JP2010002852A - 光走査光学系、光走査装置並びにそれを用いた画像形成装置 - Google Patents

光走査光学系、光走査装置並びにそれを用いた画像形成装置 Download PDF

Info

Publication number
JP2010002852A
JP2010002852A JP2008163549A JP2008163549A JP2010002852A JP 2010002852 A JP2010002852 A JP 2010002852A JP 2008163549 A JP2008163549 A JP 2008163549A JP 2008163549 A JP2008163549 A JP 2008163549A JP 2010002852 A JP2010002852 A JP 2010002852A
Authority
JP
Japan
Prior art keywords
light source
optical
optical system
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008163549A
Other languages
English (en)
Inventor
Kazuhiro Akatsu
和宏 赤津
Yasuyuki Shibayama
恭之 柴山
Kenji Mochizuki
健至 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008163549A priority Critical patent/JP2010002852A/ja
Priority to US12/489,728 priority patent/US7969460B2/en
Publication of JP2010002852A publication Critical patent/JP2010002852A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/32Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head
    • G03G15/326Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the charge pattern is formed dotwise, e.g. by a thermal head by application of light, e.g. using a LED array
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/04Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material
    • G03G15/043Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure
    • G03G15/0435Apparatus for electrographic processes using a charge pattern for exposing, i.e. imagewise exposure by optically projecting the original image on a photoconductive recording material with means for controlling illumination or exposure by introducing an optical element in the optical path, e.g. a filter
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/04Arrangements for exposing and producing an image
    • G03G2215/0402Exposure devices
    • G03G2215/0404Laser

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Lenses (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

【課題】光源が多数列状に配置されて、周辺部の光源像高が高くなっても、すべての光源からの光束の焦点を被走査媒体上に結ぶことのできる光源装置を提供する。
【解決手段】多数個の発光素子が列状に配置された光源1と、その光源1からの光束をコリメートするコリメータレンズ9と、そのコリメータレンズ9を通過した光束を被走査媒体上で偏向走査する光偏向手段24と、前記コリメータレンズ9と被走査媒体18の間の光路上に配置された後方光学系22,25を有する光走査光学系において、前記コリメートレンズ9を、前記後方光学系22,25により生じる光源像高の違いによる被走査媒体上の像面ずれと逆の方向に、前記像面ずれと略同量だけ像面をずらしたレンズとすることを特徴とする。
【選択図】図1

Description

本発明は、デジタル複写機やレーザプリンタの如き画像形成装置などに組み込まれる光走査光学系、光走査装置並びにそれを用いた画像形成装置に係り、特に光源からの光をコリメートするコリメート光学系を備えた光走査光学系および光走査装置に関するものである。
走査幅の広い走査光学系で、高印刷ドット密度の光走査を行う場合、ドット密度に応じた小さな走査スポット径とするには、走査レンズ(第三の光学系)への入射ビーム幅を大きくする必要がある。使用波長をλ、走査レンズの焦点距離をf、走査スポット径をφとすると、入射ビーム幅Lは概略式1で示される。

L=4×λ×f/(π×φ)…(式1)

例えば波長660nm、走査レンズの焦点距離500mm、走査スポット径を40μmとすると、前記式1から入射ビーム幅Lは10.5mmとなる。従来から使用されているコリメータレンズ(第一の光学系)の口径は7mm程度が一般的であり、10.5mmの幅広いビームを出射できないので、コリメータレンズの後に光束を拡大するビームエキスパンダなどの第二の光学系が必要となる。
また、第二の光学系には複数の光源からのビームを回転多面鏡位置で交差させる効果もあるため、複数の光源を備える光走査装置では必須となる。もし、この第二の光学系が無い場合、第一の光学系を通過した複数の光束の間隔は拡がってしまい、回転多面鏡の位置では単一のビーム幅より大きな幅となってしまう。その場合、回転多面鏡の内接円半径を大きくしなければ必要な走査範囲に十分な光を走査できなくなってしまうが、回転多面鏡の内接円半径を大きくするにも限界があるので問題となる。
一方、高印刷ドット密度の光走査を行う場合、回転多面鏡などの光偏向手段の回転数には限界があるため、光源数を増大させる必要がある。印刷ドット密度をD、プロセス速度をV、光偏向手段のミラー面数をm、複数ビーム数をnとすると回転多面鏡の回転数Rは式2で示される。

R=D×V/(n×m)…(式2)

例えば、印刷ドット密度を1200dpi、プロセス速度を70インチ/秒、光偏向手段のミラー面数を8面、ビーム数を20とすると回転数Rは31500回転/分となり、実用的な回転数となる。
さらに、高印刷ドット密度の光走査を行う場合、ビーム変調には限界があるため、光源数を増大させる必要がある。印刷ドット密度をD、プロセス速度をV、走査レンズ(第三の光学系)の焦点距離をf、光偏向手段のミラー面数をm、ビーム数をnとすると1ドットあたりの時間Tは式3で示される。

T=n×m/(F×D×D×V)…(式3)

