JP2010021911A - 演算増幅器 - Google Patents

演算増幅器 Download PDF

Info

Publication number
JP2010021911A
JP2010021911A JP2008182326A JP2008182326A JP2010021911A JP 2010021911 A JP2010021911 A JP 2010021911A JP 2008182326 A JP2008182326 A JP 2008182326A JP 2008182326 A JP2008182326 A JP 2008182326A JP 2010021911 A JP2010021911 A JP 2010021911A
Authority
JP
Japan
Prior art keywords
operational amplifier
output
switch
terminal
stage amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008182326A
Other languages
English (en)
Inventor
Koichi Nishimura
浩一 西村
Yoshihiko Hori
良彦 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2008182326A priority Critical patent/JP2010021911A/ja
Priority to US12/457,554 priority patent/US20100007420A1/en
Priority to CN200910152298A priority patent/CN101630943A/zh
Priority to US12/654,960 priority patent/US8159303B2/en
Publication of JP2010021911A publication Critical patent/JP2010021911A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/4521Complementary long tailed pairs having parallel inputs and being supplied in parallel
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45248Indexing scheme relating to differential amplifiers the dif amp being designed for improving the slew rate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45512Indexing scheme relating to differential amplifiers the FBC comprising one or more capacitors, not being switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45536Indexing scheme relating to differential amplifiers the FBC comprising a switch and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45648Indexing scheme relating to differential amplifiers the LC comprising two current sources, which are not cascode current sources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7227Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by a switch in the supply circuit of the amplifier

Abstract

【課題】従来の演算増幅器では、大きな位相余裕を高いスルーレートとをともに実現することが困難である問題があった。
【解決手段】本発明の一態様は、入力信号を受信する入力段増幅器10と、入力段増幅器10から出力される信号を増幅して出力する出力段増幅器11と、出力段増幅器11の入力ノードNi(Ni1及びNi2を含む)と出力ノードNoとの間に接続されるコンデンサC1(又はC2)と、コンデンサC1(又はC2)に対する充放電電流を制御する充放電制御回路12と、を有する演算増幅器である。
【選択図】図1

