JP2010060950A - Wdmフィルタを実装した光モジュール及びその製造方法 - Google Patents

Wdmフィルタを実装した光モジュール及びその製造方法 Download PDF

Info

Publication number
JP2010060950A
JP2010060950A JP2008227747A JP2008227747A JP2010060950A JP 2010060950 A JP2010060950 A JP 2010060950A JP 2008227747 A JP2008227747 A JP 2008227747A JP 2008227747 A JP2008227747 A JP 2008227747A JP 2010060950 A JP2010060950 A JP 2010060950A
Authority
JP
Japan
Prior art keywords
main surface
substrate
single crystal
optical
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008227747A
Other languages
English (en)
Other versions
JP2010060950A5 (ja
Inventor
Shohei Hata
昌平 秦
Naoki Matsushima
直樹 松嶋
俊明 ▲高▼井
Toshiaki Takai
Yukio Sakikawa
幸夫 崎川
Satoshi Arai
聡 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008227747A priority Critical patent/JP2010060950A/ja
Priority to US12/494,890 priority patent/US7991251B2/en
Priority to EP09008692A priority patent/EP2141526A1/en
Publication of JP2010060950A publication Critical patent/JP2010060950A/ja
Publication of JP2010060950A5 publication Critical patent/JP2010060950A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
波長が互いに異なる3種類以上の光信号の送受信を行える光通信用モジュールに好適なフィルタ素子に、煩雑な実装工程なしで量産可能な新規な構造を与える。
【解決手段】
本発明によるフィルタ素子は、互いに平行な一対の平行な表面を有し且つ当該表面の一方にバンドパスフィルタが設けられた第一のガラス基板と、凹部が形成された主面を有し且つ凹部には当該主面に対して傾斜した傾斜面が当該凹部の開口の半分以上を占める広さで形成された一対の単結晶基板(Siウェハ)と、光素子を有する第二のガラス基板とを備え、上記一対の単結晶基板の上記主面は上記ガラス基板の一対の表面に夫々接合され、上記ガラス基板の一方の主面に接合される単結晶基板に形成された上記凹部は、その開口で上記バンドパスフィルタを囲み且つその傾斜面を当該バンドパスフィルタに対向させるように構成されることで、ウェハレベルのプロセスにより確実且つ安価に量産される。
【選択図】図1

Description

本発明は、通信用光モジュールに関わり、特にWDM(Wavelength Division Multiplexing,波長分割多重)方式の光通信システムに好適なフィルタ及びこれを用いた光モジュールを提供する。
近年、インターネットの高速化に伴い、各家庭からのアクセス網にも高速の光通信への適合が求められるようになっている。このようなアクセス用の光通信モジュールには、平面導波路型光モジュールや、CAN型モジュールを組み合わせた送受信モジュールが使用されてきた。平面導波路型光モジュールでは、光ファイバと光学結合されるその一端には一本の導波路が設けられ、これが途中で少なくとも二本に分離する。分離された一方の導波路の他端には発光素子が実装される。もう一方の導波路の他端には受光素子が実装される。これらの導波路の途中には必要に応じてバンドパスフィルタが挿入される。このような構造とすることで、発光素子により信号を送り、基地局からの光信号を受光素子で受光する送受信機を作ることができる。
CAN型のモジュールを組み合わせる場合には、ファイバを金属などの筐体に固定し、ファイバからの光信号を光路変換素子により受信側へ送り、送信部の発光素子からの光信号を、光路変換素子を介してファイバへ送る。受信側には、受光素子が実装されたCANモジュールを配置して、基地局からの光信号を受光する。送信部には、発光素子が実装されたCANモジュールを配置する。いずれも必要に応じて光路の途中にバンドパスフィルタが配置される。以上のようにして、光通信における送受信モジュールを作ることができる。
また近年では、プリズムなど一つの光学部品の表面にバンドパスフィルタを形成し、このバンドパスフィルタにより送信する光信号と、基地局からの受信のための光信号を分離するWDMフィルタや、このようなWDMフィルタを用いて、単一のCANモジュール内に送受信の機能を集積したモジュールも開発されている。
WDMフィルタ及びこれを用いた光通信モジュールは、例えば、次の7件の文献に論じられている。まず、特開2003−232965号公報(以下、特許文献1)には、平面導波路型光モジュールの一例として、平面導波路の端部に受光素子が実装される構造と、増幅素子の実装構造とが開示されている。特開2006−71739号公報(以下、特許文献2)には、平面導波路の途中に配置されたフィルタで、レーザーダイオード(以下、LD)及びフォトダイオード(以下、PD)の入出力信号を分離する構造が開示されている。特開2005−316291号公報(以下、特許文献3)には、WDMフィルタを用いて光信号を多重化するモジュール構造が開示されている。特開2007−17903号公報(以下、特許文献4)には、LDからの光を送信し、かつ基地局からの光を光路変換素子に通して受光する送受信モジュールが開示され、この送受信モジュールにはCAN実装された受光素子モジュール(CAN-packaged Light Receiving Module)が組み合わされている。特開2004−294513号公報(以下、特許文献5)には、LD、PDが光学フィルタとともに単一のCAN実装モジュール(CAN-packaged Module)中に実装され、当該LD及びPDとがモジュール外部の光ファイバに光学フィルタを介して結合された送受信モジュールが開示されている。特開2005−157136号公報(以下、特許文献6)には、プリズムの表面にバンドパスフィルタを形成して、WDMフィルタを形成する構造が開示されている。特開2005−249966号公報(以下、特許文献7)には、誘電体多層膜のフィルタを組み合わせることで、アイソレーションの高いWDMフィルタを形成する構造が開示されている。
特開2003−232965号公報 特開2006−71739号公報 特開2005−316291号公報 特開2007−17903号公報 特開2004−294513号公報 特開2005−157136号公報 特開2005−249966号公報
ところが、近年、アナログ信号、デジタル信号の受信、送信など、光モジュールが光信号の送受信で扱う波長が、従来の二波長から三波長又はそれ以上に増えている。光モジュールは、例えば、これに備えられた発光素子は波長=1.3μmの光信号を送信しながら、他の基地局から送信された波長=1.48μmと波長=1.55μmの2種類の光信号をこれに備えられた受光素子で受けねばならない。従って、一つの光モジュールで、波長が互いに異なる三つ又はそれ以上の光信号の送受信を行わなければならなくなる。従来技術で述べたような平面導波路型光モジュールに斯様な機能を与えるには、バンドパスフィルタをそれぞれの波長に応じて導波路途中に挿入するなどの必要があり、バンドパスフィルタの接着固定部での損失、接着固定作業の煩雑さによるコスト増などの問題が懸念される。またCANモジュールを組み合わせて送受信器を作る場合には、CANモジュールを取り付ける筐体、光路の途中に挿入する光路変換素子、バンドパスフィルタなどの部品点数が多くなり、やはりコスト増が懸念される。
このため、プリズム上にバンドパスフィルタを形成して、単一のCANモジュール内にLD、PDを実装して送受信モジュールを形成するのが、コスト増を招かず、好適であるが、特許文献5に示す構造では、二つの波長までは対応可能であるが、三つ以上の波長を用いる光モジュールには適用することができない。
