JP2010023438A - 感熱記録体 - Google Patents

感熱記録体 Download PDF

Info

Publication number
JP2010023438A
JP2010023438A JP2008190585A JP2008190585A JP2010023438A JP 2010023438 A JP2010023438 A JP 2010023438A JP 2008190585 A JP2008190585 A JP 2008190585A JP 2008190585 A JP2008190585 A JP 2008190585A JP 2010023438 A JP2010023438 A JP 2010023438A
Authority
JP
Japan
Prior art keywords
dispersion
developer
diameter
methyl
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190585A
Other languages
English (en)
Inventor
Masaru Nagahara
大 永原
Akito Ogino
明人 荻野
Kenji Hirai
健二 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2008190585A priority Critical patent/JP2010023438A/ja
Publication of JP2010023438A publication Critical patent/JP2010023438A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

【課題】発色感度に優れるとともに、耐熱性が良好である感熱記録体を提供する。
【解決手段】支持体上に無色ないし淡色の電子供与性ロイコ染料と電子受容性顕色剤とを含有する感熱記録層を設けた感熱記録体であって、該感熱記録層が、電子受容性顕色剤として、レーザー回折式粒度分布測定装置で測定したその微粒子の粒度分布(体積基準)が50%径で0.5μm以下、かつ90%径で1.2μm以下である2,4’−ジヒドロキシジフェニルスルホンを含有することを特徴とする感熱記録体。
【選択図】なし

Description

この発明は、無色又は淡色の塩基性ロイコ染料と電子受容性顕色剤(以下単に「顕色剤
」ともいう。)との熱による発色反応を利用して記録画像を得る感熱記録体に関する。
無色又は淡色の塩基性ロイコ染料と顕色剤との熱による発色反応を利用して記録画像を
得る感熱記録体は、発色が非常に鮮明であることや、記録時に騒音がなく装置も比較的安
価でコンパクト、メンテナンス容易であるなどの利点から、ファクシミリやコンピュータ
ー分野、各種計測器等に広く実用化されている。さらに最近では、ラベル、チケットの他
、屋外計測用の小型の携帯端末(ハンディターミナル)や配送伝票など、各種プリンター
、プロッターの出力媒体として用途も急速に拡大しつつある。特に、電気、ガス、水道等
の検針用途、電車(新幹線等)の社内販売、倉庫での在庫管理等に携帯型のプリンター(
ハンディターミナル)を使用することが大きく増加している。このハンディターミナルは
、携帯に便利なようにサイズが小型化されており、印字エネルギーや駆動エネルギーが省
電力化される傾向にある。このため、感熱記録体の品質も、従来以上に高い発色感度が要
求されるようになってきている。
発色感度を改善するために、例えば、各種顕色剤と各種増感剤を組み合わせて用いることで高感度化を図ることが行われている。
また、染料、顕色剤あるいは増感剤を微粒化することにより、各材料の反応性を向上さ
せ、感熱記録体を高感度化することができる。このような微粒子の分散液の製法として、
遠心力によりメディアと分散液とを分離することにより、粉砕機にメディアを局在させて
大量の分散液を処理する方法が開発されている(特許文献1〜3)。
実開平4−61635 特許第3703148号 特開2003−144950
一般に感熱記録体を高感度化するためには低融点の増感剤を使用しなければならず、感熱記録紙が高感度化する一方で、高温環境下における地肌部の耐熱性が悪化するという問題が同時に生じてしまう。
また、染料、顕色剤あるいは増感剤を微粒化した場合にも、発色感度が向上するが、地肌部の耐熱性が悪化する問題が生じてしまう。
本発明は、発色感度に優れるとともに、耐熱性が良好である感熱記録体を提供することを目的とする。
本発明者らは、支持体上に無色ないし淡色の電子供与性ロイコ染料と電子受容性顕色剤とを含有する感熱記録層を設けた感熱記録体であって、該感熱記録層が、電子受容性顕
色剤として下記式で表される2,4’−ジヒドロキシジフェニルスルホンであり、
Figure 2010023438

