JP2010040803A - 電子ビームを用いた半導体検査装置 - Google Patents
電子ビームを用いた半導体検査装置 Download PDFInfo
- Publication number
- JP2010040803A JP2010040803A JP2008202601A JP2008202601A JP2010040803A JP 2010040803 A JP2010040803 A JP 2010040803A JP 2008202601 A JP2008202601 A JP 2008202601A JP 2008202601 A JP2008202601 A JP 2008202601A JP 2010040803 A JP2010040803 A JP 2010040803A
- Authority
- JP
- Japan
- Prior art keywords
- electron beam
- deflection
- sample
- deflection control
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
【課題】電子ビームの高精度な偏向制御と高速動作を可能とした電子ビームを用いた半導体検査装置を提供する。
【解決手段】半導体ウェハに形成された回路パターンを有する試料に細く絞った電子ビームを照射し、照射期間中に前記試料から発生する二次信号を検出し、照射期間と振り戻し期間とを繰り返す偏向制御により前記試料を走査し、検出した前記二次信号から画像を生成して前記試料の欠陥を検査する電子ビームを用いた半導体検査装置において、電子ビームの照射期間中の偏向制御電圧を、照射期間中の開始電圧の値と最終電圧の値のみ設定し、その間を連続的に変化させ、これを走査の1ライン分として繰り返すことで、複数のラインを走査するように、電子ビームの偏向を制御する。
【選択図】なし
【解決手段】半導体ウェハに形成された回路パターンを有する試料に細く絞った電子ビームを照射し、照射期間中に前記試料から発生する二次信号を検出し、照射期間と振り戻し期間とを繰り返す偏向制御により前記試料を走査し、検出した前記二次信号から画像を生成して前記試料の欠陥を検査する電子ビームを用いた半導体検査装置において、電子ビームの照射期間中の偏向制御電圧を、照射期間中の開始電圧の値と最終電圧の値のみ設定し、その間を連続的に変化させ、これを走査の1ライン分として繰り返すことで、複数のラインを走査するように、電子ビームの偏向を制御する。
【選択図】なし
Description
本発明は、電子顕微鏡を半導体ウェハの検査に応用した電子ビームを用いた半導体検査装置に関する。
半導体ウェハに形成される半導体デバイスの回路パターンの微細化にともなって、従来の光を用いたパターン検査装置とともに、電子顕微鏡の技術を応用した電子ビームを用いた半導体検査装置が広く普及しはじめている。この検査装置は、半導体ウェハに細い電子ビームを走査して発生する二次電子や反射電子等の二次信号を検出して画像化し、正常なパターンを有する参照画像と比較して欠陥を検出する装置である。電子ビームの照射の制御は、電子ビームの偏向位置を演算する制御装置から送られたディジタルの偏向位置信号を、ディジタル・トゥ・アナログ・コンバータ(以下、DACとよぶ)を用いて、アナログ信号に変換して、偏向器へ偏向出力電圧を与えている。このとき、DACでは、偏向データ更新タイミングが画像検出タイミングで決定されるため、印加電圧が鋸波形状になっており、この印加電圧で電子ビームが偏向されている。
図6は、従来における、DAC方式偏向制御回路の概略構成図である。電子ビームの偏向をなめらかな動きにするために、DACの分解能を高めることが求められるが、現状入手可能な高速変換DACを用いても、DACの分解能が不十分で、微細な電圧変化が行えない。そこで、図6に示すような回路構成が採用されている。電子ビームの走査のための偏向制御データは、上位データ601と下位データ602とに分けられて供給され、それぞれのデータを上位DAC603と、下位DAC604により出力変換させる。ここで、下位データ602側のみ下位DAC604出力をゲイン調整回路605により電圧減衰する。それから、上位DAC603の出力と、ゲイン調整回路605の出力を、加算回路606にて加算し出力する。このように、2つあるうちの片側のDAC出力電圧をゲイン調整回路605で減衰させて加算を行うことで、分解能向上をはかっている。このようなDAC方式による出力波形は、高分解能がはかられてはいるが、偏向データ更新のタイミングは連続的ではないため、一定の期間毎に出力電圧が変化して階段状の波形となる。