例えば、印刷ドット密度を1200dpi、プロセス速度を70インチ/秒、走査レンズ(第三の光学系)の焦点距離を500mm、光偏向手段のミラー面数を8面、ビーム数を40とすると1ドットあたりの時間Tは12.8nsとなり、変調可能な値となる。よって、前記の例の仕様ではビーム数を40以上にする必要がある。
次に発光素子の配列についてであるが、例えば40個の発光素子の配列を1列にして配列角度を変えることにより、走査間隔を調整することが可能となり好ましい。ただし、発光素子の間隔を例えば20μmとすると、配列長は780μmとなり、第一の光学系での光源像高は±0.4mm程度まで使用することになる。
従来、例えば前述の例と同じ仕様で印刷ドット密度が600dpiであった場合、1ドットあたりの時間Tの制約から、ビーム数は10で十分であったから、光源像高は±0.1mm程度で十分であった。この場合、第一の光学系の焦点距離を例えば17mmとすれば、端部の光源の第一の光学系からの出射角度は0.337度であり、光源からの光束は比較的光軸近くを通るため、第一、第二(光束を整形するレンズ系)、第三(被走査媒体上に結像させる走査レンズ系)の光学系による収差は十分小さく、問題にならなかった。
しかし、使用する光源の像高が4倍の±0.4mmになる場合、第一の光学系の焦点距離を前記の例と同様17mmとすれば、端部の発光素子の出射角度は1.35度となり、発光素子からの光束は光軸から離れるため、第一、第二、第三の光学系によるレンズ収差、特に像面ずれが問題となった。
これを改善するには、第二、第三の光学系を構成しているレンズの補正が必要となる。しかし、第二、第三の光学系一式は、走査の等速性、走査位置毎の結像位置等の特性等を考慮しており、光源像高に関係する像面ずれの特性を改善する項目を含ませるのは容易ではない。また、第二、第三の光学系内のレンズを非球面化して補正する場合、レンズ寸法が大きいので非球面レンズとするには実現困難か、または実現に大きなコスト増が伴ってしまい実用的でない。
前記収差に関連した解決手段として、例えば特許文献1では、第一の光学系であるコリメータレンズに非球面ガラス単レンズを用いて、プラスチックのみで構成した走査結像光学系と組み合わせて温度変化による性能変化を補正している。
前記収差に関連した解決手段として、例えば特許文献2では、光学系の開口数NAが大きい場合に発生する球面収差を抑え、低価格で記録媒体の高ドット密度化に対応可能な光走査装置を提供するため、結合レンズ系と光偏向手段の間に軸上パワーが略0で、かつ、非球面形状の光学素子を1個配置している。
前記収差に関連した解決手段として、例えば特許文献3では、開口数NA0.12〜0.2で球面収差、正弦条件とも良好に補正された非球面単レンズを提供している。
前記収差に関連した解決手段として、例えば特許文献4では、光源と光偏向手段の間に、正、負の円筒レンズを備え、偏向レンズの有する球面収差を補正するものである。
特開平5−273463号公報 特開2002−267976号公報 特開昭60−121412号公報 特開昭63−189822号公報
上述のように従来から、非球面ガラス単レンズの提案がなされているが、問題が全て解決した訳ではない。すなわち前記特許文献1〜4の提案では光源像高に関係した像面ずれについては考慮されておらず、多数の発光素子を列状に配置して光源像高が高くなった場合、光スポットのばらつきが大きくなるという問題があった。またこのような光走査装置を画像形成装置に使用すると、線幅が不均一になり、画像が不安定になり、画像品質の低下を招くという欠点がある。
本発明の目的は、前述した従来技術の欠点を解消し、発光素子が多数列状に配置されて、周辺部の光源像高が高くなっても、すべての発光素子からの光束を被走査媒体上に結像できるようにした光走査光学系、光走査装置並びにそれを用いた画像形成装置を提供することにある。
前記目的を達成するため、本発明の第1の手段は、多数個の発光素子が列状に配置された光源と、その光源からの光束をコリメートするコリメータレンズと、そのコリメータレンズを通過した光束を被走査媒体上に偏向走査する光偏向手段と、前記コリメータレンズと被走査媒体の間の光路上の配置された後方光学系を有する光走査光学系において、前記コリメータレンズを、前記後方光学系により生じる光源像高の違いによる被走査媒体上の像面ずれと逆方向に、前記像面ずれと略同量だけ像面をずらしたレンズとすることを特徴とするものである。
本発明の第2の手段は前記第1の手段において、前記後方光学系が、前記コリメータレンズと光偏向手段の間の光路上に配置されて前記コリメータレンズでコリメートされた光束を整形する整形光学系と、前記光偏向手段と被走査媒体の間の光路上に配置されて前記光偏向手段により偏向走査された光束を被走査媒体上に結像する結像光学系を含むことを特徴とするものである。
本発明の第3の手段は前記第1または第2の手段において、前記コリメータレンズの開口数が0.08以下に規制されていることを特徴とするものである。
本発明の第4の手段は前記第1ないし第3の手段において、前記光源が多数個の発光素子を1列に配置した光源であることを特徴とするものである。
本発明の第5の手段は前記第4の手段において、前記光源がその光源の光軸を中心軸として回転可能になっており、その光源の回転によって光線の走査間隔を調整することを特徴とするものである。
