JP2010034396A - 半導体レーザ装置の製造方法及び半導体レーザ装置 - Google Patents

半導体レーザ装置の製造方法及び半導体レーザ装置 Download PDF

Info

Publication number
JP2010034396A
JP2010034396A JP2008196315A JP2008196315A JP2010034396A JP 2010034396 A JP2010034396 A JP 2010034396A JP 2008196315 A JP2008196315 A JP 2008196315A JP 2008196315 A JP2008196315 A JP 2008196315A JP 2010034396 A JP2010034396 A JP 2010034396A
Authority
JP
Japan
Prior art keywords
semiconductor laser
film
alloy film
heat sink
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008196315A
Other languages
English (en)
Other versions
JP4978579B2 (ja
Inventor
Shinji Yoshihara
晋二 吉原
Katsunori Abe
克則 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008196315A priority Critical patent/JP4978579B2/ja
Publication of JP2010034396A publication Critical patent/JP2010034396A/ja
Application granted granted Critical
Publication of JP4978579B2 publication Critical patent/JP4978579B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】半導体レーザ素子のダメージを抑制し、且つ、放熱性を向上することのできる半導体レーザ装置の製造方法及び半導体レーザ装置を提供する。
【解決手段】半導体レーザ素子における半導体層側表面に、開口部を有する絶縁膜を形成するとともに開口部を覆いつつ絶縁膜と重なる電極を形成し、物理的堆積により、共晶点を有する単一組成の合金膜を、絶縁膜及び電極を覆いつつ絶縁膜と電極とを積層してなる突起部に倣った凸部を有するように形成する。そして、ヒートシンク上の金属膜に合金膜の凸部が接するように半導体レーザ素子をヒートシンクに積層配置し、積層方向に半導体レーザ素子とヒートシンクを加圧しつつ合金膜の共晶点未満の温度で加熱した状態で、積層方向とは略垂直な方向に超音波振動を印加して合金膜における凸部を含む一部のみを溶融させ、少なくとも突起部及び開口部に対応する部位にて合金膜と金属膜とを接合させる。
【選択図】図7

Description

本発明は、半導体レーザ素子をヒートシンクに実装してなる半導体レーザ装置の製造方法及び半導体レーザ装置に関するものである。
従来、半導体レーザ素子をヒートシンクに実装してなる半導体レーザ装置の製造方法として、例えば特許文献1に示されるような方法が知られている。特許文献1では、例えばAuSn系やPbSn系の共晶はんだ材からなるはんだ層を用い、はんだ層が溶融する温度まで昇温することで、はんだ層を介して半導体レーザ素子とヒートシンクとを接続するようにしている。
特開平9−64479号公報
ところで、特許文献1に示される方法では、はんだ層全体を共晶化させている。このように共晶はんだを用いると、はんだ層の融点を低くして半導体レーザ素子のダメージ(例えば線膨張係数差に基づく熱ストレス)を抑制することができる。
しかしながら、はんだ層として共晶はんだを用いると、熱伝導率は、共晶化前の合金より、共晶化した合金のほうが低くなる。この傾向は、はんだ層の厚さが薄いほど(例えば数μm程度では)、顕著となる。この点については、本発明者によって実際に確認されている。このような共晶化による熱伝導率の低下は、粒界やボイドの存在、粒径の不均一性などによるものと考えられる。
このように、はんだ層の熱伝導率が低いと、半導体レーザ素子からヒートシンクへの放熱効率が低下し、半導体レーザ素子に熱が蓄積されて、半導体レーザ素子の特性が劣化(発光出力、発光効率、寿命などの低下、波長の長波長化など)してしまう。
本発明は上記問題点に鑑み、半導体レーザ素子のダメージを抑制し、且つ、放熱性を向上することのできる半導体レーザ装置の製造方法及び半導体レーザ装置を提供することを目的とする。
上記目的を達成する為に請求項1に記載の発明は、半導体基板の一面上に活性層を含む半導体層が多層に積層配置された半導体レーザ素子を、ヒートシンクの一面上に実装してなる半導体レーザ装置の製造方法であって、半導体レーザ素子における半導体層側の表面上に、開口部を有する絶縁膜を形成するとともに、開口部を覆いつつ絶縁膜と重なるように電極を形成して、表面上に、絶縁膜と電極を積層してなる突起部を形成する工程と、突起部の形成後、物理的堆積により、共晶点を有する単一組成の合金膜を、絶縁膜及び電極を覆いつつ突起部に倣った凸部を有するように形成する工程と、ヒートシンクにおける半導体レーザ素子との対向面上に、金属膜を形成する工程と、金属膜に合金膜の凸部が接するように、半導体レーザ素子をヒートシンク上に積層配置し、積層方向に半導体レーザ素子とヒートシンクを加圧しつつ合金膜の共晶点未満の温度で加熱した状態で、積層方向とは略垂直な方向(以下単に垂直方向と示す)に超音波振動を印加して合金膜における凸部を含む一部のみを溶融させ、合金膜のヒートシンク側表面の、垂直方向にて突起部及び開口部に対応する部位と、金属膜とを接合させる実装工程と、を備えることを特徴とする。
