3次元ソリッド要素各々の温度、弾性率および歪み成分に基づいて、当該第2の3次元ソリッド要素に温度、弾性率および歪み成分を設定する(S307)。
例えば、第2の3次元ソリッド要素各々について、当該第2の3次元ソリッド要素に対応付けられている第1の3次元ソリッド要素各々の温度、弾性率および歪み成分の平均を、これら第1の3次元ソリッド要素各々の代表点の、当該第2の3次元ソリッド要素の代表点までの距離に応じた重み付けを行なって算出し、その算出結果を当該第2の3次元ソリッド要素に設定する。
次に、残留歪み(応力)推定部14は、GUI部11を介してユーザより、3次元強度解析および残留歪み(応力)算出のために必要な、被封止部材の物性値を受け付ける(S308)。例えば、解析対象の樹脂成形品が図1に示すようなダイオードパッケージの場合、本実施形態では、被封止部材であるフレーム91、ペレット92の弾性係数、ポアソン比、降伏応力、膨張係数、熱伝導率、比熱および密度を、これらの物性値として、少なくとも受け付けるようにしている。
次に、残留歪み(応力)推定部14は、GUI部11を介してユーザより、残留歪み(応力)算出のための各種条件(境界条件、解析条件および初期条件)を受け付ける(S309)。境界条件としては、金型から取り出されて冷却される過程における樹脂成形品と外部との接触状態や、変位が拘束される領域などが、そして、解析条件としては、冷却速度や解析終了時温度(最終的な熱収縮終了時の温度)などが含まれる。
さて、残留歪み(応力)推定部14は、以上のようにして、第2の3次元ソリッド要素各々に弾性率および歪み成分が設定されると共に、3次元強度解析に必要なデータ(樹脂成形品の各構成要素の物性値、および、各種条件)が設定されると、第2の3次元ソリッド要素各々について、設定された歪み(応力)成分および弾性率と、熱硬化樹脂の弾性率の温度依存性により定まる、熱硬化温度から室温まで冷却された場合における弾性率の変化分とを用いて、熱収縮終了時における残留歪み(応力)を算出する(S310)。
まず、残留歪み(応力)推定部14は、時間tを初期時間にセットする。それから、残留歪み(応力)推定部14は、第2の3次元ソリッド要素毎に、この時間tにおける残留歪み(応力)を、当該第2の3次元ソリッド要素に設定された熱硬化収縮直後の温度、残留歪み成分および弾性率と、数27とを用いて算出する。
Figure 2006205740
ここで、Eは弾性率(ヤング率)、νはポアソン比、εx0、εy0、εz0、γxy0、γyz0、γzx0は、熱硬化収縮後の残留歪み成分である。残留歪みを求めるための数式は、日本塑性加工学会編 日刊工業 文献「わかりやすいプレス加工」、P162に詳しい。
上述したように、弾性率は、温度変化に伴ってその値が変化する。そこで、第2の3次元ソリッド要素毎に、時間tにおける温度を、当該第2の3次元ソリッド要素に設定された熱硬化収縮直後の温度およびステップS309で受け付けた熱硬化樹脂の冷却速度を基に算出する。そして、算出した温度が、ガラス転移点Tg未満か否かで、上述の数15、数16を用いて弾性率を算出し、この弾性率を数27に使用する。なお、数15、数16において、反応率Aは、例えば予め設定された、熱硬化反応が終了したものと判断するのに十分な値とすればよい。
次に、残留歪み(応力)推定部14は、第2の3次元ソリッド要素毎に、時間tにおける温度が、ステップS309で受け付けた解析終了時温度まで低下したか否かを判断する。解析終了時温度まで低下した第2の3次元ソリッド要素については、その温度のときに算出した残留歪み(応力)を、当該第2の3次元ソリッド要素の最終的な(熱収縮後の)残留歪み(応力)に設定する。一方、解析終了時温度まで低下していない第2の3次元ソリッド要素については、時間tをタイムステップΔt分進め、この時間tにおける残留歪み(応力)の算出処理を繰り返す。このようにすることで、第2の3次元ソリッド要素毎に、最終的な残留歪み(応力)が算出され設定される。そして、この残留歪み(応力)算出処理(S3)を終了する。