該電子受容性顕色剤が微粒化され、レーザー回折式粒度分布測定装置で測定したその微粒子の粒度分布(体積基準)が50%径で0.5μm以下、かつ90%径で1.2μm以下であり、高感度でかつ耐熱性に優れる感熱記録体が得られることを見出し、本発明を完成させるに至った。
本発明の感熱記録体は、発色感度に優れるとともに、耐熱性が非常に良好である感熱記録耐を得ることができる。
本発明の感熱記録体は、感熱記録層に、電子受容性顕色剤として、レーザー回折式粒度分布測定装置で測定したその微粒子の粒度分布(体積基準)が50%径で0.5μm以下、かつ90%径で1.2μm以下である2,4’−ジヒドロキシジフェニルスルホンを含有することを特徴としている。
なお、上記微粒子の粒度分布(体積基準)の50%径および90%径とは、それぞれ、顕色剤の粒度分布をレーザー回折式粒度分布測定装置で測定した場合の、体積基準の累積粒度分布度数において、小粒径側から50%における粒径(以下「50%径」、又は単に「平均粒径」ともいう。)および90%における粒径(以下「90%径」という。)を意味する。
本発明において、2,4’−ジヒドロキシジフェニルスルホン粒度分布を上記範囲に調整することで、大幅に感度を向上させることできる。その理由は定かでないが、この顕色剤を上記粒度分布に微粒化することで発色成分である塩基性ロイコ染料との接触頻度が増大し、大幅に発色感度が向上するものと考えられる。一方、当該縮合組成物の粒度分布が上記粒度分布の範囲外である場合、塩基性ロイコ染料との接触頻度が減少して満足しうる発色感度を得ることはできない。
また、一般に、感熱記録体には発色感度向上のため増感剤が使用されており、その発色機構は通常、ロイコ染料、顕色剤および増感剤の中で、最も融点の低い増感剤が最初に融解し、次いで融解した増感剤中に染料と顕色剤が溶けて、染料と顕色剤とが分子レベルで反応し発色が得られる。本発明では、顕色剤が微粒化されることにより、融解した増感剤中にいっそう溶けやすくなり、発色感度が向上すると推察されるとともに、顕色剤の感度が向上することにより、耐熱性の悪化を招きやすい低融点の増感剤をあえて選択する必要がなく、融点に関わらず適宜増感剤を使用することができるので、発色感度と耐熱性の両品質に優れる感熱記録体が得られる。
さらに、2,4’−ジヒドロキシジフェニルスルホンの粒度分布を上記範囲に調整することで、耐熱性に悪影響を及ぼす非常に小さい粒子径の2,4’−ジヒドロキシジフェニルスルホンおよび発色感度に悪影響を及ぼす非常に大きな粒子径の2,4’−ジヒドロキシジフェニルスルホンの割合を抑制することができるため、良好な発色感度および耐熱性を示すと推測される。
本発明で用いる顕色剤である2,4’−ジヒドロキシジフェニルスルホンは下式で表される。
Figure 2010023438
本発明では、所望の効果を阻害しない範囲で、2,4’−ジヒドロキシジフェニルスルホンの他に、顕色剤として、従来既知の顕色剤を併用してもよい。このような顕色剤の粒径は特に限定されるものではなく、一般に平均粒径0.3〜1μm程度であり、2,4’−ジヒドロキシジフェニルスルホンと同様に微粒化してもよい。また、このような顕色剤を併用する場合には、用いる顕色剤全体に対して他の顕色剤の割合は、所望の効果を阻害しない範囲で適宜調整すればよく特に限定されるものではないが、顕色剤全体を100重量%としたとき2,4’−ジヒドロキシジフェニルスルホンで表される縮合組成物が50重量%以上、好ましくは70重量%以上となるように用いることが望ましい。
このような顕色剤として、例えば、活性白土、アタパルジャイト、コロイダルシリカ、珪酸アルミニウム等の無機酸性物質、4,4'−イソプロピリデンジフェノール、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、4,4'−ジヒドロキシジフェニルスルフィド、ヒドロキノンモノベンジルエーテル、4−ヒドロキシ安息香酸ベンジル、4−ヒドロキシベンゼンスルホンアニリド、特開平8−59603号公報記載のアミノベンゼンスルホンアミド誘導体、ビス(4−ヒドロキシフェニルチオエトキシ)メタン、1,5−ジ(4−ヒドロキシフェニルチオ)−3−オキサペンタン、ビス(p−ヒドロキシフェニル)酢酸ブチル、ビス(p−ヒドロキシフェニル)酢酸メチル、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,4−ビス[α−メチル−α−(4'−ヒドロキシフェニル)エチル]ベンゼン、1,3−ビス[α−メチル−α−(4'−ヒドロキシフェニル)エチル]ベンゼン、ジ(4−ヒドロキシ−3−メチルフェニル)スルフィド、2,2'−チオビス(3−tert−オクチルフェノール)、2,2'−チオビス(4−tert−オクチルフェノール)、国際公開WO97/16420号に記載のジフェニルスルホン架橋型化合物等のフェノール性化合物、4,4'−ビス(3−(フェノキシカルボニルアミノ)メチルフェニルウレイド)ジフェニルスルホン(旭化成社製商品名:UU)、国際公開WO02/081229号あるいは特開2002−301873号に記載の化合物(日本曹達社製商品名D−102、D−100)、特許第3456792号や3612746号に記載の化合物、N,N'−ジ−m−クロロフェニルチオウレア等のチオ尿素化合物、p−クロロ安息香酸、没食子酸ステアリル、ビス[4−(n−オクチルオキシカルボニルアミノ)サリチル酸亜鉛]2水和物、4−[2−(p−メトキシフェノキシ)エチルオキシ]サリチル酸、4−[3−(p−トリルスルホニル)プロピルオキシ]サリチル酸、5−[p−(2−p−メトキシフェノキシエトキシ)クミル]サリチル酸の芳香族カルボン酸、及びこれらの芳香族カルボン酸の亜鉛、マグネシウム、アルミニウム、カルシウム、チタン、マンガン、スズ、ニッケル等の多価金属塩との塩、さらにはチオシアン酸亜鉛のアンチピリン錯体、テレフタルアルデヒド酸と他の芳香族カルボン酸との複合亜鉛塩等が挙げられる。これらは一種を用いても又は数種を併用してもよい。
本発明の電子受容性顕色剤は、微粒化処理時に増粘や凝集する傾向があり、シャープな粒度分布が得られにくいものであるが、例えば、粉砕メディアと共にビーズミルで湿式粉砕され、遠心力の作用によりメディアと分散液に分離してビーズミルから排出されたものとすることは、所望の粒度分布を得ることができ好ましい。
顕色剤の微粒化には、湿式粉砕機を用いることが望ましく、ビーズ径0.3mm径以下のマイクロビーズを使用することが好ましい。ビーズ径が0.3mm径を超えると、粉砕に用いられるビーズ1個当りの衝撃力(ビーズの重量に比例し、ビーズ重量はビーズ径の3乗に比例)が過剰となり、顕色剤の粒子表面を傷付けてしまい、不要に粒子表面を活性化されるため、粒子同士の相互作用によって増粘や凝集が生じてしまい、結果として粗大粒子が発生し微粒化が困難となる。