本発明によれば、共晶点を有する単一組成の合金膜を介して、半導体レーザ素子とヒートシンクとを接続する。したがって、合金膜の融点が低いので、合金膜を溶融する際に印加する熱量を低減して、実装時における半導体レーザ素子のダメージ(例えば半導体基板や各半導体層とヒートシンクとの線膨張係数差に基づく熱ストレス)を抑制することができる。また、半導体レーザ素子における半導体層側の表面上に、絶縁膜及び電極をパターニングにより形成した段差によって突起部を形成した後、蒸着等の物理的堆積により合金膜を形成することで、合金膜に突起部に倣った凸部を設ける。そして、半導体レーザ素子をヒートシンク上に積層配置する際に、合金膜におけるヒートシンクとの対向部位のうち、凸部のみをヒートシンクの金属膜に対して局所的に接触させることで、合金膜と金属膜との接触面積を小さくする。したがって、超音波振動印加時に、合金膜とヒートシンクとの間の接触抵抗を小さくし、これにより印加する超音波振動の出力を低減することが可能となり、半導体レーザ素子のダメージ(例えば半導体基板のクラック)を抑制することができる。また、共晶点未満の温度で加熱することで、超音波振動で生じる摩擦熱をアシストできるため、これによっても、印加する超音波振動の出力を低減することができる。以上から、半導体レーザ素子へのダメージを抑制することができる。
また、半導体レーザ素子とヒートシンクを加圧しつつ合金膜の共晶点未満の温度で加熱した状態で、垂直方向に超音波振動を印加することで、合金膜の凸部と金属膜との間に摩擦熱を生じさせて、合金膜における少なくとも凸部の温度を共晶点以上とし、凸部を含む合金膜の一部のみを溶融させる。この溶融された合金膜の凸部は、金属膜表面又は合金膜のヒートシンク側の表面における凸部を除く部位に濡れ広がって、合金膜のヒートシンク側表面における突起部に対応する部位だけでなく、開口部に対応する部位にも配置される。これにより、開口部に対応する部位と金属膜との空隙がなくなり、熱伝導率が極めて低い空気層が存在しなくなる。そして、合金膜のヒートシンク側表面の突起部及び開口部に対応する部位と、金属膜とが接合(拡散接合)される。また、合金膜における溶融された部位は、冷却された状態で共晶化された領域となる。すなわち、半導体レーザ装置において、半導体レーザ素子(活性層)の熱は、共晶化領域と共晶化されずに残った非共晶化領域を有する合金膜を介して、ヒートシンクに伝達されることとなる。また、本発明では、合金膜のヒートシンク側表面の突起部及び開口部に対応する部位と、金属膜とが接合(拡散接合)されるので、半導体レーザ装置において、主として絶縁膜の開口部を介して合金膜に伝達される半導体レーザ素子(活性層)の熱を、合金膜からヒートシンクへ効率よく伝達することができる。したがって、合金膜全体を共晶化させる従来の方法よりも、合金膜における熱伝達経路全体での熱伝導を向上し、ひいては半導体レーザ素子からヒートシンクへの放熱性を向上することができる。
さらには、合金膜に凸部を設けるので、実装工程時に溶融した一部の合金膜(凸部)が、金属膜表面又は合金膜のヒートシンク側表面における凸部を除く部位を濡れ広がりやすい。したがって、合金膜における突起部及び開口部に対応する部位と金属膜とを互いに接合させることができる。これにより、共晶化領域は拡大し、接合強度が向上する。また、合金膜と金属膜との接触面積が増大することで、電気的な接続信頼性を向上することができる。
請求項2に記載のように、実装工程において、ヒートシンクのみを加熱することが好ましい。これによれば、半導体レーザ素子の温度を室温(ヒートシンクに加える共晶点以下の温度より、少なくとも低い温度)まで下げることで、ヒートシンクの加熱による共晶化領域の非共晶領域への進行(拡散)を抑制することができる。したがって、共晶化領域の膜厚を薄く制御することが可能となる。また、半導体レーザ素子を構成する電極、合金膜、と半導体基板との熱膨張係数差から生じる熱応力を低減でき、さらに接合後においても、活性層にかかる残留応力も低減できる。これにより、熱による半導体レーザ素子の特性劣化を抑制することができる。
請求項3に記載のように、合金膜はAuSn膜であり、電極と金属膜は、いずれも最表面としてAu膜を有する構成とすると良い。これによれば、放熱性をより向上することができる。また、実装工程において、金属膜を構成するAuが共晶化した合金膜へ拡散し、これにより合金膜の融点が拡散前の共晶点よりも上昇するため、合金膜の一部が溶融された時点で、溶融を停止させることができる。すなわち、共晶化領域の形成範囲を、自動的に合金膜の一部のみとすることができる。
次に、請求項4に記載の発明は、活性層を含む半導体層を半導体基板の一面上に多層に積層配置してなる半導体レーザ素子が、合金膜を介して、ヒートシンクの一面上に実装された半導体レーザ装置であって、半導体レーザ素子における半導体層側の表面上には、開口部を有する絶縁膜と、開口部を覆いつつ絶縁膜と重なる電極とが設けられて、絶縁膜と電極の積層部位が突起部とされ、ヒートシンクにおける半導体レーザ素子との対向面上には金属膜が設けられている。そして、合金膜は、蒸着等の物理的堆積によって形成された共晶点を有する単一組成膜であって電極及び金属膜に接触されており、金属膜との接触部位であって突起部及び開口部に対応する部位を含む一部のみが共晶化されていることを特徴とする。
本発明に係る半導体レーザ装置は、上記した請求項1に記載の製造方法を用いて形成されたものであり、その作用効果は請求項1に記載の作用効果と同じであるので、その記載を省略する。
請求項5に記載のように、合金膜は、金属膜との接触部位全域が共晶化され、この共晶化領域の厚さは、開口部に対応する部位よりも突起部に対応する部位のほうが厚くされた構成とすると良い。
これによれば、合金膜と金属膜との接触部位全域が厚い共晶化領域となっているので、接合強度が向上する。また、合金膜とヒートシンクとの接触面積が大きくなるため、半導体レーザ素子とヒートシンクとの機械的且つ電気的な接続信頼性を向上することができる。
また、絶縁膜の開口部を介して半導体レーザ素子へ電流が注入されるため、半導体レーザ素子(活性層)では、開口部に対応する部位を主として熱が生じる。これに対し、本発明では、開口部に対応する部位における共晶化領域の厚さが、突起部に対応する部位における共晶化領域の厚さよりも薄くなっている。すなわち、共晶化領域の厚さに対する非共晶化領域(合金膜における共晶化されずに残った領域)の厚さの比が、突起部に対応する部位よりも発光領域に対応する部位で大きくなっている。したがって、半導体レーザ素子からヒートシンクへの放熱性をより向上することができる。