Description

本発明にかかる演算増幅器は、特に出力段増幅器の入力ノードと出力ノードとの間にコンデンサを有する演算増幅器に関する。
半導体装置では、扱う信号を増幅するために演算増幅器が多く用いられている。この演算増幅器の一例が特許文献1に開示されている。演算増幅器は、入力段増幅器と出力段増幅器とを有する。入力段増幅器は、出力段増幅器の入力形式に応じた入力信号の変換と、入力信号の増幅とを行なう。また、入力段増幅器は、出力段増幅器を構成するトランジスタに流れるアイドリング電流を設定する。出力段増幅器は、入力段増幅器において生成された信号を増幅して出力する。
演算増幅器は、演算増幅器が有する位相余裕が小さい場合、発振等の不具合が発生することがある。そこで、演算増幅器における位相余裕を大きくするために、出力段増幅器の入力ノードと出力ノードとの間に位相補償用コンデンサを設けることがある。ここで、位相補償用コンデンサを有する演算増幅器100のブロック図を図14に示す。
図14に示すように、演算増幅器100は、入力段増幅器110と出力段増幅器111とを有する。入力段増幅器110は、反転入力端子が出力端子Voutに接続され、非反転入力端子が入力端子Vin+に接続される。また、入力段増幅器110の出力はシングルエンド信号として出力される。また、入力段増幅器110は電流Iを出力する。出力段増幅器111は、入力段増幅器110が出力したシングルエンド信号を反転して出力する。そして、出力段増幅器111の入力ノードと出力ノードとの間には位相補償用コンデンサとしてコンデンサCが接続される。
つまり、演算増幅器100は、出力端子が入力段増幅器110の反転入力端子に接続されたバッファとして機能する。ここで、演算増幅器100のスルーレートSRは、(1)式によって表される。
Figure 2010021911
なお、(1)式においてVoは出力端子の電圧であり、tは時間であり、Iは入力段増幅器110の出力電流であり、Cはコンデンサの容量値である。(1)式より、コンデンサの容量値を大きくするとスルーレートが小さくなり、入力段増幅器110が出力する電流を大きくするとスルーレートは大きくなることが分かる。
特開平6−326529号公報
(1)式より、演算増幅器においてスルーレートを大きくするためには、コンデンサの容量を小さくするか、入力段増幅器110の出力電流を大きくすることが考えられる。しかしながら、コンデンサの容量値を小さくすると演算増幅器100の位相余裕が小さくなり発振の危険性が大きくなる。また、入力段増幅器110の出力電流を大きくした場合、演算増幅器100の消費電流が大きくなる問題がある。このようなことから、演算増幅器100は、位相余裕を確保し、かつ、増幅器の消費電力を抑制しながら、高速な信号を伝達することが困難である問題がある。
本発明の一態様は、入力信号を受信する入力段増幅器と、前記入力段増幅器から出力される信号を増幅して出力する出力段増幅器と、前記出力段増幅器の入力ノードと出力ノードとの間に接続されるコンデンサと、前記コンデンサに対する充放電電流を制御する充放電制御回路と、を有する演算増幅器である。
本発明にかかる演算増幅器によれば、出力段増幅器の入力ノードと出力ノードとの間に接続されるコンデンサに対する充放電電流の制御を充放電制御回路が行なう。つまり、演算増幅器の出力電圧が遷移する場合であっても、このときのコンデンサへの充放電電流は充放電制御回路によって制御される。つまり、本発明にかかる演算増幅器は、スルーレートに関してコンデンサの容量値を無視して考えることが可能である。このことから、本発明にかかる演算増幅器は、コンデンサの容量値を大きくして位相余裕を大きくしながら、スルーレートを大きくすることが可能である。また、スルーレートを向上させるために入力段増幅器の出力電流を大きくすることもない。
本発明にかかる演算増幅器によれば、十分な位相余裕を確保し、かつ、消費電流を抑制しながら、スルーレートを向上させることが可能である。
実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。図1に実施の形態1にかかる演算増幅器1のブロック図を示す。図1に示すように、演算増幅器1は、入力段増幅器10、出力段増幅器11、充放電制御回路12、第1のコンデンサ(例えば、コンデンサC1)、第2のコンデンサ(例えば、コンデンサC2)を有している。入力段増幅器10は、非反転入力端子と反転入力端子とを有する。そして、入力段増幅器10と出力段増幅器11とが直列に接続され、出力段増幅器11の出力ノードが入力段増幅器10の非反転入力端子に接続される。これによって、演算増幅器1はバッファとして動作する。
入力段増幅器10は、非反転入力端子に入力される信号に基づき互いに同相となる第1、第2の信号を出力する。出力段増幅器11は、第1の入力ノードNi1を介して第1の信号が入力され、第2の入力ノードNi2を介して第2の信号が入力される。そして、出力段増幅器11は、入力される信号を反転させた信号を出力ノードNoに出力する。なお、出力ノードNoには出力端子Voutが接続されており、出力端子Voutには演算増幅器1が駆動する負荷が接続される。この負荷は、例えば液晶表示装置であって、演算増幅器1は液晶表示装置のソースドライバとして動作する。
コンデンサC1、C2は、例えば位相補償用コンデンサである。コンデンサC1は、入力ノードNi1と出力ノードNoとの間に接続される。コンデンサC2は、入力ノードNi2と出力ノードNoとの間に接続される。なお、本実施の形態では、コンデンサC1、C2の出力ノードNo側の端子は、充放電制御回路12を介して出力ノードNoに接続される。
充放電制御回路12は、第1のスイッチ(例えば、スイッチSW1)、第2のスイッチ(例えば、スイッチSW2及びスイッチSW3)を有している。スイッチSW1、スッチSW2、スイッチSW3は、それぞれ制御信号によって導通状態が制御される。本実施の形態では、スイッチSW1として、トランスファ型スイッチを用いる。スイッチSW1は、共通端子cと、メーク側端子mと、ブレーク側端子bとを有し、制御信号がロウレベルである場合に共通端子cとブレーク側端子bとが導通し、制御信号がハイレベルである場合に共通端子cとメーク側端子mとが導通する。スイッチSW2は、メーク型スイッチが用いられる。メーク型スイッチは2つの端子を有し、制御信号がロウレベルのときに開状態となり、制御信号がハイレベルのときに閉状態となる。スイッチSW3は、メーク型スイッチが用いられる。スイッチSW3に用いられるメーク型スイッチの動作はスイッチSW2と同じ動作である。また、本実施の形態では、制御信号として、液晶表示装置において使用されるストローブ信号STBを用いる。
スイッチSW1は、共通端子cがコンデンサC1、C2の出力ノードNo側端子に接続され、ブレーク側端子bが出力ノードNoに接続され、メーク側端子mが第1の電源(例えば、入力端子Vin+に接続される前段回路の出力)に接続される。スイッチSW2は、一方の端子がコンデンサC1の入力ノードNi1側の端子に接続され、他方の端子が第2の電源(例えば、正電源VDD)に接続される。スイッチSW3は、一方の端子がコンデンサC2の入力ノードNi2側の端子に接続され、他方の端子が第2の電源(例えば、負電源VSS)に接続される。なお、第2の電源とは、コンデンサC1又はC2の入力ノード側の端子に接続される電源であって、コンデンサC1、C2の接続に応じた電源をコンデンサC1、C2に供給するものであれば良い。
ここで、入力段増幅器10及び出力段増幅器11の詳細な回路の一例を図2に示し、入力段増幅器10及び出力段増幅器11について説明する。
入力段増幅器10は、NMOSトランジスタMN11とNMOSトランジスタMN12とによって構成される第1の差動対と、PMOSトランジスタMP11とPMOSトランジスタMP12とによって構成される第2の差動対を有する。これら2つの差動対の入力は互いに共通に接続され、NMOSトランジスタMN11のゲート及びPMOSトランジスタMP11のゲートが入力段増幅器10の非反転入力端子となり、NMOSトランジスタMN12のゲート及びPMOSトランジスタMP12のゲートが入力段増幅器10の非反転入力端子となる。
第1の差動対を構成するNMOSトランジスタMN11、MN12はソースが共通接続され、この共通接続点と負電源VSSとの間に第1の電流源I11が接続される。また、第1の差動対の能動負荷としてカレントミラー接続されたPMOSトランジスタMP13、MP14を有する。そして、NMOSトランジスタMN11のドレインとPMOSトランジスタMP13のドレインの接続点に第1の入力ノードNi1が接続される。