さらに、CANモジュール内に実装される光素子の数が増大すると、それに応じてバンドパスフィルタを実装する必要が生まれるが、光学部品の実装では角度、位置精度などが重要であり、このような調整をできるだけ少なくすることが求められる。その場合、できるだけ光素子を平面上に実装し、その上に平面状のバンドパスフィルタを含む部品を実装することができれば、少なくとも傾きに関しては調整が必要なくなり、実装工程が大幅に簡略化される。
また光素子の実装、バンドパスフィルタの実装をさらに低コストで行うには、LD、PDなどをウェハ状の基板へ実装し、その上にバンドパスフィルタを平面実装することで実現が可能となる。
上記課題を解決するために、本発明によれば以下の光モジュールを提供することができる。
平行な表面を有するガラス基板の両主面の両方あるいは一方に、誘電体多層膜により形成された光学フィルタを備え、前記光学フィルタが形成された領域以外の部分の少なくとも一部に単結晶基板、例えば、Siウェハがガラス基板のそれぞれ上下方向から接合され、前記光学フィルタと対向するSiウェハの表面にはエッチングによる斜面が形成され、ガラス基板上部のSiウェハの前記エッチング面と、ガラス基板下部のSiウェハの前記エッチング面が平行であり、ガラス基板の上下に接合されたSiウェハの主面側と反対側の面が鏡面、かつガラス基板の主面と平行になっていることを特徴とする特徴とするフィルタ部品を搭載した光モジュールが提供される。光学フィルタは、特定の波長又は波長帯域の光に対して高い透過率を示す部材であり、その一例として、バンドパスフィルタが挙げられる。
また、前記ガラス基板と前記Siウェハは陽極接合により接合されていることを特徴とする光モジュールが提供される。
また、光モジュールにおいて、前記フィルタ部品と接合される別の基板を備え、前記基板上には、発光素子、あるいは受光素子が実装され、前記フィルタ部品から、波長毎に光が入射、あるいは出射される位置に発光素子あるいは受光素子が位置合わせされていることを特徴とする光モジュールが提供される。
また、光モジュールにおいて、前記基板が個片化されていないウェハ状であって、発光素子あるいは受光素子を前記基板上に実装し、次に分割前のウェハ状の前記フィルタ部品と接合し、ダイシングによりフィルタ部品と光素子および前記基板を含む部品で構成される光モジュールが提供される。
また、光モジュールにおいて、発光素子あるいは受光素子をウェハ状の基板に実装する際に、薄膜はんだによるダイボンディング、あるいはフリップチップ接続を用いることを特徴とする光モジュールが提供される。
本発明によるフィルタ素子及びこれを備えた光モジュールの代表的な構造は、後述する図面の参照番号を付して、以下の如く記される。
フィルタ素子1:第1主面とこれに対向する第2主面とを有し且つ該第1主面の一部に光学フィルタ(4,6)が設けられているガラス基板(1)、及び前記ガラス基板(1)の前記第1主面及び前記第2主面のいずれかに接合される主面を有し且つ該主面には凹部(20,30)がその縁(輪郭)から隔てられて形成された一対の単結晶基板(2,3)を備え、
前記一対の単結晶基板(2,3)の各々に形成された前記凹部(20,30)は該単結晶基板(2,3)の前記主面に対して傾斜した傾斜面(21,31)を有し、
前記単結晶基板の一方(3)は前記凹部(30)の開口で前記光学フィルタ(4,6)を囲み且つ該光学フィルタ(4,6)が該凹部(30)の前記傾斜面(31)と対向するように間隙を介して前記ガラス基板(1)の前記第1主面に接合され、
前記単結晶基板の他方(2)は前記凹部(20)の前記傾斜面(21)に前記光学フィルタ(4,6)が前記ガラス基板(1)を介して対向するように該ガラス基板(1)の前記第2主面に接合されている。
フィルタ素子2:前記フィルタ素子1を前提とし、前記単結晶基板(2,3)の各々はシリコン基板である。
フィルタ素子3:前記フィルタ素子2を前提とし、前記単結晶基板(2,3)の各々に形成された前記凹部(20,30)の前記傾斜面(21,31)は、前記シリコン基板の(111)結晶面である。
フィルタ素子4:前記フィルタ素子1を前提とし、前記単結晶基板(2,3)は、その夫々の前記主面の周縁において前記ガラス基板(1)に陽極接合されている。
フィルタ素子5:前記フィルタ素子4を前提とし、前記単結晶基板(2,3)の前記主面の前記周縁は、該主面に形成された前記凹部(20,30)で隔てられた一対に分かれている。
フィルタ素子6:前記フィルタ素子4を前提とし、前記単結晶基板(2,3)の前記主面の前記周縁は、該主面に形成された前記凹部(20,30)を囲む。
フィルタ素子7:前記フィルタ素子1を前提とし、前記光学フィルタ(4,6)は、前記ガラス基板(1)の前記第1主面に積層された誘電体多層膜である。
フィルタ素子8:前記フィルタ素子1を前提とし、前記ガラス基板(1)の前記第2主面には、全反射膜(5)又は前記光学フィルタ(4,6)とは別の光学フィルタ(12)が、該ガラス基板(1)を介してその前記第1主面に設けられた該光学フィルタ(4,6)と対向するように設けられている。
フィルタ素子9:前記フィルタ素子1を前提とし、前記単結晶基板(2,3)の各々に形成された前記凹部(20,30)の前記傾斜面(21,31)は、該単結晶基板(2/3)の前記主面に最も近い一辺(21a/31a)からこれに対向する他辺(21b/31b)へ向けて該一辺(21a/31a)に交差する方向に延在し、該他辺(21b/31b)に近付くに従い該単結晶基板(2/3)の厚さ方向に該傾斜面(21,31)と該単結晶基板(2/3)の該主面とを隔てる距離が増える。
フィルタ素子10:前記フィルタ素子9を前提とし、前記一対の単結晶基板(2,3)は、夫々の前記傾斜面(21,31)が前記ガラス基板(1)を介して対向し、且つ夫々の前記一辺(21a/31a)から前記他辺(21b/31b)への延在方向が互いに逆になるように、該ガラス基板(1)に接合されている。
フィルタ素子11:前記フィルタ素子10を前提とし、前記単結晶基板の一方(3)の前記傾斜面(31)の前記一辺(31a)は前記ガラス基板(1)を介して前記単結晶基板の他方(2)の前記傾斜面(21)に対向し、且つ該他方の単結晶基板(2)の該傾斜面(21)の前記一辺(21a)は該ガラス基板(1)を介して該一方の単結晶基板(3)の該傾斜面(31)は対向している。
フィルタ素子12:前記フィルタ素子11を前提とし、前記ガラス基板(1)の前記第2主面には、全反射膜(5)又は前記光学フィルタ(4,6)とは別の光学フィルタ(12)が設けられ、
該全反射膜(5)又は該別の光学フィルタ(12)は、
該ガラス基板(1)を介してその前記第1主面に接合された前記一方の単結晶基板(3)の前記傾斜面(31)に対向し、且つ
該ガラス基板(1)の該第2主面の該傾斜面(31)の前記一辺(31a)に対向する領域から該傾斜面(31)の前記延在方向へ隔てられて配置されている。
フィルタ素子13:前記フィルタ素子12を前提とし、前記ガラス基板(1)の前記第1主面に設けられた前記光学フィルタ(4,6)は、その一端が該第1主面に接合される前記一方の単結晶基板(3)の前記傾斜面(31)の前記一辺(31a)より該傾斜面(31)の前記延在方向に隔てられ且つ該一端より該延在方向へ延び、
該光学フィルタ(4,6)の一端は、該ガラス基板(1)の前記第2主面に設けられた前記全反射膜(5)又は前記別の光学フィルタ(12)よりも該傾斜面(31)の該一辺(31a)側に突き出されている。
光モジュール1:請求項1記載のフィルタ素子、その前記一方の単結晶基板(3)の前記主面とは反対側の別の主面に固定された実装基板(16)、及び該実装基板(16)の該一方の単結晶基板(3)に対向する実装面に配置された複数の光素子(9-11)を備え、
前記複数の光素子(9-11)は、前記一方の単結晶基板(3)の前記傾斜面(31)の前記ガラス基板(1)に最も近い一辺(31a)から最も遠い他辺(31b)に向けて延在する方向に沿って並べられている。
光モジュール2:前記光モジュール1を前提とし、前記複数の光素子(9-11)の前記一方の単結晶基板(3)の前記傾斜面(31)の前記一辺(31a)に最も近い一つは発光素子(9)であり、該一つ以外は受光素子(10-11)である。
光モジュール3:前記光モジュール1を前提とし、前記光学フィルタは、前記一方の単結晶基板(3)の傾斜面(31)の前記延在方向に沿って、その透過波長帯域が異なる少なくとも2つの領域(4,6)に分けられ、
前記光素子(9-11)は、前記実装基板(16)の前記実装面において該光学フィルタの該領域(4,6)に対して位置合わせされて配置されている。
光モジュール4:前記光モジュール1を前提とし、前記実装基板(16)の前記実装面にはスペーサ(14)が接合され、