請求項6に記載のように、合金膜はAuSn膜であり、電極と金属膜は、いずれも最表面としてAu膜を有する構成とすると良い。本発明の作用効果は請求項3に記載の作用効果と同じであるので、その記載を省略する。
以下、本発明の実施形態を図に基づいて説明する。
(第1実施形態)
図1は、第1実施形態に係る半導体レーザ装置の概略構成を示す断面図である。図2は、図1に示す半導体レーザ装置のうち、半導体レーザチップを拡大した断面図である。図3は、半導体レーザチップを半導体層側から見た平面図である。図1においては、便宜上、半導体基板上に積層された半導体層のうち、活性層のみを示している。なお、以下においては、多層に配置された半導体層の積層方向(半導体基板の厚さ方向)を単に積層方向とし、積層方向に略垂直な方向(半導体基板の表面及びヒートシンクの表面に沿う方向)を単に垂直方向とする。
図1に示すように、本実施形態に係る半導体レーザ装置10は、半導体レーザ素子としての端面発光型ストライプ構造の半導体レーザチップ30と、半導体レーザチップ30の活性層35で生じた熱を放熱するためのヒートシンク50とを、合金膜70を介して一体化してなるものである。
半導体レーザチップ30は、図2に示すように、半導体基板31の一面(以下、上面と示す)上に、活性層35を含む半導体層を多層に積層配置してなるものである。これら半導体層としては、活性層を含むものであれば特に限定されるものではなく、周知の構造を採用することができる。本実施形態においては、半導体基板31としてn−GaAs基板を採用している。そして半導体基板31の上面に、半導体層として、n−GaAsからなるバッファ層32、n−AlGaAsからなるクラッド層33、n−AlGaAsからなる光ガイド層34、InGaAsからなる活性層35、p−AlGaAsからなる光ガイド層36、p−AlGaAsからなるクラッド層37、p−GaAsからなるコンタクト層38が、上記した順で積層されている。なお、バッファ層32は結晶性を高める層、クラッド層33,37は主として活性層35の接合領域の電子密度及びホール密度を高める層、光ガイド層34,36は発光した光を活性層35に閉じ込める層、活性層35は注入されたキャリアが再結合し、該層のバンドギャップエネルギーに応じた波長の光を発光する層である。
多層に配置された半導体層32〜38の最表面(コンタクト層38の上面)には、シリコン酸化膜からなる絶縁膜39が配置されており、この絶縁膜39には、積層方向に貫通する開口部39a(所謂コンタクトホール)が設けられている。本実施形態では、図3に示す破線で示すように、開口部39aがストライプ状の溝となっており、これによって活性層35への電流注入領域がストライプ状に狭窄されている。すなわち、絶縁膜39によって活性層35における発光領域が規定されている。また、活性層35の発光領域で生じた熱が、主として絶縁膜39の開口部39aを介して、ヒートシンク50側に伝達されるようになっている。なお、図1に示す破線は、半導体レーザチップ30を動作(レーザ発振)させるための電流11(順方向電流)を示しており、二点鎖線は、半導体レーザチップ30(活性層35)からヒートシンク50へ伝達される熱12を示している。
また、コンタクト層38の上面には、開口部39aを覆うように絶縁膜39上に積層配置され、開口部39aを覆う部位がコンタクト層38と接触された、p型電極としての第1電極40が配置されている。この第1電極40は、特許請求の範囲に記載の電極に相当し、少なくとも最表面の膜として、合金膜70と電気的且つ機械的に接続される材料からなる膜を含んでいる。本実施形態では、第1電極40が、コンタクト層38に対してオーミック特性を得るべく、コンタクト層38側から順にCr/Ptが成膜され、開口部39aを跨いで両端側がそれぞれ絶縁膜39の一部のみと重なるようにパターニングされた多層膜40aと、該多層膜40a上に、半導体基板31の上面全面を覆うようにTi/Auが順に成膜された多層膜40bとにより構成されている。すなわち、第1電極40の最表面がAuとなっている。なお、Ti膜は、絶縁膜39上のAu膜との密着性を向上するための密着層である。そして、図1及び図2に示すように、半導体レーザチップ30における半導体層側の表面において、絶縁膜39と多層膜40a及び多層膜40bとの積層部位が、他の部位に対して突起した突起部41となっている。なお、上記したように、本実施形態では、垂直方向において、絶縁膜39における開口部39a側から一部の範囲上のみに第1電極40を構成する多層膜40aが形成されており、これにより突起部41の大きさ、ひいては後述する凸部70aの大きさ(ヒートシンク50の金属膜51との接触面積)が制限されている。
また、半導体基板31の下面には、第1電極40と対をなし、活性層35に対して電流を注入するための、n型電極としての第2電極42が配置されている。本実施形態では、第2電極42が、半導体基板31側から順に、Ni/Au−Ge/Auが積層された多層膜となっている。
ヒートシンク50は、半導体レーザチップ30(活性層35)で生じた熱を、半導体レーザチップ30(半導体レーザ装置10)の外部に放熱するためのものであり、Cu、CuW、DiaCuなどの熱伝導率の大きな材料を用いて形成されている。また、半導体レーザチップ30の搭載される面は、その一部に合金膜70を介して半導体レーザチップ30が搭載されるような大きさ及び形状(例えば平面略矩形状)を有している。ヒートシンク50における半導体レーザチップ搭載面は平坦とされており、この搭載面に金属膜51が配置されている。金属膜51は、少なくとも最表面として合金膜70と接合する材料を含むものであれば良く、単層膜及び多層膜のいずれも採用が可能である。本実施形態においては、金属膜51としてAu膜が、ヒートシンク50の搭載面全面に配置されている。そして、金属膜51が、合金膜70を介して半導体レーザ素子30の第1電極40と電気的に接続され、実質的に半導体レーザチップ30のp型電極(第2電極42と対をなし、活性層35に対して電流を注入するための電極)として機能するようになっている。
合金膜70は、半導体レーザチップ30とヒートシンク50とを、機械的(且つ電気的)に接続するものであり、蒸着などの物理的堆積によって形成された共晶点を有する単一組成膜である。この合金膜70は、積層方向の厚さが数μm程度であり、その一部のみが共晶化されて共晶化領域71となっている。詳しくは、金属膜51との接触部位のうち、垂直方向において突起部41及び開口部39aに対応する部位を含む少なくとも一部が共晶化領域71となっており、共晶化領域71を除く部位が共晶化されていない非共晶化領域72となっている。
