JP2010059384A - 導電性を有する繊維強化熱可塑性樹脂組成物および成形体 - Google Patents

導電性を有する繊維強化熱可塑性樹脂組成物および成形体 Download PDF

Info

Publication number
JP2010059384A
JP2010059384A JP2008229554A JP2008229554A JP2010059384A JP 2010059384 A JP2010059384 A JP 2010059384A JP 2008229554 A JP2008229554 A JP 2008229554A JP 2008229554 A JP2008229554 A JP 2008229554A JP 2010059384 A JP2010059384 A JP 2010059384A
Authority
JP
Japan
Prior art keywords
fiber
resin
thermoplastic resin
dtex
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008229554A
Other languages
English (en)
Inventor
Yoichi Yamamoto
洋一 山本
Takashi Katayama
隆 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2008229554A priority Critical patent/JP2010059384A/ja
Publication of JP2010059384A publication Critical patent/JP2010059384A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 射出成形時に有機補強繊維が損傷せず、熱可塑性樹脂を効率良く繊維補強され、さらに被覆強度の大きな金属被覆を有する繊維を基体樹脂に練込または混合することにより、優れた導電性を有し、しかも導電性が長期間安定に維持される繊維強化熱可塑性樹脂組成物および成形体を提供する。
【解決手段】 引張強度10cN/dtex以上、引張初期弾性率250cN/dtex以上であり、かつ金属被覆を有する溶融液晶ポリマーからなるポリアリレート繊維を、熱可塑性樹脂100質量部に対し1〜60質量部含有してなる導電性を有する繊維強化熱可塑性樹脂組成物および成形体。
【選択図】なし