なお、残留歪み(応力)の算出過程および結果は、残留歪み(応力)推定部14により、GUI部11を介してユーザに提示される。残留歪み(応力)の算出過程および結果の一例を図22〜図25に示す。図22、図23は、それぞれ、熱硬化収縮直後の残留歪み、残留応力の分布状態を示す分布図である。そして、図24、図25は、それぞれ、最終的な(熱収縮後の)残留歪み、残留応力の分布状態を示す分布図である。
次にステップS4で行なわれる3次元強度解析処理について説明する。
図26は、3次元強度解析処理を説明するためのフロー図である。
強度解析部15は、GUI部11を介してユーザより3次元強度解析指示を受け付けると、GUI部11を介してユーザよりモデルデータの指定を受け付ける。それから、指定されたモデルデータを、モデル作成部12から取り込む(S401)。
次に、強度解析部15は、GUI部11を介してユーザより、残留歪み(応力)算出結果の指定を受け付ける。それから、指定された残留歪み(応力)算出結果に用いられた各第2の3次元ソリッド要素のデータと、各第2の3次元ソリッド要素の最終的な(熱収縮後の)残留歪み(応力)とを、残留歪み(応力)推定部14から取り込む(S402)。さらに、指定された残留歪み(応力)算出結果に用いられた樹脂成形品の各構成要素(図1に示す例では、熱硬化樹脂、フレームおよびペレット)の物性値を、残留歪み(応力)推定部14から取り込む(S403)。
次に、強度解析部15は、GUI部11を介してユーザより、3次元強度解析のための各種条件(境界条件、解析条件および初期条件)を受け付ける(S404)。各種条件としては、熱、荷重などの製品としての使用時に発生することが予想される条件が含まれる。
さて、強度解析部15は、ステップS402で取り込んだ第2の3次元ソリッド要素各々に残留歪み(応力)を設定すると共に、ステップS403で取り込んだ各構成要素の物性値を設定する。そして、ステップS404で受け付けた各種条件に従い3次元強度解析を行なう(S405)。この3次元強度解析は、第2の3次元ソリッド要素各々に残留歪み(応力)が設定される点を除き、従来のものと同様である。
なお、3次元強度解析結果は、強度解析部15により、GUI部11を介してユーザに提示される。図27、図28は、それぞれ、各種条件に従って樹脂成形品に力が加えられた場合における、樹脂成形品の歪み、応力の分布状態を示す分布図である。
以上、本発明の一実施形態について説明した。
本実施形態において、流動解析部13は、3次元流動解析に用いる第1の3次元ソリッド要素毎に、熱硬化性樹脂の熱硬化時の弾性率と歪み成分を算出する。また、残留歪み(応力)推定部14は、3次元強度解析に用いる第2の3次元ソリッド要素各々および第1の3次元ソリッド要素各々の対応関係と、流動解析部13により第1の3次元ソリッド要素毎に求めた弾性率および歪み成分とを用いて、第2の3次元ソリッド要素各々に、弾性率および歪み成分を設定し、第2の3次元ソリッド要素各々の熱収縮後の残留歪みを計算する。そして、強度解析部15は、第2の3次元ソリッド要素各々に、残留歪み(応力)推定部14により求めた残留歪み(応力)を設定して、樹脂成形品の強度を解析する。