また、用いる粉砕機としては、上記ビーズ径が使用可能な機種であれば限定するものではないが、好ましくは処理液とビーズとの分離機構に遠心分離方式を用いた粉砕機を使用することが望ましい。遠心分離方式によるビーズ分離機構とは、従来の粉砕機で用いているスクリーンやギャップ方式とは大きく異なり、遠心力を利用した分離機構を備えた湿式型粉砕機である。この分離機構としては、微粒化された分散液とビーズが共に遠心分離ローター内に入り込む瞬間、ローターの回転による遠心力によって、分散液とビーズの比重差からビーズはストークスの沈降速度Vtでローター外周方向へ放出される一方、分散液はローター外周から軸中心に向かって速度vで流入する。この時、原理的にVtがvより大きくなれば分離可能となる仕組みであり、スケールアップも容易である。また、分散液の流れを遮るスクリーンやギャップを使用しないことから詰まりも発生せず工業的にも安定した生産が可能となる。加えて、流量も高く設定できるため、高流量/高パス回数の処理が可能となりマイルドかつ各粒子に対して均一な微粒化処理によって非常にシャープかつ微粒化された分散液が得られる。
また、分散液とビーズとを遠心分離する粉砕機を用いれば、スクリーンタイプやギャップタイプの粉砕機で目詰まりや噛み込みが発生して分離困難な粒径0.3mm径以下のマイクロビーズを使用した微粒化が可能となる。この技術は、湿式シリカ分散液の製造方法のように他分野では知られていたが(特開2005-2319545)、本発明のように処理液へのビーズ混入によって塗工欠陥などの品質問題が生じる感熱記録体成分の微粒化に、このタイプの粉砕機を応用することは今まで知られていない。本発明者らは、顕色剤を粒径0.3mm径以下のビーズを使用し、分散液とビーズとを遠心分離する粉砕機を用いて微粒化することによって、従来の粉砕機では得られなかったレーザー回折式で測定した粒度分布が50%径で0.5μm以下、90%径で1.2μm以下とした顕色剤を含有する感熱記録体を安定的に得ることができることを見出した。
なお、勿論、本発明において微粒化の方法は特に制限されるものではなく、前記粒度分布範囲内の微粒化が可能であればスクリーンタイプやギャップタイプの粉砕機も使用することができる。例えば、ギャップタイプで高流量/高パス回数の処理が可能な粉砕機として、特開平10−15411に記載されている粉砕機が挙げられる。この粉砕機は、両端が閉塞された筒状をなす粉砕容器と、粉砕容器内に粉砕容器と軸線を一致させた状態で設けられ、粉砕容器内を径方向に内側室と外側室の2室に区画するとともに、両室間を連通する複数のスリットが全周に渡って形成される筒状のセパレータと、内側室内に粉砕容器と軸線を一致させた状態で回転可能に設けられる攪拌部材と、内側室内外を連通する処理物の供給口と、外側室内外を連通する処理物の排出口とを具えたものであり、供給口から粉砕容器の内側室内に処理物を供給し、攪拌部材を回転させると、処理物は攪拌部材によってビーズとともに攪拌されて粉砕され、遠心力の作用によって径方向外方に流動してセパレータの位置に達する。そして、セパレータによって処理物とビーズとは分離され、粉砕メディアは内側室内に残され、処理物はスリットを通過して外側室内に流動し、外側室から排出口を介して粉砕容器外に排出される。この場合、セパレータには、その全周に渡って複数のスリットが設けられ大流量の処理物を処理するのに十分な有効面積を確保することができる。そして、セパレータの部分で大流量の処理物の流れが制限されることはなく、大流量の処理物を効率良く処理することができる。また、攪拌部材の筒状の部分には、内外を貫通する開口部が設けられているので、その開口部によって処理物およびビーズに強力な遠心力を作用させることができる。従って、その遠心力によって処理物およびビーズは開口部から攪拌部材の外周側に流動し、攪拌部材の外周側を攪拌部材の軸線方向に流動して攪拌部材の内側の部分に流動し、このような一連の流れに沿って処理物、ビーズが内側室内を循環し、両者は完全な混合状態となる。従って、ビーズおよび処理物が粉砕容器内の一部に片寄って運転に影響を与えたり、運転が困難になったりするようなことはなく、長期的に良好な運転特性を得ることができる。さらに、粉砕容器は、軸方向に短く(L/D比が小さく)形成するものの、L(粉砕容器の軸線方向の長さ)を小さくした分だけD(粉砕容器の直径)を大きく形成することにより、処理物の粉砕効率が低下するようなことはなく、優れた粉砕効率が得られる。なお、軸線方向の長さ(L)と直径(D)との比(L/D比)は、1.0以下となるようにすることが好ましい。
また、特開2005−153205に記載の分散液供給口と分散液排出口と円筒状ロータと円筒状ケーシングとを有する分散機であって、その円筒状ロータの外径と円筒状ケーシングの内面との間隔を広げることによって、分散効率や剪断効率を高める方法も有用である。この方法では、撹拌部材である円筒状ロータの外径をdとし、円筒状ケーシングの内径をDとするとき、0.7≦d/D≦0.9の範囲としたり、さらには円筒状ロータの高さをhとし、円筒状ケーシングの内面の高さをHとしたとき、0.6≦h/H≦0.9の範囲とすることで、ビーズを効率的に分散に寄与させることができ、よりシャープで微粒化された分散液が得られ、分散効率の高い処理が可能となる。
また、ビーズを使用した湿式粉砕機の場合、分散液の微粒化処理後の粘度が重要である。これは、微粒化処理を受けた分散液の粘度が著しく高い場合、ビーズは運動し難くなり微粒化の効率が低下するのに加えて、遠心分離する場合は特に、遠心分離ローターで生み出す遠心力がビーズに伝わり難くなり、ビーズが分散液に混入したまま排出されてしまうからである。特に後者の現象は、分散液の流量を高く設定した場合に起こりやすい傾向にあるため、メディアを分離できる範囲の流量を適宜選択すればよいが、分散液の粉砕処理後のB型粘度(液温30℃、回転数60rpm、ローターNo.2)が2000mPa・s以下であることが好ましい。
また、ローターの周速(最外周部の速度)は5〜30m/s、より好ましくは5〜20m/sの範囲である。ローターの周速が5m/s未満の場合、微粒化に時間がかかり非効率である。また、30m/s以上の場合、微粒化する粒子に過度なシェアがかかってしまうため凝集を引き起こすことが懸念される。
本発明において、使用するメディアの粒子径は、得ようとする所望の粒子径によって適宜選択すれば良いが、シャープな粒度分布かつ微粒化を進めるためには0.03〜0.5mm径の範囲が好ましく、材質はガラス、ジルコニア、アルミナから選択するのが好ましい。 本発明において、粉砕室内におけるビーズ粒子の見かけの充填率は、好ましくは30〜95容積%、より好ましくは40〜90容積%である。ビーズ粒子の充填率を上記範囲にすることにより、顕色剤の微粒化効率もよく、またショートパスも防止することができる。