該スペーサ(14)と前記一方の単結晶基板(3)の前記別の主面とを接合することにより、前記複数の光素子(9-11)の各々は該一方の単結晶基板(3)の該別主面に間隙を介して対向しながら固定される。
また、本発明による光モジュールの製造方法に係る代表的なプロセスの流れは、後述する図面の参照番号を付して、以下の如く記される。
製造方法1:下記第1工程から第6工程までが順次行なわれることを特徴とする。
その第1結晶面で最密構造を呈し且つ該第1結晶面と所定の角度を成す第2結晶面を主面とする一対の単結晶材料のウェハ(Wafer)を用意する第1工程、
前記ウェハの各々の前記主面の一方をウェットエッチングして、該一方の主面内に前記第1結晶面(21,31)を夫々含む複数のエッチピット(20,30)を形成する第2工程、
第1主面とこれに対向する第2主面とを有するガラス基板(1)を用意し、該第1主面に複数の光学フィルタ(4,6)を前記一対の単結晶ウェハの前記一方の主面に形成された前記複数のエッチピット(30)の夫々に対応して離散的に形成する第3工程、
前記ガラス基板(1)の前記第1主面に前記一対の単結晶材料ウェハの一方を、該ガラス基板(1)の前記第2主面に前記単結晶材料ウェハの他方を夫々向き合わせ、該第1主面に形成された前記複数の光学フィルタ(4,6)が該一方の単結晶材料ウェハの前記一方の主面に形成された前記複数のエッチピット(30)の内部に夫々収められ、且つ該他方の単結晶材料ウェハの前記一方の主面に形成された前記複数のエッチピット(20)の開口と該一方の単結晶材料ウェハの該主面に形成された該複数のエッチピット(30)の開口とが該ガラス基板(1)を介して少なくとも部分的に重なるように該一対の単結晶材料ウェハと該ガラス基板(1)との位置を合わせて、ガラス基板(1)の該第1主面に該一方の単結晶材料ウェハの該主面を、その該第2主面に該他方の単結晶材料ウェハの該主面を夫々接合する第4工程、少なくとも2つの光素子(9-11)を各々含む複数のユニットが前記一方の単結晶ウェハの主面に形成された前記複数のエッチピット(30)の夫々に対応して離散的に配置され且つ該複数のユニットを互いに隔てるスペーサ(14)が設けられた実装面を有する基材(16)を用意し、該一方の単結晶ウェハの該主面と対向する他の主面に該基材(16)の実装面を向き合わせ、前記ガラス基板(1)の前記第1主面に形成された前記複数の光学フィルタ(4,6)と該複数のユニットとの位置を合わせて、 該一方の単結晶ウェハの該他の主面と該スペーサとを接合する第5工程、及び
前記スペーサ(14)とともに前記一対の単結晶材料ウェハと前記ガラス基板(1)とを切断して、前記複数の光学フィルタ(4,6)の各々とこれに対応する前記複数のユニットの一つとを備える複数の光モジュールに個片化する第6工程。
製造方法2:前記製造方法1を前提とし、前記実装基板(16)を前記一対の単結晶材料ウェハと同じ単結晶ウェハとして供給し、前記第6工程において、前記実装基板(16)を前記一対の単結晶材料ウェハとともにダイシングして前記複数の光モジュールに個片化する。
製造方法3:前記製造方法2を前提とし、前記単結晶材料のウェハとしてシリコン単結晶ウェハを用い、前記ガラス基板(1)及び前記スペーサ(14)としてホウケイ酸ガラス基材を用いる。
製造方法4:前記製造方法1を前提とし、前記少なくとも2つの光素子(9-11)を、薄膜はんだによるダイボンディング又はフリップチップ接続により前記実装基板(16)の前記実装面に固定する。
上述した本発明によるフィルタ素子、光モジュール及びその製造方法における「光学フィルタ」は、少なくとも一つの波長(以下、特定波長)又は波長帯域(以下、特定波長帯域)の光に対するその透過率が、特定波長とは異なり又は特定波長帯域外の波長の光に対する透過率より高くなる部材であり、当該特定波長又は特定波長帯域の光を選択的に透過させる部材とも記される。光学フィルタは、特定波長を持たない光や、特定波長帯域から外れた光という、言わば「選択的に透過されない光」に対して高い反射率を示すとよく、その反射率が当該光学フィルタの「選択的に透過される光」に対する反射率より顕著に高くなるほど本発明によるフィルタ素子の性能が高められる。本発明によるフィルタ素子の性能向上の観点から、当該光学フィルタの「選択的に透過されない光」に対する透過率は、「0(ゼロ)」に近づけられることが望ましいが、その一方で、当該フィルタ素子を備えた光モジュールや当該光モジュールが組み込まれた光通信システムの機能(例えば、受光素子の感度)に応じた上限値まで許容される。この「光学フィルタ」の一例として、バンドパスフィルタが挙げられるが、上記光モジュールや光通信システムの機能に応じて、バンドパスフィルタ以外の光学要素(Optical Element)に置き換えられる。
本発明により、安価な送受信用の光モジュールを提供することができる。
本発明以下、本発明の実施形態について、夫々に関連する図面を参照して説明する。但し、本発明は下記実施形態に限定されず、本発明の趣旨から逸脱しない範囲において、その形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施形態に例示される内容に限定して解釈されるものではない。
本発明によるフィルタ素子及び光モジュールの第一の実施例について、図1を用いて説明する。図1は、本発明のバンドパスフィルタ(フィルタ素子)を示す図である。ガラス基板1の対向し合う一対の主面(互いに平行な一対の表面)には、例えばSi(シリコン)からなる単結晶基板2,3のエッチングが施された主面(表面)が夫々接合されている。単結晶基板2,3の主面(ガラス基板1との接合面)にエッチングで形成された凹部(エッチピット(etch pit)とも記される)20,30は、その主面内において例えば矩形の開口を呈し、この開口は主面の縁(edge(s))又は輪郭(contour)より隔てられている。単結晶基板2,3の主面は、その縁(輪郭)と上記凹部20,30の開口とを隔てる「周縁(periphery)」でガラス基板1の主面のいずれかに接合される。凹部20,30には、その開口に最も近い一辺21a,31aからこれより最も遠い他辺21b,31bへ、当該一辺21a,31aに交差する方向に延在する面が形成され、その延在長さの最も長い面を以降、傾斜面21,31と記す。図1に示された凹部20,30では、前記傾斜面21,31の一辺21a,31aが当該凹部20,30の開口を囲む単結晶基板2,3の主面の周縁と接し、その他辺21b,31bは凹部20,30の開口よりも単結晶基板2,3の主面の縁(edge)近くに位置する。傾斜面21,31の一辺21a,31aは、これを備えた凹部20,30が形成された「単結晶基板2,3の主面に最も近い辺」、又は当該単結晶基板2,3の主面に接合される「ガラス基板1の主面に最も近い辺」とも記される。これに対し、傾斜面21,31の他辺21b,31bは、「単結晶基板2,3の主面から最も遠い辺」、又は当該単結晶基板2,3の主面に接合される「ガラス基板1の主面から最も遠い辺」とも記される。傾斜面21,31が一辺21a,31aから他辺21b,31bへ延在する方向を「傾斜面21,31の延在方向」と記せば、この延在方向に沿って凹部20,30は単結晶基板2,3の主面に対して深くなる。図1に示す如く広い傾斜面21,31を備えた凹部20,30は、これが形成される単結晶基板2,3の主面に特定の結晶面を持たせることで形成され、例えばシリコン単結晶基板では、その(111)結晶面と角度11°を成す結晶面と特定される。
ガラス基板1の主面の一方(以下、第1主面)には単結晶基板3が、その主面の他方(以下、第2主面)には単結晶基板2が、夫々に形成された凹部30の傾斜面31の延伸方向と凹部20の傾斜面21の延伸方向とが互いに逆となり、且つガラス基板1を介して対向し合う傾斜面21,31が互いに平行になるように、夫々接合されている。さらに、ガラス基板1の第1主面の凹部30(単結晶基板3の主面の開口)に対向する領域には、波長λ1の光のみを選択的に透過することのできる光学フィルタ4と波長λ2のみを透過することのできる光学フィルタ6とが、夫々当該凹部30の傾斜面31に対向するように形成されている。
本実施例で論じる「光学フィルタ4,6」は、特定の波長を有し又は特定の波長帯域にある光に対する透過率が、当該特定波長とは異なり又は当該特定波長帯域外の波長の光に対する透過率より高くなる部材であり、当該特定波長又は特定波長帯域の光を選択的に透過させる部材とも記される。本実施例のフィルタ素子の後述される動作原理に照らせば、光学フィルタ4,6のいずれも、その特定波長又は特定波長帯域の光に対する反射率が上記透過率より低く抑えられるとよく、当該反射率が実質的に無視できることが望ましい。また、光学フィルタ4,6の各々は、これにより選択的に透過されない光(その波長が上記特定波長とは異なり又は上記特定波長帯域外にある)に対して高い反射率を示すとよく、その値は少なくとも上記選択的に透過されない光に対する透過率より高いことが望ましい。このような光学特性を有する光学フィルタの代表例として「バンドパスフィルタ」が知られるため、本実施例並びにこれに続く他の実施例において、光学フィルタ4,6の各々は、「バンドパスフィルタ」と便宜的に記される。しかし、本発明によるフィルタ素子や光モジュールを具現するに際し、光学フィルタ4,6のいずれもバンドパスフィルタに限定される必然性はなく、例えば、これをハイパスフィルタやロウパスフィルタに置き換えてもよい。