Description

本発明は、樹脂補強用繊維として溶融液晶ポリマーからなり、かつ金属被覆されたポリアリレート繊維を用いてなる繊維強化熱可塑性樹脂において、金属被覆を設けた短繊維を樹脂に混合することによって導電性を有するようにした繊維強化熱可塑性樹脂組成物および成形体に関する。
熱可塑性樹脂からなる射出成形物の機械的物性、耐熱性や耐久性を向上させるためにガラス繊維、炭素繊維やタルクなどの無機フィラーを含有させた成形材料が数多く提案されている。従来、力学物性向上には、一般的にガラス繊維や炭素繊維等の無機フィラーを樹脂中に好適量添加分散させて物性向上を図るのが一般的であるが、添加された繊維は射出成形時に成形機中で粉砕され、成形後の繊維長は1mmよりも短くなるため、本来繊維が有する補強性能を十分活用することができていなかった。またこのような成形機中での繊維の損傷も考慮に入れる必要があるため、熱可塑性樹脂への繊維添加量は、繊維補強性の確保の目的から樹脂100重量部に対して20〜40重量部添加するのが一般的であった。
一方、上記したガラス繊維、炭素繊維、タルクなどの無機フィラーを含有させた成形材料の欠点である耐衝撃性、特に低温における耐衝撃性を改善するために補強繊維を有機繊維とする提案が数多くなされており、中でも、所定長にカットされた有機繊維を樹脂原材料とともにミキサーで加熱攪拌して混練したり、ロール、押出し機、コニーダーなどで溶融混練して有機繊維を熱可塑性樹脂中に含有させ、ペレット化する方法や、溶融させた熱可塑性樹脂を連続した強化繊維束に被覆した後ストランド状とし、得られたストランド状物を切断することで有機繊維が配合されたペレット状の成形材料を得る方法が提案されている(例えば、特許文献1〜6参照。)。しかしながら、これらの方法で得られた有機繊維含有ペレット状熱可塑性樹脂を用いて目的とする成形体を成形する場合、再度射出成形機などで加熱溶融状態でスクリューなどにより押出成形を行う必要があるため、樹脂補強目的で使用される有機繊維が成形時に熱による形状損傷や機械的物性の低下を生じさせないように、マトリックスとなる成形樹脂の融点を、樹脂の熱変形温度や補強繊維の融点に応じて、かなり低温に設定しなければならず、その結果得られる成形体の機械的物性は不十分であった。またこのような溶融成形を行うことにより、有機繊維がガラス繊維や炭素繊維の場合と同様に、繊維損傷などの補強性低下となる悪影響を回避することは困難であった。
また従来、樹脂に導電性の充填材を混合した導電性樹脂組成物が製造されている。この導電性充填材としては、導電性金属やその合金、金属酸化物等の導電性化合物からなる粉体や繊維体などが用いられている。ところが、導電粉や金属粒子を用いたものは樹脂中でこれらが相互に接触した状態にするためには比較的多量に用いる必要があり、樹脂組成物が重量化する。しかも粉体や粒状物は接触面積が大きくないので多量に用いても高い導電性を得るのは困難であるという問題がある。一方、金属繊維は相互に接触状態を保つので金属粉よりは少ない使用量で足りるが、金属繊維自体が樹脂より重いのでこれを配合した樹脂組成物の重量も大きくなる。さらに、金属繊維は樹脂繊維より柔軟性に乏しいので、金属繊維の配合量が多くなると樹脂組成物の柔軟性および耐久性が損なわれるという問題点があった。
特開昭62−146945号公報 特開平3−290453号公報 特開平4−202545号公報 特開平6−306216号公報 特公平6−025288号公報 特開2001−049012号公報
本発明は、かかる問題点を鑑みてなされたもので、射出成形時に有機補強繊維が損傷せず、熱可塑性樹脂を効率良く繊維補強され、さらに被覆強度の大きな金属被覆を有する繊維を用い、これを樹脂に練込または混合することにより優れた導電性を有し、しかも導電性が長期間安定に維持される繊維強化熱可塑性樹脂組成物および成形体を提供することを目的とする。
本発明者等は上記問題点を解決すべく鋭意検討を行った結果、補強繊維として溶融液晶ポリマーからなるポリアリレート繊維に対して金属被覆処理を行った繊維を用いることで射出成形などで得られる熱可塑性樹脂に対し効率良く繊維補強および導電性を付与できることを見出し、本発明を完成した。
すなわち本発明は、引張強度10cN/dtex以上、引張初期弾性率250cN/dtex以上であり、かつ金属被覆を有する溶融液晶ポリマーからなるポリアリレート繊維を、熱可塑性樹脂100質量部に対し1〜60質量部含有してなる導電性を有する繊維強化熱可塑性樹脂組成物であり、好ましくは溶融液晶ポリマーからなるポリアリレート繊維の単繊維繊度が0.1〜50dtex、繊維長が0.5〜50mmである上記の導電性を有する繊維強化熱可塑性樹脂組成物であり、前記樹脂組成物からなる成形体である。
本発明の溶融液晶ポリマーからなり、かつ金属被覆されたポリアリレート繊維を熱可塑性樹脂の補強用繊維として使用することにより、該繊維補強された熱可塑性樹脂は機械的性能や耐熱性能、リサイクル性能に優れ、かつ導電性を有したものとなる。
本発明の補強繊維用ポリマーとして用いられる溶融液晶ポリマーとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルが主であり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することにより認定できる。
次に本発明にいう液晶性ポリマーの上記化学的構成の具体例について述べる。芳香族ポリエステルは、(1)芳香族ヒドロキシカルボン酸またはその誘導体の1種又は2種以上を主成分として使用したもの、(2)ジカルボン酸として芳香族ジカルボン酸を主成分とし、脂環族ジカルボン酸、又はこれらの誘導体の1種若しくは2種以上を併用したものと、ジオールとして芳香族ジオールを主成分とし、脂環族ジオール又は脂肪族ジオール、又はこれらの誘導体の1種若しくは2種以上を併用したもの、(3)前記(1)の一部を前記(2)の成分で置換したものを挙げることができる。