本発明において、顕色剤を粉砕する際の処理温度は50℃以下にすることが望ましい。50℃以上で処理した場合、熱により再凝集や変性などを引き起こすため、発色感度が低下することが懸念される。この凝集などによる発色感度の低下は、90%径で評価することができ、目標とする平均粒径(50%径)に対して約2倍以下が好ましい。また、分散液を50℃以上で混合した場合、混合した塗料が着色するため、それぞれ50℃以下に冷却してから使用する必要があり、生産効率が低下する。
分散液を冷却する方法に特に制限は無いが、粉砕室のジャケット部に冷却媒体を循環させて冷却する方法が簡便である。温度制御の方法についても特に制限は無いが、冷却媒体を循環させる場合には、その流量や温度を制御すればよく、その方法は分散液の温度をセンサーを用いて計測しその値により自動制御してもよいし、簡単には、冷却媒体や流量や温度を変更しながら分散処理時に最も高くなる分散液排出口において分散液の温度を測定して所望の分散液温度をもたらす条件を決めてもよい。
冷却媒体としては、水、エチレングリコールなどの通常の冷却媒体を使用することができる。
また、微粒化操作の前に、前処理として粗分散操作、例えば、ボールミル、アトライター、サンドミル、サンドグラインダー、グレーンミル、パールミル、マターミル、アニラーミル、コボールミル、タワーミル、ダイナミックミル、OBミル、アペックスミル、SCミル及び三本ロールミルなど、種々の変形型や呼称があり、これらの中でもさらに多くの変形種類があるが、適宜必要な粗分散処理を施してもよい。また、微粒化操作は、粉砕機を直列につなげて連続方式とすることや循環させて複数回パスさせる方式としてもよい。
使用するに好ましい粉砕機として、分散液とビーズとを遠心分離する粉砕機の具体例としては、寿工業(株)製のスーパーアペックスミル(SAM−05型、SAM−1型、SAM−2型、SAM−5型、SAM−10型、SAM−30型)、ウルトラアペックスミル(UAM−015型、UAM−05型、UAM−1型、UAM−2型、UAM−5型、UAM−10型、UAM−30型)、三井鉱山(株)製MSCミル(MSC100、MSC150、MSC220)が挙げられ、これらの粉砕機はスクリーンレスのため目詰まりや噛み込み防止を目的とした粗分散処理を省略することも出来る。また、ビーズ分離に遠心分離とスクリーン機構を併用したアシザワ・ファインテック(株)製のスターミルLMZ(LMZ06、LMZ2、LMZ4、LMZ10、LMZ25、LMZ60)やスターミルZRS(ZRS2、ZRS4、ZRS10)などが挙げられるが、前記粒度分布範囲内の微粒化が可能であればこれらに限定されるものではない。また、ギャップタイプの具体例としては、三井鉱山(株)社製ビーズミル(SC100、SC220等)が挙げられるが、これに限定されるものではない。
顕色剤の分散を行う際に使用する分散媒としては一般には水溶性高分子化合物の水溶液を使用する。例えば、ポリビニルアルコール、デンプン及びその誘導体、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロースなどのセルロース誘導体、ポリアクリル酸ソーダ、ポリビニルピロリドン、アクリルアミド/アクリル酸エステル共重合体、アクリルアミド/アクリル酸エステル/メタクリル酸三元共重合体、スチレン/無水マレイン酸共重合体アルカリ塩、イソブチレン/無水マレイン酸共重合体アルカリ塩、ポリアクリルアミド、アルギン酸ソーダ、ゼラチン、カゼインなどの水溶性高分子の他、ポリ酢酸ビニル、ポリウレタン、ポリアクリル酸、ポリアクリル酸エステル、塩化ビニル/酢酸ビニル共重合体、ポリブチルメタクリレート、エチレン/酢酸ビニル共重合体などのエマルジョンやスチレン/ブタジエン共重合体、スチレン/ブタジエン/アクリル系共重合体などのラテックスなども挙げられる。
これらの分散剤(固形分)は、分散対象物1重量部に対して、0.01〜1.0部の量で用いると微粒子化と分散性の向上及び分散液の安定性に有利であるため好ましい。少なすぎる場合、凝集を引き起こし、分散液の安定性に劣る。また、多すぎる場合は、減感作用による感度低下など品質に悪影響を及ぼすため好ましくない。
分散液中の分散対象物の濃度は、通常20〜70重量%程度である。
このような材料を用いて、顕色剤の分散液を用意し、上記の条件で微粒化処理する。分散液とビーズとを遠心分離する粉砕機を用いない場合には、ボールミル、アトライター、サンドミル、サンドグラインダー、グレーンミル、パールミル、マターミル、アニラーミル、コボールミル、タワーミル、ダイナミックミル、OBミル、アペックスミル、三本ロールミルなどの従来の粉砕機で分散させたものを用いることができる。
なお、他の成分(他の顕色剤、染料、安定剤など)を同様に微粒化してもよい。
本発明で用いる塩基性ロイコ染料としては、従来の感圧あるいは感熱記録紙分野で公知のものは全て使用可能であり、特に制限されるものではないが、トリフェニルメタン系化合物、フルオラン系化合物、フルオレン系、ジビニル系化合物等が好ましい。以下に代表的な無色ないし淡色の染料(染料前駆体)の具体例を示す。また、これらの染料前駆体は単独又は2種以上混合して使用してもよい。
<トリフェニルメタン系ロイコ染料>
3、3−ビス(p−ジメチルアミノフェニル)−6−ジメチルアミノフタリド〔別名クリスタルバイオレットラクトン〕;3,3−ビス(p−ジメチルアミノフェニル)フタリド;〔別名マラカイトグリーンラクトン〕
<フルオラン系ロイコ染料>