第2の差動対を構成するPMOSトランジスタMP11、MP12はソースが共通接続され、この共通接続点と正電源VDDとの間に第2の電流源I12が接続される。そして第2の差動対の能動負荷としてカレントミラー接続されたNMOSトランジスタMN13、MN14を有する。そして、PMOSトランジスタMP11のドレインとNMOSトランジスタMN13のドレインの接続点に第2の入力ノードNi2が接続される。
第1の入力ノードNi1と第2の入力ノードNi2との間には、浮遊電流源として動作するPMOSトランジスタMN15及びNMOSトランジスタMN15が接続される。また、第1の入力ノードNi1と正電源VDDとの間には、第3の電流源I13が接続され、第2の入力ノードNi2と負電源VSSとの間には第4の電流源I14が接続される。
PMOSトランジスタMP15は、ソースが第1の入力ノードNi1に接続され、ドレインが第2の入力ノードNi2に接続される。また、PMOSトランジスタMP15は、ゲートにトランスファ型スイッチSWo11の共通端子cが接続される。トランスファ型スイッチSWo11のメーク側端子mは正電源VDDに接続され、ブレーク側端子bは第1のバイアス設定電圧源VBP11の負電極に接続される。バイアス設定電圧源VBP11の正電極は正電源VDDに接続される。NMOSトランジスタMN15は、ソースが第2の入力ノードNi2に接続され、ドレインが第1の入力ノードNi2に接続される。また、NMOSトランジスタMN15は、ゲートにトランスファ型スイッチSWo12の共通端子cが接続される。トランスファ型スイッチSWo12のメーク側端子mは負電源VSSに接続され、ブレーク側端子bは第2のバイアス設定電圧源VBN11の正電極に接続される。バイアス設定電圧源VBN11の負電極は負電源VSSに接続される。
通常動作時において、PMOSトランジスタMP15とNMOSトランジスタMN15は、第1のバイアス設定電圧源VBP11及び第2のバイアス設定電圧源VBN11によってゲートの電圧値が設定され、設定されたゲートの電圧値に基づいて浮遊電流源として動作する。演算増幅器1は、浮遊電流源に流れる電流値に基づいて、無負荷時に出力トランジスタ(本実施の形態では、動作するPMOSトランジスタMP16とNMOSトランジスタMN16)に流れる電流(いわゆるアイドリング電流)を決定するものである。この浮遊電流源は、電流源の両端がフローティング状態で、自由な箇所に接続することが可能である。PMOSトランジスタMP15とNMOSトランジスタMN15の接続は、電流帰還型の接続になっており、帰還量が全帰還となっている。これによって、PMOSトランジスタMP15のソースとNMOSトランジスタMN15のドレインとの共通接続点、及び、PMOSトランジスタMP15のドレインとNMOSトランジスタMN15のソースとの共通接続点は、高いインピーダンスを有する。
ここで、浮遊電流源と、PMOSトランジスタMP16及びNMOSトランジスタMN16のアイドリング電流について説明する。まず、第1のバイアス設定電圧源VBP11が発生する電圧は、PMOSトランジスタMP16のゲート・ソース間電圧及びPMOSトランジスタMP15のゲート・ソース間電圧の和に等しくなるように設定する。第1のバイアス設定電圧源VBP11の電圧値をVBP11、PMOSトランジスタMP15のゲート・ソース間電圧をVGS(MP15)、PMOSトランジスタMP16のゲート・ソース間電圧をVGS(MP16)とすると、VBP11は(2)式で表すことができる。
Figure 2010021911
また、PMOSトランジスタMP15又はPMOSトランジスタMP16のゲート・ソース間電圧VGSは(3)式で示される。なお、(3)式においてβ=(W/L)×μCoであって、Wはトランジスタのゲート幅、Lはゲート長、μはキャリアの移動度、Coは単位面積あたりのゲート酸化膜容量、VTはトランジスタの閾値電圧、Idはドレイン電流である。
Figure 2010021911
そして、浮遊電流源を構成する場合、PMOSトランジスタMP15とNMOSトランジスタMN15のドレイン電流が等しくなるようにする。即ち、第3の電流源I13から流出する電流をI13で表した場合、PMOSトランジスタMP15とNMOSトランジスタMN15とにはそれぞれI13/2が流れる。一方、アイドリング電流をIidle、PMOSトランジスタMP16のドレイン電流をIidle(MP6)で表すと、PMOSトランジスタMP16に流れる電流は、(4)式より表される。なお、(4)式において、β(MP15)はPMOSトランジスタMP15のβであって、β(MP16)はPMOSトランジスタMP16のβであって、βはβ=(W/L)×μCoで現わされる。
Figure 2010021911
(4)式をIidle(MP16)について解くこと、アイドリング電流Iidle(MP16)を算出することが可能である。
また、第4の電流源I14の流入電流を第3の電流源I13の流出電流と同じにする必要がある。第4の電流源I14の流入電流と第3の電流源I13の電流値が異なる場合、2つの電流源で生成される電流の差分が能動負荷に流れ、結果として演算増幅器1のオフセット電圧の増加に繋がる。なお、第2のバイアス設定電圧源VBN11の電圧値の設定に関しても第1のバイアス設定電圧源VBP1と同様に行なうこととが可能である。
さらに、第1のバイアス設定電圧源VBP11と第2のバイアス設定電圧源VBN11は、2個のMOSトランジスタと定電流源を使って構成することが好ましい。このような構成とすることで、上述した(4)式のVBP11が右辺と同じ2VTという項を有することになるため、この項に関する変動が相対的に打ち消される。これによって、第1のバイアス設定電圧源VBP11と第2のバイアス設定電圧源VBN11で生成する電圧値の素子バラツキによる変動を抑制することが可能である。
出力段増幅器11は、PMOSトランジスタMP16とNMOSトランジスタMN16とが正電源VDDと負電源VSSとの間に直列に接続される。PMOSトランジスタMP16のゲートには第1の入力ノードNi1が接続され、NMOSトランジスタMN16のゲートには第2の入力ノードNi2が接続される。また、PMOSトランジスタMP16のドレインとNMOSトランジスタMN16のドレインとの接続点が出力ノードNoとなる。
なお、図2に示す回路図において、コンデンサC1、C2は、演算増幅器の位相補償に加え、演算増幅器が有する位相遅れのゼロ点をキャンセルするゼロ点補償を行なうために、容量と抵抗を直列に接続した構成となっている。コンデンサC1、C2、スイッチSW1〜スイッチSW3の接続については、図1に示した接続と同じため説明を省略する。
ここで、本実施の形態において用いられるスイッチを実現するための回路の一例を図3、図4に示す。図3には、メーク型スイッチ(図3(a)、(c))及びブレーク型スイッチ(図3(b)、(d))の一例を示す。図4(a)〜(c)には、トランスファ型スイッチの一例を示す。図3(a)に示されるメーク型スイッチは、NMOSトランジスタMN21で構成される。NMOSトランジスタMN21は、ゲートが制御端子として機能し、ソースが第1の端子、ドレインが第2の端子として機能する。そして、ゲートに入力される制御信号(本実施の形態ではストローブ信号STB)がハイレベルである場合にソースとゲートとが導通した状態となり、ストローブ信号STBがロウレベルである場合にソースとドレインとが遮断された状態となる。
図3(b)に示されるブレーク型スイッチは、PMOSトランジスタMP21で構成される。PMOSトランジスタMP21は、ゲートが制御端子として機能し、ソースが第1の端子、ドレインが第2の端子として機能する。そして、ゲートに入力されるストローブ信号STBがハイレベルである場合にソースとゲートとが遮断された状態となり、ストローブ信号STBがロウレベルである場合にソースとドレインとが導通した状態となる。
図3(c)に示されるメーク型スイッチは、NMOSトランジスタMN22とPMOSトランジスタMP22で構成される。このメーク型スイッチは、NMOSトランジスタMN22のソースとPMOSトランジスタMP22のソースとが接続され、NMOSトランジスタMN22のドレインとPMOSトランジスタMP22のドレインとが接続される。共通接続されたソースは第1の端子として機能し、共通接続されたドレインは第2の端子として機能する。また、PMOSトランジスタMP22のゲートにはストローブ信号STBが入力され、NMOSトランジスタMN22のゲートにはインバータ20を介してストローブ信号STBが入力される。そして、ゲートに入力されるストローブ信号STBがハイレベルである場合にソースとゲートとが導通した状態となり、ストローブ信号STBがロウレベルである場合にソースとドレインとが遮断された状態となる。