図7は、従来における、DAC方式偏向制御出力と画像検出の関係を表すタイムチャートである。検出画像取込み信号705が示す画像検出タイミング706の期間に対応する偏向動作期間704の間、偏向出力電圧701は、偏向データ更新タイミング702に従って階段状に変化する。電子ビームが偏向制御されない期間の偏向出力波形703は、始点値と終点値が設定されるだけなので、その間は直線的に印加電圧が変化するだけである。
検出精度を落とさずに画像取得を行うために、電子ビームの照射位置の制御を行う偏向制御データ更新タイミング702の周期と、二次電子検出を行う画像検出タイミング706の周期と、試料を移動させるステージ制御の周期とを一致させる。これにより、ハードウェア実動作性能に合った画像取得を行うことが出来る。
ステージ制御の周期,偏向制御データ更新タイミング702の制御の周期,二次電子検出を行う画像検出タイミング706の周期の中で、最も遅いタイミング周波数で動作するのは、偏向制御データ更新タイミング702の制御であり、最も早いタイミング周波数で動作するのは、二次電子検出を行う画像検出タイミング706の制御である。これらの3つの周期を一致させるとき、早い画像検出タイミング周波数に合わせた場合には、偏向制御部のデジタル階段波形による影響が実画像の精度を落としてしまう。また、遅い偏向制御データ更新タイミング周波数に合わせた場合には、正確な画像取得を行うことができるが、高速性に欠けるので装置全体のスループット低下に繋がってしまう。
また、画像検出タイミング706と、偏向データ更新タイミング702とがずれた場合、電子ビームの走査は、偏向データ更新タイミング702で動作するように予め設定されているため、画像検出タイミング706に一致しなくなり、同一照射位置で複数の画像検出を行う結果となり、画像検出精度を落とすことに繋がってしまう。
したがって、偏向制御部のデータ更新タイミング周波数を上げることが求められているが、使用しているDACにおける高分解能と高速性が逆比例関係であるため、解決策が見出せない状況である。
偏向データ更新を、ディジタル信号で、画像検出タイミングよりも小さなタイミングで実行し、かつタイミングのずれの補正もディジタル信号で行い、偏向器への最終的な制御信号のみをアナログに変換する技術が提案されている(例えば、特許文献1参照)。この技術においても、偏向器へ印加される電圧は階段状であり、電子ビームの高精度な位置制御と滑らかな偏向制御との両立が課題として残っている。
本発明は、電子ビームの高精度な偏向制御と高速動作を可能とした電子ビームを用いた半導体検査装置を提供することを目的とする。
上記課題を解決するため、本発明の実施態様は、半導体ウェハに形成された回路パターンを有する試料に細く絞った電子ビームを照射し、照射期間中に前記試料から発生する二次信号を検出し、照射期間と振り戻し期間とを繰り返す偏向制御により前記試料を走査し、検出した前記二次信号から画像を生成して前記試料の欠陥を検査する電子ビームを用いた半導体検査装置において、電子ビームの照射期間中の偏向制御電圧を、照射期間中の開始電圧の値と最終電圧の値のみ設定し、その間を連続的に変化させ、これを走査の1ライン分として繰り返すことで、複数のラインを走査するように、電子ビームの偏向を制御する構成としたものである。
本発明によれば、電子ビームの高精度な偏向制御と高速動作を可能とした電子ビームを用いた半導体検査装置を提供することができる。
以下、図面を用いて、本発明の実施態様を説明する。
図1は、電子ビームを用いた半導体検査装置の概略構成を示す縦断面図である。半導体検査装置1は、大別して、電子光学系カラム2,試料室3から構成されている。電子光学系カラム3は、その内部が真空に保たれ、電子銃13で発生した一次電子ビーム15を引出し電極14で引出し、焦点コイル19と動焦点コイル20で試料23へ収束させ、試料23で発生する二次電子や反射電子等の二次信号をE×B偏向器21で検出器22の方向へ曲げ、検出器22で検出する構成を有している。一次電子ビーム15は細く絞られているので、試料23の広い領域を照射するために、偏向器18で偏向され、試料23が走査される。走査には試料23上を往復する場合と、一方向のみ走査する場合とがあり、後者の場合に試料23上を走査しない帰線期間中に試料23へ照射されないように、一次電子ビームを大きく偏向させて絞り17で遮断するブランキング電極16が設けられている。試料室3の中の試料23は、試料台25の上に設けられたX方向およびY方向へ移動可能なXYステージ24に載せられる。
