JP2010003772A - 固体電解コンデンサ - Google Patents

固体電解コンデンサ Download PDF

Info

Publication number
JP2010003772A
JP2010003772A JP2008159831A JP2008159831A JP2010003772A JP 2010003772 A JP2010003772 A JP 2010003772A JP 2008159831 A JP2008159831 A JP 2008159831A JP 2008159831 A JP2008159831 A JP 2008159831A JP 2010003772 A JP2010003772 A JP 2010003772A
Authority
JP
Japan
Prior art keywords
layer
electrolytic capacitor
solid electrolytic
conductive polymer
silver paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008159831A
Other languages
English (en)
Inventor
Daisuke Takada
大輔 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2008159831A priority Critical patent/JP2010003772A/ja
Publication of JP2010003772A publication Critical patent/JP2010003772A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract


【課題】 漏れ電流不良率の小さい固体電解コンデンサを提供する。
【解決手段】 本発明の固体電解コンデンサは、陽極リード2が導出された弁作用金属の多孔質体からなる柱状の陽極体に、順次、誘電体層4、可溶性導電性高分子溶液からなる固体電解質層5、陰極層が形成された固体電解コンデンサ素子を有する固体電解コンデンサにおいて、前記陰極層が銀ペースト層6で形成されていることを特徴とする。
【選択図】 図1