より具体的には、(1)の芳香族ヒドロキシカルボン酸としてはp−ヒドロキシ安息香酸、6−ヒドロキシ−2−ナフトエ酸等が例示でき、(2)芳香族ジカルボン酸としてはテレフタル酸、イソフタル酸、4,4’−ジフェニルジカルボン酸、2,6−ナフタレンジカルボン酸、下記一般式〔1〕で表されるジカルボン酸等が例示でき、芳香族ジオールとしては2,6−ジヒドロキシナフタレン、1,4−ジヒドロキシナフタレン、4,4’−ジヒドロキシビフェニル、ハイドロキノン、レゾルシン、下記一般式〔2〕又は〔3〕で表されるジオール等が例示できる。
Figure 2010059384
〔但し、式中、Xは−(CH)−(nは1〜4の整数)及び−O(CH)−(mは1〜4の整数)から選ばれる基であり、Yは炭素数1〜4のアルキレン、アルキリデン、−O−、−SO、−SO−、−S−、及び−CO−から選ばれる基である。〕
また本発明の主な芳香族ポリエステルとして芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸等から誘導される反復構成単位を有するものであり、例えば下記化2および化3の(1)〜(11)に示す繰返し構成単位の組み合わせからなるポリマーが挙げられる。
Figure 2010059384
Figure 2010059384
上記の溶融液晶ポリマーにおいて、より好ましくは前記化2および化3に示される反復構成単位の組合せ(5)、(8)、(9)からなるポリマーであり、更に好ましくは(5)に相当するポリマーであって、下記化4の(B)の成分が4〜45モル%である芳香族ポリエステルであることがさらに好ましい。
Figure 2010059384
本発明に用いられる溶融液晶ポリマーは好ましくは250〜400℃、より好ましくは260〜370℃の融点を有するポリマーである。ここでいう融点とは、JIS K7121に準拠した試験方法により測定されるものであり、示差走査熱量計(DSC)で観察される主吸熱ピークのピーク温度である。
本発明の溶融液晶ポリマーに、本発明の効果を損なわない範囲内でポリエチレンテレフタレート、変性ポリエチレンテレフタレート、ポリオレフィン、ポリカーボネート、ポリアリレート、ポリアミド、ポリフェニレンサルファイド、ポリエステルエーテルケトン、フッ素樹脂等の熱可塑性ポリマーを添加してもよい。また酸化チタンやカオリン、シリカ、酸化バリウム等の無機物、カーボンブラック、染料や顔料等の着色剤、酸化防止剤、紫外線吸収剤、光安定剤等の各種添加剤を添加してもよい。
また樹脂ポリマーの導電性を付与することが可能なカーボンブラック粉体、各種導電性の金属粉末、酸化インジウムスズ、などの添加剤を添加しても構わない。
次に本発明における溶融液晶ポリマーからなるポリアリレート繊維(以下、本発明の繊維と称する)の製造方法について以下説明する。本発明の繊維は、通常の溶融紡糸法により繊維化が可能である。繊維化を行う際、単繊維繊度は0.1〜50dtexであることが好ましく、1〜20dtexであることがより好ましい。単繊維繊度が0.1dtex未満である場合、熱可塑性樹脂との加熱混合攪拌中に繊維形態が損傷を受けて繊維が切断する場合がみられ、樹脂補強性に問題が発生する恐れがある。また単繊維繊度が50dtexを超えると、樹脂との接着性が不足して樹脂補強性が低下する。本発明の繊維は紡糸した状態で、既に十分な力学的性能と熱的性能、特に寸法安定性を有しているが、押出機での混合攪拌処理のためにさらに熱処理を行ってから使用するのが好ましい。熱処理は窒素等等の不活性ガス雰囲気下や、空気のごとき酸素含有の活性ガス雰囲気中又は減圧下で固相重合することにより行われる。熱処理雰囲気は、溶融液晶ポリマーの融点−60℃以上、+10℃以下が好ましい。熱処理は繊維をカットする前に行うのが望ましいが、カットした後でも処理してもよい。
上記した製造方法で得られる本発明の繊維は引張強度13cN/dtex以上、引張初期弾性率300cN/dtex以上の力学物性を有していることが好ましい。上記の熱処理を行うことで繊維を形成するポリマーの固相重合が促進されて分子量増大などが起こり、その結果繊維の力学物性の向上のみならず、融点上昇や不融化にみられる耐熱性向上などが起こる。この耐熱性向上により、溶融成形機中や射出成形機中で熱可塑性樹脂との加熱混合攪拌を行っても、本発明の繊維は再溶融化による繊維形態の崩壊や繊維物性の低下を招かず、したがって、成形後には熱可塑性樹脂の補強が可能となる。また本発明の繊維はポリマー分子構成要素が主に疎水性モノマーからなり、且つその繊維構造は緻密でボイドなどの空隙を有しないため、繊維の平衡水分率は極めて低く非吸水性となる。このため熱可塑性樹脂との加熱混合攪拌を行うに際しては繊維の水分除去のための乾燥処理は容易であり、かつ繊維から放出される水分は極めて少ないため、加熱成型中に加水分解による樹脂の劣化分解の悪影響も極めて少ない。特に化4の分子構造を有するポリマーからなる溶融異方性芳香族ポリエステル繊維においては、熱処理後の繊維は引張強度が13cN/dtex以上、引張初期弾性率が300cN/dtex以上有するため本発明の樹脂補強には好適である。
繊維の表面に設ける金属被覆は、例えば、金、銀、銅、ニッケル、錫、亜鉛、白金、オスミウム、パラジウム、またはこれらの合金の一種または二種以上からなる導電性金属を用いることができる。また、この金属被覆は異なる二種以上の金属を積層したものでも良い。なお、被覆方法ないし手段は限定されない。電解メッキや化学(無電解)メッキ、あるいは真空蒸着などを利用することができる。繊維表面に電解メッキあるいは化学メッキなどによって上記金属の被覆を設けると良い。なお、金属被覆を設ける際に、予め繊維体表面をアルカリ等によってエッチング処理し、粗面化すれば被覆されるメッキ金属がこの繊維体表面の粗面に入り込んでアンカー効果を発揮するので好ましい。