図3(d)に示されるブレーク型スイッチは、NMOSトランジスタMN23とPMOSトランジスタMP23で構成される。このブレーク型スイッチは、NMOSトランジスタMN23のソースとPMOSトランジスタMP23のソースとが接続され、NMOSトランジスタMN23のドレインとPMOSトランジスタMP23のドレインとが接続される。共通接続されたソースは第1の端子として機能し、共通接続されたドレインは第2の端子として機能する。また、NMOSトランジスタMN23のゲートにはストローブ信号STBが入力され、PMOSトランジスタMP23のゲートにはインバータ20を介してストローブ信号STBが入力される。そして、ゲートに入力されるストローブ信号STBがハイレベルである場合にソースとゲートとが遮断された状態となり、ストローブ信号STBがロウレベルである場合にソースとドレインとが導通した状態となる。
図4(a)に示されるトランスファ型スイッチは、NMOSトランジスタMN24、MN25で構成される。このトランスファ型スイッチは、NMOSトランジスタMN24のソースとNMOSトランジスタMN25のソースとが接続され、この共通接続点が共通端子cとして機能する。NMOSトランジスタMN24のドレインはメーク側端子mとして機能し、NMOSトランジスタMN25のドレインはブレーク側端子bとして機能する。また、NMOSトランジスタMN25のゲートにはストローブ信号STBが入力され、NMOSトランジスタMN24のゲートにはインバータ20を介してストローブ信号STBが入力される。つまり、NMOSトランジスタMN24、MN25のゲートには互いに逆相になる制御信号が入力される。これによって、入力されるストローブ信号STBがハイレベルである場合にメーク側端子mが共通端子cと導通した状態となり、ストローブ信号STBがロウレベルである場合にブレーク側端子bと共通端子cとが導通した状態となる。
図4(b)に示されるトランスファ型スイッチは、PMOSトランジスタMP24、MP25で構成される。このトランスファ型スイッチは、PMOSトランジスタMP24のソースとPMOSトランジスタMP25のソースとが接続され、この共通接続点が共通端子cとして機能する。PMOSトランジスタMP24のドレインはメーク側端子mとして機能し、PMOSトランジスタMP25のドレインはブレーク側端子bとして機能する。また、PMOSトランジスタMP24のゲートにはストローブ信号STBが入力され、PMOSトランジスタMP25のゲートにはインバータ20を介してストローブ信号STBが入力される。つまり、PMOSトランジスタMP24、MP25のゲートには互いに逆相になる制御信号が入力される。これによって、入力されるストローブ信号STBがハイレベルである場合にメーク側端子mが共通端子cと導通した状態となり、ストローブ信号STBがロウレベルである場合にブレーク側端子bと共通端子cとが導通した状態となる。
図4(c)に示されるトランスファ型スイッチは、NMOSトランジスタMN26、MN27、PMOSトランジスタMP26、MP27で構成される。このトランスファ型スイッチは、PMOSトランジスタMP26のソースとNMOSトランジスタMN26のソースとが接続され、この共通接続点が共通端子cに接続される。また、PMOSトランジスタMP27のソースとNMOSトランジスタMN27のソースとが接続され、この共通接続点が共通端子cに接続される。NMOSトランジスタMN27のドレインとPMOSトランジスタMP27のドレインは互いに接続されており、メーク側端子mとして機能する。NMOSトランジスタMN27のドレインとPMOSトランジスタMP27のドレインは互いに接続されており、ブレーク側端子bとして機能する。また、NMOSトランジスタMN26のゲートとPMOSトランジスタMP27のゲートにはストローブ信号STBが入力され、NMOSトランジスタMN27とPMOSトランジスタMP26のゲートにはインバータ20を介してストローブ信号STBが入力される。これによって、入力されるストローブ信号STBがハイレベルである場合にメーク側端子mが共通端子cと導通した状態となり、ストローブ信号STBがロウレベルである場合にブレーク側端子bと共通端子cとが導通した状態となる。
図3、図4に構成の異なるスイッチを示したが、これらスイッチは、スイッチで発生する抵抗値を低減するためにスイッチが接続されるノードの電圧変動範囲に応じて使い分けることが好ましい。例えば、ノードの電圧が負電源VSSから正電源VDDに至る広範囲に変動する場合は、図3(c)、(d)、図4(d)で示されるスイッチを使用することが好ましい。また、ノードの電圧が正電源VDDに近い電圧(例えば、負電源VSSと正電源VDDの電圧差の半分の電圧よりも正電源VDDに近い電圧範囲)で変動する場合は図3(b)、図4(b)で示されるスイッチを使用することが好ましい。さらに、ノードの電圧が負電源VSSに近い電圧(例えば、負電源VSSと正電源VDDの電圧差の半分の電圧よりも負電源VSSに近い電圧範囲)で変動する場合は図3(a)、図4(a)で示されるスイッチを使用することが好ましい。このようなことから、本実施の形態では、スイッチSW1として図4(c)で示されるスイッチを使用し、スイッチSW2として図3(b)で示されるスイッチを使用し。スイッチSW3として図3(a)で示されるスイッチを使用する。
次に、本実施の形態にかかる演算増幅器1の動作について説明する。以下の説明では、動作の一例として、演算増幅器1の出力端子Voutに接続される負荷として液晶表示パネルのソース配線が接続される場合について説明する。この場合、ストローブ信号STBがハイレベルになっている期間を電荷回収期間と称す。電荷回収期間の間は、出力段増幅器11の出力ノードNoのインピーダンスを高くする。これによって、電荷回収期間の間は、演算増幅器1の出力と液晶表示パネルとが実質的に切り離される状態と考えることができる。また、電荷回収期間において、液晶表示パネルは、ソース配線に接続される容量成分に蓄積された電荷を中和する。これによって、電荷回収期間が終了するとソース配線の電位は正電源VDDと負電源VSSの中間電位となる。
図5に演算増幅器1の動作を示すタイミングチャートを示す。液晶表示装置では、ソース配線を駆動する電圧を所定の期間ごとに反転させるドット反転という動作を行なう。図5に示すタイミングチャートは、演算増幅器1が1回のドット反転動作を行なう場合のものである。まず、タイミングT1より前の期間ではストローブ信号STBがロウレベルであり、出力電圧Voがロウレベル(例えば、負電源VSSの電圧)である。このとき、スイッチSW1は、ブレーク側端子bに接続され、スイッチSW2及びスイッチSW3は開状態である。これによって、コンデンサC1、C2は、出力段増幅器11の入力ノードと出力ノードとの間に接続される状態となる。また、入力段増幅器10のトランスファ型スイッチSWo11、SWo12もブレーク側端子bに接続される。これによって、演算増幅器1は通常動作を行なう。
そして、タイミングT1でストローブ信号STBが立ち上がり、タイミングT1からタイミングT2の期間(上述の電荷回収期間)の間ストローブ信号STBはハイレベルとなる。また、タイミングT1で入力端子Vin+に入力される信号がロウレベルからハイレベル(例えば、正電源VDDの電圧)になる。この電荷回収期間では、スイッチSW1は、メーク側端子mに接続され、スイッチSW2及びスイッチSW3は閉状態である。これによって、コンデンサC1の両端の電圧はともに正電源VDDの電圧となり、コンデンサC1に蓄積されていた電荷は放電される。一方、コンデンサC2の両端には、正電源VDDと負電源VSSが印加されることになる。そのため、コンデンサC2には、両端の電圧差に応じた電荷が充電される。コンデンサC1、C2への電荷の充放電は、第1の電源(本実施の形態では、入力端子Vin+に接続される前段の回路)及び第2の電源(本実施の形態では、正電源VDD及び負電源VSS)によって行なわれる。また、入力段増幅器10のトランスファ型スイッチSWo11、SWo12はメーク側端子mに接続される。これによって、浮遊電流源として動作するPMOSトランジスタMP15及びNMOSトランジスタMN15に流れる異常電流を防止する。また、スイッチSW2及びスイッチSW3が閉状態であることから、出力トランジスタとなるPMOSトランジスタMP16及びNMOSトランジスタMN16はともにオフ状態となる。これによって、出力段増幅器11の出力ノードNoはハイインピーダンス状態となり、演算増幅器1は液晶表示パネルと実質的に切り離される状態となる。この電荷回収期間における出力端子の電圧Voは、コンデンサC1、C2への電荷の充放電が第1の電源及び第2の電源によって急速に行なわれるため、急峻に立ち上がる。