本発明の第6の手段は、多数個の発光素子が列状に配置された光源と、その光源からの光束をコリメートするコリメータレンズと、そのコリメータレンズを通過した光束を被走査媒体上で偏向走査する光偏向手段と、前記コリメータレンズと被走査媒体の間の光路上に配置された後方光学系を有する光走査装置において、前記コリメータレンズを、前記後方光学系により生じる光源像高の違いによる被走査媒体上の像面ずれと逆方向に、前記増面ずれと略同量だけ像面をずらしたレンズとすることを特徴とするものである。
本発明の第7の手段は前記第6の手段において、前記後方光学系が、前記コリメータレンズと光偏向手段の間の光路上に配置されて前記コリメータレンズでコリメートされた光束を整形する整形光学系と、前記光偏向手段と被走査媒体の間の光路上に配置されて前記光偏向手段により偏向走査された光束を被走査媒体上に結像する結像光学系を含むことを特徴とするものである。
本発明の第8の手段は前記第6または第7の手段において、前記コリメータレンズの開口数が0.08以下に規制されていることを特徴とするものである。
本発明の第9の手段は前記第6ないし第8の手段において、前記光源が多数個の発光素子を1列に配置した光源であることを特徴とするものである。
本発明の第10の手段は前記第9の手段において、前記光源がその光源の光軸を中心軸として回転可能になっており、その光源の回転によって光線の走査間隔を調整することを特徴とするものである。
本発明の第11の手段は、感光体と、その感光体を帯電する帯電装置と、光線の走査により記録されるべき画像情報に対応した静電潜像を前記感光体上に形成する光走査装置と、前記静電潜像にトナーを付着してトナー像を形成する現像装置と、前記トナー像を被記録媒体上に転写する転写装置と、転写したトナー像を被記録媒体上に定着する定着装置とを備えた画像形成装置において、前記光走査装置が前記第6ないし第10の手段の光走査装置であることを特徴とするものである。
本発明によれば、光軸外の発光素子からの光線でも、光軸上の発光素子からの光線でも、焦点位置をほぼ同じにすることができ、光スポットのばらつきが小さい状態で光走査が可能となる光走査光学系並びに光走査装置を提供することができる。
またこの光走査装置を備えることにより、線幅が均一で、画像が安定して、高品質の画像が得られる画像形成装置を提供することできる。
以下、本発明の実施例を図面とともに説明する。
(第一の実施例)
本発明の第一の実施例を図1〜図4を参照しながら説明する。図1は本実施例に係るコリメータレンズの拡大断面図、図2はそのコリメータレンズを実装した光源装置の断面図、図3はその光源装置を用いた光走査装置の概略構成図、図4はその光走査装置を用いた画像形成装置の概略構成図である。
まず、本発明の実施例に係る画像形成装置の概略構成を図4で説明する。トナー像を形成するためのドラム形状の感光体18は、図示しないモータによって一定の周速度で図面に向かって時計周り方向に回転している。
この感光体18の表面は帯電装置10によって特定の極性に均一に帯電された後、光走査装置11からの光線により露光され、記録されるべき画像情報に対応した静電潜像が形成される。この露光位置の感光体回転方向下流側には現像装置12が配置され、現像装置12により感光体18上の前記静電潜像が顕像化されてトナー像が形成される。
被記録媒体である印刷用紙13は、搬送ローラ対などの搬送装置14で搬送される。その後、転写装置15で印刷用紙13の背面にトナーと反対の極性の帯電を行ない、感光体18上のトナー像を印刷用紙13上に転写する。転写後、転写されなかった感光体18上の残留トナーは清掃装置16によって除去され、次の画像形成プロセスに備えられる。
感光体18からトナー像が転写された印刷用紙13は定着装置17へ搬送される。定着装置17は、一定温度に加熱制御したヒートローラ17aと、それに圧接する加圧ローラ17bとから構成されている。ヒートローラ17aと加圧ローラ17bの間を通過するとき、印刷用紙13上に保持されたトナー像は加圧溶融され印刷用紙13上に定着される。この定着処理後に印刷用紙13は、画像形成装置の外部に排出、ストックされる。
図3は、前記光走査装置11の内部構成を示す概略構成図である。光源装置20から発した光線21は、2枚のレンズからなるビームエキスパンダ22a,22bを通り、所定のビーム幅に整形され、副走査方向のみ所定の曲率をもつシリンドリカルレンズ23を通り、回転多面鏡24によって偏向走査され、Fθレンズ25を通り、折り返しミラー28で反射し、図示しない感光体18上に結像され静電潜像を作成する。
図中Xの矢印方向は、光の走査方向(主走査方向)を示している。なお、偏向走査された光線の一部は、ミラー26によって光センサ27へ導かれ、その信号により前記光源装置20から発する光線21の変調を行う。
前記光源装置20の中には光源1(図2参照)が設けられており、その光源1の中には多数個(本実施例では40個)の発光素子が一列に並んでおり、従って感光体18上では光スポットが一列に並ぶことになる。
図5は、感光体18上に光スポット50が40個並んだ様子を示している。光源1を光軸中心として回転させると、感光体18上の光スポット50の配列角θが変化し、それに応じて光線の走査間隔dも変化するから、前記配列角θを変化させて光線の走査間隔dを調整することができる。
前記光源装置20は図2に示すように、光源1と、光源ホルダ2と、鏡筒8に実装された第一の光学系であるコリメータレンズ9と、鏡筒ホルダ4から主に構成されている。