金属被膜の具体的な処理方法としては、例えば無電解メッキの場合は特開2001−40578号に記載の方法などで好適に処理することができる。具体的には、例えば、本発明の繊維をチーズ捲きにした捲糸体をメッキ槽に装入し、脱脂液を循環させて繊維表面を脱脂処理した後に水洗し、さらに、アルカリ液を通じてエッチング処理を行い、水洗する。次いで、濃塩酸ないし硫酸の溶液を通じて中和処理した後に、スズ系あるいはパラジウム系の一種または二種の混合溶液によって活性化処理する。この後、銀等のメッキ液を通じて無電解メッキを行い、メッキ後水洗する方法が挙げられる。なお、アルカリ処理に代えて塩化第一スズ溶液等によって処理しても良い。
本発明で用いる金属被覆繊維は、繊維として長繊維を用い、これに以上のような金属被覆を設けた後に加熱処理し、これを切断して短繊維にしたものを用いることができる。または繊維として予め長繊維を切断した短繊維を用い、この短繊維に金属被覆を設けて加熱処理したものを用いることができる。具体的には、例えば、切断して短繊維にした繊維を無電解メッキ槽に装入し、攪拌しながら無電解メッキを施す。短繊維に金属被覆を設けたものは、繊維の端面まで金属被覆が施されるので、金属被覆どうしの接触状態が良く、これを樹脂に混合したときに優れた導電性を得ることができる。
本発明で用いる金属被覆繊維は、金属被覆の表面にパラフィンやワックスによる防錆処理ないしオイル処理(オイリング)などを施したものでも良い。樹脂に混合した金属被覆繊維が部分的に外部に露出している場合、この防錆処理等によって金属被覆を防錆し、長期間安定に導電性を維持することができる。表面処理剤の使用量は金属の種類や加熱冷却処理の条件等にもよるが、概ね0.1〜20質量%の範囲が有効である。
また、本発明で用いる金属被覆繊維は金属被覆表面にシリカやチタニアなどによる保護被覆を有するものを用いることができる。さらには、金属被覆を設けた後に加熱処理を行わずにケイ素化合物被覆またはチタン化合物被覆を設け、この焼成処理時に繊維の加熱処理を同時に兼用して行っても良い。金属被覆表面にシリカやチタニアなどによる保護被覆を設けることにより、金属被覆短繊維が部分的に外部に露出している場合でも、この保護被覆によって金属被覆が防錆され、長期間安定に導電性を維持することができる。なお、これらの被覆を設けても膜厚がナノメータ(nm)程度であれば電気特性には影響がない。
このようにして繊維表面を金属被覆した本発明の繊維の電気抵抗値は、100Ω/cm以下であることが好ましく、より好ましくは10Ω/cm以下、さらに好ましくは1Ω/cm以下が良い。また繊維表面を被覆した金属層の厚みは5μm以下が良く、好ましくは1μm以下が望ましい。元々の繊維直径にもよるが、金属厚みが5μm以上では金属被覆繊維の柔軟性が損なわれて、かつ繊維重量が増すので好ましくない。
繊維表面を金属被覆した後の繊維は引張強度10cN/dtex以上、引張初期弾性率250cN/dtex以上の力学物性を有していることが必要であり、好ましくは引張強度12cN/dtex以上、引張初期弾性率300cN/dtex以上、より好ましくは15cN/dtex以上40cN/dtex以下、引張初期弾性率350cN/dtex以上1200cN/dtex以下である。繊維の引張強度が10cN/dtex未満、引張初期弾性率250cN/dtex未満であると、本発明の目的の一つである補強性能を達成できない。
さらに本発明においては、金属被覆処理を行う前の繊維表面に層状ケイ酸塩を付着させることで、加熱溶融押出成形時に受ける熱による劣化や、圧力およびスクリューによる混練時の剪断力や摩擦力からの繊維損傷を防ぐことができる。ここでいう層状ケイ酸塩は、水あるいは有機溶剤に入れた場合に膨潤性を示し、これらの溶媒を層間に吸収することで層間が拡がり、あるいはさらに膨潤してへき開して超微粒子になる特性を示すため、非常に薄い板状の無機物が得られるので、繊維表面に付着させることができる。
好適な層状ケイ酸塩としては、このような膨潤性を示す層状鉱物や層状無機塩(例えば、ハイドロタルサイト、マガデイアイト、カネマイト)等が使用でき、さらに好ましくは層状粘土鉱物が使用できる。具体的な層状粘土鉱物としては、膨潤性雲母(マイカ)、スメクタイト鉱物(モンモリロナイト、ハイデライト、ヘクトライト、サポナイト、スチブンサイト等)、バーミキュライト、カオリナイト、ハロイサイト、マーガライト、イモゴライト、及びクリントナイト等が挙げられる。これら層状ケイ酸塩は天然のものであっても合成されたものであってもよいが、中でも膨潤性合成フッ素雲母が好ましく、その中でもタルクとナトリウム及び/又はリチウムの珪フッ化物あるいはフッ化物の混合物を加熱処理して得られるフッ化系化合物が好ましい。さらに、このような層状ケイ酸塩は、その層間に有機カチオンを含有させることで繊維表面との接着性が改善できる場合がある。これら層状ケイ酸塩は無機物であり分子構造的に耐熱性を有しており、かつ硬度も高いため、板状微粒子として安定である。板状微粒子となった層状ケイ酸塩としての好適な大きさは平均長軸長さが0.01〜15μm、好ましくは0.1〜5μmであり、平均厚みはその平均長軸長さの1/2以下が好ましい。
樹脂中で繊維が十分な力学的補強性を発揮するためには、繊維はなるべく直線状であり、繊維1本1本が均一に分散していることが好ましい。また繊維の配向状態は、補強すべき樹脂使用目的によって設定されたり、射出成形法などによって規制されるが、一般的には繊維配向方向に対して強度などの力学物性は高くなる傾向がある。また繊維長は長いほど補強性能が高くなるのが一般的であるが、逆に樹脂との溶融押出成形では繊維長が長いほどスクリューなどからの剪断力で繊維が損傷しやすく、かつ繊維が曲がったり絡まったりしやすい。よって成形性と補強性能を考慮に入れた繊維の長さや添加量を調整する必要がある。
熱可塑性樹脂への本発明の繊維の添加量としては、熱可塑性樹脂100質量部中へ当該繊維を1〜60質量部含有させることが必要であり、5〜50質量部含有させるのが好ましく、10〜40質量部含有させるのがさらに好ましい。本発明の繊維の含有量が1質量部より少ないと補強効果が得られず、一方、繊維の含有量が60質量部よりも多いと、熱可塑性樹脂中における繊維の分散性が悪化し、十分な補強効果が得られにくい。