次に、タイミングT2でストローブ信号STBが立ち下がると、スイッチSW1は、ブレーク側端子bに接続され、スイッチSW2及びスイッチSW3は開状態となる。これによって、コンデンサC1、C2は、出力段増幅器11の入力ノードと出力ノードとの間に接続される状態となる。また、入力段増幅器10のトランスファ型スイッチSWo11、SWo12もブレーク側端子bに接続される。これによって、演算増幅器1は通常動作を行なう。
続いて、タイミングT3でストローブ信号STBが立ち上がり、タイミングT3からタイミングT4の期間(上述の電荷回収期間)の間ストローブ信号STBはハイレベルとなる。また、タイミングT3で入力端子Vin+に入力される信号がハイレベルからロウレベル(例えば、負電源VSSの電圧)になる。この電荷回収期間では、スイッチSW1は、メーク側端子mに接続され、スイッチSW2及びスイッチSW3は閉状態である。これによって、コンデンサC1の両端には、正電源VDDと負電源VSSが印加されることになる。そのため、コンデンサC1には、両端の電圧差に応じた電荷が充電される。一方、コンデンサC2の両端の電圧はともに負電源VSSの電圧となり、コンデンサC2に蓄積されていた電荷は放電される。コンデンサC1、C2への電荷の充放電は、第1の電源及び第2の電源によって行なわれる。また、入力段増幅器10のトランスファ型スイッチSWo11、SWo12はメーク側端子mに接続される。これによって、浮遊電流源として動作するPMOSトランジスタMP15及びNMOSトランジスタMN15に流れる異常電流を防止する。また、スイッチSW2及びスイッチSW3が閉状態であることから、出力トランジスタとなるPMOSトランジスタMP16及びNMOSトランジスタMN16はともにオフ状態となる。これによって、出力段増幅器11の出力ノードNoはハイインピーダンス状態となり、演算増幅器1は液晶表示パネルと実質的に切り離される状態となる。この電荷回収期間における出力端子の電圧Voは、コンデンサC1、C2への電荷の充放電が第1の電源及び第2の電源によって急速に行なわれるため、急峻に立ち下がる。
次に、タイミングT4でストローブ信号STBが立ち下がると、スイッチSW1は、ブレーク側端子bに接続され、スイッチSW2及びスイッチSW3は開状態となる。これによって、コンデンサC1、C2は、出力段増幅器11の入力ノードと出力ノードとの間に接続される状態となる。また、入力段増幅器10のトランスファ型スイッチSWo11、SWo12もブレーク側端子bに接続される。これによって、演算増幅器1は通常動作を行なう。
上記説明より、本実施の形態にかかる演算増幅器1は、出力電圧が遷移する期間に、コンデンサC1、C2を出力ノードから切り離して第1の電源に接続する。そして、第1の電源及び第2の電源が出力する電流に基づきコンデンサC1、C2の充放電を行なうことで、コンデンサC1、C2の充放電を充放電制御回路12がない場合に比べて高速に行なうことが可能になる。これに対して、充放電制御回路12がない場合、出力電圧が遷移する期間におけるコンデンサC1、C2への充放電は、入力段増幅器10の出力電流によって行なわれる。そのため、充放電制御回路がある場合に比べてコンデンサC1、C2への充電時間が長くなる。つまり、本実施の形態にかかる演算増幅器1は、コンデンサC1、C2の両端にかかる電圧値が変化するタイミングで、充放電制御回路12がコンデンサC1、C2に対する充放電電流の充電電流供給先を入力段増幅器10の電流出力能力よりも高い電流出力能力を有する第1の電源に切り替えることで、コンデンサC1、C2の容量値及び入力段増幅器10の電流出力能力によらずコンデンサC1、C2への充放電時間を短縮することができる。即ち、本実施の形態にかかる演算増幅器1は、コンデンサC1、C2の容量値及び入力段増幅器10の電流出力能力によるスルーレートの低下を防止することが可能である。また、本実施の形態にかかる演算増幅器1は、スルーレートに対する容量値の影響を考慮することなく、演算増幅器1の位相余裕に応じたコンデンサC1、C2の容量を任意に選択することが可能である。
さらに、演算増幅器1は、スルーレートを向上させるためにコンデンサC1、C2の充放電電流を増やす必要がない。このことより、演算増幅器1は、入力段増幅器10の消費電流を低減しても、スルーレートを向上させることが可能である。
また、演算増幅器1は、電荷回収期間中に充放電制御回路12の第2スイッチSW2及びスイッチSW3がコンデンサC1、C2の入力ノード側端子に供給する電圧を切り替えるとともに、出力段増幅器11の出力トランジスタ(PMOSトランジスタMP16及びNMOSトランジスタMN16)をオフ状態とする。これによって、出力段増幅器11の出力ノードNoはハイインピーダンス状態となり、演算増幅器1と演算増幅器が駆動する負荷(例えば、液晶表示パネル)とが実質的に切り離された状態となる。これによって、液晶表示装置のように電荷回収期間中に演算増幅器1と液晶表示パネルを切り離さなければならないような場合であっても、出力段増幅器11の出力ノードNoと出力端子Voutとの間に負荷切り離し用スイッチを設ける必要がない。負荷切り離し用スイッチは、導通した状態で小さいながらも抵抗値を有しており、この抵抗値によって演算増幅器1の出力インピーダンスが増加し、演算増幅器1の電流出力能力が低下する問題がある。しかし、本実施の形態にかかる演算増幅器1は、負荷切り離し用スイッチが必要ないため、演算増幅器1の電流出力能力を向上させることが可能である。
なお、図2に本実施の形態にかかる演算増幅器1の回路図を示したが、演算増幅器1の回路は、上記実施の形態に限られるものではなく適宜変更することが可能である。演算増幅器の他の一例(以下、演算増幅器1aと称す)を示す回路図を図6に示す。図6に示すように、演算増幅器1aは、入力段増幅器10とは回路構成が異なる入力段増幅器10aを有する。ここで、演算増幅器1aは、演算増幅器1と同じ出力段増幅器11及び充放電制御回路12を有する。入力段増幅器10aは、PMOSトランジスタMP47、NMOSトランジスタMN47、電流源I43によって浮遊電流源を構成する。
電流源I43の回路の一例を図7に示す。図7に示すように電流源I43は、正電源VDDと負電源VSSとの間に、電流源I430、NMOSトランジスタMN31、PMOSトランジスタMP31、電圧源VIが直列に接続されている。電流源I430は、電流源I43に流れる電流量を設定する電流源である。さらに、電流源I43は、NMOSトランジスタMN31とカレントミラーを構成するNMOSトランジスタMN32と、PMOトランジスタMP31とカレントミラーを構成するPMOSトランジスタMP32を有している。そして、NMOSトランジスタMN32のドレインが電流源I43の電流流入端子として機能し、PMOSトランジスタMP32のドレインが電流源I43の電流流出端子として機能する。なお、NMOSトランジスタMN32のソースは、PMOSトランジスタMP32のソースと接続される。このような回路構成にすることで、電流源I43は正電源VDD及び負電源VSS以外のノード間に接続することが可能になる
演算増幅器1aでは、スイッチSW2及びスイッチSW3が出力トランジスタのゲートに直接接続されないため、電荷回収期間において出力トランジスタをオフ状態とするスイッチSWo43、SWo46を有する。つまり、演算増幅器1aは、入力段増幅器10を入力段増幅器10aに置き換え、動作の不具合を避けられるように適宜回路を変更したのみである。従って、演算増幅器1aにおいても、充放電制御回路12によるスルーレートの向上及び位相余裕に応じたコンデンサの容量値の設定をすることが可能である。
実施の形態2
実施の形態2にかかる演算増幅器2のブロック図を図8に示す。図8に示すように、演算増幅器2は、演算増幅器1におけるスイッチSW1の接続を変更し、第1の電源として電圧源VG1を追加したものである。演算増幅器2におけるスイッチSW1は、共通端子cにコンデンサC1、C2の出力ノード側端子が接続され、ブレーク側端子bに出力ノードNoが接続され、メーク側端子mに電圧源VG1の正電極が接続される。電圧源VG1の負電極は負電源VSSに接続される。
つまり、演算増幅器2は、電荷回収期間にコンデンサC1、C2の出力ノード側端子に印加する電圧を電圧源VG1が生成する電圧値の設定に応じて任意に設定することが可能である。即ち、演算増幅器2は、電圧源VG1が生成する電圧値を変更することで、電荷回収期間の終了時にコンデンサC1、C2に蓄積される電荷量を変更することが可能できる。また、入力端子Vin+に接続される前段回路の電流出力能力が低い場合であっても、電圧源VG1の電流出力能力が高ければ、コンデンサC1、C2の急速充電が可能である。なお、実施の形態4における充放電制御回路22は、スイッチSW1、スイッチSW2、スイッチSW3、第1の電源(電圧源VG1)で構成される。