3−ジエチルアミノ−6−メチルフルオラン; 3−ジエチルアミノ−6−メチル−7−アニリノフルオラン; 3−ジエチルアミノ−6−メチル−7−(o、p−ジメチルアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−クロロフルオラン; 3−ジエチルアミノ−6−メチル−7−(m−トリフルオロメチルアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−(o−クロロアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−(p−クロロアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−(o−フルオロアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−(m−メチルアニリノ)フルオラン; 3−ジエチルアミノ−6−メチル−7−n−オクチルアニリノフルオラン; 3−ジエチルアミノ−6−メチル−7−n−オクチルアミノフルオラン; 3−ジエチルアミノ−6−メチル−7−ベンジルアミノフルオラン; 3−ジエチルアミノ−6−メチル−7−ジベンジルアミノフルオラン; 3−ジエチルアミノ−6−クロロ−7−メチルフルオラン; 3−ジエチルアミノ−6−クロロ−7−アニリノフルオラン; 3−ジエチルアミノ−6−クロロ−7−p−メチルアニリノフルオラン; 3−ジエチルアミノ−6−エトキシエチル−7−アニリノフルオラン; 3−ジエチルアミノ−7−メチルフルオラン; 3−ジエチルアミノ−7−クロロフルオラン; 3−ジエチルアミノ−7−(m−トリフルオロメチルアニリノ)フルオラン; 3−ジエチルアミノ−7−(o−クロロアニリノ)フルオラン; 3−ジエチルアミノ−7−(p−クロロアニリノ)フルオラン; 3−ジエチルアミノ−7−(o−フルオロアニリノ)フルオラン; 3−ジエチルアミノ−ベンゾ〔a〕フルオラン; 3−ジエチルアミノ−ベンゾ〔c〕フルオラン; 3−ジブチルアミノ−6−メチル−フルオラン; 3−ジブチルアミノ−6−メチル−7−アニリノフルオラン; 3−ジブチルアミノ−6−メチル−7−(o、p−ジメチルアニリノ)フルオラン; 3−ジブチルアミノ−6−メチル−7−(o−クロロアニリノ)フルオラン; 3−ジブチルアミノ−6−メチル−7−(p−クロロアニリノ)フルオラン; 3−ジブチルアミノ−6−メチル−7−(o−フルオロアニリノ)フルオラン; 3−ジブチルアミノ−6−メチル−7−(m−トリフルオロメチルアニリノ)フルオラン; 3−ジブチルアミノ−6−メチル−クロロフルオラン; 3−ジブチルアミノ−6−エトキシエチル−7−アニリノフルオラン; 3−ジブチルアミノ−6−クロロ−7−アニリノフルオラン; 3−ジブチルアミノ−6−メチル−7−p−メチルアニリノフルオラン; 3−ジブチルアミノ−7−(o−クロロアニリノ)フルオラン; 3−ジブチルアミノ−7−(o−フルオロアニリノ)フルオラン; 3−ジ−n−ペンチルアミノ−6−メチル−7−アニリノフルオラン; 3−ジ−n−ペンチルアミノ−6−メチル−7−(p−クロロアニリノ)フルオラン; 3−ジ−n−ペンチルアミノ−7−(m−トリフルオロメチルアニリノ)フルオラン; 3−ジ−n−ペンチルアミノ−6−クロロ−7−アニリノフルオラン; 3−ジ−n−ペンチルアミノ−7−(p−クロロアニリノ)フルオラン; 3−ピロリジノ−6−メチル−7−アニリノフルオラン; 3−ピペリジノ−6−メチル−7−アニリノフルオラン; 3−(N−メチル−N−プロピルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−メチル−N−シクロヘキシルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−シクロヘキシルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−キシルアミノ)−6−メチル−7−(p−クロロアニリノ)フルオラン; 3−(N−エチル−p−トルイディノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−イソアミルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−イソアミルアミノ)−6−クロロ−7−アニリノフルオラン; 3−(N−エチル−N−テトラヒドロフルフリルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−イソブチルアミノ)−6−メチル−7−アニリノフルオラン; 3−(N−エチル−N−エトキシプロピルアミノ)−6−メチル−7−アニリノフルオラン; 3−シクロヘキシルアミノ−6−クロロフルオラン; 2−(4−オキサヘキシル)−3−ジメチルアミノ−6−メチル−7−アニリノフルオラン; 2−(4−オキサヘキシル)−3−ジエチルアミノ−6−メチル−7−アニリノフルオラン; 2−(4−オキサヘキシル)−3−ジプロピルアミノ−6−メチル−7−アニリノフルオラン; 2−メチル−6−p−(p−ジメチルアミノフェニル)アミノアニリノフルオラン; 2−メトキシ−6−p−(p−ジメチルアミノフェニル)アミノアニリノフルオラン; 2−クロロ−3−メチル−6−p−(p−フェニルアミノフェニル)アミノアニリノフルオラン; 2−クロロ−6−p−(p−ジメチルアミノフェニル)アミノアニリノフルオラン; 2−ニトロ−6−p−(p−ジエチルアミノフェニル)アミノアニリノフルオラン; 2−アミノ−6−p−(p−ジエチルアミノフェニル)アミノアニリノフルオラン; 2−ジエチルアミノ−6−p−(p−ジエチルアミノフェニル)アミノアニリノフルオラン; 2−フェニル−6−メチル−6−p−(p−フェニルアミノフェニル)アミノアニリノフルオラン; 2−ベンジル−6−p−(p−フェニルアミノフェニル)アミノアニリノフルオラン; 2−ヒドロキシ−6−p−(p−フェニルアミノフェニル)アミノアニリノフルオラン; 3−メチル−6−p−(p−ジメチルアミノフェニル)アミノアニリノフルオラン; 3−ジエチルアミノ−6−p−(p−ジエチルアミノフェニル)アミノアニリノフルオラン; 3−ジエチルアミノ−6−p−(p−ジブチルアミノフェニル)アミノアニリノフルオラン; 2、4−ジメチル−6−〔(4−ジメチルアミノ)アニリノ〕−フルオラン
<フルオレン系ロイコ染料>
3、6、6'−トリス(ジメチルアミノ)スピロ〔フルオレン−9、3’−フタリド〕; 3、6、6'−トリス(ジエチルアミノ)スピロ〔フルオレン−9、3’−フタリド〕
<ジビニル系ロイコ染料>
3、3−ビス−〔2−(p−ジメチルアミノフェニル)−2−(p−メトキシフェニル)エテニル〕−4、5、6、7−テトラブロモフタリド; 3、3−ビス−〔2−(p−ジメチルアミノフェニル)−2−(p−メトキシフェニル)エテニル〕−4、5、6、7−テトラクロロフタリド; 3、3−ビス−〔1、1−ビス(4−ピロリジノフェニル)エチレン−2−イル〕−4、5、6、7−テトラブロモフタリド; 3、3−ビス−〔1−(4−メトキシフェニル)−1−(4−ピロリジノフェニル)エチレン−2−イル〕−4、5、6、7−テトラクロロフタリド
<その他>