また本発明の繊維の繊維長は0.5〜50mmであることが好ましく、前記した理由から、1〜20mmであることがより好ましく、1〜10mmであることがさらに好ましい。
また本発明においては、熱可塑性樹脂中に前記した層状ケイ酸塩を主成分とする板状無機微粒子を添加した場合でも、得られる繊維強化熱可塑性樹脂は高い衝撃性を維持しながらより高い曲げ応力や引張応力が得られるので好ましい。この場合の層状ケイ酸塩は、膨潤性、非膨潤性のいずれでもよいが、高アスペクト比でフレーク形状のものがより好ましい。膨潤性の層状ケイ酸塩は前述したものが挙げられ、一方非膨潤性の層状ケイ酸塩としては白雲母や金雲母に代表される雲母類、タルク、カオリナイトなどが挙げられるが本発明では特に限定されるものではない。この場合、熱可塑性樹脂への板状無機微粒子への添加量は1〜30質量部であることが好ましく、2〜25質量部であることがより好ましい。
本発明で用いる熱可塑性樹脂としては、使用する繊維の種類によって限定はあるものの、一般的には樹脂融点が370℃以下のものであれば使用可能であるが、樹脂融点が300℃以下のものがより好ましい。熱可塑性樹脂がポリオレフィン系樹脂であると、樹脂融点がさらに低くなり好ましい。ポリオレフィン系樹脂の種類は特に限定されないが、物性や価格の面からはポリプロピレン、高密度ポリエチレン、直鎖低密度ポリエチレン、低密度ポリエチレン、あるいはブテン−1、ヘキセン−1、オクテン−1などのα−オレフィンやそれらの共重合体、あるいは不飽和カルボン酸やその誘導体で変性した変性ポリオレフィン系樹脂、またはそれらの2種類以上をブレンドしたものが好ましく用いられる。
本発明の繊維を熱可塑性樹脂に含有させる方法としては、樹脂補強用として広く使用されているガラス繊維や炭素繊維を樹脂中に含有させる方法を採用することができ、例えば、前記熱可塑性樹脂のペレット中へ、所定量切断された本発明の繊維を添加して均一混合させ、次いで含有する水分などを除去するために必要な乾燥処理を行い、二軸押出機中へ乾燥された繊維含有ペレットを供給して加熱溶融混合してダイスなどから押出してカットすることで、成形用樹脂のペレットを得ることができる。また繊維が連続した長繊維糸条の場合も、前記のように先ず繊維を所定長にカットし、その後樹脂ペレットと混合して乾燥させ、二軸押出機を使用して成形用樹脂のペレットを得ることが可能である。
前記した方法で成形品を得る場合、カットされた本発明の繊維は嵩高いために熱可塑性樹脂ペレットと混合する際や二軸押出機へ投入する際に樹脂ペレットと繊維が分離したり、二軸押出機の投入口から繊維がスクリューへ噛み込まなかったりする場合がある。このような場合には、繊維を集束させるとよい。繊維の集束方法としては、繊維を樹脂が水または有機溶剤中でエマルジョン化された溶液中へ導き、繊維へ所定量のエマルジョン樹脂を含浸付着させ、その後溶媒である水または有機溶媒を乾燥除去することで樹脂を固化させ、繊維を集束化させることができる。この場合選択される樹脂はエマルジョン化が可能であり、かつ本発明の繊維を集束化できることが必要であり、さらに繊維補強する熱可塑性樹脂との加熱混合成形時に熱および押出機中の剪断力で容易に軟化して本発明の繊維を均一に分散化させるものでなければならない。このためエマルジョンに用いられる樹脂は非晶性もしくは融点が繊維補強する熱可塑性樹脂と同程度以下のポリマーであることが好
ましく、具体的にはポリウレタン系、ポリアクリル系、ポリ乳酸系などが挙げられ、これらの中でも特に繊維補強する熱可塑性樹脂と同じ種類のポリマー成分からなるエマルジョン化された集束剤が好ましい。
上記方法で集束化された繊維糸条を引続き鋭利な回転刃からなるカット設備で所定の長さに切断すればよいが、繊維のカット長は最終的に熱可塑性樹脂中での繊維長や熱可塑性樹脂との溶融加工性に大きく関係する。繊維のカット長は最終的な熱可塑性樹脂中での繊維長さと同等かあるいはそれよりも長くするのがよく、具体的には前記したように0.5〜50mmとするのが好ましい。
上記で得られたカット繊維を繊維補強する熱可塑性樹脂中へ含有させるためには、上記したように、樹脂ペレットと混合もしくは別々にして乾燥させ、その後、所定の比率で溶融成形機にてコンパウンド樹脂化したり、あるいはこのコンパウンド樹脂化工程を省略して射出成形機などの溶融成形機を用いて繊維補強成形品に加工すればよい。
本発明の導電性を有する繊維強化熱可塑性樹脂組成物は導電性塗膜、導電性フィルム、導電性ネット、導電性パイプ、導電性筺体、あるいは他の成形体や積層樹脂、樹脂塊など種々の形状に成形することができる。本発明では、金属被覆短繊維を樹脂に練り込んで筺体状に成形したものは導電性があるので、パソコンなどの電子機器の外枠として利用すれば電磁波シールド、静電気防止機能等を発揮することができる。また、薄いフィルム状に加工すれば、導電性フィルムとしてやはり電磁波シールド材や静電気防止のカバー、包装材等として利用することができるなど、樹脂成形体に優れた導電性と機械的を同時に付与することができ有用性が高い。
以下実施例によって、本発明を説明するが、本発明はこれら実施例により何等限定されるものではない。なお本発明において溶融液晶ポリマーの融点、溶融粘度、および該ポリマーからなるポリアリレート繊維の引張強度とその初期弾性率、電気抵抗値、さらに得られるFRP成形品の耐衝撃強度、曲げ強度、引張強度、表面電気抵抗率は以下の測定方法により測定されたものを意味する。
[溶融液晶ポリマーの融点 ℃]
サンプル10〜20mg採取し、アルミ製パンへ封入した後、示差走査熱量計(DSC;Mettler社製「TA3000」)にてキャリアーガスとして窒素を100ml/分の流量にて注入しながら、昇温速度20℃/分で昇温したときの吸熱ピーク温度を測定する(1st Run)。 ポリマーの種類により上記1st Runで明確な吸熱ピークが出現しない場合、50℃/分の昇温速度で、予想される流れ温度より50℃高い温度まで昇温し、その温度で3分間以上保持し完全に溶融した後、80℃/分の降温速度で50℃まで冷却し、しかる後20℃/分の昇温速度で吸熱ピークを測定する。