光源1は溶接またはネジ(図示せず)により、光源ホルダ2に固定される。鏡筒8は光源1との距離を適正に調整後、ネジ3cで突き当て固定される。光源ホルダ2と鏡筒ホルダ4は光軸垂直方向の位置決め後にネジ3aで一体化されて、ベース5にネジ3bで固定される。
このとき、光源1を保持した光源ホルダ2と鏡筒ホルダ4の一体物はベース5に挿入された状態で、その一体物の全体を光源1の光軸を中心軸として回転することにより、前記感光体上のスポット配列角θを変えて走査間隔dを適当な値に調整する。調整後、ネジ3bで前記一体物をべース5に位置決め固定する。前記一体物の回転調整を許容するため、前記ネジ3bが挿通されるホルダ4側のネジ孔は長孔となっている。
本発明は、開口数NAを0.08以下とし、第二、第三の光学系により生じる光源像高の違いによる被走査媒体(本実施例では感光体)上の像面ずれと逆の方向に、前記像面ずれと略同量だけ像面をずらした第一の光学系を用いることが特徴である。
その例を示すため第二、第三の光学系の具体的な構成例を図6に示す。図中の曲率半径ならびに厚さの各項目の単位はmmである。また図中のEX1、EX2はエキスパンダレンズで、図3のビームエキスパンダレンズ22a,22bに相当する。図6中のCYLはシリンドリカルレンズで、図3のシリンドリカルレンズ23に相当する。図6中のPOLは回転多面鏡で、図3の回転多面鏡24に相当する。図6中のFθ1〜Fθ5はFθレンズで、図3のFθレンズ25に相当し、本実施例ではFθ1〜Fθ5の5枚構成となっている。本実施例ではエキスパンダレンズEX1とEX2が第二の光学系を構成し、Fθ1〜Fθ5レンズが第三の光学系を構成している。
図中のNo.1のEX1における曲率半径は、ビームエキスパンダレンズ22aの入射面側の曲率半径を示している。No.1のEX1における厚さは、ビームエキスパンダレンズ22aの光軸上の厚さを示している。No.1のEX1における屈折率は、ビームエキスパンダレンズ22a自体の屈折率を示している。
図中のNo.2のEX1における曲率半径は、ビームエキスパンダレンズ22aの出射面側の曲率半径を示している。No.2のEX1における厚さは、ビームエキスパンダレンズ22aと次のビームエキスパンダレンズ22bの間に介在されている層の厚さであり、本実施例ではビームエキスパンダレンズ22aとビームエキスパンダレンズ22bの間隔が439.5mmあることを示している。No.2のEX1における屈折率は、ビームエキスパンダレンズ22aのすぐ後ろ側の層の屈折率を示しており、本実施例ではビームエキスパンダレンズ22aのすぐ後ろ側が屈折率1の空気層であることを示している。No.3〜17においても同様の仕様で表示している。
第一の光学系単体(本実施例ではコリメータレンズ9)の光源像高に関する像面ずれを除いた前記図6の構成の第二、第三の光学系の被走査媒体上の像面ずれの特性を図7に示す。図7の横軸に光源像高を示しており、光源像高0mmは光源の光軸を指している。縦軸に被走査媒体上像高を示しており、被走査媒体上の像高0mmは被走査媒体表面を指している。
本実施例では、発光素子を40個一列に配列して、光源像高が±0.4mmの光源を使用した。この図から明らかなように、発光素子の位置が光軸(光源像高=0mm)から離れるに従って被走査媒体上の像面ずれ量はマイナス方向に徐々に大きくなり、光軸上にある発光素子に対して光軸から0.4mm離れた発光素子の像面ずれ量Zは約−0.4mmにもなっている。
本発明ではこの図7の特性を測定、記憶して、第一の光学系の特性を図7の特性の逆の方向(本実施例ではプラス方向)に、図7の像面ずれと略同量だけ像面をずらした光学系とするのが特徴である。その目標となる特性を計算したものを図8および図11において点線で示しており、図7の特性の逆の方向に、図7の像面ずれと略同量だけ像面をずらした特性となっている。
本発明の第一の実施例に係るコリメータレンズ9の拡大断面図を図1に示す。コリメータレンズ9は非球面ガラス単レンズからなり、開口数NAは0.077としている。この理由は、図6の第二、第三の光学系に搭載したときの波面収差(λRMS)の値が、一般的に良好な値とされる目安の0.07以下となるからである。図6に示す光学系と全く同じでない走査光学系であっても、構成が概略同じであれば、被走査媒体上のλRMSは、第一の光学系の開口数NAを0.08以下とすることで、λRMSの値を概略0.07以下にすることができる。
図1に示すコリメータレンズ9の開口数NAは0.077であり、λRMSを最も小さくし、かつ、図8の目標特性に近い特性としている。本実施例に係るレンズ屈折率は1.689、レンズ形状は第一面(光源側)の曲率半径r=21.4mm、円錐定数k=14、第二面(出射側)の曲率半径r=−23.94mm、円錐定数k=−28としている。
このときの像面ずれの特性を図8の第一の実施例に示す。また、このコリメータレンズ9を用い、図6に示した走査光学系と組み合わせたときの走査中央での像面ずれ特性は図9の第一の実施例の様に平坦な特性になる。このコリメータレンズ9を用いれば、図9に示すように発光素子が光軸から±0.4mm程度離れていても像面ずれがほとんど無い光走査装置を実現できる。なお、第一の実施例のコリメータレンズの場合、単体のλRMSの値は最大0.0129であり、図6に示した走査光学系と組み合わせた場合、λRMSは0.07以下となっている。
なお、非球面形状は式4の様に定義され、c=1/r、rは曲率半径、hは像高、kは円錐定数である。