本実施形態では、合金膜70として、共晶点を有するAu−Sn合金膜を採用しており、図1に示すように、合金膜70におけるヒートシンク側表層であって金属膜51との接触部位全域が共晶化領域71となっている。すなわち、金属膜51と合金膜70とが互いに接合(拡散接合)されている。また、合金膜70における半導体レーザチップ30側表層であって半導体レーザチップ30との接触部位全域は非共晶化領域72となっており、合金膜70(非共晶領域72)は、非共晶点未満の温度で、蒸着等の物理的堆積により、第1電極40に密着されている。このように、半導体レーザチップ30とヒートシンク50とは、共晶化領域71と非共晶化領域72の多層構造を有する単一組成の合金膜70を介して、機械的且つ電気的に接続されている。したがって、図1に示すように、金属膜51と第2電極42との間で開口部39aを介して電流11が流れ、半導体レーザチップ30(活性層35)からヒートシンク50へ開口部39aを介して熱12が伝達(放熱)される構成となっている。
また、本実施形態では、共晶化領域71のうち、突起部41に対応する部位71aの厚さのほうが、該部位71aに挟まれた、開口部39aに対応する部位71bの厚さよりも厚くなっている。すなわち、共晶化領域71の厚さに対する非共晶化領域72の厚さの比が、突起部41に対応する部位よりも、発光領域に対応する部位で大きくなっている。なお、突起部41に対応する部位71aよりも外側の部位71cの厚さは、開口部39aに対応する部位71bの厚さとほぼ同じ厚さとなっている。なお、共晶化領域71の厚さは、0.5〜1μm程度、非共晶化領域72の厚さは1〜2μm程度となっている。
次に、上記した半導体レーザ装置10の製造方法を、図4〜図7を用いて説明する。図4は、半導体レーザ装置の製造工程のうち、絶縁膜形成工程を示す断面図である。図5は、半導体レーザ装置の製造工程のうち、第1電極形成工程を示す断面図である。図6は、半導体レーザ装置の製造工程のうち、合金膜形成工程を示す断面図である。図7は、半導体レーザ装置の製造工程のうち、実装工程を示す断面図であり、(a)は振動印加前の積層状態、(b)は振動印加時の状態、(c)は溶融した合金膜が濡れ広がった状態を示す図である。なお、図4〜図7においては、便宜上、半導体層のうち、活性層のみを示している。
図示しないが、先ずMOCVD(有機金属気相成長)法やMBE(分子線エピタキシー)法などの周知の結晶成長方法を用いて半導体基板31上に活性層35を含む半導体層32〜38を形成する。これら半導体層32〜38の形成後、図4に示すように、半導体層の表面43(図示しないコンタクト層38の表面)上に、開口部39aを有する絶縁膜39を形成する。本実施形態においては、CVD法によって、半導体層の表面43全面にシリコン酸化物(SiO)からなる厚さ200nm程度の絶縁膜39を形成し、エッチングにより絶縁膜39をパターニングして、電流注入領域(発光領域)に対応した溝状の開口部39aを形成する。
絶縁膜39の形成後、蒸着やスパッタなど周知の物理的成膜法を用いて、図5に示すように、開口部39aを介して絶縁膜39から露出される半導体層の表面43の露出部位と接触し、且つ、開口部39aを挟む両側の絶縁膜39とそれぞれ重なるように、第1電極40を形成する。このとき、絶縁膜39と第1電極40との重なり領域が突起部41となる。第1電極40の構成材料としては、接触する半導体層(図示しないコンタクト層38)とオーミックコンタクトとなり、且つ、後に第1電極40上に物理的に堆積される合金膜70(非共晶化領域72)との間に電気的且つ機械的な接続状態を確保できるものを採用することができる。本実施形態においては、先ず蒸着によって、半導体層の表面43側から厚さ15nm程度のCr膜、厚さ300nm程度のPt膜の順で成膜し、絶縁膜39における開口部39a側から一部の範囲上のみに配置されるようにパターニングして多層膜40aを形成する。次に、蒸着によって、厚さ100nm程度のTi膜、厚さ200nm程度のAu膜の順で成膜して多層膜40bを形成する。以上により、第1電極40を形成する。なお、絶縁膜39及び第1電極40(多層膜40a)をパターニングしてできる突起部41の段差は、絶縁膜39上で例えば略315nmとなる。
第1電極40の形成後、蒸着やスパッタなどの周知の物理的成膜法を用いて、共晶点を有する単一組成の合金膜70を、図6に示すように、第1電極40及び絶縁膜39上に形成する。このとき、合金膜70は、その全体がAu粒子とSu粒子が略均一に分布する非共晶化領域72となっている。また、その表面形状が、半導体層の表面43側(第1電極40及び絶縁膜39の表面)の凹凸に倣った形状となるため、形成された合金膜70は、突起部41に倣った凸部70aを有するものとなる。本実施形態では、蒸着によって、厚さ数μm程度のAu(80%)−Sn(20%)合金膜70(共晶点280℃)を、半導体層の表面43全面上に形成する。このように、物理的堆積によって合金膜70を形成すると、Auを含む合金膜70が最表面をAuとする第1電極40と密着し、合金膜70と第1電極40との電気的且つ機械的な接続を確保することができる。
次に、半導体基板31の裏面を研削・研磨し、その後に蒸着、スパッタなどの周知の方法により、第2電極42を形成する。本実施形態では、蒸着によって、半導体基板31側から厚さ100nm程度のAu−Ge、厚さ20nm程度のNi膜、厚さ500nm程度のAu膜の順に成膜し、第2電極42とする。そして、劈開によりチップ化し、半導体レーザチップ30を得る。
また、半導体レーザ素子30の形成とは別に、半導体レーザチップ30の搭載面上に金属膜51が設けられたヒートシンク50を準備する。この金属膜51としては、溶融した合金膜70との間で接合状態を形成できるものであれば採用することができる。本実施形態では、蒸着によって、Auからなる厚さ600nm程度の金属膜51を、ヒートシンク50の搭載面全面に成膜する。