[溶融液晶ポリマーの溶融粘度 Pa・s]
溶融温度300℃、剪断速度1000sec−1の条件で東洋精機製キャピログラフ1B型を用いて測定した。
[ポリアリレート繊維の引張強度、引張初期弾性率 cN/dtex]
JIS L1013に準拠し、試長20cm、初荷重0.09cN/dtex、引張速度10cm/minの条件にて測定し、5点以上の平均値を採用した。
[繊維の電気抵抗値 Ω/cm]
試料を22℃、相対湿度30%の環境下で1昼夜以上放置して調整した後、電圧電流計法により、平行クリップ電極に10cm長でセットされた導電性繊維(単繊維)試料に、直流電圧10〜100Vを印可し、その電圧とその時の試料に流れる電流値からオームの法則により求めた。
[FRP成形品の耐衝撃強度 kJ/m
株式会社東洋精機製デジタル衝撃試験機「DG−CB」を用い、JIS K7111試験法に準拠してノッチ付き試験片のシャルピー衝撃強度を測定した。
[FRP成形品の曲げ強度 N/mm
株式会社島津製作所製オートグラフAG/Rを用い、JIS K7171試験法に準拠して測定した。
[FRP成形品の引張強度 N/mm
株式会社島津製作所製オートグラフAG/Rを用い、JIS K7161試験法に準拠して測定した。
[FRP成形品の表面電気抵抗率 Ω/cm
株式会社ダイヤインスツルメンツ製の抵抗率計ロレスターGPの四探針法による測定端子で、サンプル表面の電気抵抗値を電圧100Vをかけて測定を行い、表面電気抵抗率を算出した。
[繊維表面への銀皮膜の無電解メッキ処理方法]
金属被膜の処理方法としては、例えば無電解メッキの場合を以下に述べるが、条件などは適宜変更しても構わない。具体的には特開2001−40578号に記載の方法である。
(1)先ず処理する繊維試料を約50gカセ状に採取して縢り糸などで形態が崩れないように作る。次いで繊維表面の汚れや油剤などを除去するため、脱脂液(エースクリーンA−220:奥野製薬工業社製品)5質量%水溶液に55℃で5分間浸漬させ、その後、イオン交換水を通じて十分に洗浄した。
(2)次に、70℃の20質量%水酸化ナトリウム水溶液中に20分間浸漬させ、その後、イオン交換水を通じて十分に洗浄した後に、室温の5質量%濃塩酸溶液中で2分間浸漬させた。さらに、濃塩酸溶液と塩化パラジウム混合溶液(キャタリストC:輿野製薬工業社製品)を処理槽に満たして室温で3分間浸漬させた後に、イオン交換水を通じて十分に洗浄し、次いで、10質量%硫酸溶液を処理槽に満たし、45℃で3分間浸漬させて活性化した。
(3)以上(1)、(2)の前処理によって繊維表面に触媒を付着させた後に、銀メッキ液(液温25℃)を処理槽に入れて銀メッキを施した。銀メッキ液の組成はエチレンジアミン四酢酸四ナトリウム(200g/2L)、水酸化ナトリウム(50g/2L)、ホルマリン(100ml/2L)、硝酸銀(36.1g)、およびアンモニア水(100ml)である。なお、メッキ液中の銀イオンは全て還元析出されるので、被覆量に相当する量の銀イオンを含むメッキ液を使用した。
原糸に対して20〜25質量%の銀メッキを施し、水で十分に洗浄した後に80℃で17時間以上熱風乾燥した。その後、220℃の高温乾燥機中で60分間加熱後、室温まで2℃/分の速度で徐冷して、繊維と銀メッキ層の密着度を向上させた。
[実施例1〜3]
(1)繊維原料樹脂ポリマーとして前記化4で示した構成単位(A)と(B)とが、モル比にて(A)/(B)=73/27である溶融液晶ポリマー(融点281℃、溶融粘度42.5Pa・s)を用い、押出機中で溶融させ口金より紡糸温度305℃で吐出させて糸条化させ、速度1000m/分の回転ローラーにて引き取り、その後捲き取り機にて繊度1670dtex/600フィラメントの紡糸原糸を採取した。この紡糸原糸を熱処理行うためにステンレス製のボビンに捲き返し、250℃で6時間、さらに275℃で10時間、窒素ガス雰囲気中で熱処理した。得られた熱処理糸条の物性は、引張強度が24cN/dtex、伸度が4.2%、引張初期弾性率が510cN/dtexであった。
(2)この原糸を前述した銀皮膜の無電解メッキ方法によって繊維表面に銀皮膜処理を行った結果、銀付着量が25質量%であり、引張強度が19.2cN/dtex、伸度が4.0%、引張初期弾性率が395cN/dtexで、電気抵抗値は6×10−1Ω・cmの銀メッキ繊維糸条を得た。次に該繊維糸条をカッター刃にて長さ4mm長に切断してカット糸を作った。
(3)そして繊維補強用の熱可塑性樹脂として株式会社プライムポリマー製ポリプロピレン樹脂「J−762HP」(融点180℃)に対して上記(2)で得たカット糸をそれぞれ除湿された105℃の乾燥器中で5時間以上乾燥を行い、このポリプロピレン樹脂100質量部に対して繊維の添加量を10質量部(実施例1)、20質量部(実施例2)と30質量部(実施例3)として、205℃に設定した二軸押出機へ投入して溶融混合撹拌し、ダイス穴から吐出させて25℃である水浴に導いてストランドを冷却させた。その後、ストランドカッターにて切断して直径3mm、長さ6mmの繊維含有樹脂ペレットを得た。引き続きこのペレットを射出成型機(例えば日本製鋼所製品)を使用して樹脂温度200℃、金型温度60℃にてJIS規定の物性測定用試験片を作製して物性評価を行った。結果を表1に示す。
[実施例4]
上記の実施例1の(2)で得た銀の無電解メッキ繊維糸条を、カッター刃にてカット長9mm長のカット糸を得た。さらに熱可塑性樹脂として株式会社プライムポリマー製ポリプロピレン樹脂「J−762HP」(融点180℃)に対して上記で得た繊維集束カット糸をそれぞれ除湿された105℃の乾燥器中で5時間以上乾燥を行い、このポリプロピレン樹脂100質量部に対して繊維の添加量を10質量部として、205℃に設定した二軸押出機へ投入して溶融混合撹拌し、ダイス穴から吐出させて25℃である水浴に導いてストランドを冷却させた。その後、ストランドカッターにて切断して直径3mm、長さ9mmの繊維含有樹脂ペレットを得た。引き続きこのペレットを射出成型機(例えば日本製鋼所製品)を使用して樹脂温度200℃、金型温度60℃にてJIS規定の物性測定用試験片を作製して物性評価を行った。結果を表1に示す。