Description

本発明は、固体電解コンデンサに関し、特に固体電解質として導電性高分子を用いた固体電解コンデンサに関する。
近年、導電性高分子を固体電解質とする固体電解コンデンサが開発され、二酸化マンガンを電解質とする固体電解コンデンサに比べ等価直列抵抗(以下ESR)を低くでき、且つ高周波特性が改善され、高周波機器のノイズ吸収用として様々な電子機器に用いられてきている。
導電性高分子層を形成するにはモノマーと酸化剤を多孔質体の誘電体層上で反応させる化学酸化重合工法、或いは導電性高分子層をより厚く形成する電解重合工法が多く用いられている。また、多孔質体の誘電体層上での重合は行なわずに、可溶性導電性高分子溶液に多孔質体を浸漬あるいは塗布した後、乾燥して導電性高分子層を形成する工法が特許文献1、特許文献2に記載されている。
最近では小型、高容量化の要求により多孔質体の空隙部も細孔化する傾向にあり、可溶性高分子の溶液が空隙部に入り難くなってきている。多孔質体の誘電体層上に化学重合により導電性高分子層を形成した後、可溶性導電性高分子溶液に浸漬または塗布した後、乾燥して表面に導電性高分子層を形成する工法が特許文献3に記載されている。
図3は従来の固体電解コンデンサ素子の多孔質体の内部構造を示す模式断面図である。例えば特許文献3で提案されているような従来の固体電解コンデンサは、図3に示すように、多孔質体からなる陽極体3に陽極酸化法による酸化皮膜層からなる誘電体層4を形成した後、化学酸化重合により、および可溶性導電性高分子溶液に浸漬または塗布後、乾燥するなどして、誘電体層4上に導電性高分子層からなる固体電解質層5を形成する。その後、グラファイト層11、銀ペースト層6からなる陰極層を形成し、陽極端子、陰極端子の接続、樹脂による外装により固体電解コンデンサとしていた。
しかしながら、従来の固体電解コンデンサでは、化学酸化重合による導電性高分子からなる固体電解質層あるいは、電解重合による導電性高分子からなる固体電解質層あるいは、可溶性導電性高分子溶液による導電性高分子からなる固体電解質層を完全にクラック、ホールなどの電解質層の欠陥が無い状態にすることは極めて困難である。このため、次工程で固体電解質層上にグラファイト層を形成する溶液に存在する遊離したカーボン粒子12が固体電解質層の欠陥10を通って誘電体層4に接触し漏れ電流が増加に至る問題があった。
特表2002−524868号公報 特開2006−185973号公報 特開2005−109252号公報
本発明の課題は、ESRを増加させることなく、漏れ電流の不良率を低減出来る固体電解コンデンサを提供することにある。
本発明によれば、陽極リードが導出された弁作用金属の多孔質体からなる陽極体に順次誘電体層、導電性高分子からなる固体電解質層、および陰極層を形成した固体電解コンデンサにおいて、前記陰極層が銀ペースト層のみで形成されていることを特徴とする固体電解コンデンサを得ることが出来る。
また、本発明によれば、前記固体電解質層が、化学重合による導電性高分子層上に、可溶性導電性高分子溶液の付着、乾燥による導電性高分子層を形成したものであることが好ましい。又。前記銀ペースト層は、ポリエステル系熱可塑性樹脂、又はエポキシ系熱硬化性樹脂であることが好ましい。
本発明では、粒径が数nmと分級が出来ない極めて小さい遊離したカーボン粒子を使用しないことで、カーボン粒子と誘電体層との接触を皆無にできる。また、陰極層として使用する銀ペースト層内に存在する銀粉末の粒径は制御、分級が可能であり、出来上がった電解質層により粒径の選択を行うことで誘電体層と銀ペースト層内に存在する銀粉末の接触は回避できる。
本発明によれば、陰極層が銀ペースト層のみから形成され、グラファイト層を必要としないため、カーボン粒子と誘電体層との接触が無くなり、漏れ電流に対して信頼性の高い固体電解コンデンサを得ることが出来る。
本発明の実施の形態についてタンタル固体電解コンデンサを例に図面を参照して説明する。図1は、本発明の固体電解コンデンサの断面図、図2は、本発明の製造フローを示す図である。
プレス成形性を向上させるためにタンタル粉末にバインダ−を添加して混合する。その後、前記タンタル混合粉末の中に陽極リード2を挿入し円柱状または直方体状にプレス成形する。ついで、そのプレス成形品を高真空中で、1000℃以上で焼結し、タンタル多孔質体、すなわち陽極体3を形成する(S1)。
前記タンタル多孔質体を陽極として対向電極とともにリン酸などの電解液中に浸漬し、電圧を印加することによってタンタル多孔質体表面に誘電体層4となる酸化皮膜を形成する(S2)。
前記誘電体層4上に固体電解質層5を形成する。固体電解質層5は、ポリアニリン、ポリピロール、ポリチオフェンを主成分とした可溶性導電性高分子溶液を塗布した後、乾燥することにより形成される。さらに別の方法としては、前記誘電体4上にモノマーであるアニリン、ピロール、チオフェンを化学酸化重合反応により導電性高分子層を形成し、固体電解質層5とする。その上に前記可溶性導電性高分子溶液を塗布して、前記固体電解質層を2層に重ねることとなる。本方法では、前記陽極体3の多孔質体内に前記化学酸化重合による固体電解質層5が形成されやすいことからESRが良くなることが判明している(S3)。
その後、陰極層形成として、前記固体電解質層5の上に陰極層として銀ペースト層6を形成する(S4)。