Z=c×h×h/{1+[1-(k+1)×c×c×h×h]0.5}…(式4)

この第一の実施例に係るコリメータレンズ9の像面ずれの特性を図10に示す。この図では、主走査方向と副走査方向及び波長658nm(光源の基準波長)と661nm(光源波長のばらつきの最大値)の像高とコリメータレンズ位置の像面ずれの特性を示している。像高0と各像高との像面差は、波長が異なっても略同じである。図7の被走査媒体上の像面の特性と略同量だけ像面をずらすため、関連している主走査方向の像面の倍率を考慮したうえでプラス側に補正している。このときの被走査媒体上の像面ずれの特性を図8に示す。
(第二の実施例)
本発明の第二の実施例に係るコリメータレンズ9の拡大断面図を図12に示す。本実施例に係るコリメータレンズ9は非球面ガラス単レンズからなり、開口数NAは0.077としており、第一面(光源側)を非球面形状でない球面とし、第二面(出射側)のみを非球面形状としたものである。この条件でλRMSを最も小さくし、かつ、図8に示す目標特性に近い特性とした。
このコリメータレンズ9のレンズ屈折率は1.689、レンズ形状は第一面(光源側)の曲率半径r=26.7mm、円錐定数k=0、第二面(出射側)の曲率半径r=−19.615mm、円錐定数k=−4.358としている。
このときの像面ずれの特性を図11の第二の実施例に示す。また、この第一の光学系を用いたとき、図6に示した走査光学系と組み合わせたときの走査中央での特性は図9の第二の実施例の様に平坦な特性になる。この第一の光学系を用いれば、図9に示すように光源が光軸から±0.4mm程度離れていても像面ずれがほとんど無い光走査装置を実現できる。なお、第二の実施例の第一の光学系の場合、単体のλRMSの値は最大0.0163であり、図6に示した走査光学系と組み合わせた場合、λRMSは0.07以下となっている。
(第三の実施例)
本発明の第三の実施例に係るコリメータレンズ9の拡大断面図を図13に示す。本実施例に係るコリメータレンズ9は非球面ガラス単レンズからなり、開口数NAは0.077としており、レンズ形状は第一面(光源側)の曲率半径r=34.06mm、円錐定数k=−25.94の非球面形状とし、第二面(出射側)の曲率半径r=−16.96mm、円錐定数k=0の非球面形状でない球面としている。この条件でλRMSを最も小さくし、かつ、図8の目標特性に近い特性とした。
このときの像面ずれの特性を図11の第三の実施例に示す。また、この第一の光学系を用いたとき、図6に示した走査光学系と組み合わせたときの走査中央での特性は図9の第三の実施例の様に平坦な特性になる。この第一の光学系を用いれば、図9に示すように光源が光軸から±0.4mm程度離れていても像面ずれがほとんど無い光走査装置を実現できる。なお、第三の実施例の第一の光学系の場合、単体のλRMSの値は最大0.0161であり、図6に示した走査光学系と組み合わせた場合、λRMSは0.07以下となっている。
前記実施例で述べたようにコリメータレンズ9における像面のずれ調整は、当該コリメータレンズ9の主に第一面(光源側)または(ならびに)第二面(出射側)の円錐定数kの調整によってなされる。
図14は、コリメータレンズの開口数NAと波面収差λRMSとの関係を示す特性図である。同図に実線で示すように開口数NAが大きくなるに従って波面収差λRMSも大きな値となる傾向にあり、光学特性的にはλRMSは0.07以下に抑えることが望ましい。一方、波長の変化等の影響でλRMSは同図に点線で示すように全体的に0.02程度増加する傾向があるから、その増加分を見込んでλRMSを0.07以下に抑えるためには、コリメータレンズの開口数NAは0.08以下に規制する必要がある。
ところがコリメータレンズの開口数NAが小さくなると光束のビーム幅は狭くなり、光出力は低減するため、所望の光走査を確実に実行するためにはコリメータレンズの開口数NAは0.05必要である。従って、コリメータレンズの開口数NAは0.05〜0.08の範囲が望ましい。
図15ないし図18は、本発明の他の実施例における光源装置を説明するための図で、図15はその光源装置の内部構成を示す概略構成図、図16はその光源装置に用いられる光源・コリメータユニットの斜視図、図17は図16A−A線上の断面図、図18はその光源装置によって形成される被走査媒体上のビームスポットの配列状態を示す図である。
図15に示すように光源装置20は、ベース30と、そのベース30に取り付けられた第1の光源・コリメータユニット31aならびに第2の光源・コリメータユニット31bとから主に構成されている。
前記光源・コリメータユニット31(第1の光源・コリメータユニット31aと第2の光源・コリメータユニット31bは同一構造)は、図16に示すように多数の発光素子(本実施例では20個の発光素子を一列に配置)して構成した光源32を内側に挿入して保持した光源ホルダ33と、光源32から出射した光線をコリメートするコリメータレンズ34を内側に挿入して固定した鏡筒35と、前記光源ホルダ33をフランジ部36cに取り付けるとともに前記鏡筒35を筒状部36dに挿入して取り付けた鏡筒ホルダ36とから主に構成されている。