[実施例5]
(1)繊維原料として樹脂ポリマーとして樹脂Aポリマーには、5−ナトリウムスルホイソフタル酸ジメチルが共重合ポリエステルを構成する全酸成分の2.5モル%、分子量2000のポリエチレングリコール及び下記化5で表されるポリオキシエチレングリシジルエーテルが全共重合ポリエステルのそれぞれ10質量%を占め、残りがテレフタル酸、エチレングリコールである共重合ポリエステル(固有粘度0.58dl/g)とし、樹脂Bポリマーには、実施例1で用いた溶融液晶ポリマーを用いて、この2種類の樹脂を2台の押出機で溶融させ、単繊維断面中に16本の島成分が存在する多芯海島型の紡糸ノズルへ島成分が樹脂B、海成分が樹脂Aとなるようにポリマーを導き、樹脂B:樹脂A=70:30(質量比)の比率で紡糸ノズルから紡糸温度305℃で吐出させた。そして糸条化させ、速度1000m/分の回転ローラーにて引き取り、その後捲き取り機にて繊度274dtex/24フィラメントの16島の海島型複合紡糸原糸を採取した。次いでこの原糸を穴空きステンレス製ボビンに捲き、95℃の水酸化ナトリウム溶液に30分間浸漬処理することで、樹脂Aポリマーを加水分解することで完全に除去して、原糸の質量減少が31%減り、繊度190dtex/384フィラメント(単繊維繊度0.5dtex)の樹脂Bポリマー単独の糸条となった。
Figure 2010059384
(2)この糸条を8本合糸の1520dtexの糸条として熱処理を行うためにステンレス製のボビンに捲き返し、250℃で6時間、さらに275℃で10時間、窒素ガス雰囲気中で熱処理した。得られた熱処理糸条の物性は、引張強度が20cN/dtex、伸度が3.5%、引張初期弾性率が480cN/dtexであった。
(3)この原糸を前述した銀皮膜の無電解メッキ方法によって繊維表面に銀皮膜処理を行った結果、銀付着量が23質量%であり、引張強度が15.9N/dtex、伸度が3.4%、引張初期弾性率が382cN/dtexで、電気抵抗値は3×10−1Ω・cmである銀メッキ繊維糸条を得た。次に該繊維糸条をカッター刃にて長さ2mm長に切断してカット糸を作った。
(4)熱可塑性樹脂として株式会社プライムポリマー製ポリプロピレン樹脂「J−762HP」(融点180℃)に対して上記(4)で得たカット糸をそれぞれ除湿された105℃の乾燥器中で5時間以上乾燥を行い、このポリプロピレン樹脂100質量部に対して繊維の添加量を5質量部として、205℃に設定した二軸押出機へ投入して溶融混合撹拌し、ダイス穴から吐出させて25℃である水浴に導いてストランドを冷却させた。その後、ストランドカッターにて切断して直径3mm、長さ4mmの繊維含有樹脂ペレットを得た。引き続きこのペレットを射出成型機(例えば日本製鋼所製品)を使用して樹脂温度200℃、金型温度60℃にてJIS規定の物性測定用試験片を作製して物性評価を行った。結果を表1に示す。
[比較例1]
熱可塑性樹脂として株式会社プライムポリマー製ポリプロピレン樹脂「J−762HP」(融点180℃)単独を除湿された105℃の乾燥器中で5時間以上乾燥を行い、205℃に設定した二軸押出機へ投入して溶融させて、ダイス穴から吐出し、25℃である水浴に導いてストランドを冷却させた。その後、ストランドカッターにて切断して直径3mm、長さ6mmの樹脂ペレットを得た。引き続きこのペレットを射出成型機(例えば日本製鋼所製品)を使用して樹脂温度200℃、金型温度60℃にてJIS規定の物性測定用試験片を作製して物性評価を行った。結果を表1に示す。
[比較例2]
熱可塑性樹脂として株式会社プライムポリマー製ポリプロピレン樹脂「J−762HP」(融点180℃)と、実施例1の(1)で得た繊維(銀の無電解メッキしていないもの)の4mm長カット繊維をそれぞれ除湿された105℃の乾燥器中で5時間以上乾燥を行い、このポリプロピレン樹脂100質量部とチョップドストランド20質量部をこの比率でを、205℃に設定したII軸押出機へ投入して溶融混合撹拌し、ダイス穴から吐出させて25℃である水浴に導いてストランドを冷却させた。その後、ストランドカッターにて切断して直径3mm、長さ6mmの繊維含有樹脂ペレットを得た。引き続きこのペレットを射出成型機(例えば日本製鋼所製品)を使用して樹脂温度200℃、金型温度60℃にてJIS規定の物性測定用試験片を作製して物性評価を行った。結果を表1に示す。
Figure 2010059384
表1に示すように、本発明の溶融液晶ポリマーからなり、かつ金属被覆されたポリアリレート繊維を補強繊維とした繊維強化熱可塑性樹脂成形品は導電性を有しており、かつ引張強度、曲げ強度、耐衝撃性がともに優れるものであった。
一方、補強繊維および板状無機微粒子が添加されない比較例1の熱可塑性樹脂成形品は本発明の繊維強化熱可塑性樹脂成形品に比べて機械的物性がいずれも劣っていた。さらに比較例2のように本発明の繊維の替わりに金属被覆されていないポリアリレート繊維を補強繊維として用いた場合は、導電性を付与できない以外は機械的物性の同様に優れるものであった。
本発明の金属被覆を有する補強繊維を含有してなる繊維強化熱可塑性樹脂は、被覆強度の大きな金属被覆を有する短繊維を樹脂に練り込むので優れた導電性を有し、かつ導電性が長期間安定に維持されると同時に、補強繊維の有する優れた機械的物性により添加した熱可塑性樹脂成形体に優れた導電性と機械的物性を付与することができるという特徴を有している。また本発明の樹脂成形体を用いることで、電磁波シールド性を付与する製造工程が簡単で、安価に製造可能であり、生産性が良い等の特徴も有している。