ガラス基板1の第1主面に形成される透過波長帯域(range of transmissive wavel engths)の異なる複数のバンドパスフィルタ(本実施例では2種のバンドパスフィルタ4,6)は傾斜面31の延伸方向に並び、例えば当該傾斜面31の一辺31a側に配置されるバンドパスフィルタ(4)の透過波長帯域は、その他辺31b側に配置されるバンドパスフィルタ(6)の透過波長帯域より短波長側にシフトしている。本実施例では、バンドパスフィルタ4の透過波長λ1が1.3μmに、バンドパスフィルタ6の透過波長λ2が1.48μmに夫々設定されている。一方、ガラス基板1の第2主面の凹部20(単結晶基板2の主面の開口)に対向する領域には全反射膜5が形成されている。全反射膜5はガラス基板1を介してバンドパスフィルタ4,6に対向するように形成されるが、その一端は、図示される直交座標の「主面方向」においてバンドパスフィルタ4の一端より当該凹部20の傾斜面21の他辺21b(又は凹部30の傾斜面31の一辺31a)から離されて、バンドパスフィルタ4の一端と凹部20の傾斜面21との間に延伸しないように形成されてもよい。また、全反射膜5の上記一端の反対側(以下、他端)が、上記「主面方向」においてバンドパスフィルタ6より当該傾斜面21の一辺21a(又は傾斜面31の他辺31b)の近くまで延伸されてもよい。
図1に示されたフィルタ素子は、その単結晶基板3の上記主面(ガラス基板1との接合面)の反対側にある他の主面(以下、外表面(outer surface))で図示されない発光素子からの波長λ1(=1.3μm)の光を受け、その単結晶基板2の上記主面(ガラス基板1との接合面)の反対側にある他の主面(以下、外表面)でレンズ7を介して光ファイバ(導波路)8と光学的に結合される。本実施例のフィルタ素子を成す一対の単結晶基板2,3はともにシリコン(Si)の単結晶であり、1.3〜14μmと赤外領域に広く亘る波長帯域の光を透過させる。一方、これら単結晶基板2,3に形成された凹部20,30はガラス基板1で塞がれ、その内部に空気を充填してもよく、その内部を減圧状態に保ってもよい。図示されぬ発光素子からの波長λ1の光は単結晶基板3の外表面に入射し、傾斜面31の一辺31a側で屈折され、バンドパスフィルタ4の上記一端を透過し、単結晶基板2の外表面からレンズ7を介して光ファイバ8に入射される。一方、光ファイバ8は、波長が互いに異なる複数の信号を伝搬し、レンズ7を介してフィルタ素子(単結晶基板2の外表面)に入射させる。本実施例では、波長λ2=1.48μmの光信号と、波長λ3=1.55μmの光信号が光ファイバ8で送信されてくる。
これらの光信号は、光ファイバ8からレンズ7を介してシリコンの単結晶基板2に入射され、さらにガラス基板1に入射する。フィルタ素子から光ファイバ8へ送信される光信号(λ1)及び光ファイバ8を通してフィルタ素子で受信される光信号(λ2,λ3)は、その波長に関係なく同じ光路を辿る。従って、これらの光信号の光路は互いに一致しているが、送信光(λ1)と受信光(λ2及びλ3)との挙動を見比べ易くするため、夫々の光路は少し横にずらして表示してある。
本実施例のフィルタ素子に設けられたバンドパスフィルタ4は、λ1=1.3μmの波長の光のみ透過させ、それ以外の波長の光は反射させる。したがって、λ2とλ3の光信号はバンドパスフィルタ4で反射され、続いて全反射膜5とバンドパスフィルタ4の間で多重反射される。このように多重反射された光信号がλ2=1.48μmのみの光を透過させるバンドパスフィルタ6に入射すると、波長λ2の光は、バンドパスフィルタ6を透過し、さらにシリコンの単結晶基板3を透過する。一方、波長λ3=1.55μmの光は、バンドパスフィルタに反射されて、再び全反射膜5とバンドパスフィルタ6との間で多重反射されて、ガラス基板1の第1主面のバンドパスフィルタ6が形成されていない領域で当該ガラス基板1から抜け出し、シリコンの単結晶基板3を透過して、その外表面から出射される。
図2は、上述したフィルタ素子を備えた光モジュールの断面構造を模式的に示し、シリコンの単結晶基板3の外表面における波長λ1の光の透過(入射)位置に対向させてレーザダイオード(発光素子;以下、LD)9が、波長λ2の光の透過(出射)位置に対向させてフォトダイオード(受光素子;以下、PD)10が、波長λ3の光の透過(出射)位置にも対向させてPD11が、夫々配置の光の透過(出射)される。斯様に構成される本実施例の光モジュールは、送信信号に合わせたLD9のレーザ発振により波長λ1の光信号を送信し、光ファイバ8から送られてきた波長λ2,λ3の光の強度変化を夫々検出することで、2種類の光信号を受信する。
図1に示される本実施例のフィルタ素子(バンドパスフィルタ部品)の製造プロセスを以下に説明する。まずガラス基板1の主面(上述した第1主面及びその反対側の第2主面)にレジスト膜のパターンを、フォトリソグラフィー技術により形成する。第1主面及び第2主面に形成されたレジスト膜の各々には、上述したバンドパスフィルタや全反射膜の形成予定位置に当該主面を露出する「開口」が形成されている。次にレジスト膜が形成されたガラス基板1の主面に、バンドパスフィルタ4,6となる誘電体多層膜又は全反射膜5となる金属薄膜を、スパッタ、あるいは蒸着などの方法で用いて形成する。バンドパスフィルタ4,6を成す誘電体多層膜は、所望の透過特性(例えば、特定波長帯域に対する高い透過性とこの波長帯域以外の波長の光に対する高い反射性)が得られるように選ばれた組成の異なる複数の誘電体層を順次積層して形成される。誘電体多層膜は、例えばSiOとTaの多層膜などを用いることができる。全反射膜は、反射率の高い金属によるメタライズなどでも作製可能である。
次に、単結晶基板2,3の加工を行う。単結晶基板2,3がSi基板であるとき、その各々の主面をKOH(水酸化カリウム)などの溶液でウェットエッチングすることで、当該主面に斜面21,31が形成される。ダイヤモンド構造の面心立方格子を成すシリコン単結晶からなる単結晶基板2,3において、この斜面には最密な面である(111)面が現れる。この斜面21,31は、単結晶基板2,3の主面にエッチングにより形成されたエッチピットと呼ばれる凹部の側壁を成すことが多く、当該主面の面方位が(100)のとき、その主面と当該斜面とが成す角度:θは54.7°と大きい。Si(シリコン)基板のみならず、主な単結晶材料(特に半導体単結晶)は特定の結晶面にて劈開(cleave)され、平坦性に優れた主面を有するウェハに切り出される。しかし、この角度:θが大きすぎると、単結晶基板2,3の内部からその主面に形成された凹部20,30へ延伸する光路は、当該凹部の斜面21,31で十分に曲げられず、ガラス基板1の主面と概ね直交する。従って、ガラス基板1の主面に設けられたバンドパスフィルタは、当該主面の反対側から入射する光の透過させたくない波長成分をも反射しきれなくなり、近赤外領域(波長=0.7〜2.5μm)や可視領域(波長=0.36〜0.83μm,JIS Z8120に拠る)で異なる波長が割り当てられた複数の光信号のフィルタ素子による弁別が難しくなる。そこで、本実施例のフィルタ素子を成す単結晶基板(Si基板)2,3に切り分けられる単結晶材料(Si)のウェハを、その主面が(111)面と11°の角度をなすように単結晶材料(Si)のインゴット(ingot)からスライスし、且つその表面を研磨して用意する。即ち、Si基板2,3やその母材となるSiウェハの「主面」は、(111)面や(100)面に比べて劈開し難い結晶面を有する。Si基板2,3(Siウェハ)のエッチングは、その主面にSiO酸化膜のマスクが形成された状態で当該ウェハをKOH溶液に浸して(エッチャント,etchant)に浸して行なわれる。SiO酸化膜には、Siウェハの主面の予めエッチングしたい部分(Si基板2,3の上記凹部20,30が形成される部分)に対応した開口部が形成され、この開口部で露出された主面のみが選択的にKOH溶液でエッチングされる。