電子銃13から放出される電子のエネルギや、焦点コイル19のレンズ強度は、電子光学制御部8で生成されたアナログ制御信号である電圧が印加されることで、制御される。偏向器18による一次電子ビーム15の偏向、ブランキング電極16によるブランキング、動焦点コイル20による一次電子ビーム15の焦点補正は、偏向制御部10で生成されたアナログ制御信号である電圧が印加されることで、制御される。
試料室3には、試料23の高さを検出するZセンサ26が設けられ、Zセンサ部11で高さデータが生成され、偏向制御部10へ送られて、動焦点コイル20による一次電子ビーム15の焦点補正の演算に使用される。
XYステージ24の位置の計測と駆動がステージ制御部12で行われ、XYステージ24の位置データは、偏向制御部10へ送られて、偏向器18による一次電子ビーム15の偏向位置の演算に使用される。
検出器22で検出された試料23の情報は、画像処理部9でディジタル画像に変換され、図示しないディスプレイに表示される。
電子光学制御部8,画像処理部9,偏向制御部10,Zセンサ部11,ステージ制御部12は、例えばVME(登録商標)バスなどのバス7を介して相互に、そして、上位制御CPU5と接続され、構成機器間のデータの授受を行っている。また、上位制御CPU5は、通信網6を介してシステム制御CPU4,画像処理部9,ステージ制御部12と接続され、優先的な制御のためのデータの授受を行っている。
図2は、MUX方式偏向制御回路の概略構成を示す構成図である。MUXは、マルチプレクサの略である。MUX方式は、+傾きDAC201,固定DAC202,−傾きDAC203,開始DAC204,最終DAC205,誤差検出ADC206,出力電圧切替高速4対1MUX207,フィードバック電圧切替高速2対1MUX208,ADC入力電圧切替高速2対1MUX209,アナログ積分回路210,フィードバック差動回路211,ADC入力差動回路212から構成される。
図2に示すMUX方式の動作の概略を説明する。一次電子ビームの偏向制御の前に、偏向制御の始点を示す初期値として、各DACへ電圧を設定する。そして、出力電圧切替高速4対1MUX207へ送られるMUXセレクト信号214とMUXセレクト信号215の2ビットにて、アナログ積分回路210への供給電圧を切り替えることで、偏向制御出力波形を生成する。さらに詳細な動作は、図5の説明で後述する。
図3は、MUX方式における偏向制御条件を入力するインターフェースの画面図である。画面には、試料である半導体ウェハを模擬したマップ表示領域301,検査装置で撮像した画像を表示する画像表示部302,偏向動作条件入力部303が配置されている。偏向動作条件入力部303には、複数のモードをオペレータが指定する領域が設けられており、偏向方向を指定する検査モード領域304,走査1ライン当りの偏向時間、及び、偏向電圧の算出を行うための画素ピッチの指定領域305,画素数の指定領域306,偏向終了待ち時間指定領域307,振り戻し時間指定領域308,偏向開始待ち時間指定領域309が一例としてあげられる。
図4は、MUX方式の偏向制御信号発生の手順を示すフローチャートである。はじめに、図3に示す偏向動作条件入力部303で、各条件を入力し(ステップ401)、シーケンスを実行させて(ステップ402)、図2に示す各DACの設定電圧、各動作時間の算出を行わせ、各DACへ電圧が設定されたら(ステップ403)、偏向目標位置が許容範囲に入るまで、XYステージ24を移動させる(ステップ404)。XYステージ24が偏向目標位置へ到達した時点で、偏向動作を開始し(ステップ405)、対象領域へ電子ビームを照射し画像を検出して、偏向動作が終了する(ステップ406)。以上が走査の1ラインの偏向動作である。偏向器18への制御電圧と、目標位置との間に誤差があった場合は、偏向対象指示が出されるので(ステップ407)、偏向動作停止時の誤差検出を行い、次のラインの電圧設定時に補正を行うとともに、一次電子ビームの振り戻し動作を行い(ステップ409)、電圧設定のステップ403から偏向動作終了のステップ406までを実行する。そして、偏向対象指示が無かった場合には、偏向制御系の全動作が終了する(ステップ410)。
図5は、MUX方式偏向制御による出力波形を示すタイムチャートである。縦軸に、偏向動作信号518,検出画像取込み信号516,偏向開始のタイミング信号521,偏向終了のタイミング信号522,振り戻し終了のタイミング信号523,振り戻し開始のタイミング信号524,偏向開始電圧503,偏向出力電圧501,偏向最終電圧504,誤差検出ADCの読み込みタイミング信号510を示してある。これらの偏向動作の各タイミングは、予め決められた偏向タイミング502に合わせて生成される。