Claims (3)

  1. 引張強度10cN/dtex以上、引張初期弾性率250cN/dtex以上であり、かつ金属被覆を有する溶融液晶ポリマーからなるポリアリレート繊維を、熱可塑性樹脂100質量部に対し1〜60質量部含有してなる、導電性を有する繊維強化熱可塑性樹脂組成物。
  2. 溶融液晶ポリマーからなるポリアリレート繊維の単繊維繊度が0.1〜50dtex、繊維長が0.5〜50mmである請求項1記載の、導電性を有する繊維強化熱可塑性樹脂組成物。
  3. 請求項1または2記載の樹脂組成物からなる成形体。
JP2008229554A 2008-09-08 2008-09-08 導電性を有する繊維強化熱可塑性樹脂組成物および成形体 Pending JP2010059384A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229554A JP2010059384A (ja) 2008-09-08 2008-09-08 導電性を有する繊維強化熱可塑性樹脂組成物および成形体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229554A JP2010059384A (ja) 2008-09-08 2008-09-08 導電性を有する繊維強化熱可塑性樹脂組成物および成形体

Publications (1)

Publication Number Publication Date
JP2010059384A true JP2010059384A (ja) 2010-03-18

Family

ID=42186552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229554A Pending JP2010059384A (ja) 2008-09-08 2008-09-08 導電性を有する繊維強化熱可塑性樹脂組成物および成形体

Country Status (1)

Country Link
JP (1) JP2010059384A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202290A (ja) * 2010-03-24 2011-10-13 Toray Ind Inc 液晶ポリエステル繊維およびその製造方法
JP2015011256A (ja) * 2013-07-01 2015-01-19 互応化学工業株式会社 ソルダーレジスト用組成物及びプリント配線版
US11875914B2 (en) 2018-06-20 2024-01-16 The Boeing Company Conductive compositions of conductive polymer and metal coated fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228065A (ja) * 1985-04-01 1986-10-11 Nippon Chem Ind Co Ltd:The 導電性高分子組成物
JPS6215231A (ja) * 1985-07-12 1987-01-23 Mitsubishi Rayon Co Ltd 導電性フイルムおよびその製造法
JPH0390674A (ja) * 1989-08-31 1991-04-16 Kuraray Co Ltd 金属又は金属化合物被覆全芳香族ポリエステル繊維の製造方法
JP2002358826A (ja) * 2001-03-29 2002-12-13 Mitsubishi Materials Corp 導電性樹脂組成物とその製造方法および用途
JP2005290086A (ja) * 2004-03-31 2005-10-20 Toyo Ink Mfg Co Ltd 導電性樹脂組成物及びその利用
JP2007161907A (ja) * 2005-12-15 2007-06-28 Kuraray Co Ltd 繊維強化熱可塑性樹脂

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228065A (ja) * 1985-04-01 1986-10-11 Nippon Chem Ind Co Ltd:The 導電性高分子組成物
JPS6215231A (ja) * 1985-07-12 1987-01-23 Mitsubishi Rayon Co Ltd 導電性フイルムおよびその製造法
JPH0390674A (ja) * 1989-08-31 1991-04-16 Kuraray Co Ltd 金属又は金属化合物被覆全芳香族ポリエステル繊維の製造方法
JP2002358826A (ja) * 2001-03-29 2002-12-13 Mitsubishi Materials Corp 導電性樹脂組成物とその製造方法および用途
JP2005290086A (ja) * 2004-03-31 2005-10-20 Toyo Ink Mfg Co Ltd 導電性樹脂組成物及びその利用
JP2007161907A (ja) * 2005-12-15 2007-06-28 Kuraray Co Ltd 繊維強化熱可塑性樹脂

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202290A (ja) * 2010-03-24 2011-10-13 Toray Ind Inc 液晶ポリエステル繊維およびその製造方法
JP2015011256A (ja) * 2013-07-01 2015-01-19 互応化学工業株式会社 ソルダーレジスト用組成物及びプリント配線版
US11875914B2 (en) 2018-06-20 2024-01-16 The Boeing Company Conductive compositions of conductive polymer and metal coated fiber

Similar Documents

Publication Publication Date Title
JP4164044B2 (ja) ポリマー組成物及びその製造方法
JP5136324B2 (ja) 液晶性樹脂組成物およびそれからなる成形品
JP2009001796A (ja) ポリエステルナノコンポジットの製造方法
TW202112958A (zh) 液晶聚酯樹脂組成物及成形體
JP2002088259A (ja) 成形材料その製造方法およびその成形品
WO2019167854A1 (ja) 熱可塑性樹脂組成物、成形品、熱可塑性樹脂組成物の製造方法、および、メッキ付成形品の製造方法
KR20160115919A (ko) 섬유 강화 다층 펠릿, 그것을 성형하여 이루어지는 성형품, 및 섬유 강화 다층 펠릿의 제조 방법
CN103975023A (zh) 复合物及其模制品
JP2007161907A (ja) 繊維強化熱可塑性樹脂
JP4724900B2 (ja) 難燃性ポリアミド樹脂組成物およびその成形品
JP2011162767A (ja) 炭素繊維強化ポリフェニレンスルフィド樹脂組成物、ならびにそれを用いた成形材料および成形品
JP2010059384A (ja) 導電性を有する繊維強化熱可塑性樹脂組成物および成形体
JP2001040229A (ja) 難燃性樹脂組成物、およびその成形品
WO2005026418A1 (ja) 全芳香族ポリアミド繊維およびその製造方法
Agabekov et al. Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly (ethylene terephthalate)
JP2014040576A (ja) 繊維強化樹脂ペレットおよびその製造方法
JP2000309060A (ja) 長繊維強化成形材料、およびその成形品
WO2021029109A1 (ja) 樹脂組成物及び成形体
JP4552315B2 (ja) 熱可塑性樹脂組成物およびその成形体
JP2002317384A (ja) 長繊維ペレット用導電性繊維束およびそれからなる長繊維ペレット、ならびにそれを用いた成形品
JP4161494B2 (ja) 難燃性樹脂組成物、その長繊維ペレットおよびその成形品
Kim Poly (butylene terephthalate) nanocomposites containing carbon nanotube
JP2005239926A (ja) 充填剤含有熱可塑性樹脂およびその利用
CN101624462B (zh) 高电导性能组合物及其制备方法、成型制件的制备方法
JP2002146679A (ja) 炭素繊維束、樹脂組成物、成形材料およびそれを用いた成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

A131 Notification of reasons for refusal

Effective date: 20120710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20130115

Free format text: JAPANESE INTERMEDIATE CODE: A02