コリメータレンズ34は前記実施例と同様に、第二、第三の光学系により生じる光源像高の違いによる被走査媒体上の像面ずれと逆の方向に、前記像面ずれと略同量だけ像面をずらした光学系になっている。
図16に示すように、光源32は光源ホルダ33の中央部に設けられた円筒状の収納部内に挿入され、複数のネジ37の頭部で光源ホルダ33に固定されている。この光源ホルダ33は、ネジ38で鏡筒ホルダ36のフランジ部36cに固定される。
図16に示すように、鏡筒ホルダ36の筒状部36dはベース30に形成された円形の開口部30aに挿入され、光源32の光軸を中心として回転調整した後、フランジ部36cから挿入した複数のネジ39をベース30のネジ孔30bに螺挿することにより、図15に示すように光源・コリメータユニット31がベース30に固定される。
次に図16ならびに図17に示すように、鏡筒ホルダ36の筒状部36d内に挿入されて光軸方向に移動して調整した鏡筒35は、筒状部36dの周壁を貫通するように螺挿された1本のネジ40により筒状部36dの内面に押圧固定される。このネジ40の配置位置は、光走査装置11(図3参照)の光走査面内で、かつコリメータレンズ34の光軸Oに対して直交する位置に特定されており、従ってネジ40による押圧力は光軸Oに対して直交するY方向に作用している。
図15に示すように、第1の光源・コリメータユニット31aと第2の光源・コリメータユニット31bは互いに若干内側を向くようにベース30に取り付けられている。そのため第1の光源・コリメータユニット31aの各発光素子から出射した20本の平行光線と、第2の光源・コリメータユニット31bの各発光素子から出射した20本の平行光線は、一度交差し、その後間隔が広がって進み、シリンドリカルレンズ23を通過して合成される。
図18は本実施例で被走査媒体上のビームスポットの配列状態を示す図で、光源・コリメータユニット31aの各発光素子から出射した20本の光線によって形成されるスポットS1〜S20の列と、光源・コリメータユニット31bの各発光素子から出射した20本の光線によって形成されるスポットS21〜S40の列は、走査間隔dを調整するため主走査方向Xに対して配列角θで傾いており、かつ一直線上に配置されている。走査間隔dを調整する
本発明の第一の実施例に係るコリメータレンズの拡大断面図である。 そのコリメータレンズを実装した光源装置の断面図である。 その光源装置を用いた光走査装置の概略構成図である。 その光走査装置を用いた画像形成装置の概略構成図である。 第一の実施例において被走査媒体上に光スポットが多数並んだ様子を示す図である。 第一の実施例において第二、第三の光学系の具体的な構成例を示す図である。 図6に示した光学系による被走査媒体上の像面ずれ量を示した特性図である。 第一の光学系の目標値と第一の実施例の特性を示した図である。 第一、第二、第三の実施例において第一の光学系と図6に示した第二、第三の光学系を組み合わせた時の主走査方向スポットの走査中央の特性を示した図である。 第一の実施例に係るコリメータレンズの像面ずれの特性図である。 第二、第三の実施例における像面ずれの特性例を示した図である。 本発明の第二の実施例に係るコリメータレンズの拡大断面図である。 本発明の第三の実施例に係るコリメータレンズの拡大断面図である。 コリメータレンズの開口数NAと波面収差λRMSとの関係を示す特性図である。 本発明の他の実施例に係る光源装置の内部構成を示す概略構成図である。 その光源装置に用いられる光源・コリメータユニットの斜視図である。 図15A−A線上の断面図である。 その実施例において被走査媒体上に光スポットが多数並んだ様子を示す図である。
符号の説明
1…光源、2…光源ホルダ、3a,3b,3c…ネジ、4…鏡筒ホルダ、5…ベース、8…鏡筒、9…コリメータレンズ、10…帯電装置、11…光走査装置、12…現像装置、13…印刷用紙、14…搬送装置、15…転写装置、16…清掃装置、17…定着装置、17a…ヒートローラ、17b…加圧ローラ、18…感光体、20…光源装置、21…光線、22a,22b…ビームエキスパンダレンズ、23…シリンドリカルレンズ、24…回転多面鏡、25…Fθレンズ、26…ミラー、27…光センサ、28…折り返しミラー、30…ベース、31a…第1の光源・コリメータユニット、31b…第2の光源・コリメータユニット、32…光源、33…光源ホルダ、34…コリメータレンズ、35…鏡筒、36…鏡筒ホルダ、37〜40…ネジ、50…光スポット、X…主走査方向、θ…スポット配列角、d…走査間隔、O…光源の光軸、Z…像面ずれ量。