図1に示した偏向制御部10は、図2に示したMUX方式偏向制御回路により、偏向出力電圧501で示される偏向出力波形506が生成される。偏向出力波形506は、下記4工程をひとつのサイクルとして、偏向器への走査1ライン分の出力を示している。(1)偏向開始電圧503の出力。(2)偏向最終電圧504の値を目標とした電子ビームの偏向動作507の期間、リニアな電圧変化の出力。(3)偏向最終電圧504の値を目標とする固定電圧505の出力。(4)次の走査ラインの偏向開始電圧503の値を目標とした振り戻し動作のための出力。以上の出力を繰り返すことにより、偏向器が一次電子ビームの走査を繰り返す。図7に示した従来技術では、偏向出力電圧701が偏向データ更新タイミング702に従ってその電圧値を階段状に変化させ、この電圧値が偏向器へ送られるのに対して、図5に示す本発明の実施例では、偏向動作期間の出力電圧の値は、最初と最後の値が決められるだけで、偏向動作期間中の値は連続的でリニアであり、この電圧値が偏向器へ送られる。このように、本発明の実施例によれば、偏向期間中の一次電子ビームの動作の連続性とリニアリティーを確保することができる。また、一次電子ビームの位置を決める偏向データの更新がなくなり、一次電子ビームの位置と二次信号の検出とのタイミング合せの制約がなくなるので、画像検出誤差をなくすことができる。さらに、偏向期間中のDACの動作速度の制約がなくなることから、二次信号検出のタイミングを速くすることができるので、高速に画像を検出することが可能となり、装置のスループットを向上させることができる。
図2に戻って、MUX方式偏向制御回路の動作を説明する。図3に示した画面で入力された偏向制御条件に基づいて、MUXセレクト信号213,214,215,216が変化し、MUX方式偏向制御回路からの出力により、図5に示す偏向開始512,偏向終了513,振り戻し開始514,振り戻し終了515の各タイミングが生成される。
画像検出タイミング517の開始は、偏向開始512のタイミングで、終了は、偏向終了513のタイミングで決定され、画像検出期間中は、偏向タイミング502とは無関係な検出画像取込み信号516で、二次信号の検出が行われる。
開始電圧503が出力されているときは、出力電圧切替高速4対1MUX207へ入力されるMUXセレクト信号214,215の2ビットを共に“H”とし、フィードバック電圧切替高速2対1MUX208へ入力されるMUXセレクト信号213を“H”とすることにより、アナログ積分回路210出力をフィードバック差動回路211へ入力し、開始DAC204出力との差分が“0V”となるよう動作することにより、アナログ積分回路210出力を開始DAC204の設定電圧出力とすることを可能とする。
開始電圧503の非出力時には、フィードバック差動回路211の出力の飽和防止のため、フィードバック電圧切替高速2対1MUX208のMUXセレクト信号213を“L”とすることにより、フィードバック差動回路211への入力は、2入力とも開始DAC204の出力とすることで、フィードバック差動回路211の出力の飽和防止を行うものとする。
図1に示したXYステージ24が、一次電子ビーム照射の目標位置へ到達すると、ステージ制御部12が偏向制御部10へ送っている偏向動作信号518を立ち下げる。この立ち下げタイミングで検出画像取込み信号516は、予め決められたタイミングで二次信号の検出を開始する。同時に、偏向開始のタイミング信号521,偏向終了のタイミング信号522,振り戻し終了のタイミング信号523が立ち下がり、偏向開始のタイミング信号521の立ち下がりをトリガとして、偏向出力電圧501が開始電圧503から減少しはじめる。
開始電圧503を更新する必要がある場合は、次の開始電圧503が必要とされるまでの開始電圧更新領域508の期間に更新する。
偏向開始512のタイミングでは、出力電圧切替高速4対1MUX207のMUXセレクト信号214,215の2ビットを共に“L”とすることで、+傾きDAC201の出力をアナログ積分回路210へ入力し、積分定数と入力電圧により、開始電圧503の値を始点とし、最終電圧504を終点としたアナログ電圧のリニア変化出力を可能とする。このリニアに変化する偏向出力電圧501は、偏向動作507の期間中に出力される。
偏向終了513のタイミングでは、偏向終了のタイミング信号522,振り戻し開始のタイミング信号524が立ち上がり,偏向終了のタイミング信号522により、偏向出力電圧501が固定電圧505の一定の値になる。
偏向終了513のタイミングでは、出力電圧切替高速4対1MUX207のMUXセレクト信号214を“L”、MUXセレクト信号215を“H”とすることで、固定DAC202の出力をアナログ積分回路210へ入力し、アナログ積分回路210の入力端子電流を“0A”とすることで、積分動作による傾斜変化途中の動作電圧を保持し、固定電圧505の出力を可能とする。