(100)面を主面とするSiウェハを上述したマスクを通してエッチングしたとき、マスクの開口部に対応したエッチピットは、Siの(111)面及びこれに等価な結晶面の4枚を継ぎ合わせて成る側壁を備えた四角錐又は角錐台に成形される。しかし、本実施例では、Siウェハの主面が(100)面と所定の角度を成すため、エッチピットの側壁を成す(111)面又はこれに等価な結晶面の1枚は、他の3枚に比べて広く形成される。この側壁の面積が最も大きい1枚が、個々に切り分けられたフィルタ素子における単結晶基板2,3の「傾斜面21,31」であり、ガラス基板1及びその主面に形成されたバンドパスフィルタと対向して、当該フィルタ素子を機能させる。Siウェハ(単結晶基板2,3)の主面には、そのエッチピット(凹部20,30)の開口が上記マスクの開口部に対応して形成される。四角錐や角錐台のエッチピットでは、その側壁の各々がSiウェハの主面に投影される面積は、当該エッチピットの開口面積の1/4以下となる。これに対し、本実施例のエッチピット(凹部20,30)に現れる上記「傾斜面21,31」のSiウェハ(単結晶基板2,3)の主面に投影される面積は、当該エッチピットの開口面積の1/2以上となり、図1に示される「楔形」のエッチピットでは、その開口面積より大きくなる。傾斜面21,31は、エッチピットの開口と同様な形状を呈し、例えば矩形状(長方形又は正方形)に形成される。
傾斜面21,31は、また、Siウェハ(単結晶基板2,3)の主面に最も近い一辺21a,31aと、当該一辺と対向し且つSiウェハの主面から最も離れた他辺21b,31bとを備え、この一辺21a,31aから他辺21b,31bに向けて、当該一辺21a,31aに交差する方向沿いに延在する。以降、本明細書では、上記一辺21a,31aに交差し且つ一辺21a,31aから他辺21b,31bに到る方向を傾斜面21,31の「延在方向」と記す。例えば、図1に示した「主面方向」に対して、傾斜面21の延在方向は右側から左側へ到る「向き」として定義され、傾斜面31の延在方向は左側から右側へ到る「向き」として定義される。このように定義される傾斜面21,31の「延在方向」に対して、傾斜面21,31の「Siウェハの主面からの距離(Siウェハの厚さ方向の寸法)」は単調に増加する。この距離は、Siウェハ(単結晶基板2,3)の主面に形成されたエッチピット(凹部20,30)の深さとも定義され、また、当該主面に接合された「ガラス基板1の主面からの距離」とも定義される。図1に示された傾斜面21,31の一辺21a,31aは、エッチピット(凹部20,30)が形成されたSiウェハ(単結晶基板2,3)の主面に接するが、これらがSiウェハの主面の処理等により、若干隔てられても、本実施例によるフィルタ素子の機能は損なわれない。
複数のフィルタ素子に対応したパターン(複数のエッチピット)をSiウェハの主面に形成した後、当該SiウェハをSi基板2,3毎に切り分ける所謂ウェハレベルのプロセスでは、エッチング処理が完了したSiウェハからのSiO酸化膜(マスク)の除去に続いて、夫々のウェハとガラス基板1(切断前のマザーガラス状態)とが接合される。
この接合手法として、Siウェハ(単結晶基板2,3)とガラス基板1とを直接接合できる陽極接合が好適である。陽極接合では、ガラス基板1側の陰極とSiウェハ側の陽極の夫々に電圧を印加することで、ガラス基板1に含まれるNaなどの陽イオンを強制的にSiウェハへ拡散させる。この時、ガラス基板1内の電荷のバランスが崩れ、ガラス基板1とSiウェハ(単結晶基板2,3)の界面近傍に強い静電引力が発生する。この静電引力によりガラス基板1とSiウェハが密着する。ガラス基板1中のイオンをSiウェハ内へ拡散させるには、通常、この界面近傍を300℃以上に加熱し、且つこの界面に数百ボルトの電圧を印加することが必要である。ガラス基板1とSiウェハとが密着すると、ガラス基板1中の酸素原子とウェハを成すSi原子が反応し、これらの間に強固な接合界面が形成される。
図1を参照して、本実施例のフィルタ素子を、マザーガラスから切り出されたガラス基板1にSiウェハから切り出されたSi基板(単結晶基板)2,3を接合して組み立てる所謂チップレベルのプロセスについて説明する。このチップレベル・プロセスでは、まず、Si基板(単結晶基板)2の凹部20が形成された主面(凹部21を囲む周縁部分)とガラス基板1の一方の主面(図1における上面)とを接触させ、次にSi基板2に陽極を、ガラス基板1に陰極を夫々押し当てながら陽極と陰極との間に電圧を印加して、Si基板2の主面(周縁部分)とガラス基板1の一方の主面とを陽極接合させる。斯様にしてガラス基板1の一方の主面にSi基板2が固定された後、ガラス基板1の他方の主面(図1における下面)にSi基板(単結晶基板)3の凹部30が形成された主面(凹部30を囲む周縁部分)を接触させ、次にSi基板3に陽極を、Si基板2(所謂ガラス基板1側の部材)に陰極を押し当てながら陽極と陰極との間に電圧を印加して、Si基板3の主面(周縁部分)とガラス基板1の他方の主面とを陽極接合させる。ここで説明したフィルタ素子の製造工程において、ガラス基板1へのSi基板(単結晶基板)2,3の陽極接合の順序を変えてもよく、また、これらの製造工程は上記ウェハレベル・プロセスにも適用できる。
以上のように、本実施例によるフィルタ素子は、ガラス基板1の両主面に一対のSi基板(単結晶基板)2,3が直接接合されて構成されるため、夫々の熱膨張率を互いに近づけることが望ましい。単結晶基板2,3としてSi基板を用いる本実施例のフィルタ素子を作製するにあたり、ガラス基板1として、その熱膨張率がシリコン(Si)に近い例えばホウケイ酸ガラス(硼珪酸ガラス、borosilicate glass,SiO2−B2O3)を用いることが望ましい。ホウケイ酸ガラスの基板材料として、コーニング社(Corning Inc.,米国,ニューヨーク)の商標で知られるパイレックス(PYREX(R))や、ショット社(Schott AG.,独,マインツ)の商標で知られるテンパックスフロート(TEMPAX Float(R))などが好適である。本実施例によるフィルタ素子のガラス基板1として推奨される材料はホウケイ酸ガラスに限られず、Siに近い熱膨張率を有し且つアルカリイオンを含む他のガラスも、上述したSi基板への陽極接合が可能であるため、当該フィルタ素子に適用することができる。
Si基板(単結晶基板)2,3とガラス基板1とを陽極接合ではなく、例えば接着剤を用いて接合する場合は、その接合界面近傍を加熱する温度が陽極接合よりも低いので、ガラス基板1の熱膨張率はSi基板2,3のそれと不一致であっても構わない。Si基板2,3とガラス基板1のそれぞれの主面(接合部位)にメタライズを形成し、メタライズ間をはんだにより接合する場合も同様である。しかし、これらの接合により完成されたフィルタ素子や光モジュールにおける歪低減の観点から、接着剤による接合であってもメタライズ間のはんだ接合であっても、Si基板2,3とガラス基板1との熱膨張率は近いことが望ましい。
以上述べた方法により作製されたフィルタ素子20は、図2のように光の入出力位置にLD30及びPD40をそれぞれ配置することで、光モジュールとしての機能を発揮させることができる。ここで図3のように、フィルタ素子20に第二のガラス基板21を接合し、その第二のガラス基板上にPD40を実装することで、より簡便に光モジュールを作製することが可能となる。第二のガラス基板の接合には、陽極接合、接着剤による接合、光を透過させる領域以外をはんだにより接合する、などの方法を用いることができる。
第二のガラス基板21には、予め配線22と電極23がフォトリソグラフィー技術を用いて、メタライズのパターン形成により作製される。メタライズには、Ti/Ni/Au、Ti/Pt/Au、Cr/Ni/Auなどの金属を積層したものが好適である。この電極位置は、光学的設計により決定される。すなわち、PD40の受光部42が受光位置に来るように電極23の位置が決定される。光の入出力位置は、ガラス基板の厚さ、屈折率、シリコンの形状などで定義されるので、予めそれらの情報から光の入出力位置を決定し、そこにPD受光部とPD電極の位置関係を加味して、電極23の位置を設計する。
以上のようにして第二のガラス基板21上には電極23および配線22が形成され、この第二のガラス基板21がフィルタ素子20に接合される。この組立は、生産性を向上させるために、各素子ごとに切断されていないウェハの状態で行うことが望ましい。したがって、第二のガラス基板21もウェハ状でフィルタ素子20に接合するが、この時の位置合わせ精度は、フィルタ素子20を形成したウェハ及び第二のガラス基板21を形成したウェハにアライメントマーク(図示せず)を形成して、マーク合わせを行うことで±2〜3um以内の誤差で接合を行うことが可能である。
ここまで作製したフィルタ素子20を切断により個片化し、洗浄を経て、光素子の実装を行う。PD40には、電極23が受光面側にのみ存在するタイプのものを使用する。実装方法には、はんだ、導電性接着剤、Auバンプを用いた超音波接合などの方法を適用することができ、接合剤41は、それぞれの場合で、はんだ、導電性接着剤、Auバンプとなる。