3−(4−ジエチルアミノ−2−エトキシフェニル)−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド; 3−(4−ジエチルアミノ−2−エトキシフェニル)−3−(1−オクチル−2−メチルインドール−3−イル)−4−アザフタリド; 3−(4−シクロヘキシルエチルアミノ−2−メトキシフェニル)−3−(1−エチル−2−メチルインドール−3−イル)−4−アザフタリド; 3、3−ビス(1−エチル−2−メチルインドール−3−イル)フタリド; 3、6−ビス(ジエチルアミノ)フルオラン−γ−(3’−ニトロ)アニリノラクタム; 3、6−ビス(ジエチルアミノ)フルオラン−γ−(4’−ニトロ)アニリノラクタム; 1、1−ビス−〔2'、2'、2''、2''−テトラキス−(p−ジメチルアミノフェニル)−エテニル〕−2、2−ジニトリルエタン; 1、1−ビス−〔2'、2'、2''、2''−テトラキス−(p−ジメチルアミノフェニル)−エテニル〕−2−β−ナフトイルエタン; 1、1−ビス−〔2'、2'、2''、2''−テトラキス−(p−ジメチルアミノフェニル)−エテニル〕−2、2−ジアセチルエタン; ビス−〔2、2、2'、2'−テトラキス−(p−ジメチルアミノフェニル)−エテニル〕−メチルマロン酸ジメチルエステル 特に3−(N−エチル−N−p−トルイジノアミノ)−6−メチル−7−アニリノフルオランや3−ジエチルアミノ−7−(m−トリフルオロメチルアニリノ)フルオランは良好な耐光性を有している染料であることから、炎天下で使用される用途に好ましく用いられる。
本発明で用いる増感剤としては、上記課題に対する所望の効果を阻害しない範囲で、従来公知の増感剤を使用することができる。
かかる増感剤としては、ステアリン酸アミド、メチロールアミド、エチレンビスアミド、モンタン酸ワックス、ポリエチレンワックス、p−ベンジルビフェニル、β−ベンジルオキシナフタレン、4−ビフェニル−p−トリルエーテル、m−ターフェニル、4,4’−エチレンジオキシ−ビス−安息香酸ジベンジルエステル、ジベンゾイルオキシメタン、ビス〔2−(4−メトキシ−フェノキシ)エチル〕エーテル、p−ニトロ安息香酸メチル、シュウ酸ジベンジル、シュウ酸ジ(p−クロロベンジル)、シュウ酸ジ(p−メチルベンジル)、テレフタル酸ジベンジル、p−ベンジルオキシ安息香酸ベンジル、ジ−p−トリルカーボネート、フェニル−α−ナフチルカーボネート、1,4−ジエトキシナフタレン、1−ヒドロキシ−2−ナフトエ酸フェニルエステル、4−(m−メチルフェノキシメチル)ビフェニル、オルトトルエンスルホンアミド、パラトルエンスルホンアミド、1,2−ジフェノキシエタン、1,2−ジ(3−メチルフェノキシ)エタン、メチルビフェニルケトンを例示することができるが、特にこれらに制限されるものではない。これらの増感剤は、単独又は2種以上混合して使用してもよい。
本発明で用いることのできるその他の成分として、適宜必要に応じて、顔料や接着剤、いわゆるバインダーを用いてもよい。
本発明で使用する顔料としては、シリカ、炭酸カルシウム、カオリン、焼成カオリン、ケイソウ土、タルク、酸化チタン、水酸化アルミニウムなどの無機又は有機充填剤などが挙げられる。ヘッドカス付着やスティッキングの防止を重視する場合には、高吸油性微粒シリカを使用することが好ましい。このような非晶質シリカとしては、平均粒子径5μm以上、好ましくは5〜10μm、吸油量は150ml/100g以上、好ましくは150〜400ml/100g、非表面積は150m2/g以下、好ましくは50〜150m2/gである。この平均粒子径の測定はマスターサイザー(D50%径)に従って行う。この吸油量の測定はJIS K5101に従って行なう。この非表面積の測定はBET法に従って行う。
この非晶質シリカの平均粒子径が5μより小さいと、感熱記録層の耐スティッキング性能が悪くなり、10μmより大きいとサーマルヘッドの寿命が短くなったり、用紙の塗工層強度が弱くなったり、画質が悪くなったりする場合がある。また、吸油量が150ml/100gより少ないとヘッドカスやスティッキングに悪く、比表面積が150m2/gより大きいと塗料の白色度低下が起こる場合がある。このような非晶質シリカとしては、例えば、カープレックス101(デグサジャパン製)、ファインシールP−8(トクヤマ製)などが挙げられる。
また、平均粒子径は3μm以上の炭酸カルシウム(以下「炭カル」ともいう。)を併用して使用することは、ヘッドカスやスティッキングを防止することができ好ましい。なお
、平均粒子径の測定はマスターサイザー(D50%径)に従って行う。
このような炭酸カルシウムとしては、例えば、白石カルシウム製の、白艶華PZ(立方型炭酸カルシウム凝集体)、PC/PCX(紡錘型炭酸カルシウム)、カルライトSA(アラゴナイト型炭酸カルシウム)、ツネックスE(紡錘型炭酸カルシウム凝集体)などが挙げられる。
バインダーとしては、塗料の流動性向上などのため、本発明の所望の効果を阻害しない範囲で感熱記録層用接着剤として一般的に知られているものを用いることができる。具体的には、重合度が200〜1900の完全ケン化ポリビニルアルコール、部分ケン化ポリビニルアルコール、カルボキシ変性ポリビニルアルコール、アマイド変性ポリビニルアルコール、スルホン酸変性ポリビニルアルコール、ブチラール変性ポリビニルアルコール、その他の変性ポリビニルアルコール、ヒドロキシエチルセルロース、メチルセルロース、カルボキシメチルセルロース、エチルセルロール、アセチルセルロースのようなセルロース誘導体、スチレン−無水マレイン酸共重合体、スチレン−ブタジエン共重合体、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアクリルアミド、ポリアクリル酸エステル、ポリビニルブチルラール、ポリスチレン及びそれらの共重合体、ポリアミド樹脂、シリコン樹脂、石油樹脂、テルペン樹脂、ケトン樹脂、クマロ樹脂を例示することができる。これらの高分子物質は水、アルコール、ケトン、エステル、炭化水素等の溶剤に溶かして使用するほか、水又は他の媒体中に乳化あるいはペースト状に分散した状態で使用し、要求される品質に応じて併用することも可能である。
また、上記課題に対する所望の効果を阻害しない範囲で、記録画像の耐油性等を付与する安定剤として、4,4’−ブチリデン(6−t−ブチル−3−メチルフェノール)、2,2’−ジ−t−ブチル−5,5’−ジメチル−4,4’−スルホニルジフェノール、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−シクロヘキシルフェニル)ブタン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−t−ブチルフェニルブタン、4−ベンジルオキシ−4’−(2,3−エポキシ−2−メチルプロポキシ)ジフェニルスルホンエポキシレジン等を添加することもできる。
更に、上記材料の他にワックス類などの滑剤、ベンゾフェノン系やトリアゾール系の紫外線吸収剤、グリオキザールなどの耐水化剤、分散剤、消泡剤、フェノール系などの酸化防止剤、蛍光染料等を使用することができる。