前記銀ペーストとしては、導体が銀粉末、樹脂がアクリル樹脂、フェノキシ樹脂、ウレタン樹脂、エチレン酢酸ビニル共重合樹脂、フロロエラストマー、及び、セルロース樹脂が用いられ、ポリエステル系熱可塑性樹脂、又は、エポキシ系熱硬化性樹脂がよりESRに対して効果がある。
しかる後、陰極部は、リードフレーム8に導電性接着剤7によって接合し、陽極部は、陽極リード2にリードフレーム8をスポット溶接にて接合する(S5)。最後に全体を外装樹脂9でモールド外装し(S6)、図1に示すような構成の固体電解コンデンサ1を完成させる(S7)。
従来は、グラファイトを使用しなければESRを低く抑えることが出来なかった。これは、固体電解質表面の凹凸が大きく陰極層との接触抵抗が大きいため、グラファイトのような抵抗の低いカーボン粒子を有した材料を用いることが必要であったためである。しかしながら、本発明では固体電解質の最外部には可溶性高分子溶液による固体電解質層を形成しており、固体電解質表面が従来と比較して凹凸が少なく、滑らかに形成される特徴がある。従って、グラファイトによるESR低減効果が少なくなり陰極層を銀ペースト層のみで形成してもESRに悪影響を及ぼすことなく、固体電解コンデンサを製作することが出来る。
以下、実施例について図1を参照しながら説明する。
(実施例1)
タンタル粉末(約50,000CV/g)を用いて、嵩密度6.5に調整した3.76×1.05×4.64立方ミリメートルの直方体にタンタルワイヤー(直径0.44mm)が埋め込まれたプレス体を、約1500℃で焼結し、タンタル焼結体、すなわち陽極体3を作製した。
タンタル焼結体を0.05wt%、60℃のリン酸水溶液に浸漬し、20Vで陽極酸化を行ない誘電体層4を形成する。
ポリチオフェン及びポリスチレンスルホン酸を重量比が3%となるように水溶液を作製して可溶性導電性高分子溶液とし、前記陽極体3を前記可溶性高分子溶液に浸漬する。150℃、30分乾燥することにより、前記誘電体層4の上に固体電解質層5が形成される。
次に、陰極層として導体が平均粒径0.2〜1.0μmの銀粉末、溶媒がシクロヘキサン、樹脂がポリエステル系熱可塑性樹脂である銀ペーストを用いて銀ペースト層6を形成する。
次に、陽極部は、陽極リード2にリードフレーム8をスポット溶接にて接合し、陰極部は、リードフレーム8に導電性接着剤7によって接合する。最後に全体を外装樹脂9でモールド外装し、図1に示すような構成の固体電解コンデンサ1を完成させる。
(実施例2)
固体電解質層5を形成する際にチオフェンを鉄塩系酸化剤を用いて化学酸化重合により形成した後、さらにその上に可溶性導電性高分子溶液に浸漬した後、乾燥して固体電解質層5を形成した2層構造にした以外は、前述した実施例1と同一である。
(実施例3)
陰極層として導体が平均粒径0.2〜1.0μmの銀粉末、樹脂がエポキシ系熱硬化性樹脂である銀ペーストを用いて銀ペースト層6を形成すること以外は、実施例1と同一とする。
(実施例4)
陰極層として導体が平均粒径0.2〜1.0μmの銀粉末、樹脂がエラストマー系熱可塑性樹脂である銀ペーストを用いて銀ペースト層6を形成すること以外は、実施例1と同一とする
(実施例5)
固体電解質層5を形成する際にチオフェンを鉄塩系酸化剤を用いて化学酸化重合により形成した後、さらにその上に可溶性導電性高分子溶液に浸漬した後、乾燥して固体電解質層5を形成すること、及び、陰極層として導体が平均粒径0.2〜1.0μmの銀粉末、樹脂がエポキシ系熱硬化性樹脂の銀ペーストを用いて銀ペースト層6を形成すること以外は、実施例1と同一とする。
(比較例1)
陰極層に導体がカーボンブラックとグラファイトの混合粉末で形成されており、樹脂がポリエステル系熱可塑性樹脂を用いたグラファイト層11を形成した後、導体が平均粒径0.2〜1.0μmの銀粉末、樹脂がエポキシ系熱硬化性樹脂である銀ペーストを用いて陰極層6を形成すること以外は、実施例1と同一とする。
(比較例2)
チオフェンを鉄塩系酸化剤を用いて化学酸化重合により誘電体皮膜上に形成した後、その上に陰極層として導体がカーボンブラックとグラファイトの混合粉末、樹脂がポリエステル系熱可塑性樹脂を用いたグラファイト層11を形成した後、導体が平均粒径0.2〜1.0μmの銀粉末、樹脂がエポキシ系熱硬化性樹脂である銀ペーストを用いて銀ペースト層6を形成すること以外は、実施例1と同一とする。
実施例1〜5、及び、比較例1〜2の条件でそれぞれ100個の固体電解コンデンサを製作し、製造工程中の漏れ電流不良率、及び、100kHzでのESRを測定した平均値をそれぞれ結果を表1に示す。
Figure 2010003772
実施例で製作された固体電解コンデンサは、比較例で製作された固体電解コンデンサと比較して、漏れ電流不良率が少なく、実施例2は比較例2と同等のESRを示す。したがって、導電性高分子層を電解質とする固体電解コンデンサの特徴である低いESR特性を維持し、漏れ電流に対して信頼性の高い固体電解コンデンサを得ることが出来た。
本発明は、アルミコンデンサ、ニオブコンデンサにおいても利用の可能性がある。
本発明の固体電解コンデンサの断面図。 本発明の製造フローを示す図。 従来の固体電解コンデンサ素子の多孔質体の内部構造を示す模式断面図。
符号の説明
1 固体電解コンデンサ
2 陽極リード
3 陽極体
4 誘電体層
5 固体電解質層
6 銀ペースト層
7 導電性接着剤
8 リードフレーム
9 外装樹脂
10 固体電解質の欠陥
11 グラファイト層
12 カーボン粒子