実施の形態3
実施の形態3にかかる演算増幅器3のブロック図を図9に示す。図9に示すように、演算増幅器3は、演算増幅器1における第2のスイッチ(スイッチSW2及びスイッチSW3)をトランスファ型スイッチに置き換え、第2の電源として電圧源VG2、VG3を追加したものである。演算増幅器3におけるスイッチSW2は、共通端子cにコンデンサC1の入力ノード側端子が接続され、ブレーク側端子bに入力ノードNi1が接続され、メーク側端子mに電圧源VG2の負電極が接続される。電圧源VG2の正電極は正電源VDDに接続される。演算増幅器3におけるスイッチSW3は、共通端子cにコンデンサC2の入力ノード側端子が接続され、ブレーク側端子bに入力ノードNi2が接続され、メーク側端子mに電圧源VG3の正電極が接続される。電圧源VG3の負電極は負電源VSSに接続される。
つまり、演算増幅器3は、電荷回収期間にコンデンサC1、C2の入力ノード側端子に印加する電圧を電圧源VG2、VG3が生成する電圧値の設定に応じて任意に設定することが可能である。即ち、演算増幅器3は、電圧源VG2、VG3が生成する電圧値を変更することで、電荷回収期間の終了時にコンデンサC1、C2に蓄積される電荷量を変更することが可能できる。また、演算増幅器3は、電荷回収期間に、出力段増幅器11の入力ノードに正電源VDDあるいは負電源VSSが印加されると不具合が発生する場合に有効である。例えば、電圧源VG1の電圧値と電圧源VG2の電圧値とを出力トランジスタの閾値電圧に設定することで、電荷回収期間の前後で出力トランジスタのゲートに印加される電圧値の変動を抑制して、演算増幅器で発生する不具合(例えば、異常電流の発生)を回避することが可能である。なお、実施の形態4における充放電制御回路32は、スイッチSW1、スイッチSW2、スイッチSW3、第2の電源(電圧源VG2及び電圧源VG2)で構成される。
実施の形態4
実施の形態4にかかる演算増幅器4のブロック図を図10に示す。図4に示すように、演算増幅器4は、演算増幅器1に対して負帰還接続の接続方法を変更したものである。演算増幅器は、スイッチSW1の共通端子cと入力段増幅器10の反転入力端子とが接続される。このような形式で負帰還接続を行なった場合、ストローブ信号STBがロウレベルである期間(通常動作期間)は、演算増幅器1と同じ接続形式となり、ストローブ信号STBがハイレベルの期間(電荷回収期間)は、入力段増幅器10の非反転入力端子と反転入力端子とが短絡した状態になる。ここで、入力段増幅器10は入力形式として差動対を使用しているため、反転入力端子と非反転入力端子との間は、もともと仮想短絡された状態である。また、電荷回収期間の間、入力段増幅器10及び出力段増幅器11は動作していない。従って、電荷回収期間の間は、入力段増幅器10の非反転入力端子と反転入力端子とが短絡していても何ら問題はない。また、通常動作期間の間は演算増幅器1と同じ接続形式となる。つまり、演算増幅器4は、演算増幅器1の他の接続形態を示す例であって、演算増幅器1と同様にスルーレートの向上の効果を得ることが可能である。
実施の形態5
実施の形態5にかかる演算増幅器5のブロック図を図11に示す。図11に示すように、演算増幅器5は、入力ノードが一つである形式の出力段増幅器21を有する。また、演算増幅器5の充放電制御回路52は、出力段増幅器21の入出力の形式に応じてコンデンサC1及び第1のスイッチ(例えば、スイッチSW1)、第2のスイッチ(例えば、スイッチSW2)を有する。コンデンサC1は、出力段増幅器21の入力ノードNiと出力ノードNoとの間に接続される。スイッチSW1はトランスファ型スイッチであって、共通端子cがコンデンサC1の出力ノード側端子に接続され、ブレーク側端子bが出力ノードNoに接続され、メーク側端子mが入力端子Vin+に接続される。スイッチSW2はメーク型スイッチであって、入力ノードNiと負電源VSSとの間に接続される。
演算増幅器5は、ストローブ信号STBがロウレベルである期間(通常動作期間)の間、スイッチSW1の共通端子cとブレーク側端子bとが導通しており、スイッチSW2が開状態となる。これによって、演算増幅器5は、通常動作期間に増幅器としての通常の動作を行なう。一方、ストローブ信号STBがハイレベルである期間(電荷回収期間)の間、スイッチSW1の共通端子cとメーク側端子mとが導通しており、スイッチSW2が閉状態となる。これによって、演算増幅器5は、コンデンサC1への充放電を入力端子Vin+に接続される前段回路から出力される電流によって行なう。
なお、出力段増幅器21は、1入力1出力の形式を有するため、電荷回収期間に出力段増幅器21の出力ノードNoをハイインピーダンス状態にすることができない。このような場合、出力ノードNoと出力端子Voutとの間に第3のスイッチ(例えば、出力切断スイッチSW_out)を接続することが好ましい。出力切断スイッチSW_outを電荷回収期間に開状態とすることで、出力ノードNoは出力端子Voutは切り離され、出力端子Voutはハイインピーダンス状態となる。
演算増幅器5で示した例は、出力段増幅器の入出力形式がどのようなものであっても、充電制御回路を構成するスイッチ及びコンデンサを出力段増幅器の構成に応じて適宜変形することが可能であることを示すものである。つまり、演算増幅器5においても、実施の形態1にかかる演算増幅器1と同様にスルーレート向上の効果を得ることができる。
なお、演算増幅器5においても、演算増幅器1から演算増幅器4への変形例を適用できる。この場合の演算増幅器を演算増幅器5aとして、演算増幅器5aのブロック図を図12に示す。
実施の形態6
実施の形態6にかかる演算増幅器6のブロック図を図13に示す。図13に示すように、演算増幅器6は、演算増幅器1の出力ノードNoと出力端子Voutとの間に第3のスイッチ(例えば、出力切断スイッチSW_out)を接続したものである。入力段増幅器10及び出力段増幅器11の回路形式によって、電荷回収期間に出力をハイインピーダンス状態にできない場合、演算増幅器1の出力ノードNoと出力端子Voutとの間に出力切断スイッチSW_outを接続することで、電荷回収期間に出力をハイインピーダンス状態にすることが可能である。
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。制御信号としては、ストローブ信号のみならず、演算増幅器の用途に応じて、適切な制御信号を用いれば良い。
実施の形態1にかかる演算増幅器のブロック図である。 実施の形態1にかかる演算増幅器の詳細な回路を示す回路図である。 実施の形態1にかかる演算増幅器に用いられるメーク型スイッチ及びブレーク型スイッチの一例を示す回路図である。 実施の形態1にかかる演算増幅器に用いられるトランスファ型スイッチの一例を示す回路図である。 実施の形態1にかかる演算増幅器の動作を示すタイミングチャートである。 実施の形態1にかかる演算増幅器の詳細な回路の別の例を示す回路図である。 図6に示す演算増幅器において用いられる浮遊電流源の回路図である。 実施の形態2にかかる演算増幅器のブロック図である。 実施の形態3にかかる演算増幅器のブロック図である。 実施の形態4にかかる演算増幅器のブロック図である。 実施の形態5にかかる演算増幅器のブロック図である。 実施の形態5にかかる演算増幅器の他の例を示すブロック図である。 実施の形態6にかかる演算増幅器のブロック図である。 従来の演算増幅器のブロック図である。
符号の説明
1、1a、2、3、4、5、5a、6 演算増幅器
10、10a 入力段増幅器
11、21 出力段増幅器
12、22、32、52 充放電制御回路
20 インバータ
C1、C2 コンデンサ
R1、R2 抵抗
I11〜I14、I41〜I43、I430 電流源
MN11〜MN16 NMOSトランジスタ
MN21〜MN27 NMOSトランジスタ
MN31〜MN32 NMOSトランジスタ
MN41〜MN48 NMOSトランジスタ
MP11〜MP16 NMOSトランジスタ
MP21〜MP27 NMOSトランジスタ
MP31〜MP32 NMOSトランジスタ
MP41〜MP48 NMOSトランジスタ
Ni1、Ni2、Ni 入力ノード
No 出力ノード
SR スルーレート
STB ストローブ信号
SW_out 出力切断スイッチ
SW1〜SW3 スイッチ
SWo11、SWo12、SWo41〜SWo46 スイッチ
b ブレーク側端子
m メーク側端子
c 共通端子
VBN11、VBN41、VBN42 バイアス設定電圧源
VBP11、VBP41、VBP42 バイアス設定電圧源
VDD 正電源
VSS 負電源
VG1〜VG3、VI 電圧源
Vin+ 入力端子
Vout 出力端子
VSS 正電源
VSS 負電源