第二のガラス基板上に、光素子を実装するメリットについて述べる。まず受光素子40をフィルタ素子20からの距離が短く配置できるので、フィルタ素子20から出射光が多少、基板面に対して垂直から傾きを生じるような場合があっても、基板平面内でのずれは小さくなる。したがって、PD受光部に光が入りやすくなる。同様にして、フィルタ素子20を光モジュールの筐体に実装した場合に、水平から微小な角度ずれが発生した場合にも、フィルタ素子から受光素子までの距離が長いと、平面内での位置ずれの影響が大きくなるが、図3のように受光素子を、第二のガラス基板を通してフィルタ素子に直接貼り付けてしまうため、そのような位置ずれの影響を受けない。
また、ガラス基板21は誘電率がシリコン等の基板に比べて大きいので、ガラス基板上に形成した配線を用いて、高周波信号を伝送させやすい。特に10Gbpsといった伝送速度では、ガラス基板上に配線を形成した方が伝送させやすい。
なお、図3では、発光素子30は第二のガラス基板上に実装していない。受光素子40は、一般的に発熱は小さく、ガラス基板上に実装しても熱的問題は発生しない。また高周波信号の伝送といった観点からもメリットが大きい。一方、発光素子30は駆動時の発熱量が大きいため、第二のガラス基板21上に実装すると、放熱性が不充分になり、光モジュールに熱が伝わり、熱膨張により光経路に歪みが生じる可能性がある。ただし、駆動速度が遅く、発熱が問題にならないレベルの発光素子30ならばこの限りではない。
発光素子30を別の場所に実装し、受光素子40をフィルタ素子20と第二のガラス基板21上に実装する構成には、別のメリットもある。光ファイバから来る光信号は、フィルタ素子20の構造で、各波長で分波され、所定の位置でフィルタ素子20から出射される。したがってそこに受光素子を実装すれば良い。いわゆる、パッシブアライメントとよばれる位置合わせであるが、受光素子の受光径の大きさが数十μm、位置合わせ精度など数μmなどを考慮しても、可能である。
一方、発光素子では、パッシブアライメントを行うには、より高精度の位置合わせが必要になると予想される。マルチモードファイバを用いた光モジュールならば、発光素子30もパッシブアライメントにより、第二のガラス基板21上に実装する構造が可能と思われるが、シングルモードファイバの場合は、発光素子30は別の基板上に実装して、発光素子30を駆動させながらファイバとの位置合わせを行うアクティブアライメントが好適と考えられる。
図4に光モジュールの具体的な構成を示す。PD40を実装したフィルタ素子20は、第一の筐体50に接着剤53により接着固定される。PD40との電気的接続としては、第一の筐体50を貫通するように絶縁部材52を介して設けられた端子51と、第二のガラス基板21上の配線22とをワイヤーボンディング32により接続することにより、PD40の出力信号を光モジュール外へ出力可能としている。
一方、発光素子30は、サブマウント31上にAu−Snの薄膜はんだなどを用いて実装され、サブマウント31は、第二の筐体60に導電性接着剤などを用いて実装される。第二の筐体を貫通するように絶縁部材62を介して設けられた端子61と発光素子30とをワイヤーボンディング32を用いて接続することで、光モジュールの外部から発光素子30に信号を入力可能としている。
レンズ7は、第三の筐体70に接着などにより固定される。ファイバ8は、部品81に固定される。
図4の構成に組み上げ、発光素子30を駆動させて、レンズ7、ファイバ8との光学的な結合を得る。この状態で、YAG溶接90を順次行い、第一の筐体50、第二の筐体60、第三の筐体、部品80及び部品81を接合することにより、光モジュールを製造する。
本発明によるフィルタ素子の第二の実施例について、図5を用いて説明する。本実施例のフィルタ素子では、第一の実施例に説明されたフィルタ素子の全反射膜5に代えて、波長λ1のみを透過させるバンドパスフィルタ12がガラス基板1の第2主面(図示される上面)に形成されている。全反射膜5をバンドパスフィルタ12に替えた理由は、発光素子(特にレーザダイオード(LD)から出射された波長λ1の光が、充分にコリメートされず、または、多少の散乱光を伴ってガラス基板1に第1主面(図示される下面)から入射したときに、波長λ1の光がガラス基板1(所謂フィルタ素子本体)内で多重反射を起こしながらガラス基板1の第1主面のバンドパスフィルタ6が形成されていない領域(バンドパスフィルタの形成領域外)まで到達することを防ぐことにある。実施例1に記した第1主面に対向する傾斜面31とその一辺31a及び他辺31bを用いると、ここで論じられる「ガラス基板1の第1主面におけるバンドパスフィルタが形成されない領域」は、当該第1主面におけるバンドパスフィルタ(6)の当該傾斜面31の他辺31b側の縁から当該他辺31bに向けて延在する領域と記される。なお、バンドパスフィルタ12も、実施例1で述べた光学フィルタ4,6と同様な光学的特性を示す光学フィルタなら、例えば、ハイパスフィルタやロウパスフィルタ等に適宜置き換えられる。従って、バンドパスフィルタ12は、光学フィルタ12と記せるが、本明細書では、「バンドパスフィルタ」と便宜的に記される。
例えば、図2に示された実施例1の光モジュールにおいて、ガラス基板1の第2主面に形成された全反射膜5は、当該ガラス基板1に第1主面から入射する波長λ1の一部(例えば、コリメートされない成分(non-collimated fraction)や散乱された成分(scattered fraction))をその第2主面から出射させずにガラス基板1内に戻し、さらにガラス基板1内を図示された主面方向沿いに伝播させ、第1主面のバンドパスフィルタの形成領域外からの出射光を受けるように配置された受光素子(PD)11に入射させる。従って、光ファイバ8からレンズ7、単結晶基板(例えば、Si基板)2を介してガラス基板1の第2主面に入射する波長λ3の光を信号として受信するPD11は、これとともにガラス基板1で伝播された波長λ1の光を検出するため、光モジュールによる波長λ3の光信号受信にクロストークが起きることが懸念される。
この光モジュールに備えられたフィルタ素子を本実施例のフィルタ素子に置き替え、又はこのガラス基板1の第2主面に全反射膜5に代えて、バンドパスフィルタ12を形成することで、波長λ1のコリメートされない成分や散乱された成分も、ガラス基板1の第2主面からバンドパスフィルタ12を透過して出射され、更に第2主面に接合された単結晶基板2を通して光モジュールから出射される。これにより、PD40による光信号受信におけるクロストークは低減される。また、ガラス基板1の第2主面から出射できなかった波長λ1の光が当該ガラス基板1の第1主面からバンドパスフィルタ4を通してLD30に戻り、そのレーザ発振を乱すこと(所謂戻り光問題)も防げる。
本実施例で新たに論じたパスフィルタ12は、実施例1にて論じたガラス基板1の第1主面に形成されるバンドパスフィルタ4,6のように誘電体多層膜で形成してもよく、波長λ1を選択的に通過させ且つそれ以外の波長(特に波長λ2,λ3)を透過させることなく且つガラス基板1内部へ反射させる特性を備えることが望ましい。この観点から、バンドパスフィルタ12は、ガラス基板1の第1主面における波長λ1が入射する領域(第1主面に対向する傾斜面31の一辺31a側)に形成されるバンドパスフィルタ4と同じ材料で形成してもよく、バンドパスフィルタ4と同じ誘電体多層膜にしてもよい。
本発明によるフィルタ素子の第三の実施例について、図6を用いて説明する。本実施例のフィルタ素子は、先述した実施例のフィルタ素子のいずれにおいてもバンドパスフィルタが形成されないガラス基板1の第1主面の領域(これに対向する傾斜面31の他辺31bに近い領域)に波長λ3の光を選択的に透過させるバンドパスフィルタ13が設けられていることを特徴とする。即ち、ガラス基板1の第1主面には、これに対向する傾斜面31の一辺31aから他辺31bに到る延在方向に沿って、波長λ1の光を選択的に透過させるバンドパスフィルタ4、波長λ2の光を選択的に透過させるバンドパスフィルタ6、及び波長λ3の光を選択的に透過させるバンドパスフィルタ13がこの順に配置される。本実施例のバンドパスフィルタ13も、先述の光学フィルタ4,6,12と同様な光学的特性を示す光学フィルタなら、例えば、ハイパスフィルタやロウパスフィルタ等に適宜置き換えられるが、その機能を強調するため、本明細書では「光学フィルタ13」と記さず、「バンドパスフィルタ」と便宜的に記される。