本発明の感熱記録体に使用する塩基性ロイコ染料、顕色剤、その他の各種成分の種類及び量は要求される性能及び記録適性に従って決定され、特に限定されるものではないが、通常、塩基性ロイコ染料1部に対して顕色剤0.5〜10部、顔料0.5〜10部程度が使用される。増感剤は、染料1重量部に対して0.5〜10重量部程度使用されることが好ましい。その他の成分については、本発明の効果を害しない範囲で適当な量を用いることができる。
本発明の感熱記録体を得るには、例えば、塩基性ロイコ染料及び顕色剤をそれぞれバインダーとともに分散した分散液と、顔料等その他必要な添加剤を加えて混合し、感熱記録層塗液を調製し基材(支持体)上に塗布乾燥して感熱記録層を形成することにより製造することができる。
この塗液に用いる溶媒としては、水、アルコール等を用いることができ、その固形分は10〜50重量%程度である。
支持体としては、紙、再生紙、合成紙、フィルム、プラスチックフィルム、発泡プラスチックフィルム、不織布等を用いることができる。またこれらを組み合わせた複合シートを支持体として使用してもよい。
塩基性ロイコ染料、顕色剤並びに必要に応じて添加する材料は、ボールミル、アトライター、サンドグライダーなどの粉砕機あるいは適当な乳化装置によって数ミクロン以下の粒子径になるまで微粒化し、目的に応じて各種の添加材料を加えて塗液とする。塗布する手段は特に限定されるものではなく、周知慣用技術に従って塗布することができ、例えばエアーナイフコーター、ロッドブレードコーター、ビルブレードコーター、ロールコーター、カーテンコーターなど各種コーターを備えたオフマシン塗工機やオンマシン塗工機が適宜選択され使用される。
感熱記録層の塗布量は特に限定されず、通常乾燥重量で2〜12g/m2である。
さらに、保存性を高める目的で、オーバーコート層を感熱記録層上に設けたり、発色感度を高める目的で、顔料や有機充填剤を含有した高分子物質等のアンダーコート層を感熱記録層の下に設けたりしてもよい。支持体の感熱記録層とは反対面にバックコート層を設け、バックバリアやカールの矯正を図ることも可能である。また、各層の塗工後にスーパーカレンダーがけ等の平滑化処理を施すなど、感熱記録体分野における各種公知の技術を必適宜付加することができる。さらに、支持体の感熱記録層とは反対面に粘着剤層と剥離紙を設けてラベルとするなど、様々な形態に加工することができる。
以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。なお、各実施例中、特にことわらない限り「部」は「重量部」を示す。
実施例1
染料、増感剤の各材料は、それぞれ、予め以下の配合の分散液をつくり、サンドグラインダーで平均粒子径が0.5μmになるまで湿式磨砕を行った。
<染料分散液>
3−ジ−n−ブチルアミノ−6−メチル−7−アニリノフルオラン(山本化成社製商品名:ODB−2) 3.0部
10%ポリビニルアルコール水溶液 6.9部
水 3.9部
<増感剤分散液>
ジフェニルスルホン(DPS) 6.0部
10%ポリビニルアルコール水溶液 18.8部
水 11.2部
顕色剤は、種々の配合の分散液をつくり、メディアと分散液を遠心分離するビーズミル(寿工業(株)社製ウルトラアペックスミルUAM−015型)を用いて、0.3mm径のジルコニアビーズを充填率65%(粉砕室容積0.17L)、ローター周速12m/秒、流量10L/Hr(流量/粉砕室容積=59:この値が大きいほど粉砕機規模に対する流量が大きい)の条件で、滞留時間(単位体積当りの分散液が粉砕室内で磨砕処理された時間)が5分になるまで湿式粉砕を行った。
冷却媒体、温度及び流量を変更して通常運転を行い、分散処理時に最も高くなる分散液排出口において測定した分散液温度が40℃付近になる条件を以下のように決めた。
冷却媒体:エチレングリコール
冷却媒体温度:−2℃
流量(循環方式):15L/min
<顕色剤分散液>
2、4'−ジヒドロキシジフェニルスルホン(日華化学社製、商品名:24ビスフェノールS) 6.0部
10%ポリビニルアルコール水溶液 18.8部
水 11.2部
その結果、下記に示す粒径の顕色剤分散液を得た。
粒径はレーザー回折式粒度分布測定装置(マルバーン社製、マスターサイザーS)を用いて測定した。得られた顕色剤分散液の分散粒子の50%径は0.42μm、90%径は0.99μmであった。
次に、以下の組成物を混合し、感熱記録層塗液を得た。この塗液を坪量50g/m2の上質紙に乾燥後の塗布量が6g/m2となるように塗布乾燥し、スーパーカレンダーでベック平滑度が200〜600秒になるように処理し、感熱記録体を得た。
顕色剤分散液 36.0部
染料分散液 13.8部
増感剤分散液 36.0部
シリカ(水沢化学社製、商品名:ミズカシルP537)25%分散液
13.0部
炭酸カルシウム(白石カルシウム社製商品名:ツネックスE)50%分散液
13.0部
ステアリン酸亜鉛30%分散液 6.7部
実施例2
滞留時間を20分に変更した以外は実施例1と同様にして感熱記録体を得た。得られた顕色剤分散液の分散粒子の50%径は0.34μm、90%径は0.71μmであった。
実施例3
滞留時間を15分に変更した以外は実施例1と同様にして感熱記録体を得た。得られた顕色剤分散液の分散粒子の50%径は0.36μm、90%径は0.73μmであった。
滞留時間を10分に変更した以外は実施例1と同様にして感熱記録体を得た。得られた顕色剤分散液の分散粒子の50%径は0.40μm、90%径は0.75μmであった。
比較例1
0.3mm径のジルコニアビーズを使用し、滞留時間を10分に変更した以外は、実施例1と同様にして感熱記録体を得た。得られた顕色剤分散液の分散粒子の50%径は0.70μm、90%径は1.25μmであった。
比較例2
0.3mm径のジルコニアビーズを使用した以外は、実施例1と同様にして感熱記録体を得た。得られた顕色剤分散液の分散粒子の50%径は0.90μm、90%径は1.60μmであった。
上記の実施例及び比較例で得られた感熱記録体について次のような評価試験を行った。
[発色感度]
大倉電機社製のTH−PMDを使用し、作成した感熱記録体に印加エネルギー0.25
及び0.34mJ/dotで印字を行った。印字後及び品質試験後の画像濃度はマクベス
濃度計(RD−914、アンバーフィルター使用)で測定した。
[耐熱性](地肌部濃度)
70℃の熱板に5秒間押付けした後、地肌部の発色濃度をマクベス濃度計で測定した。
評価結果を下表に示す。
Figure 2010023438
実施例1〜4の本顕色剤を特定の範囲に微粒化した本発明の感熱記録体は、発色感度、耐熱性に優れていることが明らかである。