Claims (3)

  1. 陽極リードが導出された弁作用金属の多孔質体からなる陽極体に順次誘電体層、導電性高分子からなる固体電解質層、および陰極層を形成した固体電解コンデンサにおいて、前記陰極層が銀ペースト層のみで形成されていることを特徴とする固体電解コンデンサ。
  2. 前記固体電解質層が、化学重合による導電性高分子層上に、可溶性導電性高分子溶液の付着、乾燥による導電性高分子層を形成したものであることを特徴とする請求項1に記載の固体電解コンデンサ。
  3. 前記銀ペースト層はポリエステル系熱可塑性樹脂、又はエポキシ系熱硬化性樹脂を含むことを特徴とする請求項1または2に記載の固体電解コンデンサ。
JP2008159831A 2008-06-19 2008-06-19 固体電解コンデンサ Pending JP2010003772A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008159831A JP2010003772A (ja) 2008-06-19 2008-06-19 固体電解コンデンサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008159831A JP2010003772A (ja) 2008-06-19 2008-06-19 固体電解コンデンサ

Publications (1)

Publication Number Publication Date
JP2010003772A true JP2010003772A (ja) 2010-01-07

Family

ID=41585262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008159831A Pending JP2010003772A (ja) 2008-06-19 2008-06-19 固体電解コンデンサ

Country Status (1)

Country Link
JP (1) JP2010003772A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069788A (ja) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd 固体電解コンデンサ
US9048024B2 (en) 2011-09-29 2015-06-02 Nec Tokin Corporation Solid electrolytic capacitor and method for producing the same
JPWO2015037368A1 (ja) * 2013-09-13 2017-03-02 株式会社村田製作所 導電性ペーストおよびそれを用いた固体電解コンデンサを構成するコンデンサ素子

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093741A (ja) * 2003-09-18 2005-04-07 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2005109252A (ja) * 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2006339182A (ja) * 2005-05-31 2006-12-14 Nichicon Corp 固体電解コンデンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093741A (ja) * 2003-09-18 2005-04-07 Nippon Chemicon Corp 固体電解コンデンサ及びその製造方法
JP2005109252A (ja) * 2003-09-30 2005-04-21 Nippon Chemicon Corp 固体電解コンデンサの製造方法
JP2006339182A (ja) * 2005-05-31 2006-12-14 Nichicon Corp 固体電解コンデンサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069788A (ja) * 2010-09-24 2012-04-05 Sanyo Electric Co Ltd 固体電解コンデンサ
US9048024B2 (en) 2011-09-29 2015-06-02 Nec Tokin Corporation Solid electrolytic capacitor and method for producing the same
JPWO2015037368A1 (ja) * 2013-09-13 2017-03-02 株式会社村田製作所 導電性ペーストおよびそれを用いた固体電解コンデンサを構成するコンデンサ素子

Similar Documents

Publication Publication Date Title
JP7361284B2 (ja) 電解コンデンサの製造方法
JP5289033B2 (ja) 固体電解コンデンサ
TWI478189B (zh) 固體電解電容器及其製造方法
JP2012043958A (ja) 固体電解コンデンサおよびその製造方法
JP5933397B2 (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
JP5788282B2 (ja) 固体電解コンデンサおよびその製造方法
JP5062770B2 (ja) 固体電解コンデンサおよびその製造方法
JP6142292B2 (ja) 固体電解コンデンサ
JP5623214B2 (ja) 固体電解コンデンサ
US8000085B2 (en) Solid electrolytic capacitor
JP2010003772A (ja) 固体電解コンデンサ
JP2010278360A (ja) 固体電解コンデンサおよびその製造方法
JP4748726B2 (ja) 固体電解コンデンサ
JP5611745B2 (ja) 固体電解コンデンサの製造方法および固体電解コンデンサ
JP2008010719A (ja) 固体電解コンデンサおよびその製造方法
JP4803741B2 (ja) 固体電解コンデンサの製造方法
JP4624017B2 (ja) 固体電解コンデンサの製造方法
JP2007281268A (ja) 固体電解コンデンサおよびその製造方法
JP2016143752A (ja) 固体電解コンデンサ及びその製造方法
JP2009246138A (ja) 固体電解コンデンサおよびその製造方法
JP2006147900A (ja) 固体電解コンデンサの製造方法
JP2009238776A (ja) 固体電解コンデンサの製造方法
JP4776453B2 (ja) 固体電解コンデンサ用素子およびその製造方法
JP2010087100A (ja) 固体電解コンデンサの製造方法
JP4947888B2 (ja) 固体電解コンデンサの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101210

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120628

A02 Decision of refusal

Effective date: 20121226

Free format text: JAPANESE INTERMEDIATE CODE: A02