Claims (17)

  1. 入力信号を受信する入力段増幅器と、
    前記入力段増幅器から出力される信号を増幅して出力する出力段増幅器と、
    前記出力段増幅器の入力ノードと出力ノードとの間に接続されるコンデンサと、
    前記コンデンサに対する充放電電流を制御する充放電制御回路と、
    を有する演算増幅器。
  2. 前記充放電制御回路は、前記コンデンサの一端に接続される共通端子と、前記出力段増幅器の出力ノードに接続されるブレーク側端子と、第1の電源に接続されるメーク側端子とを備える第1のスイッチと、前記コンデンサの他端に接続される一方の端子と、第2の電源に接続される他方の端子とを備える第2のスイッチとを有し、
    前記出力段増幅器の出力電圧が遷移する状態遷移モードにおいて、前記第1のスイッチは前記共通端子が前記メーク側端子とが導通した状態となり、前記第2のスイッチは前記一方の端子が前記他方の端子と導通した状態となる請求項1に記載の演算増幅器。
  3. 前記第1の電源は、前記入力段増幅器の前段に接続され前記入力信号を出力する回路である請求項2に記載の演算増幅器。
  4. 前記第1の電源は、所定の電圧値を出力する第1の電圧源である請求項2に記載の演算増幅器。
  5. 前記第2の電源は、前記入力段増幅器と前記出力段増幅器とのうち少なくとも一方に動作電源を供給する電源である請求項2乃至4のいずれか1項に記載の演算増幅器。
  6. 前記第2の電源は、前記入力段増幅器と前記出力段増幅器とのうち少なくとも一方に動作電源を供給する電源の電圧から所定の電圧差を有する電圧値を生成する第2の電圧源である請求項2乃至4のいずれか1項に記載の演算増幅器。
  7. 前記入力段増幅器は、差動増幅器であって、当該入力段増幅器の反転入力端子は前記出力段増幅器の出力ノードに接続される請求項1乃至7のいずれか1項に記載の演算増幅器。
  8. 前記入力段増幅器は、差動増幅器であって、当該入力段増幅器の反転入力端子は、前記コンデンサの前記出力段増幅器の出力ノード側の端子に接続される請求項1乃至7のいずれか1項に記載の演算増幅器。
  9. 前記第1、第2のスイッチは、制御信号に基づき導通状態を切り替える請求項1乃至8のいずれか1項に記載の演算増幅器。
  10. 前記制御信号は、液晶表示装置において使用されるストローブ信号である請求項9に記載の演算増幅器。
  11. 前記演算増幅器は、前記出力段増幅器の出力ノードと出力端子との間に第3のスイッチを有し、前記出力ノードと前記出力端子との導通状態を切り替える請求項1乃至10のいずれか1項に記載の演算増幅器。
  12. 前記演算増幅器は、前記入力段増幅器が同相となる第1、第2の信号を出力し、前記出力段増幅器が前記第1の信号が入力される第1の入力ノードと前記第2の信号が入力される第2の入力ノードとを有し、前記第1の入力ノードと前記出力ノードとの間に第1のコンデンサが接続され、前記第2の入力ノードと前記出力ノードとの間に第2のコンデンサが接続され、
    前記充放電制御回路は、前記第1、第2のコンデンサの一端に接続される共通端子と、前記出力段増幅器の出力ノードに接続されるブレーク側端子と、第1の電源に接続されるメークの端子とを備える第1のスイッチと、前記第1のコンデンサの他端に接続される一方の端子と、正電源に接続される他方の端子とを備える第2のスイッチと、前記第2のコンデンサの他端に接続される一方の端子と、負電源に接続される他方の端子とを備える第3のスイッチとを有し、
    前記出力段増幅器の出力電圧が遷移する状態遷移モードにおいて、前記第1のスイッチは前記共通端子が前記メーク側端子とが導通した状態となり、前記第2のスイッチの一方の端子と前記第2のスイッチの他方の端子とが導通した状態となり、前記第3のスイッチの一方の端子と前記第3のスイッチの他方の端子と導通した状態となり、前記出力段増幅器の出力ノードはハイインピーダンス状態となる請求項1に記載の演算増幅器。
  13. 前記正電源及び負電源は、前記入力段増幅器と前記出力段増幅器とのうち少なくとも一方に動作電源を供給する電源である請求項12に記載の演算増幅器。
  14. 前記正電源及び負電源は、前記入力段増幅器と前記出力段増幅器とのうち少なくとも一方に動作電源を供給する電源の電圧から所定の電圧差を有する電圧値を生成する第2の電圧源及び第3の電圧源である請求項12に記載の演算増幅器。
  15. 前記第1乃至第3のスイッチは、制御信号に基づき導通状態を切り替える請求項12乃至14のいずれか1項に記載の演算増幅器。
  16. 前記制御信号は、液晶表示装置において使用されるストローブ信号である請求項15に記載の演算増幅器。
  17. 前記演算増幅器は、液晶表示装置におけるソースドライバである請求項1乃至16のいずれか1項に記載の演算増幅器。
JP2008182326A 2008-07-14 2008-07-14 演算増幅器 Pending JP2010021911A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008182326A JP2010021911A (ja) 2008-07-14 2008-07-14 演算増幅器
US12/457,554 US20100007420A1 (en) 2008-07-14 2009-06-15 Operational amplifier
CN200910152298A CN101630943A (zh) 2008-07-14 2009-07-14 运算放大器
US12/654,960 US8159303B2 (en) 2008-07-14 2010-01-11 Operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008182326A JP2010021911A (ja) 2008-07-14 2008-07-14 演算増幅器