Claims (2)

  1. 支持体上に無色ないし淡色の電子供与性ロイコ染料と電子受容性顕色剤とを含有する感熱記録層を設けた感熱記録体であって、該感熱記録層が、電子受容性顕色剤として、レーザー回折式粒度分布測定装置で測定したその微粒子の粒度分布(体積基準)が50%径で0.5μm以下、かつ90%径で1.2μm以下である2,4’−ジヒドロキシジフェニルスルホンを含有することを特徴とする感熱記録体。
  2. 前記電子受容性顕色剤が、粉砕メディアと共にビーズミルで湿式粉砕され、遠心力の作用
    によりメディアと分散液に分離してビーズミルから排出されたものであることを特徴とす
    る請求項1に記載の感熱記録体。
JP2008190585A 2008-07-24 2008-07-24 感熱記録体 Pending JP2010023438A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190585A JP2010023438A (ja) 2008-07-24 2008-07-24 感熱記録体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190585A JP2010023438A (ja) 2008-07-24 2008-07-24 感熱記録体

Publications (1)

Publication Number Publication Date
JP2010023438A true JP2010023438A (ja) 2010-02-04

Family

ID=41729713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190585A Pending JP2010023438A (ja) 2008-07-24 2008-07-24 感熱記録体

Country Status (1)

Country Link
JP (1) JP2010023438A (ja)

Similar Documents

Publication Publication Date Title
JP5479523B2 (ja) 感熱記録体
WO2016204215A1 (ja) 感熱記録体
JP2008018619A (ja) 感熱記録体
JP4674770B2 (ja) 感熱記録体
JP2007210328A (ja) 感熱記録体
JP2010240860A (ja) 感熱記録体
JP3635399B2 (ja) 感熱記録体
JP2011005794A (ja) 感熱記録体
JP2010023438A (ja) 感熱記録体
JP4999358B2 (ja) 感熱記録体
JP2011005795A (ja) 感熱記録体
JP3700117B2 (ja) 感熱記録体
JP2010064407A (ja) 感熱記録体
JP2009051049A (ja) 感熱記録体
JP2002178645A (ja) 感熱記録体
JP2009233991A (ja) 感熱記録体
JP3029014B2 (ja) 感熱記録シート
JP4021789B2 (ja) 感熱記録体
JP2011093204A (ja) 感熱記録体
JP2003266946A (ja) 感熱記録体
JP2008012878A (ja) 感熱記録体
JP3306492B2 (ja) 感熱記録体
JPH10272848A (ja) 感熱記録体
JP2967709B2 (ja) 感熱記録体
JP4508106B2 (ja) 感熱記録体