図6に示されたフィルタ素子の単結晶基板3側(下面側)には図示されない発光素子が配置される。この発光素子から「送信信号」として出射された波長λ1のレーザ光は、フィルタ素子を単結晶基板3から単結晶基板2に向けて通過し、レンズ7を経て入射した光ファイバ(導波路)8により別の基地局(不図示)に設けられた光モジュールで受信される。一方、上記光ファイバ8は別の基地局から発信された波長λ2,λ3のレーザ光を伝播し、上記レンズ7を介してフィルタ素子を成す単結晶基板2の外表面に照射する。フィルタ素子は波長λ2,λ3のレーザ光を「受信信号」としてそのガラス基板1内に取り込み、その第1主面に形成されたバンドパスフィルタ4と第2主面に形成されたバンドパスフィルタ12とで多重反射させ、傾斜面31の延在方向(図示された「主面方向」)に伝播させる。これらの受信信号に対して所謂ノイズとなる波長λ1の光は、バンドパスフィルタ4,12のいずれかを通してガラス基板1外に出射される。受信信号がガラス基板1の第1主面にバンドパスフィルタ6が形成された領域に到ると、波長λ2のレーザ光のみがバンドパスフィルタ6を通してガラス基板1の第1主面(図示された下面)から出射され、当該第1主面に対向して設けられた受光素子(不図示)で検出される。一方、波長λ3のレーザ光は一対のバンドパスフィルタ6,12で繰り返し反射されてガラス基板1内を傾斜面31の延在方向に沿って伝播される。さらに受信信号がガラス基板1の第1主面にバンドパスフィルタ13が形成された領域に到ると、波長λ3のレーザ光のみがバンドパスフィルタ13を通してガラス基板1の第1主面から出射され、当該第1主面に対向して設けられた別の受光素子(不図示)で検出される。このとき、ガラス基板1内に波長λ2の光の散乱された一部や、波長λ3以外の迷光又は散乱光が残留しても、これらがバンドパスフィルタ13を通過して、別の受光素子に検知されることはない。
従って、本実施例のフィルタ素子を実施例1で述べた光モジュール(図2)に組み込むことにより、これにより受信される波長λ2及び波長λ3の光信号の検出に伴うクロストークが大幅に低減される効果がある。
なお、図4に示された本実施例のフィルタ素子は、実施例2(図3)のフィルタ素子に基づいている。しかし、本実施例のフィルタ素子は、実施例2のフィルタ素子の改良のみならず、その特徴(バンドパスフィルタ13)を実施例1(図1)のフィルタ素子に加えても具現され、上述した作用効果が得られる。
本発明の第四の実施例について、図7を用いて説明する。本実施例は、受光素子40と第二のガラス基板21の間に光信号を透過する透明樹脂43を充填するものであり、他の点は実施例1と同様である。透明樹脂43を充填しない場合には、第二のガラス基板21の屈折率と空気の屈折率との差が大きいため、第二のガラス基板21を通過した光信号が、第二のガラス基板21の表面で反射し、受光素子40の観測する光信号の強度が低下してしまう。本実施例では、屈折率が空気よりも大きくガラスの屈折率に近い透明樹脂43のを第二のガラス基板に近くすることで、ガラス表面での屈折率変化を小さくして反射を抑制し、光信号の強度低下を抑制することができる。また透明樹脂43の密着力により、受光素子40と第二のガラス基板21との接続強度向上にも寄与する。
本発明の第五の実施例について、図8を用いて説明する。本実施例は、第四の実施例のフィルタ素子を、第三の実施例と同様に各筐体を配置し、さらに受光素子40を上から覆うように、光を遮断するための非透過性樹脂44で覆うものである。この非透過性樹脂としては、例えば黒色の樹脂などが好適である。受光素子40の受光部43近傍は、透明樹脂43が充填されているので、非透過性樹脂44が入り込むことは無い。透明樹脂43の外側から非透過性樹脂44で覆うことにより、フィルタ素子以外からの光を遮断して、受光素子40の受光部43に届かないようにすることができる。例えば、発光素子30が発した光が拡散したり、フィルタ素子の表面で反射したりしても、その光がフィルタ素子20の内部を通らずに受光素子40の受光部に到達することはないので、発光素子30と受光素子40の間のクロストーク低減に有効である。
本発明によるフィルタ素子及びこれを備えた光モジュールは、特に波長分割多重方式の光通信システムに適用され、その送受信装置を大型化させることなく、且つ波長の異なる複数の光信号の各々を高い精度と高い感度で検出せしめる。また、ウェハレベルで複数の光モジュールを同時に作製することで、多数の光モジュールが各々における光素子位置の微調整を繰り返すことなく量産される。
本発明の実施例1によるフィルタ素子(分光器(spectroscope))の断面構造を模式的に示す図である。 本発明の実施例1によるフィルタ素子の断面構造を模式的に示す図である。 本発明の実施例1によるフィルタ素子の断面構造を模式的に示す図である。 本発明の実施例1による光モジュールの断面構造を模式的に示す図である。 本発明の実施例2によるフィルタ素子の断面構造を模式的に示す図である。 本発明の実施例3によるフィルタ素子の断面構造を模式的に示す図である。 本発明の実施例4によるフィルタ素子の断面構造を模式的に示す図である。 本発明の実施例5による光モジュールの断面構造を模式的に示す図である。
符号の説明
1…ガラス基板、2…Si、3…Si、4…波長λ1のみを透過させるバンドパスフィルタ、5…全反射膜、6…波長λ2のみを透過させるバンドパスフィルタ、7…レンズ、8…光ファイバ、9…LD、10…PD、11…PD、12…波長λ1のみを透過させるバンドパスフィルタ、13…波長λ3のみを透過させるバンドパスフィルタ、14…基板、15…バンドパスフィルタ部品、16…基板、17…遮光膜、30…レーザダイオード(LD)、40…フォトダイオード(PD)、43…透明樹脂、44…非透過性樹脂。

Claims (13)

  1. 第一の主面に、当該第一の主面に対して傾斜する第一の傾斜面を有する第一の凹部が形成された第一の単結晶基板と、
    前記第一の単結晶基板と対向する第二の主面に、当該第二の主面に対して傾斜する第二の傾斜面を有する第二の凹部が形成された第二の単結晶基板と、
    前記第一の単結晶基板の第一の主面と前記第二の単結晶基板の第二の主面との間に設けられ、両主面を各々前記第一の単結晶基板の第一の主面と前記第二の単結晶基板の第二の主面とに接合され、前記第一の傾斜面と前記第二の傾斜面との間にある主面に光学フィルタを有する第一の基板と、
    前記第二の単結晶基板の前記第二の主面とは反対の主面に接合され、その表面に光素子を有する第二の基板とを有することを特徴とする光モジュール。
  2. 前記第一の単結晶基板及び第二の単結晶基板の各々は、単結晶シリコン基板であることを特徴とする請求項1に記載の光モジュール。
  3. 前記単結晶基板の各々に形成された前記第一及び第二の傾斜面は、前記単結晶シリコン基板の(111)結晶面であることを特徴とする請求項2に記載の光モジュール。
  4. 前記第一及び第二の基板は、ガラス基板であることを特徴とする請求項1記載の光モジュール。
  5. 前記第一の基板及び前記第二の基板と、前記第一の単結晶基板、前記第二の単結晶基板とが陽極接合、接着剤、はんだ接合のいずれかの方法により接合されていることを特徴とする請求項1記載の光モジュール。
  6. 前記第二の基板と前記光素子の間に、光を透過し、その屈折率が空気の屈折率よりも大きい透明樹脂を備えたことを特徴とする請求項1記載の光モジュール。
  7. 前記光素子は、光を遮断する非透過性樹脂で覆われていることを特徴とする請求項6記載の光モジュール。
  8. 前記光素子は受光素子であり、
    前記第一の単結晶基板の前記第一の主面の反対の主面から入射した光は、前記第一の傾斜面から出射し、
    当該第一の単結晶基板を出射した光は、前記第一の基板の光学フィルタを透過または反射し、
    前記光学フィルタを透過または反射した光は、前記第二の傾斜面から前記第二の単結晶基板に入射して、前記第二の基板を経て前記受光素子に到ることを特徴とする請求項1記載の光モジュール。
  9. 前記光フィルタを透過または反射するときに、異なる波長の二つ以上の光に分光されることを特徴とする請求項8記載の光モジュール。
  10. 発光素子を出射した光は、前記第二の単結晶基板の前記第二の主面の反対の主面から入射して前記第二の傾斜面から出射し、
    当該第二を出射した光は、前記光学フィルタを透過し、
    前記光学フィルタを透過した光は、前記第一の傾斜面から前記第一の単結晶基板に入射して、前記第一の主面の反対の主面から出射することを特徴とする請求項1記載の光モジュール。
  11. 前記第一の傾斜面と、前記第二の傾斜面とは、略並行であることを特徴とする請求項8乃至10のいずれかに記載の光モジュール。