固定電圧505の絶対電位は、最終電圧504を目標としているので、振り戻し開始514までに、両者の間の誤差511を検出し、ADC入力電圧切替高速2対1MUX209へ入力されるMUXセレクト信号216を“H”とすることにより、アナログ積分回路210の出力をADC入力差動回路212へ入力し、最終DAC205の出力との差分を誤差検出ADC206に取込み、誤差検出ADCの読み込みタイミング信号510のタイミングでデータ変換される。検出された誤差511は、次の走査ラインの一次電子ビームの偏向動作に反映させるため、+傾きDAC201の設定データに誤差511の補正を行い、偏向出力波形506の偏向動作507期間中の傾斜精度を維持させる。
最終電圧504の設定値の更新は、振り戻し開始514のタイミングから偏向終了513のタイミングの間の最終電圧更新領域509の期間に行われる。
振り戻し開始514のタイミングでは、偏向開始のタイミング信号521が立ち上がり、偏向終了のタイミング信号522が立ち下がり、振り戻し開始のタイミング信号524が立ち下がり、振り戻し開始のタイミング信号524の立ち下がりによって、一次電子ビームの振り戻し動作が開始される。
振り戻し開始514のタイミングでは、出力電圧切替高速4対1MUX207のMUXセレクト信号214を“H”、MUXセレクト信号215を“L”とすることで、+傾きDAC201の逆極性電圧が設定された−傾きDAC203の出力をアナログ積分回路210へ入力し、積分定数と入力電圧により、固定電圧505を始点とする積分動作によるアナログ電圧のリニア変化出力を可能とする。
振り戻し終了515のタイミングでは、偏向終了のタイミング信号522が立ち上がり、振り戻し終了のタイミング信号523が立ち上がり、振り戻し終了のタイミング信号523の立ち上がりに基づいて、偏向出力電圧501が開始電圧503の一定値になり、それを維持する。
以上のサイクルが、一次電子ビームの走査1ライン分の偏向動作であり、これを繰り返すことで、複数の走査ライン分の画像を取得することができる。
振り戻し開始514から振り戻し終了515までの間も、偏向動作507の期間と同じく、偏向出力電圧501がリニアに変化するので、この間に画像検出タイミングを設けることで、往復走査による画像取得を可能とすることができる。
上記のように、本発明の実施例によれば、偏向期間中の一次電子ビームの動作の連続性とリニアリティーを確保することができる。また、一次電子ビームの位置を決める偏向データの更新がなくなり、一次電子ビームの位置と二次信号の検出とのタイミング合せの制約がなくなるので、画像検出誤差をなくすことができる。さらに、偏向期間中のDACの動作速度の制約がなくなることから、二次信号検出のタイミングを速くすることができるので、高速に画像を検出することが可能となり、装置のスループットを向上させることができる。
1 半導体検査装置
2 電子光学系カラム
4 システム制御CPU
5 上位制御CPU
6 通信網
7 バス
8 電子光学制御部
9 画像処理部
10 偏向制御部
12 ステージ制御部
15 一次電子ビーム
18 偏向器
22 検出器
23 試料
24 XYステージ
201 +傾きDAC
202 固定DAC
203 −傾きDAC
204 開始DAC
205 最終DAC
206 誤差検出ADC
207 出力電圧切替高速4体1MUX
208 フィードバック電圧切替高速2体1MUX
209 ADC入力電圧切替高速2対1MUX
210 アナログ積分回路
211 フィードバック差動回路
212 ADC入力差動回路
301 マップ表示領域
302 画像表示部
303 偏向動作条件入力部
501 偏向出力電圧
502 偏向タイミング
503 開始電圧
504 最終電圧
505 固定電圧
506 偏向出力波形
507 偏向動作
508 開始電圧更新領域
509 最終電圧更新領域
510 読み込みタイミング信号
511 誤差
512 偏向開始
513 偏向終了
514 振り戻し開始
515 振り戻し終了
516 検出画像取込み信号
517 画像検出タイミング
518 偏向動作信号
521 偏向開始のタイミング信号
522 偏向終了のタイミング信号
523 振り戻し終了のタイミング信号
524 振り戻し開始のタイミング信号
2 電子光学系カラム
4 システム制御CPU
5 上位制御CPU
6 通信網
7 バス
8 電子光学制御部
9 画像処理部
10 偏向制御部
12 ステージ制御部
15 一次電子ビーム
18 偏向器
22 検出器
23 試料
24 XYステージ
201 +傾きDAC
202 固定DAC
203 −傾きDAC