したがって、本実施形態によれば、第2の3次元ソリッド要素各々に、硬化収縮および熱収縮による残留歪みが設定され、この第2の3次元ソリッド要素を用いた有限要素法により、樹脂成形品の強度が解析される。したがって、従来に比べて樹脂成形品の強度を精度よく予測することが可能となる。
なお、本発明は上記の実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
例えば、上記の実施形態では、熱硬化樹脂の残留歪みを求める場合を例に取り説明したが、残留歪みと共に、あるいは、残留歪みに代えて残留応力を求めるようにしてもよい。そして、残留応力を第2の3次元ソリッド要素各々に設定して、3次元強度解析を行なうようにしてもよい。
また、上記の実施形態において、モデル解析部12、流動解析部13、残留歪み(応力)推定部14および強度解析部15を実現するためのプログラムは、それぞれが別々のソフトウエアとして提供されるものでもよいし、あるいは、1つのパッケージ商品として提供されるものでもよい。また、残留歪み(応力)推定部14を実現するためのプログラムは、強度解析部15を実現するためのプログラムに含まれる形で提供されるものでもよい。
本発明の一実施形態が適用された設計支援装置が設計支援の対象とする熱硬化樹脂を用いた樹脂成形品の一例を示す図である。 熱硬化樹脂の成形工程における比容積と温度との関係を示す図である。 本発明の一実施形態が適用された設計支援装置の概略構成図である。 図3に示す設計支援装置のハードウエア構成例を示す図である。 本発明の一実施形態が適用された設計支援装置の動作の概略を説明するためのフロー図である。 本発明の一実施形態の3次元流動解析処理を説明するためのフロー図である。 溶融状態にある熱硬化樹脂の成形時間に対する反応率A、粘度η、弾性率Eおよび比容積Vの変化を説明するための図である。 等温状態における熱硬化樹脂の弾性率と反応率の時間との関係を説明するための図である。 無次元弾性率と反応式との関係を説明するための図である。 反応率Aを一定とした場合における温度Tの変化に対する弾性率Eの関係を説明するための図である。 反応率Aを一定とした場合における温度Tの変化に対する弾性率Eの関係を説明するための図である。 ゲル化後の反応率Aおよび比容積Vと、成形時間との関係を説明するための図である。 異なる樹脂温度(T1>T2>T3)における比容積Vと成形時間との関係を説明するための図である。 線硬化歪み成分ε1と反応率Aとの関係を説明するための図である。 線膨張係数αと温度との関係を説明するための図である。 3次元解析領域に対する熱硬化樹脂の充填開始から充填完了までの樹脂流れの状態を示す分布図である。 樹脂充填完了時における歪み成分の状態を示す分布図である。 熱硬化終了時における歪み成分の状態を示す分布図である。 樹脂充填完了時における弾性率の状態を示す分布図である。 熱硬化終了時における弾性率の状態を示す分布図である。 本発明の一実施形態における残留歪み(応力)算出処理を説明するためのフロー図である。 熱硬化収縮直後の残留歪みの分布状態を示す分布図である。 熱硬化収縮直後の残留応力の分布状態を示す分布図である。 最終的な(熱収縮後の)残留歪みの分布状態を示す分布図である。 最終的な(熱収縮後の)残留応力の分布状態を示す分布図である。 本発明の一実施形態における3次元強度解析処理を説明するためのフロー図である。 各種条件に従って樹脂成形品に力が加えられた場合における樹脂成形品の歪みの分布状態を示す分布図である。 各種条件に従って樹脂成形品に力が加えられた場合における樹脂成形品の応力の分布状態を示す分布図である。
符号の説明
11…GUI、12…モデル作成部、13…流動解析部、14…残留歪み(応力)推定部、15…強度解析部