そして、上記工程を経て準備した、合金膜70を含む半導体レーザチップ30を、ヒートシンク50に実装する。具体的には、先ず図7(a)に示すように、ヒートシンク50の金属膜51に合金膜70の凸部70aが接するように、半導体レーザチップ30をヒートシンク50上に載置(積層配置)する。そして、半導体レーザチップ30とヒートシンク50を積層方向に加圧しつつ、合金膜70の共晶点未満の温度で加熱する。この状態では、加熱温度が共晶点未満であるため、合金膜70は溶融せず、金属膜51とも反応しない。本実施形態では、積層方向に印加する圧力を0.1MPa〜1MPa程度とし、ヒートシンク50を加熱ステージ上に載せて、ヒートシンク50のみを直接的に加熱する。このときの加熱温度は、約200℃とする。
次に、上記加圧・加熱状態で、図7(b)に示すように、半導体レーザチップ30に対して垂直方向に超音波振動を印加する。すると、合金膜70の凸部70aと金属膜51との接触部位間に摩擦熱が発生し、合金膜70における少なくとも凸部70aの温度が共晶点以上となって、合金膜70における共晶点以上となった部位が溶融する。なお、合金膜70のうち、凸部70aのみを金属膜51に接触させるので、荷重が凸部70aに効率よく作用し、荷重、加熱温度、超音波振動の出力を低減しつつ、凸部70aの温度を上昇させることができる。本実施形態では、例えば50〜100kHzの超音波振動を0.5sec程度印加する。
凸部70aが溶融されてなる溶融合金73は、金属膜51表面又は合金膜70のヒートシンク側の表面における凸部70aを除く部位を濡れ広がり、図7(c)に示すように、合金膜70のヒートシンク側表面における突起部41に対応する部位だけでなく、開口部39a(発光領域)に対応する部位にも配置される。そして、少なくとも突起部41及び開口部39aに対応する部位において、溶融合金73と金属膜51とが接合(拡散接合)される。なお、本実施形態では、図7(c)に示すように、合金膜70におけるヒートシンク側の表面全面に、凸部70aが溶融されてなる溶融合金73が濡れ広がるとともに、凸部70aから熱が凸部70aの周辺領域にも伝達されて、該周辺領域も溶融される。ここで、Au−Sn膜の場合、凸部70aに挟まれた図7(a)に示す中央部位72a(開口部39aに対応する部位)の表面にはSn酸化物が形成されるため、そのSn酸化物が積層方向への拡散を阻害する。したがって、溶融合金73の濡れ拡がり後の中央部位72aにおける積層方向への拡散速度は、Sn酸化物が形成されていない凸部70aにおける積層方向への拡散速度よりも遅くなる。これにより、溶融合金73の厚さが、図7(c)に示すように、突起部41に対応する部位73aよりも、該部位73aに挟まれた部位73b(開口部39aに対応する部位)のほうが薄くなる。なお、突起部41に対応する部位73aよりも外側の部位73cの厚さは、絶縁膜39と第1電極40との膜厚に差がある分、開口部39aに対応する部位73bの厚さよりも薄くなる。
また、溶融合金73は、その冷却過程で共晶反応が進み、共晶化領域71となる。このようにして、図1に示した半導体レーザ装置10を得ることができる。
次に、本実施形態に係る半導体レーザ装置10の製造方法及び半導体レーザ装置10の特徴的な効果について説明する。先ず、本実施形態では、共晶点を有する単一組成の合金膜70を介して、半導体レーザチップ30とヒートシンク50とを電気的且つ機械的に接続する。このように合金膜70が共晶組成であり融点が低いので、これにより合金膜70を溶融する際の熱量を低減(加熱温度を低く)して、実装時における半導体レーザチップ30のダメージ、具体的には半導体基板31や各半導体層32〜38と、ヒートシンク50との線膨張係数差に基づく熱ストレスなど、を抑制することができる。
また、半導体レーザチップ30における半導体層の表面43上に、絶縁膜39と第1電極40による突起部41を形成した後、物理的堆積により合金膜70を形成することで、突起部41に倣った凸部70aを合金膜70に設ける。そして、半導体レーザチップ30をヒートシンク50上に載置する際に、合金膜70におけるヒートシンク50との対向部位のうち、凸部70aのみをヒートシンク50の金属膜51に対して接触させる。これにより、合金膜70とヒートシンク50(金属膜51)との接触面積を小さくし、超音波振動印加時における両者50,70間の接触抵抗が小さくなるようにしている。また、加圧状態で、凸部70aのみを金属膜51との接触箇所とすることで、凸部70aに荷重が集中するようにしている。すなわち、超音波振動により、凸部70a内部に、粒界或いはマイクロクラックが発生しやすい状態とするようにしている。そして、溶融時は、この粒界或いはマイクロクラックにも沿って、溶融合金73が積層方向へ拡散する。したがって、印加する超音波振動の出力を低減することができるので、半導体レーザチップ30のダメージ、具体的には半導体基板31のクラック発生などを抑制することができる。
また、共晶点未満の温度で加熱しつつ超音波振動を印加するため、超音波振動の印加のみで接合を行う場合に比べて、印加する超音波振動の出力を低減することができる。さらには、凸部70aが超音波振動によって溶融されると、溶融合金73として、溶融されていない合金膜70(非共晶化領域72)の表面又は金属膜51の表面を濡れ広がる。したがって、溶融合金73により、溶融されていない合金膜70と金属膜51との直接的な接触を抑制し、合金膜70と金属膜51との間の接触抵抗の増大を抑制することができる。さらに、溶融合金73の緩衝効果(溶融し、軟化することで、超音波振動が合金膜70に伝達されにくくなる)により、合金膜70と金属膜51との間の抵抗増大を抑制して、半導体レーザチップ30のダメージを抑制することができる。以上により、本実施形態によれば、半導体レーザチップ30のダメージを抑制することができる。
また、本実施形態では、合金膜70と金属膜51との相対する表面の一部のみを互いに接触させ、半導体レーザチップ30とヒートシンク50を加圧しつつ合金膜70の共晶点未満の温度で加熱した状態で、半導体レーザチップ30に対し垂直方向に超音波振動を印加する。したがって、共晶組成の合金膜70のうち、ヒートシンク側の表層であって少なくとも合金膜70と金属膜51との接触部位を含む一部のみを溶融させることができる。また、溶融合金73は、冷却後の状態で共晶化領域71となるので、半導体レーザ装置10は、合金膜70として、共晶化領域71と、溶融されずに残った非共晶化領域72を有することとなる。非共晶化領域72は共晶化領域71よりも熱伝導率が大きいので、合金膜全体を共晶化させる従来の方法よりも、合金膜70における熱伝達経路全体での熱伝導を向上し、ひいては半導体レーザチップ30からヒートシンク50への放熱性を向上することができる。