204 開始DAC
205 最終DAC
206 誤差検出ADC
207 出力電圧切替高速4体1MUX
208 フィードバック電圧切替高速2体1MUX
209 ADC入力電圧切替高速2対1MUX
210 アナログ積分回路
211 フィードバック差動回路
212 ADC入力差動回路
301 マップ表示領域
302 画像表示部
303 偏向動作条件入力部
501 偏向出力電圧
502 偏向タイミング
503 開始電圧
504 最終電圧
505 固定電圧
506 偏向出力波形
507 偏向動作
508 開始電圧更新領域
509 最終電圧更新領域
510 読み込みタイミング信号
511 誤差
512 偏向開始
513 偏向終了
514 振り戻し開始
515 振り戻し終了
516 検出画像取込み信号
517 画像検出タイミング
518 偏向動作信号
521 偏向開始のタイミング信号
522 偏向終了のタイミング信号
523 振り戻し終了のタイミング信号
524 振り戻し開始のタイミング信号
Claims (6)
- 半導体ウェハに形成された回路パターンを有する試料に細く絞った電子ビームを照射し、照射期間中に前記試料から発生する二次信号を検出し、照射期間と振り戻し期間とを繰り返す偏向制御により前記試料を走査し、検出した前記二次信号から画像を生成して前記試料の欠陥を検査する電子ビームを用いた半導体検査装置において、
前記電子ビームの前記照射期間中の偏向制御電圧が、前記照射期間中の開始電圧の値と最終電圧の値のみ設定され、その間を連続的に変化させ、これを前記走査の1ライン分として繰り返すことで、複数のラインを走査するように前記電子ビームの偏向を制御する偏向制御部を備えたことを特徴とする電子ビームを用いた半導体検査装置。 - 請求項1の記載において、前記偏向制御部は、前記照射期間中の偏向制御電圧を連続的に変化させるアナログ積分回路を有することを特徴とする電子ビームを用いた半導体検査装置。
- 請求項1の記載において、前記偏向制御部は、前記照射期間の開始タイミングと終了タイミングを発生させるマルチプレクサを有することを特徴とする電子ビームを用いた半導体検査装置。
- 半導体ウェハに形成された回路パターンを有する試料に照射される電子ビームを細く絞る焦点コイルと、
照射期間中に前記試料から発生する二次信号を検出する検出器と、
照射期間と振り戻し期間とを繰り返すように前記電子ビームを偏向させる偏向器と、
前記電子ビームの前記照射期間中の偏向制御電圧が、前記照射期間中の開始電圧の値と最終電圧の値のみ設定され、その間を連続的に変化させ、これを前記走査の1ライン分として繰り返すことで、複数のラインを走査するように前記電子ビームの偏向を制御する偏向制御部と、
前記偏向器により前記試料が走査されて、検出された前記二次信号から画像を生成し、前記試料の欠陥を検査する画像処理部と
を備えたことを特徴とする電子ビームを用いた半導体検査装置。 - 請求項4の記載において、前記偏向制御部は、前記照射期間中の偏向制御電圧を連続的に変化させるアナログ積分回路を有することを特徴とする電子ビームを用いた半導体検査装置。
- 請求項4の記載において、前記偏向制御部は、前記照射期間の開始タイミングと終了タイミングを発生させるマルチプレクサを有することを特徴とする電子ビームを用いた半導体検査装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008202601A JP2010040803A (ja) | 2008-08-06 | 2008-08-06 | 電子ビームを用いた半導体検査装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008202601A JP2010040803A (ja) | 2008-08-06 | 2008-08-06 | 電子ビームを用いた半導体検査装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010040803A true JP2010040803A (ja) | 2010-02-18 |
Family
ID=42013029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008202601A Pending JP2010040803A (ja) | 2008-08-06 | 2008-08-06 | 電子ビームを用いた半導体検査装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010040803A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016121079A1 (ja) * | 2015-01-30 | 2016-08-04 | 株式会社 日立ハイテクノロジーズ | イオンミリング装置を備えた電子顕微鏡、および三次元再構築方法 |