Claims (4)

  1. 熱硬化樹脂を用いた樹脂成形品の設計支援装置であって、
    有限差分法あるいは有限要素法を用いて、前記樹脂成形品を成形するために樹脂充填空間へ注入される熱硬化性樹脂の流動を解析する流動解析手段と、
    前記樹脂成形品を成形するために樹脂充填空間へ注入される熱硬化性樹脂の熱収縮後の残留歪みを計算する残留歪み算出手段と、
    有限要素法を用いて前記樹脂成形品の強度を解析する強度解析手段とを有し、
    前記流動解析手段は、
    熱硬化性樹脂の反応速度モデルを、反応開始時の値が0、初期の反応速度が相対的に速く、反応時間の経過とともに1に飽和する特性を示す反応率Aを使用して表し、
    粘度η、弾性率E、および線硬化収縮歪み成分ε1を、それぞれの成分の変化は反応率Aの変化に置き換えて算出を行い、および流動解析に用いる第1の3次元ソリッド要素毎に、熱硬化性樹脂の熱硬化時の温度、弾性率および歪み成分を算出して、前記残留歪み算出手段へ引き渡し、
    前記残留歪み算出手段は、
    前記強度解析手段での強度解析に用いる第2の3次元ソリッド要素各々および前記第1の3次元ソリッド要素各々の対応関係と、前記流動解析手段により前記第1の3次元ソリッド要素毎に求めた熱硬化時の温度、弾性率および歪み成分とを用いて、前記第2の3次元ソリッド要素各々に、熱硬化時の温度、弾性率および歪み成分を設定して、前記第2の3次元ソリッド要素各々の熱収縮後の残留歪みを計算し、
    前記強度解析手段は、
    前記第2の3次元ソリッド要素各々に、前記残留歪み算出手段により求めた熱収縮後の残留歪みを設定して、前記樹脂成形品の強度を解析する
    ことを特徴とする樹脂成形品の設計支援装置。
  2. 請求項1記載の樹脂成形品の設計支援装置であって、
    前記残留歪み算出手段は、
    前記第1の3次元ソリッド要素および前記第2の3次元ソリッド要素の各々に代表点を設定し、前記第2の3次元ソリッド要素各々について、自身の代表点に近接する代表点を持つ少なくとも1つの前記第1の3次元ソリッド要素の温度、弾性率および歪み成分の平均を、前記近接する代表点の前記自身の代表点までの距離に応じた重み付けを行なって算出し、これらを対応する前記第2の3次元ソリッド要素に設定すること
    を特徴とする樹脂成形品の設計支援装置。
  3. 請求項1記載の樹脂成形品の設計支援装置であって、
    前記残留歪み算出手段は、
    前記第2の3次元ソリッド要素各々について、設定された温度、歪みおよび弾性率と、
    前記温度から所定温度まで冷却された場合における弾性率の変化分とを用いて、残留歪みを算出すること
    を特徴とする樹脂成形品の設計支援装置。
  4. コンピュータにより熱硬化樹脂を用いた樹脂成形晶の設計を支援する樹脂成形品の設計支援方法であって、
    有限差分法あるいは有限要素法を用いて、前記樹脂成形品を成形するために樹脂充填空間へ注入される熱硬化性樹脂の流動を解析する流動解析ステップと、
    前記樹脂成形品を成形するために樹脂充填空間へ注入される熱硬化性樹脂の、熱収縮後の残留歪みを計算する残留歪み算出ステップと、
    有限要素法を用いて前記樹脂成形品の強度を解析する強度解析ステップと、を有し、
    前記流動解析ステップは、
    熱硬化性樹脂の反応速度モデルを、反応開始時の値が0、初期の反応速度が相対的に速く、反応時間の経過とともに1に飽和する特性を示す反応率Aを使用して表し、
    粘度η、弾性率E、および線硬化収縮歪み成分ε1を、それぞれの成分の変化は反応率Aの変化に置き換えて算出を行い、および流動解析に用いる第1の3次元ソリッド要素毎に、熱硬化性樹脂の熱硬化後の温度、弾性率および歪み成分を算出し、
    前記残留歪み算出ステップは、
    前記強度解析ステップでの強度解析に用いる第2の3次元ソリッド要素各々および前記第1の3次元ソリッド要素各々の対応関係と、前記流動解析ステップにより前記第1の3次元ソリッド要素毎に求めた熱硬化後の温度、弾性率および歪み成分とを用いて、前記第2の3次元ソリッド要素各々に、熱硬化後の温度、弾性率および歪み成分を設定して、前記第2の3次元ソリッド要素各々の熱収縮後の残留歪みを計算し、
    前記強度解析ステップは、
    前記第2の3次元ソリッド要素各々に、前記残留歪み算出ステップにより求めた熱収縮後の残留歪みを設定して、前記樹脂成形品の強度を算出すること
    を特徴とする樹脂成形晶の設計支援方法。
JP2006115318A 2006-04-19 2006-04-19 樹脂成形品の設計支援装置および方法 Pending JP2006205740A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006115318A JP2006205740A (ja) 2006-04-19 2006-04-19 樹脂成形品の設計支援装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006115318A JP2006205740A (ja) 2006-04-19 2006-04-19 樹脂成形品の設計支援装置および方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002219922A Division JP3848602B2 (ja) 2002-07-29 2002-07-29 樹脂成形品の設計支援装置および方法