Claims (11)

  1. 多数個の発光素子が列状に配置された光源と、その光源からの光束をコリメートするコリメータレンズと、そのコリメータレンズを通過した光束を被走査媒体上で偏向走査する光偏向手段と、前記コリメータレンズと被走査媒体の間の光路上に配置された後方光学系を有する光走査光学系において、
    前記コリメートレンズを、前記後方光学系により生じる光源像高の違いによる被走査媒体上の像面ずれと逆の方向に、前記像面ずれと略同量だけ像面をずらしたレンズとすることを特徴とする光走査光学系。
  2. 請求項1に記載の光走査光学系において、前記後方光学系が、前記コリメータレンズと光偏向手段の間の光路上に配置されて前記コリメータレンズでコリメートされた光束を整形する整形光学系と、前記光偏向手段と被走査媒体の間の光路上に配置されて前記光偏向手段により偏向走査された光束を被走査媒体上に結像する結像光学系を含むことを特徴とする光走査光学系。
  3. 請求項1または2に記載の光走査光学系において、前記コリメータレンズの開口数が0.08以下に規制されていることを特徴とする光走査光学系。
  4. 請求項1ないし3のいずれか1項に記載の光走査光学系において、前記光源が多数個の発光素子を1列に配置した光源であることを特徴とする光走査光学系。
  5. 請求項4に記載の光走査光学系において、前記光源がその光源の光軸を中心軸として回転可能になっており、その光源の回転によって光線の走査間隔を調整することを特徴とする光走査光学系。
  6. 多数個の発光素子が列状に配置された光源と、その光源からの光束をコリメートするコリメータレンズと、そのコリメータレンズを通過した光束を被走査媒体上で偏向走査する光偏向手段と、前記コリメータレンズと被走査媒体の間の光路上に配置された後方光学系を有する光走査装置において、
    前記コリメータレンズを、前記後方光学系により生じる光源像高の違いによる被走査媒体上の像面ずれと逆の方向に、前記像面ずれと略同量だけ像面をずらしたレンズとすることを特徴とする光走査装置。
  7. 請求項6に記載の光走査装置において、前記後方光学系が、前記コリメータレンズと光偏向手段の間の光路上に配置されて前記コリメータレンズでコリメートされた光束を整形する整形光学系と、前記光偏向手段と被走査媒体の間の光路上に配置されて前記光偏向手段により偏向走査された光束を被走査媒体上に結像する結像光学系を含むことを特徴とする光走査装置。
  8. 請求項6または7に記載の光走査装置において、前記コリメータレンズの開口数が0.08以下に規制されていることを特徴とする光走査装置。
  9. 請求項6ないし8のいずれか1項に記載の光走査装置において、前記光源が多数個の発光素子を1列に配置した光源であることを特徴とする光走査装置。
  10. 請求項9に記載の光走査装置において、前記光源がその光源の光軸を中心軸として回転可能になっており、その光源の回転によって光線の走査間隔を調整することを特徴とする光走査装置。
  11. 感光体と、その感光体を帯電する帯電装置と、光線の走査により記録されるべき画像情報に対応した静電潜像を前記感光体上に形成する光走査装置と、前記静電潜像にトナーを付着してトナー像を形成する現像装置と、前記トナー像を被記録媒体上に転写する転写装置と、転写したトナー像を被記録媒体上に定着する定着装置とを備えた画像形成装置において、
    前記光走査装置が請求項6ないし10のいずれか1項に記載の光走査装置であることを特徴とする画像形成装置。
JP2008163549A 2008-06-23 2008-06-23 光走査光学系、光走査装置並びにそれを用いた画像形成装置 Pending JP2010002852A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008163549A JP2010002852A (ja) 2008-06-23 2008-06-23 光走査光学系、光走査装置並びにそれを用いた画像形成装置
US12/489,728 US7969460B2 (en) 2008-06-23 2009-06-23 Optical scanning device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163549A JP2010002852A (ja) 2008-06-23 2008-06-23 光走査光学系、光走査装置並びにそれを用いた画像形成装置