  12. 第一主面とこれに対向する第二主面とを有し、該第一主面及び第二主面に光学フィルタが設けられている第一の基板と、前記第一の基板の第一主面に接合され、前記第一の基板と接合される主面に、傾斜面を有する凹部を有する第一の単結晶基板と、前記第一の基板の第二主面に接合され、接合される主面に、傾斜部を有する凹部を有し、当該傾斜部は前記第一の単結晶の傾斜部と略平行である第二の単結晶基板とを有するフィルタ素子を製造する工程と、
    第二の基板に受光素子を実装する工程と、
    前記受光素子を実装した第二の基板を、前記受光素子を駆動させて前記フィルタ素子に対して位置合わせを行い、前記フィルタ素子に接合する工程とを含むことを特徴とする光モジュールの製造方法。
  13. 前記フィルタ素子を製造する工程は、
    ウェア形状の前記第一の基板の前記第一主面及び第二主面に複数組の前記光学フィルタを設ける工程と、
    ウェハ形状の前記第一の単結晶基板及び第二の単結晶基板とに複数の前記凹部を形成する工程と、
    前記第一の基板の光学フィルタに前記凹部が対応するように位置合わせをし、前記第一の基板の両面に前記第一の単結晶基板と第二の単結晶基板とを接合する工程と、
    接合した前記第一の基板、第一及び第二の基板を、前記凹部ごとに切断する工程とを含むことを特徴とする請求項12に記載の光モジュールの製造方法。
JP2008227747A 2008-07-02 2008-09-05 Wdmフィルタを実装した光モジュール及びその製造方法 Pending JP2010060950A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008227747A JP2010060950A (ja) 2008-09-05 2008-09-05 Wdmフィルタを実装した光モジュール及びその製造方法
US12/494,890 US7991251B2 (en) 2008-07-02 2009-06-30 Optical module mounted with WDM filter
EP09008692A EP2141526A1 (en) 2008-07-02 2009-07-02 Optical module mounted WDM filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227747A JP2010060950A (ja) 2008-09-05 2008-09-05 Wdmフィルタを実装した光モジュール及びその製造方法

Publications (2)

Publication Number Publication Date
JP2010060950A true JP2010060950A (ja) 2010-03-18
JP2010060950A5 JP2010060950A5 (ja) 2011-02-03

Family

ID=42187803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227747A Pending JP2010060950A (ja) 2008-07-02 2008-09-05 Wdmフィルタを実装した光モジュール及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010060950A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712724A (zh) * 2018-02-21 2020-09-25 索尼半导体解决方案公司 测距系统、光接收模块以及制造带通滤波器的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109149A (ja) * 1997-10-06 1999-04-23 Fujitsu Ltd 波長分割多重光デバイス及びその製造方法
JP2004294513A (ja) * 2003-03-25 2004-10-21 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2005249966A (ja) * 2004-03-02 2005-09-15 Oki Electric Ind Co Ltd 光学部材とその製造方法,光モジュール
JP2006071739A (ja) * 2004-08-31 2006-03-16 Nippon Telegr & Teleph Corp <Ntt> Wdmフィルタ及びwdmフィルタを用いた光配線システム
JP2007219004A (ja) * 2006-02-14 2007-08-30 Fujitsu Ltd 光モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11109149A (ja) * 1997-10-06 1999-04-23 Fujitsu Ltd 波長分割多重光デバイス及びその製造方法
JP2004294513A (ja) * 2003-03-25 2004-10-21 Sumitomo Electric Ind Ltd 光送受信モジュール
JP2005249966A (ja) * 2004-03-02 2005-09-15 Oki Electric Ind Co Ltd 光学部材とその製造方法,光モジュール
JP2006071739A (ja) * 2004-08-31 2006-03-16 Nippon Telegr & Teleph Corp <Ntt> Wdmフィルタ及びwdmフィルタを用いた光配線システム
JP2007219004A (ja) * 2006-02-14 2007-08-30 Fujitsu Ltd 光モジュール

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111712724A (zh) * 2018-02-21 2020-09-25 索尼半导体解决方案公司 测距系统、光接收模块以及制造带通滤波器的方法

Similar Documents

Publication Publication Date Title
US7991251B2 (en) Optical module mounted with WDM filter
JP4983391B2 (ja) 光モジュール及びその製造方法
JP3782126B2 (ja) 二方向光通信及び信号伝送用送信及び受信モジュール
JP3302458B2 (ja) 集積化光装置及び製造方法
JP3256126B2 (ja) オプトエレクトロニクス変換器
KR100802199B1 (ko) 광모듈 및 그 제조방법
KR101744281B1 (ko) 광도파로 내부에 광경로 전환용 마이크로 거울을 내장한 광집적회로 및 그 제조방법
US20090154872A1 (en) Electronic device package and method of formation
US6332719B1 (en) Optical transmitter/receiver apparatus, method for fabricating the same and optical semiconductor module
JP4764373B2 (ja) 光導波回路およびその作製方法
JPH11311721A (ja) 光結合モジュールおよびその製造方法
JP2005234052A (ja) 光送受信モジュール
EP3781972B1 (en) Optical assembly
JP6489001B2 (ja) 光モジュール、光モジュールを作製する方法、及び光学装置
US8532457B2 (en) Method of manufacturing optical waveguide, optical waveguide and optical transmission device
US20050276546A1 (en) Bidirectional emitting and receiving module
JP2010060950A (ja) Wdmフィルタを実装した光モジュール及びその製造方法
JP4069856B2 (ja) 光半導体素子実装用基板及びその製造方法
JP2010014831A (ja) Wdmフィルタを実装した光モジュール
JP2011253064A (ja) フィルタ素子及びそれを用いた光モジュール、及びその製造方法
JP2006267154A (ja) 光デバイス及び光監視用デバイス
JP4729893B2 (ja) 半導体光学装置の製造方法
JP4967283B2 (ja) 半導体光学装置
JP7331272B2 (ja) 光デバイス
KR20070114084A (ko) 광모듈 및 그 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008