Publications (1)

Publication Number Publication Date
JP2010021911A true JP2010021911A (ja) 2010-01-28

Family

ID=41504627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008182326A Pending JP2010021911A (ja) 2008-07-14 2008-07-14 演算増幅器

Country Status (3)

Country Link
US (1) US20100007420A1 (ja)
JP (1) JP2010021911A (ja)
CN (1) CN101630943A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411225B (zh) * 2010-05-28 2013-10-01 Himax Analogic Inc 發光二極體電路及其誤差放大器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611399B (zh) * 2011-01-25 2014-12-31 联咏科技股份有限公司 运算放大器装置
JP5942552B2 (ja) * 2011-06-17 2016-06-29 三菱電機株式会社 信号処理装置
WO2015035611A1 (zh) * 2013-09-13 2015-03-19 华为技术有限公司 一种发送反馈信息的方法、设备和系统
KR101937676B1 (ko) * 2014-01-13 2019-01-14 삼성전자주식회사 생체 신호 증폭 회로
US9595931B2 (en) * 2014-09-12 2017-03-14 Ess Technology, Inc. Two differential amplifier configuration
CN106546800B (zh) * 2017-01-25 2019-06-18 北京鸿智电通科技有限公司 一种应用于快充电源的充/放电电流检测电路
CN108768327B (zh) * 2018-05-30 2022-04-19 湖南国科微电子股份有限公司 运算放大器
US11462142B2 (en) 2020-12-14 2022-10-04 Beijing Eswin Computing Technology Co., Ltd. Slew rate boosting circuit, source driver chip and display device
CN112542125A (zh) * 2020-12-14 2021-03-23 北京奕斯伟计算技术有限公司 压摆率增强电路、源极驱动芯片和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259052A (ja) * 1998-03-16 1999-09-24 Nec Corp 液晶表示装置の駆動回路
JP2001177352A (ja) * 1999-12-17 2001-06-29 Toko Inc 半導体集積回路
JP2006094534A (ja) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd スルーレートの改善のための差動増幅器回路及び方法
WO2006103977A1 (ja) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. ディスプレイ駆動回路
JP2007281661A (ja) * 2006-04-04 2007-10-25 Nec Electronics Corp 増幅器及びこれを用いた駆動回路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311145A (en) * 1993-03-25 1994-05-10 North American Philips Corporation Combination driver-summing circuit for rail-to-rail differential amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11259052A (ja) * 1998-03-16 1999-09-24 Nec Corp 液晶表示装置の駆動回路
JP2001177352A (ja) * 1999-12-17 2001-06-29 Toko Inc 半導体集積回路
JP2006094534A (ja) * 2004-09-24 2006-04-06 Samsung Electronics Co Ltd スルーレートの改善のための差動増幅器回路及び方法
WO2006103977A1 (ja) * 2005-03-29 2006-10-05 Matsushita Electric Industrial Co., Ltd. ディスプレイ駆動回路
JP2007281661A (ja) * 2006-04-04 2007-10-25 Nec Electronics Corp 増幅器及びこれを用いた駆動回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI411225B (zh) * 2010-05-28 2013-10-01 Himax Analogic Inc 發光二極體電路及其誤差放大器

Also Published As

Publication number Publication date
CN101630943A (zh) 2010-01-20
US20100007420A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP2010021911A (ja) 演算増幅器
JP3920236B2 (ja) 差動増幅器
JP4921106B2 (ja) バッファ回路
KR100432883B1 (ko) 클럭 듀티/스큐 보정 기능을 갖는 위상 분주 회로
JP3958491B2 (ja) 駆動回路
US7557648B2 (en) Operational amplifier, integrating circuit, feedback amplifier, and controlling method of the feedback amplifier
JP2009168841A (ja) 演算増幅器及び駆動回路、液晶表示装置の駆動方法
TWI468892B (zh) 用以調整電壓之設備及方法以及電子裝置
JP2007026337A (ja) 電圧レギュレータ
JP2008078987A (ja) 演算増幅器及び液晶表示装置の駆動方法
JP2017112537A (ja) インバータ回路
EP1717955B1 (en) Buffer circuit
JP2003235245A (ja) 負電圧出力チャージポンプ回路
US7154981B2 (en) Termination circuit
KR100251254B1 (ko) 파워 손실을 절감할 수 있는 전압 감시 회로
JP2009159508A (ja) 演算増幅器及び積分回路
CN1679236B (zh) 半导体装置
US7061322B2 (en) Low voltage differential amplifier circuit and bias control technique enabling accommodation of an increased range of input levels
JP4097149B2 (ja) 差動駆動回路およびそれを内蔵する電子機器
US8159303B2 (en) Operational amplifier
US6850100B2 (en) Output buffer circuit
JP2008211707A (ja) 入力回路
US6236195B1 (en) Voltage variation correction circuit
US9112453B2 (en) Operational amplifier circuit
CN110611497A (zh) 比较器以及振荡电路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807