TWI584160B (zh) * | 2011-11-18 | 2017-05-21 | 三星顯示器有限公司 | 顯示裝置 |
CN112313782A (zh) * | 2018-06-28 | 2021-02-02 | 株式会社日立高新技术 | 半导体检查装置 |
-
2008
- 2008-08-06 JP JP2008202601A patent/JP2010040803A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI584160B (zh) * | 2011-11-18 | 2017-05-21 | 三星顯示器有限公司 | 顯示裝置 |
WO2016121079A1 (ja) * | 2015-01-30 | 2016-08-04 | 株式会社 日立ハイテクノロジーズ | イオンミリング装置を備えた電子顕微鏡、および三次元再構築方法 |
CN112313782A (zh) * | 2018-06-28 | 2021-02-02 | 株式会社日立高新技术 | 半导体检查装置 |
CN112313782B (zh) * | 2018-06-28 | 2023-10-13 | 株式会社日立高新技术 | 半导体检查装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6317523A (ja) | 電子ビ−ム描画装置 | |
KR102147196B1 (ko) | 멀티 하전 입자 빔 묘화 장치 및 멀티 하전 입자 빔 묘화 방법 | |
JP6155137B2 (ja) | 走査型電子顕微鏡を用いた処理装置及び処理方法 | |
KR101213587B1 (ko) | 시료검사장치 | |
US20090206257A1 (en) | Pattern inspection method and inspection apparatus | |
JP5927067B2 (ja) | 計測検査装置、及び計測検査方法 | |
US7288763B2 (en) | Method of measurement accuracy improvement by control of pattern shrinkage | |
JP4528317B2 (ja) | 走査電子顕微鏡を備えた外観検査装置及び走査電子顕微鏡を用いた画像生成方法 | |
JP2011228741A (ja) | 半導体ウェーハ検査装置 | |
JP5591617B2 (ja) | 荷電粒子線装置および該装置の制御方法 | |
JP4767270B2 (ja) | 走査電子顕微鏡を備えた外観検査装置及び走査電子顕微鏡を用いた画像データの処理方法 | |
JP2010040803A (ja) | 電子ビームを用いた半導体検査装置 | |
JP4186464B2 (ja) | 荷電粒子ビーム走査式装置 | |
US10217604B2 (en) | Charged particle beam apparatus | |
JP2011003480A (ja) | Sem式外観検査装置およびその画像信号処理方法 | |
JP5855390B2 (ja) | 荷電粒子ビーム描画装置及びブランキングタイミングの調整方法 | |
JP4857240B2 (ja) | 半導体ウェーハ検査装置 | |
US6941006B1 (en) | Method and system for calibrating the scan amplitude of an electron beam lithography instrument | |
JP2002071330A (ja) | パターン欠陥検査方法及び装置 | |
JP2010015731A (ja) | 走査型電子顕微鏡、および走査型電子顕微鏡における画像の改良方法 | |
JP5216307B2 (ja) | 半導体外観検査装置および検査方法 | |
JPH01286244A (ja) | 走査振動を補正する電子ビーム装置 | |
US20230015400A1 (en) | Electron Microscope and Image Generation Method | |
JP7520781B2 (ja) | 荷電粒子ビーム走査モジュール、荷電粒子ビーム装置およびコンピュータ | |
JP2009301812A (ja) | 試料検査装置、及び試料検査方法 |