Publications (1)

Publication Number Publication Date
JP2010002852A true JP2010002852A (ja) 2010-01-07

Family

ID=41431433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163549A Pending JP2010002852A (ja) 2008-06-23 2008-06-23 光走査光学系、光走査装置並びにそれを用いた画像形成装置

Country Status (2)

Country Link
US (1) US7969460B2 (ja)
JP (1) JP2010002852A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164422A (ja) * 2010-02-10 2011-08-25 Fuji Xerox Co Ltd 光学部品の調整構造、露光装置、及び画像形成装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610127B2 (ja) * 2010-03-11 2014-10-22 株式会社リコー 光走査装置及び画像形成装置
JP5664013B2 (ja) 2010-08-19 2015-02-04 株式会社リコー 光走査装置及び画像形成装置
US8654168B2 (en) 2011-08-03 2014-02-18 Ricoh Company, Ltd. Optical scanning device, image forming apparatus, and optical scanning device designing method
EP3226555B1 (en) 2016-03-28 2019-11-20 Ricoh Company, Ltd. Wavelength estimation device, light-source device, image display apparatus, wavelength estimation method, and light-source control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311895A (ja) * 2000-02-22 2001-11-09 Ricoh Co Ltd マルチビーム走査装置・マルチビーム走査方法・マルチビーム走査装置用の光源装置および画像形成装置
JP2005017878A (ja) * 2003-06-27 2005-01-20 Ricoh Printing Systems Ltd 半導体レーザ装置
JP2005049535A (ja) * 2003-07-31 2005-02-24 Ricoh Co Ltd 光走査装置および画像形成装置
JP2006313174A (ja) * 2005-04-28 2006-11-16 Canon Inc 走査光学装置及びそれを用いた画像形成装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121412A (ja) 1983-11-28 1985-06-28 Konishiroku Photo Ind Co Ltd 非球面コリメ−タレンズ
JPS63189822A (ja) 1987-02-02 1988-08-05 Seiko Epson Corp 光走査装置
US4906061A (en) * 1987-06-26 1990-03-06 Ricoh Company, Ltd. Collimated light beam scanning method including curvature of field correction
JP2554724B2 (ja) * 1987-12-11 1996-11-13 株式会社リコー レーザーダイオードアレイを用いる光走査光学系
NO884535L (no) 1988-10-12 1990-04-17 Ingvar Hognaland Metode for aa kople sammen datamaskiner.
JPH05273463A (ja) 1992-03-27 1993-10-22 Konica Corp 非球面単レンズ
JP3545115B2 (ja) * 1995-09-22 2004-07-21 大日本スクリーン製造株式会社 像面湾曲の補正方法および該方法に使用する光ビーム走査装置
JP2001343606A (ja) 2000-06-01 2001-12-14 Hitachi Koki Co Ltd 光走査装置
JP2002267976A (ja) 2001-03-09 2002-09-18 Hitachi Koki Co Ltd 光走査装置
JP2003315709A (ja) 2002-04-23 2003-11-06 Ricoh Co Ltd マルチビーム走査装置および画像形成装置
JP4474143B2 (ja) * 2003-11-04 2010-06-02 キヤノン株式会社 光走査装置の被走査面における像面位置の調整方法
JP5009557B2 (ja) 2006-06-21 2012-08-22 株式会社リコー 光走査装置及びそれを備えた画像形成装置
JP2008089746A (ja) 2006-09-29 2008-04-17 Ricoh Printing Systems Ltd 光源装置並びにそれを用いた光走査装置、画像形成装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001311895A (ja) * 2000-02-22 2001-11-09 Ricoh Co Ltd マルチビーム走査装置・マルチビーム走査方法・マルチビーム走査装置用の光源装置および画像形成装置
JP2005017878A (ja) * 2003-06-27 2005-01-20 Ricoh Printing Systems Ltd 半導体レーザ装置
JP2005049535A (ja) * 2003-07-31 2005-02-24 Ricoh Co Ltd 光走査装置および画像形成装置
JP2006313174A (ja) * 2005-04-28 2006-11-16 Canon Inc 走査光学装置及びそれを用いた画像形成装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164422A (ja) * 2010-02-10 2011-08-25 Fuji Xerox Co Ltd 光学部品の調整構造、露光装置、及び画像形成装置

Also Published As

Publication number Publication date
US7969460B2 (en) 2011-06-28
US20090317137A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
US6388792B1 (en) Optical scanning device and image forming apparatus
US7633663B2 (en) Optical scanning device and image forming apparatus
JP3451473B2 (ja) マルチビーム走査装置および画像形成装置
US7616364B2 (en) Scanning optical system, optical scanner, and image forming apparatus having a biconvex lens having a change of curvature of the toric surface in the cross section in the sub-scanning direction along the main scanning direction is asymmetric with an optical axis of the lens
US8134766B2 (en) Optical scanning device and image forming apparatus
JP2003322814A (ja) 光走査装置、画像形成装置
KR20010107742A (ko) 광학 주사 장치와 이를 사용하는 화상 형성 장치
JP2003279874A (ja) 光走査装置および画像形成装置
US20080247021A1 (en) Optical scanning device and image forming apparatus
JP4970864B2 (ja) 光走査装置、及びその光走査装置を備える光書込装置、並びにその光走査装置またはその光書込装置を備える画像形成装置
JP5022253B2 (ja) 光走査装置及び画像形成装置
CN101211010A (zh) 光学扫描设备和使用其的图像形成装置
JP2010002852A (ja) 光走査光学系、光走査装置並びにそれを用いた画像形成装置
JP5903773B2 (ja) 光走査装置および画像形成装置
JP5316759B2 (ja) 光走査装置、調整方法及び画像形成装置
JP2002221681A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2010020278A (ja) 光源装置並びにそれを用いた光走査装置、画像形成装置
JP2009003393A (ja) 光走査装置及びこれを備えた画像形成装置
JP2004177861A (ja) 走査光学系
JP2003107382A (ja) 走査光学系
JP2005049535A (ja) 光走査装置および画像形成装置
JP2007241182A (ja) 光走査装置および画像形成装置
JP5470877B2 (ja) 光走査装置及びそれを備えた画像形成装置
JP4280748B2 (ja) 光走査装置及びそれを用いた画像形成装置
JP3784591B2 (ja) 走査結像光学系・光走査装置および画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925