また、半導体レーザチップ30(活性層35)にて生じた熱は、主として絶縁膜39の開口部39aを介して合金膜70に伝達され、合金膜70からヒートシンク50へ伝達される。これに対し、本実施形態では、合金膜70の凸部70aを超音波振動によって溶融させるため、溶融合金73が金属膜51表面又は合金膜70のヒートシンク側の表面における凸部70aを除く部位に濡れ広がる。そして、これにより、半導体レーザ装置10において、合金膜70における金属膜51との接触部位全域が共晶化領域71となっている。すなわち、積層方向において、合金膜70が、共晶化領域71と非共晶化領域の2層構造となっている。また、実装時に凸部70aから伝達される熱の影響で、共晶化領域71のうち、突起部41に対応する部位71aの厚さのほうが、開口部39aに対応するストライプ状の部位71bの厚さよりも厚くなっている。すなわち、共晶化領域71の厚さに対する非共晶化領域72の厚さの比が、突起部41に対応する部位よりも、発光領域に対応する部位で大きくなっている。このように、半導体レーザ装置10では、合金膜70における発光領域に対応する部位が熱伝達しやすい構造となっているので、半導体レーザチップ30(活性層35)にて生じた熱を、合金膜70を介して、ヒートシンク50へ効率よく伝達し、放熱性をより向上することができる。以上により、本実施形態によれば、半導体レーザチップ30からヒートシンク50への放熱性を向上し、ひいては熱による半導体レーザチップ30の特性劣化(発光出力、発光効率、寿命などの低下、波長の長波長化など)を抑制することができる。
なお、Au(80%)−Sn(20%)からなり、数μm程度の膜厚を有する上記した合金膜70において、本発明者が熱伝導率を測定したところ、共晶化領域71では11W/m・K、非共晶化領域72では50W/m・Kであった。また、合金膜70における各領域71,72について、SEM(走査電子顕微鏡)にて確認したところ、共晶化領域71では、図8(a)に示すように、Au粒子とSn粒子がそれぞれ偏在し、粒径が不均一となっていた。これに対し、非共晶化領域72では、図8(b)に示すように、Au粒子(図中の白っぽい粒子)とSn粒子(図中の黒っぽい粒子)とがほぼ均一に分布していた。この結果からも、共晶化領域71の熱伝導率が非共晶化領域72よりも劣ることが明らかである。なお、図8は、合金膜のSEM(走査電子顕微鏡)像を示す図であり、(a)は共晶化領域、(b)は非共晶化領域を示している。
また、本実施形態では、合金膜70に凸部70aを設けることで、凸部70aを少なくとも含む合金膜70の一部のみを局所的に溶融するようにしている。凸部70aは、合金膜70におけるヒートシンク50との対向面のうち、ヒートシンク側に突出した部位である。したがって、凸部70aを溶融してなる溶融合金73は、半導体レーザチップ30とヒートシンク50とを積層方向に加圧した状態であっても、金属膜51表面又は合金膜70のヒートシンク側の表面における凸部70aを除く部位に濡れ広がりやすい。したがって、凸部70aを溶融してなる溶融合金73は、合金膜70のヒートシンク側表面における突起部41に対応する部位(凸部70aの形成部位)だけでなく、隣接する開口部39aに対応する部位(中央部位72a)にも配置されることとなり、少なくとも突起部41及び開口部39aに対応する部位において、合金膜70と金属膜51とが接合(拡散接合)される。これにより、半導体レーザチップ30とヒートシンク50との機械的且つ電気的な接続状態を確保することができる。そして、例えば開口部39aに対応する部位で合金膜70と金属膜51とが接合されない構成に比べて空隙がないため、放熱性を向上することができる。さらには、合金膜70と金属膜51との接触面積を大きくして、機械的且つ電気的な接続信頼性を向上することができる。
また、本実施形態では、実装工程において、ヒートシンク50のみを加熱するようにしている。したがって、これによっても、熱による半導体レーザチップ30の特性劣化を抑制することができる。
また、本実施形態では、合金膜70として、Au(80%)−Sn(20%)膜を採用し、第1電極40と金属膜51の最表面がAu膜となっている。したがって、半導体レーザチップ30からヒートシンク50への放熱性をより向上することができる。また、超音波振動にて接合する実装工程において、合金膜70が、共晶点を超えて金属膜51と反応し、溶融合金化状態にあるとき、金属膜51を構成するAuが溶融合金73中に拡散すると、金属膜51近傍の溶融合金73の共晶点が、拡散前の共晶点(280℃)よりも上昇する。これにより、合金膜70の一部が溶融された時点で、溶融を停止させることができる。すなわち、共晶化領域71の形成範囲を、自動的に合金膜70の一部(表層)のみとすることができ、ひいては積層方向の共晶化領域71拡大による熱伝導率の低下を抑制することができる。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
本実施形態では、共晶化領域71のうち、突起部41に対応する部位71aの厚さのほうが、開口部39aに対応する部位71bの厚さよりも厚くなっている例を示した。換言すれば、凸部70aだけでなく、凸部70aの周辺領域も溶融される例を示した。しかしながら、合金膜70のうち、凸部70aのみが溶融され、図9に示すように、共晶化領域71の厚さが、積層方向における各部位でほぼ均一とされた構成としても良い。図9は、半導体レーザ装置の変形例を示す断面図である。
本実施形態では、半導体レーザチップ30として、端面発光型を示した。しかしながら、面発光型の半導体レーザチップ30を備える半導体レーザ装置10にも適用することができる。
本実施形態では、合金膜70における金属膜51との接触部位全域が共晶化領域71とされる例を示した。しかしながら、合金膜70における金属膜51との接触部位のうち、少なくとも、突起部41及び開口部39aに対応する部位が共晶化領域71とされれば良い。
本実施形態においては、半導体基板31に複数の半導体層32〜38からなる積層体が1つ配置される例を示した。しかしながら、半導体基板31に複数の積層体が配置される構成としても良い。また、ヒートシンク50に複数の半導体レーザチップ30が実装された構成としても良い。