Publications (1)

Publication Number Publication Date
JP2006205740A true JP2006205740A (ja) 2006-08-10

Family

ID=36963055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006115318A Pending JP2006205740A (ja) 2006-04-19 2006-04-19 樹脂成形品の設計支援装置および方法

Country Status (1)

Country Link
JP (1) JP2006205740A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069243A (ja) * 2006-09-13 2008-03-27 Nippon Avionics Co Ltd 接着状態予測方法
JP2008230089A (ja) * 2007-03-22 2008-10-02 Hitachi Ltd 樹脂成形品の設計支援装置、支援方法及び支援プログラム
JP2009133788A (ja) * 2007-11-30 2009-06-18 Nippon Steel Corp 強度予測評価方法及び装置、並びにプログラム及び記録媒体
JP2010186395A (ja) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd 粒子を含む樹脂材料の粒子変形解析方法および解析システム
JP2012101448A (ja) * 2010-11-10 2012-05-31 Hitachi Ltd 収縮歪の計算方法および解析プログラム
US8215829B2 (en) 2008-10-29 2012-07-10 Elpida Memory, Inc. Method of analyzing thermal stress according to filling factor of filler in resin
WO2015072040A1 (ja) * 2013-11-18 2015-05-21 株式会社日立製作所 樹脂流動挙動の計算方法、及び樹脂流動挙動の計算プログラム
JP7001874B1 (ja) * 2020-08-25 2022-01-20 ポリプラスチックス株式会社 樹脂成形品の弾性率の推定方法、樹脂成形品の応力推定方法、プログラム、コンピュータ可読記録媒体、樹脂成形品の弾性率の算定装置、樹脂成形品の製造方法、樹脂成形品の弾性率のデータ取得方法、樹脂成形品の形状最適化方法、樹脂成形品の変形予測方法、樹脂成形品の破壊寿命予測方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069243A (ja) * 2006-09-13 2008-03-27 Nippon Avionics Co Ltd 接着状態予測方法
JP2008230089A (ja) * 2007-03-22 2008-10-02 Hitachi Ltd 樹脂成形品の設計支援装置、支援方法及び支援プログラム
US8095348B2 (en) 2007-03-22 2012-01-10 Hitachi, Ltd. Support system, support method and support program of resin molded article
JP2009133788A (ja) * 2007-11-30 2009-06-18 Nippon Steel Corp 強度予測評価方法及び装置、並びにプログラム及び記録媒体
US8215829B2 (en) 2008-10-29 2012-07-10 Elpida Memory, Inc. Method of analyzing thermal stress according to filling factor of filler in resin
JP2010186395A (ja) * 2009-02-13 2010-08-26 Hitachi Chem Co Ltd 粒子を含む樹脂材料の粒子変形解析方法および解析システム
JP2012101448A (ja) * 2010-11-10 2012-05-31 Hitachi Ltd 収縮歪の計算方法および解析プログラム
WO2015072040A1 (ja) * 2013-11-18 2015-05-21 株式会社日立製作所 樹脂流動挙動の計算方法、及び樹脂流動挙動の計算プログラム
JP7001874B1 (ja) * 2020-08-25 2022-01-20 ポリプラスチックス株式会社 樹脂成形品の弾性率の推定方法、樹脂成形品の応力推定方法、プログラム、コンピュータ可読記録媒体、樹脂成形品の弾性率の算定装置、樹脂成形品の製造方法、樹脂成形品の弾性率のデータ取得方法、樹脂成形品の形状最適化方法、樹脂成形品の変形予測方法、樹脂成形品の破壊寿命予測方法
WO2022044576A1 (ja) * 2020-08-25 2022-03-03 ポリプラスチックス株式会社 樹脂成形品の弾性率の推定方法、樹脂成形品の応力推定方法、プログラム、コンピュータ可読記録媒体、樹脂成形品の弾性率の算定装置、樹脂成形品の製造方法、樹脂成形品の弾性率のデータ取得方法、樹脂成形品の形状最適化方法、樹脂成形品の変形予測方法、樹脂成形品の破壊寿命予測方法

Similar Documents

Publication Publication Date Title
JP3848602B2 (ja) 樹脂成形品の設計支援装置および方法
JP2006205740A (ja) 樹脂成形品の設計支援装置および方法
JP4820318B2 (ja) 樹脂成形品の設計支援装置、支援方法及び支援プログラム
Koric et al. Explicit coupled thermo‐mechanical finite element model of steel solidification
Kim et al. Residual stress distributions and their influence on post-manufacturing deformation of injection-molded plastic parts
KR20020041446A (ko) 성형공동내로 유체를 사출하는 것을 모형화하는 방법 및장치
US20100036646A1 (en) Analytical model preparation method, and simulation system method for predicting molding failure
CN102395972B (zh) 模具填充之后起模的仿真
Fu et al. A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time
JP5095461B2 (ja) 射出成形プロセス解析方法
JP5264380B2 (ja) 構造解析方法
JP6185515B2 (ja) 可塑化シミュレーション装置、その可塑化シミュレーション方法および可塑化シミュレーションプログラム
Anglada et al. Prediction and validation of shape distortions in the simulation of high pressure die casting
JP2010052019A (ja) 砂型鋳物のシミュレーション方法
Chiumenti et al. On the numerical modeling of the thermomechanical contact for metal casting analysis
JP4378011B2 (ja) 金型設計装置と金型形状の設計方法
Kansal et al. Study: temperature and residual stress in an injection moulded gear
JP4006316B2 (ja) 樹脂流動解析方法及びその装置
JP4052006B2 (ja) 成型シミュレーション方法、成型シミュレーション装置及び成型シミュレーションプログラム並びに当該成型シミュレーションプログラムを記録したコンピュータ読みとり可能な記録媒体
Pei et al. Prediction of wire sweep during the encapsulation of IC packaging with wire density effect
JP5889077B2 (ja) 成形品収縮変形予測装置、成形品収縮変形予測方法及び成形品収縮変形予測プログラム
Zhou et al. Modeling and simulation of residual stresses during glass bulb pressing process
JP5899004B2 (ja) 成形品そり変形予測装置、成形品そり変形予測方法及び成形品そり変形予測プログラム
JP2003112349A (ja) 射出成形解析方法、射出成形解析装置および射出成形解析プログラム
JP5061078B2 (ja) 鋳造シミュレーション方法およびそのプログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421