第1実施形態に係る半導体レーザ装置の概略構成を示す断面図である。 図1に示す半導体レーザ装置のうち、半導体レーザチップを拡大した断面図である。 半導体レーザチップを半導体層側から見た平面図である。 半導体レーザ装置の製造工程のうち、絶縁膜形成工程を示す断面図である。 半導体レーザ装置の製造工程のうち、第1電極形成工程を示す断面図である。 半導体レーザ装置の製造工程のうち、合金膜形成工程を示す断面図である。 半導体レーザ装置の製造工程のうち、実装工程を示す断面図であり、(a)は振動印加前の状態、(b)振動印加時の状態、(c)は溶融した合金膜が濡れ広がった状態を示す図である。 合金膜のSEM(走査電子顕微鏡)像を示す図であり、(a)は共晶化領域、(b)は非共晶化領域を示している。 半導体レーザ装置の変形例を示す断面図である。
符号の説明
10・・・半導体レーザ装置
30・・・半導体レーザチップ(半導体レーザ素子)
31・・・半導体基板
35・・・活性層
39・・・絶縁膜
39a・・・開口部
40・・・第1電極(電極)
41・・・突起部
50・・・ヒートシンク
51・・・金属膜
70・・・合金膜
70a・・・凸部
71・・・共晶化領域
72・・・非共晶化領域
73・・・溶融合金

Claims (6)

  1. 半導体基板の一面上に活性層を含む半導体層が多層に積層配置された半導体レーザ素子を、ヒートシンクの一面上に実装してなる半導体レーザ装置の製造方法であって、
    前記半導体レーザ素子における半導体層側の表面上に、開口部を有する絶縁膜を形成するとともに、前記開口部を覆いつつ前記絶縁膜と重なるように電極を形成して、前記表面上に、前記絶縁膜と前記電極を積層してなる突起部を形成する工程と、
    前記突起部の形成後、物理的堆積により、共晶点を有する単一組成の合金膜を、前記絶縁膜及び前記電極を覆いつつ前記突起部に倣った凸部を有するように形成する工程と、
    前記ヒートシンクにおける前記半導体レーザ素子との対向面上に、金属膜を形成する工程と、
    前記金属膜に前記合金膜の凸部が接するように、前記半導体レーザ素子を前記ヒートシンク上に積層配置し、積層方向に前記半導体レーザ素子と前記ヒートシンクを加圧しつつ前記合金膜の共晶点未満の温度で加熱した状態で、積層方向とは略垂直な方向に超音波振動を印加して前記合金膜における前記凸部を含む一部のみを溶融させ、前記合金膜のヒートシンク側の表面における前記突起部及び前記開口部に対応する部位と前記金属膜とを接合させる実装工程と、を備えることを特徴とする半導体レーザ装置の製造方法。
  2. 前記実装工程において、前記ヒートシンクのみを加熱することを特徴とする請求項1に記載の半導体レーザ装置の製造方法。
  3. 前記合金膜はAuSn膜であり、
    前記電極と前記金属膜は、いずれも最表面としてAu膜を有することを特徴とする請求項1又は請求項2に記載の半導体レーザ装置の製造方法。
  4. 活性層を含む半導体層を半導体基板の一面上に多層に積層配置してなる半導体レーザ素子が、合金膜を介して、ヒートシンクの一面上に実装された半導体レーザ装置であって、
    前記半導体レーザ素子における半導体層側の表面上には、開口部を有する絶縁膜と、前記開口部を覆いつつ前記絶縁膜と重なる電極とが設けられて、前記絶縁膜と前記電極の積層部位が突起部とされ、
    前記ヒートシンクにおける前記半導体レーザ素子との対向面上には、金属膜が設けられ、
    前記合金膜は、物理的堆積によって形成された共晶点を有する単一組成膜であって前記電極及び前記金属膜に接触されており、前記金属膜との接触部位であって前記突起部及び前記開口部に対応する部位を含む一部のみが共晶化されていることを特徴とする半導体レーザ装置。
  5. 前記合金膜は、前記金属膜との接触部位全域が共晶化されており、
    前記共晶化された領域の厚さは、前記開口部に対応する部位よりも前記突起部に対応する部位のほうが厚いことを特徴とする請求項4に記載の半導体レーザ装置。
  6. 前記合金膜はAuSn膜であり、
    前記電極と前記金属膜は、いずれも最表面としてAu膜を有することを特徴とする請求項4又は請求項5に記載の半導体レーザ装置。
JP2008196315A 2008-07-30 2008-07-30 半導体レーザ装置の製造方法及び半導体レーザ装置 Expired - Fee Related JP4978579B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196315A JP4978579B2 (ja) 2008-07-30 2008-07-30 半導体レーザ装置の製造方法及び半導体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196315A JP4978579B2 (ja) 2008-07-30 2008-07-30 半導体レーザ装置の製造方法及び半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2010034396A true JP2010034396A (ja) 2010-02-12
JP4978579B2 JP4978579B2 (ja) 2012-07-18

Family

ID=41738512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196315A Expired - Fee Related JP4978579B2 (ja) 2008-07-30 2008-07-30 半導体レーザ装置の製造方法及び半導体レーザ装置

Country Status (1)

Country Link
JP (1) JP4978579B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869986A (zh) * 2010-06-08 2010-10-27 华南理工大学 一种整体保温条件下的激光振动熔敷装置及方法
WO2016175206A1 (ja) * 2015-04-27 2016-11-03 京セラ株式会社 回路基板およびこれを備える電子装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964479A (ja) * 1995-08-28 1997-03-07 Mitsubishi Electric Corp 半導体レーザ装置,及びその製造方法
JP2000004064A (ja) * 1998-06-16 2000-01-07 Rohm Co Ltd 半導体レーザ装置およびその製造方法
JP2002314186A (ja) * 2001-04-11 2002-10-25 Kyocera Corp 光半導体素子収納用パッケージおよび光半導体装置
JP2004087866A (ja) * 2002-08-28 2004-03-18 Hitachi Ltd 半導体光素子、その実装体および光モジュール
JP2005158932A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 半導体発光装置およびその製造方法
JP2006186308A (ja) * 2004-12-27 2006-07-13 Samsung Electro Mech Co Ltd デバイスパッケージ用のソルダー
JP2006210775A (ja) * 2005-01-31 2006-08-10 Toshiba Corp 半導体レーザ素子および半導体レーザ装置。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964479A (ja) * 1995-08-28 1997-03-07 Mitsubishi Electric Corp 半導体レーザ装置,及びその製造方法
JP2000004064A (ja) * 1998-06-16 2000-01-07 Rohm Co Ltd 半導体レーザ装置およびその製造方法
JP2002314186A (ja) * 2001-04-11 2002-10-25 Kyocera Corp 光半導体素子収納用パッケージおよび光半導体装置
JP2004087866A (ja) * 2002-08-28 2004-03-18 Hitachi Ltd 半導体光素子、その実装体および光モジュール
JP2005158932A (ja) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd 半導体発光装置およびその製造方法
JP2006186308A (ja) * 2004-12-27 2006-07-13 Samsung Electro Mech Co Ltd デバイスパッケージ用のソルダー
JP2006210775A (ja) * 2005-01-31 2006-08-10 Toshiba Corp 半導体レーザ素子および半導体レーザ装置。

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101869986A (zh) * 2010-06-08 2010-10-27 华南理工大学 一种整体保温条件下的激光振动熔敷装置及方法
WO2016175206A1 (ja) * 2015-04-27 2016-11-03 京セラ株式会社 回路基板およびこれを備える電子装置
JPWO2016175206A1 (ja) * 2015-04-27 2017-05-18 京セラ株式会社 回路基板およびこれを備える電子装置

Also Published As

Publication number Publication date
JP4978579B2 (ja) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5810323B2 (ja) 発光装置
JP5211887B2 (ja) 半導体発光素子およびその製造方法
US7724791B2 (en) Method of manufacturing laser diode packages and arrays
JP2004274057A (ja) 半導体レーザーダイオードのサブマウント、その製造方法及びこれを採用した半導体レーザーダイオード組立体
CN111108655B (zh) 边缘发射的激光棒
JP2015513229A (ja) レーザーダイオード装置
JP6576137B2 (ja) 半導体レーザ装置及び半導体レーザ装置の製造方法
JP4583058B2 (ja) 半導体レーザ素子
JPWO2005055383A1 (ja) 半導体レーザ装置の製造方法
JP4978579B2 (ja) 半導体レーザ装置の製造方法及び半導体レーザ装置
US20050190806A1 (en) Semiconductor laser and manufacturing method therefor
JP4908982B2 (ja) 半導体レーザ素子
JP2004349595A (ja) 窒化物半導体レーザ装置およびその製造方法
JP4984986B2 (ja) レーザ装置及びその製造方法
JP5712368B2 (ja) 発光装置
JP5181758B2 (ja) 半導体発光素子およびその製造方法
JP2010010509A (ja) 半導体レーザ装置
US7606275B2 (en) Semiconductor laser device having incomplete bonding region and electronic equipment
US20070104237A1 (en) Semiconductor laser apparatus and semiconductor laser device
JP2006100369A (ja) 半導体レーザ素子およびその製造方法
JP2008294421A (ja) 半導体レーザ素子およびその製造方法
WO2023182156A1 (ja) 半導体発光装置、基台、半田付き基台、及び、半導体発光装置の製造方法
JP2007273897A (ja) 多波長半導体レーザ装置及びその製造方法
JP2008021762A (ja) 半導体レーザ素子および半導体レーザ装置
JP2009206390A (ja) 半導体レーザ装置、ヒートシンク、および半導体レーザ装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4978579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees