JP3545115B2 - 像面湾曲の補正方法および該方法に使用する光ビーム走査装置 - Google Patents

像面湾曲の補正方法および該方法に使用する光ビーム走査装置 Download PDF

Info

Publication number
JP3545115B2
JP3545115B2 JP28350695A JP28350695A JP3545115B2 JP 3545115 B2 JP3545115 B2 JP 3545115B2 JP 28350695 A JP28350695 A JP 28350695A JP 28350695 A JP28350695 A JP 28350695A JP 3545115 B2 JP3545115 B2 JP 3545115B2
Authority
JP
Japan
Prior art keywords
light beam
lens
scanning
optical axis
scanning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28350695A
Other languages
English (en)
Other versions
JPH09146026A (ja
Inventor
元順 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP28350695A priority Critical patent/JP3545115B2/ja
Priority to US08/715,547 priority patent/US5808774A/en
Priority to EP96115155A priority patent/EP0764868A1/en
Publication of JPH09146026A publication Critical patent/JPH09146026A/ja
Application granted granted Critical
Publication of JP3545115B2 publication Critical patent/JP3545115B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/124Details of the optical system between the light source and the polygonal mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において発生する像面湾曲を補正する像面湾曲の補正方法および該方法に使用する光ビーム走査装置に関する。
【0002】
但し、ここで言う像面湾曲とは主走査方向の像面湾曲である。
【0003】
【従来の技術】
図13は従来の光ビーム走査装置を示す平面図である。この光ビーム走査装置は、同図に示すように、半導体レーザ11とコリメートレンズ12とからなる第1光学部10を有している。半導体レーザ11から出力された光ビームはコリメートレンズ12でビーム整形された後、軸31回りに回動するガルバノミラー30に向けて出力される。
【0004】
また、このガルバノミラー30と被走査面Sとの間には、走査レンズ40が配置されており、ガルバノミラー30によって偏向反射された光ビームを被走査面S上に結像する。
【0005】
このように、図13の光ビーム走査装置は、ガルバノミラー30が走査レンズ40の前方側、つまり第1光学部10側に配置されたプリオブジェクティブ(pre−objective)型光ビーム走査装置となっており、第1光学部10からの光ビームをガルバノミラー30によって反射偏向し、当該偏向光ビームにより走査レンズ40を介して被走査面Sを主走査方向Yに走査するように構成されている。
【0006】
【発明が解決しようとする課題】
ところで、従来においては、光ビーム走査装置におけるビーム径は比較的大きく、焦点深度も同図に示すように焦点深度dと比較的深かった。したがって、主走査方向Yにおける像面湾曲が多少大きくとも、走査範囲全体にわたって像面Iを焦点深度d内に位置させることができ、良好に描画することができた。
【0007】
しかしながら、最近、高精細な描画の要求が高まるにつれて、ビーム径を小さくする必要が生じている。これを満足するためには、走査レンズ40のFナンバーを小さくしなければならず、それに応じて焦点深度は、例えば同図の2点鎖線に示すように、焦点深度d′(<d)と浅くなる。ここで、像面湾曲が比較的大きいと、像面Iの一部が焦点深度d′の範囲外に位置することとなり、部分的にピンぼけが生じて画像品質の低下を招く。したがって、近年においては、良好な描画を行うためには、像面湾曲を抑えることが重大な技術的課題のひとつとなっている。
【0008】
像面湾曲を抑えるためには、像面湾曲が極力小さくなるように走査レンズ40を設計すればよいが、単に最適な設計を行ったのみでは、像面湾曲を抑えることはできない。というのも、像面湾曲はレンズの面精度の影響を受けやすく、レンズ加工時にレンズの面精度が低下すると、像面湾曲が著しく大きくなり、上記の問題が生じる。一方、像面湾曲を抑えるためにレンズの面精度を向上させると、コストの上昇を招くといった別の問題が生じる。
【0009】
また、レンズの面精度向上による像面湾曲の抑制の代わりに、結像位置を光軸方向Zに移動させることで、像面Iが走査範囲全体にわたって焦点深度内に位置するように調整するという方法も考えられるが、その調整にも一定の限界があり、同図に示すように像面湾曲に比べて焦点深度が比較的浅いと、単に結像位置を移動させたとしても像面I全体を焦点深度内に位置させることは不可能である。
【0010】
そこで、この発明は、上記課題を解決するためになされたもので、走査レンズの面精度を向上させることなく、像面湾曲を減少させることができる像面湾曲の補正方法を提供することを第1の目的とする。
【0011】
また、この発明は、上記像面湾曲の補正方法に使用する光ビーム走査装置であって、像面湾曲を減少させて走査範囲全体にわたって良好な画像品質で描画できる光ビーム走査装置を提供することを第2の目的とする。
【0012】
【課題を解決するための手段】
請求項1の発明は、光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において発生する像面湾曲を補正する像面湾曲の補正方法であって、上記第1の目的を達成するため、前記偏向手段に入射される光ビームの平行性を変化させることで前記光ビーム走査装置によって形成される像面の形状を調整して、当該像面を走査範囲全体にわたって前記光ビーム走査装置の焦点深度内に位置させている。
【0013】
また、像面形状の調整後、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源から前記走査レンズまでの光学要素を一体的に前記光ビーム走査装置の光軸に沿って移動させて前記光ビーム走査装置による結像位置を前記被走査面とほぼ一致させている。
【0014】
請求項の発明は、光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置であって、上記第2の目的を達成するため、前記偏向手段に入射される光ビームの平行性を調整する調整手段を備え、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源を含む第1光学部と、前記調整手段と、前記偏向手段と、前記走査レンズとを一体的に光軸に沿って移動させて結像位置を変更する結像位置変更手段を、さらに備えている。
【0015】
請求項の発明は、光源からの光ビームをポリゴンミラーに入射し、そのポリゴンミラーによって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置であって、上記第2の目的を達成するため、前記ポリゴンミラーに入射される光ビームの平行性を調整する調整手段と、前記主走査方向と光軸とに直交する副走査方向にのみパワーを有し、前記光源と前記ポリゴンミラーとの間に配置された第1面倒れ補正レンズと、前記副走査方向にのみパワーを有し、前記走査レンズと前記被走査面との間に配置された第2面倒れ補正レンズと、前記第1面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記光源と前記ポリゴンミラーのミラー面とを光学的に共役とする第1面倒れ補正用移動手段と、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源を含む第1光学部と、前記調整手段と、前記第1面倒れ補正レンズと、前記ポリゴンミラーと、前記走査レンズとを一体的に前記光軸に沿って移動させて結像位置を変更する結像位置変更手段とを、さらに備えている。
【0016】
請求項の発明は、前記第2面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記ミラー面と前記被走査面とを光学的に共役とする第2面倒れ補正用移動手段を、さらに備えている。
【0017】
請求項の発明は、光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において発生する像面湾曲を補正する像面湾曲の補正方法であって、上記第1の目的を達成するため、前記偏向手段に入射される光ビームの平行性を変化させることで前記光ビーム走査装置によって形成される像面の形状を調整して、当該像面を走査範囲全体にわたって前記光ビーム走査装置の焦点深度内に位置させている。
また、像面形状の調整後、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記偏向手段および前記走査レンズを一体的に前記光ビーム走査装置の光軸に沿って移動させて前記光ビーム走査装置による結像位置を前記被走査面とほぼ一致させている。
【0018】
請求項の発明は、光源からの光ビームをポリゴンミラーに入射し、そのポリゴンミラーによって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置であって、上記第2の目的を達成するため、前記ポリゴンミラーに入射される光ビームの平行性を調整する調整手段と、前記主走査方向と光軸とに直交する副走査方向にのみパワーを有し、前記光源と前記ポリゴンミラーとの間に配置された第1面倒れ補正レンズと、前記副走査方向にのみパワーを有し、前記走査レンズと前記被走査面との間に配置された第2面倒れ補正レンズと、前記第1面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記光源と前記ポリゴンミラーのミラー面とを光学的に共役とする第1面倒れ補正用移動手段と、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記ポリゴンミラーおよび前記走査レンズを一体的に前記光軸に沿って移動させて結像位置を変更する結像位置変更手段とを、さらに備えている。
【0021】
この発明では、偏向手段に入射される光ビームの平行性が変化すると、光ビーム走査装置によって形成される像面の形状が変化するという特性が利用されており、光ビームの平行性を変化させることで、像面が走査範囲全体にわたって前記光ビーム走査装置の焦点深度内に位置される。
【0022】
また、光ビームの平行性を変化させたとき、像面の形状以外に結像位置も変化するが、その結像位置の変化量が大きいときには、像面形状の調整後、光源から走査レンズまでの光学要素、あるいは偏向手段および走査レンズが一体的に光軸に沿って移動される。これによって、結像位置が被走査面とほぼ一致する。
【0023】
【発明の実施の形態】
図1は、この発明にかかる光ビーム走査装置の第1の実施形態を示す斜視図である。この光ビーム走査装置では、光学ベース1上に、ガイド2が固着されるとともにガイド2に沿って別の光学ベース3が往復移動自在に設けられている。
【0024】
光学ベース3上では、半導体レーザ11がレーザホルダ13により保持されるとともに、レンズホルダ14によりコリメートレンズ12が保持されている。この半導体レーザ11は装置全体を制御する制御部(図示省略)からの信号に基づき直接変調駆動され、被走査面S上において、記録を行うべき画素では半導体レーザ11から光ビームを出力し、被照射面S上に照射して露光する一方、記録を行わない画素では半導体レーザ11からの光ビームの出力を停止させる。こうして半導体レーザ11から出射した光ビームはコリメートレンズ12によりビーム整形され、ガルバノミラー30に向けて出力される。例えば、コリメートレンズ12の前側焦点位置に半導体レーザ11を配置すると、半導体レーザ11からの光ビームはコリメートレンズ12により平行光ビームに整形され、ガルバノミラー30側に出射される。このように、この実施形態では、半導体レーザ11とコリメートレンズ12とで第1光学部10が構成されているが、第1光学部10の構成はこれに限定されるものではなく、例えばヘリウムネオンレーザ,アルゴンレーザなどの直接変調できない光源と、その光源からの光ビームを変調する変調器とで構成してもよい。また、半導体レーザ11の代わりに、LED(Light Emitting Diode)を用いてもよい。
【0025】
レーザホルダ13は光学ベース3に固着されており、半導体レーザ11は光学ベース3に対して固定されている。これに対して、レンズホルダ14は光学ベース3上でガイド15に沿って移動自在となっており、オペレータが調整ネジ16を操作すると、レンズホルダ14が移動し、コリメートレンズ12を光軸OAに沿って移動位置決めすることができる。したがって、コリメートレンズ12を光軸OAに沿って移動させることで、それに応じてガルバノミラー30に向けて出射される光ビームの平行性を変化させることができる。このように、この実施形態では、レンズホルダ14と、ガイド15と、調整ネジ16とによってガルバノミラー(偏向手段)30に入射される光ビームの平行性を変化させる調整手段が構成されており、この調整手段によってガルバノミラー30に入射される光ビームの平行性を変化させることで、像面の形状を変化させることができるようになっている。なお、平行性の変化と像面形状の変化との関係については、後の「光ビーム走査装置における像面湾曲の補正手順」において一例を挙げて詳説する。
【0026】
ガルバノミラー30は光学ベース3上において軸31回りに回動自在に設けられており、第1光学部10からの光ビームを偏向反射させて走査レンズ40側に導く。なお、光ビームを偏向する偏向手段は、ガルバノミラー30に限定されるものではなく、レゾナントスキャナ(共振型ガルバノミラー)、ペンタプリズム、モノゴンミラーやポリゴンミラーなどを用いることができる。ただし、ポリゴンミラーを偏向手段として採用した場合には、面倒れ補正が必須となり、この実施形態と若干相違するので、これに関しては後で別の実施形態として詳細に説明する。
【0027】
走査レンズ40はレンズホルダ41により保持されながら、光学ベース3上に固着されており、ガルバノミラー30からの光ビームを被走査面Sに導光する。
【0028】
上記のようにして半導体レーザ11,コリメートレンズ12,調整手段,ガルバノミラー30および走査レンズ40が配置された光学ベース3には、調整ノブ4が連結されている。このため、調整ノブ4をオペレータが操作することで光学ベース3がガイド2に沿って移動し、第1光学部10から走査レンズ40までの光学要素(半導体レーザ11,コリメートレンズ12,調整手段,ガルバノミラー30および走査レンズ40)を一体的に移動し、位置決めすることができる。このように光学ベース3上の光学要素を一体的に移動させると、光ビーム走査装置により形成される像面の結像位置を光軸方向Zに移動させることができる。この実施形態では、このような働きをする結像位置変更手段がガイド2と調整ノブ4とで構成されている。
【0029】
次に、上記のように構成された光ビーム走査装置における像面湾曲の補正手順について図2ないし図4を参照しつつ説明する。
【0030】
特別に高い面精度でレンズ加工した場合を除いて、通常のレンズ加工で製作したレンズを用いて光ビーム走査装置を組み立てた場合、上記したように像面湾曲が生じることがある。ここでは、説明の便宜から、図2に示すように像面Iがオーバー側に湾曲するものと仮定する。
【0031】
このような場合、図3の白抜き矢印で示すようにレンズホルダ14を移動させてコリメートレンズ12を半導体レーザ11に近づけると、ガルバノミラー30に入射する光ビームの平行性が変化し、それにともなって像面Iの形状が変化する。そこで、像面形状がフラット、あるいは少なくとも像面Iが焦点深度内に収まる程度になった時、コリメートレンズ12の移動を停止させ、レンズホルダ14をボルト(図示省略)により光学ベース3に固定する。
【0032】
このようにして光ビームの平行性を変化させると、像面形状のみならず、像面Iの位置も光軸方向Zに移動するが、その移動量が少なく、像面Iが少なくとも走査範囲全体にわたって焦点深度内に位置する場合には、画像品質上、特に問題となることはなく、この段階で像面湾曲の補正を終了してもよい。もちろん、この場合であっても、次の処理を行って像面Iを被走査面Sとほぼ一致させる方が望ましい。
【0033】
平行性の変化による結像位置の移動によって、例えば図3に示すように結像位置(像面Iの位置)が被走査面Sから光軸方向Zに焦点深度をこえて大きくずれることがある。この場合、図4に示すように、調整ノブ4を操作して光学ベース3を白抜き矢印方向に移動させて光学ベース3上の光学要素(半導体レーザ11,コリメートレンズ12,ガルバノミラー30および走査レンズ40)を一体的に方向(−Z)に移動させて、像面Iを被走査面Sに一致させる。これにより、像面全体が全走査範囲にわたって確実に焦点深度内に位置することとなり、優れた画像品質で描画することができる。
【0034】
以上のように、この実施形態によれば、ガルバノミラー30に入射される光ビームの平行性を変化させることで像面Iの形状を調整して、像面Iを走査範囲全体にわたって光ビーム走査装置の焦点深度内に位置させているので、走査レンズ40の面精度を向上させることなく、像面湾曲を減少させることができる。つまり、この実施形態にかかる光ビーム走査装置によれば、装置のコスト上昇を防ぎながら、像面湾曲を減少させて走査範囲全体にわたって良好な画像品質で描画できる。
【0035】
図5は、この発明にかかる光ビーム走査装置の第2の実施形態を示す斜視図である。この光ビーム走査装置は、以下の3点で先に説明した第1の実施形態と大きく相違する。
【0036】
まず第1点目の相違点は、偏向手段としてポリゴンミラー32が用いられている点である。
【0037】
また第2点目として、ポリゴンミラー32を採用したことに伴う面倒れ補正のために副走査方向Xにのみパワーを有するシリンドリカルレンズ20,50を設けている。一方のシリンドリカルレンズ20はコリメートレンズ12からの光ビームをポリゴンミラー32側に導光するミラー17と、ポリゴンミラー32との間に配置されている。他方のシリンドリカルレンズ50は走査レンズ40と被走査面Sとの間に配置されている。
【0038】
さらに第3の相違として、これらのシリンドリカルレンズ20,50はそれぞれレンズホルダ21,51により保持されており、それぞれ光学ベース3,1上で光軸OAに沿って移動自在となっている。特に、シリンドリカルレンズ20に関しては、光学ベース3に固着されたガイド22に沿ってレンズホルダ21を移動可能とし、調整ネジ23によりレンズホルダ21を移動させることでシリンドリカルレンズ20を位置決めするように構成されている。
【0039】
なお、その他の構成は、第1の実施形態のそれと同様であるため、ここでは同一符号を付して、構成の説明を省略する。
【0040】
次に、上記のように構成された光ビーム走査装置における像面湾曲の補正手順について図6ないし図8を参照しつつ説明する。
【0041】
通常の面精度でレンズ加工されたレンズを用いて光ビーム走査装置を組み立てた場合、第1の実施形態の場合と同様に、像面湾曲が生じる。この実施形態でも、説明の便宜から、像面がオーバー側に湾曲しているものとして以下説明する。
【0042】
このような場合、図6の矢印R1で示すように、レンズホルダ14(図5)を移動させてコリメートレンズ12を半導体レーザ11に近づけると、ポリゴンミラー32に入射する光ビームの平行性が変化し、それにともなって像面の形状が変化する。そこで、像面形状がフラット、あるいは少なくとも像面が焦点深度内に収まる程度になった時、コリメートレンズ12の移動を停止させ、レンズホルダ14をボルト(図示省略)により光学ベース3(図5)に固定する。
【0043】
また、上記のようにしてコリメートレンズ12を移動させた場合、半導体レーザ11とポリゴンミラー32のミラー面33とが副走査方向Xにおいて光学的に共役とならず、ポリゴンミラー32の面倒れを補正することができなくなる。そこで、同図の矢印R2に示すように、シリンドリカルレンズ(第1面倒れ補正レンズ)20をコリメートレンズ12側に移動させて半導体レーザ11とポリゴンミラー32のミラー面33とが副走査方向Xにおいて共役となるように調整する。この実施形態では、オペレータが調整ネジ23によってレンズホルダ21をガイド22に沿って移動させるように構成されているため、これらレンズホルダ21,ガイド22および調整ネジ23が副走査方向Xにおいて半導体レーザ11とポリゴンミラー32のミラー面33とを光学的に共役とする第1面倒れ補正用移動手段として機能する。
【0044】
なお、この実施形態においては、コリメートレンズ12を移動させて像面の形状を調整した後、シリンドリカルレンズ(第1面倒れ補正レンズ)20を移動させているが、逆の手順により、あるいはレンズ12,20を交互に移動させながら、上記調整を行うようにしてもよい。
【0045】
また、このようにして光ビームの平行性を変化させると、像面形状のみならず、結像位置も光軸方向Zに移動するが、その移動量が少なく、像面が少なくとも走査範囲全体にわたって焦点深度内に位置する場合には、画像品質上、特に問題となることはなく、この段階で像面湾曲の補正を終了してもよい。もちろん、この場合であっても、次の処理を行って像面を被走査面Sとほぼ一致させる方が望ましい。
【0046】
平行性の変化による結像位置の移動によって、結像位置(像面Iの位置)が被走査面Sから光軸方向Zにずれることがあるが、この場合、調整ノブ4を操作して光学ベース3を矢印R3方向に移動させて光学ベース3上の光学要素(図7の破線で囲った構成要素:半導体レーザ11,コリメートレンズ12,ミラー17,シリンドリカルレンズ20,ポリゴンミラー32および走査レンズ40)を一体的に移動させて、像面Iを被走査面Sに一致させる。これにより、像面全体が全走査範囲にわたって確実に焦点深度内に位置することとなり、優れた画像品質で描画することができる。
【0047】
また、走査レンズ40が移動すると、ポリゴンミラー32のミラー面33と被走査面Sとが副走査方向Xにおいて共役な関係とならなくなるが、多くの場合、共役な関係からのずれ量は比較的小さいため(焦点深度の範囲内程度であるため)、ポリゴンミラー32の面倒れによる影響はほとんどない。
【0048】
しかしながら、その影響が比較的大きい場合は、図8の矢印R4に示すように、シリンドリカルレンズ50を被走査面S側に移動させてポリゴンミラー32のミラー面33と被走査面Sとが副走査方向Xにおいて完全に共役となるように調整して、面倒れによる悪影響を排除する必要がある。なお、この実施態様では、図5に示すように、レンズホルダ51の下部に長孔52を2つ設けており、この長孔52の範囲内でシリンドリカルレンズ50を移動し、位置決めした後、ボルト(図示省略)でレンズホルダ51を光学ベース1に固定するように構成されており、この構成が第2面倒れ補正用移動手段に相当する。
【0049】
以上のように、この実施形態によれば、ポリゴンミラー32に入射される光ビームの平行性を変化させることで像面の形状を調整して、像面を走査範囲全体にわたって光ビーム走査装置の焦点深度内に位置させているので、走査レンズ40の面精度を向上させることなく、像面湾曲を減少させることができる。つまり、この実施形態にかかる光ビーム走査装置によれば、装置のコスト上昇を防ぎながら、像面湾曲を減少させて走査範囲全体にわたって良好な画像品質で描画できる。
【0050】
また、面倒れ補正用のシリンドリカルレンズ20,50をそれぞれ光軸方向Zに移動自在とし、コリメートレンズ12の移動に応じてシリンドリカルレンズ20を、および/また光学ベース3の移動に応じてシリンドリカルレンズ50を移動させて面倒れ補正を達成しているので、面倒れの影響を抑えて良好な描画処理を行うことができる。
【0051】
なお、光学ベース3を移動させる結像位置変更手段、コリメートレンズ12を移動させる調整手段、シリンドリカルレンズ20を移動させる第1面倒れ補正用移動手段およびシリンドリカルレンズ50を移動させる第2面倒れ補正用移動手段については、それぞれ上記した構成に限定されるものではなく、例えば調整ノブ4の代わりにモータ駆動機構を取付け、制御部からの信号により自動的に調整するようにしてもよい。
【0052】
図9は、この発明にかかる光ビーム走査装置の第3の実施形態を示す斜視図である。また、図10は、図9の光ビーム走査装置の平面図であり、同図(a)は主走査面(YZ平面)での平面図を、また同図(b)は副走査面(XZ面)での平面図をそれぞれ示している。この光ビーム走査装置は、偏向手段としてポリゴンミラー32を用いているが、以下において第3の実施形態と相違する。
【0053】
まず第1点目の相違点は、半導体レーザ11とリレーレンズ60とがレーザホルダ13に保持され、リレーレンズ60の出射側で半導体レーザ11の中間像が形成されるように構成されている点である。
【0054】
また第2点目として、シリンドリカルレンズ20とコリメートレンズ12との配置関係が逆転している点である。すなわち、この実施形態にかかる光ビーム走査装置では、これら図9および図10に示すように、半導体レーザ11からの光ビームがリレーレンズ60を介して副走査方向Xにのみパワーを有するシリンドリカルレンズ20に入射し、さらにコリメートレンズ12で整形された後、ミラー17を介してポリゴンミラー32に導光される。
【0055】
さらに第3の相違として、図5の光ビーム走査装置では半導体レーザ11から走査レンズ40までのすべての光学要素が光学ベース3上に載置されており、これらの光学要素が一体的に光軸Zに沿って移動自在となっているのに対し、この実施形態にかかる光ビーム走査装置ではミラー17、ポリゴンミラー32および走査レンズ40のみが光学ベース3上に固定されており、調整ノブ4を操作することでこれらミラー17、ポリゴンミラー32および走査レンズ40のみが光軸Zに沿って移動自在となっている点である。
【0056】
なお、その他の構成は、第2の実施形態のそれと同様であるため、ここでは同一符号を付して、構成の説明を省略する。
【0057】
次に、上記のように構成された光ビーム走査装置における像面湾曲の補正手順について図11および図12を参照しつつ説明する。
【0058】
通常のレンズ加工で製作されたレンズを用いて光ビーム走査装置を組み立てた場合、先の実施形態の場合と同様に、像面湾曲が生じることがある。この実施形態でも、説明の便宜から、像面がオーバー側に湾曲しているものとして以下説明する。
【0059】
このような場合、図11の矢印R1で示すように、レンズホルダ14(図9)を移動させてコリメートレンズ12を半導体レーザ11に近づけると、ポリゴンミラー32に入射する光ビームの平行性が変化し、それにともなって像面の形状が変化する。そこで、像面形状がフラット、あるいは少なくとも像面が焦点深度内に収まる程度になった時、コリメートレンズ12の移動を停止させ、レンズホルダ14をボルト(図示省略)により光学ベース1(図9)に固定する。
【0060】
また、このようにして光ビームの平行性を変化させると、像面形状のみならず、結像位置も光軸方向Zに移動するが、その移動量が少なく、像面が少なくとも走査範囲全体にわたって焦点深度内に位置する場合には、画像品質上、特に問題となることはなく、この段階で像面湾曲の補正を終了してもよい。もちろん、この場合であっても、次の処理を行って像面を被走査面Sとほぼ一致させる方が望ましい。
【0061】
平行性の変化による結像位置の移動によって、結像位置(像面Iの位置)が被走査面Sから光軸方向Zにずれることがあるが、この場合、調整ノブ4を操作して光学ベース3とともにミラー17、ポリゴンミラー32および走査レンズ40を一体的に移動させて、同図の矢印R22に示すように走査レンズ40を被走査面Sから遠ざける。この時、同図の矢印21に示すようにポリゴンミラー32のミラー面33がコリメートレンズ12から遠ざかる。なお、同図においては、このような光学ベース3の移動によってポリゴンミラー32のミラー面33と走査レンズ40とが相互に近接するように図示されているが、これはミラー面33および走査レンズ40がそれぞれコリメートレンズ12および被走査面Sから遠ざかる様子を明らかとするためであり、図9からわかるように光学ベース3に固定された両光学素子(ポリゴンミラー32と走査レンズ40)の間隔は常に一定である。
【0062】
このようにポリゴンミラー32および走査レンズ40を移動させることで、走査レンズ40と被走査面Sとの間の光路長とを伸ばすことで、像面全体が全走査範囲にわたって確実に焦点深度内に位置することとなり、優れた画像品質で描画することができる。
【0063】
また、ポリゴンミラー32および走査レンズ40の移動によってポリゴンミラー32のミラー面33と被走査面Sとが副走査方向Xにおいて共役な関係とならなくなるが、多くの場合、共役な関係からのずれ量は比較的小さいため(焦点深度の範囲内程度であるため)、ポリゴンミラー32の面倒れによる影響はほとんどない。
【0064】
しかしながら、その影響が比較的大きい場合は、図12の矢印R3に示すようにシリンドリカルレンズ20を半導体レーザ11側に移動させるとともに、同図の矢印R4に示すようにシリンドリカルレンズ50を被走査面S側に移動させてポリゴンミラー32のミラー面33と被走査面Sとが副走査方向Xにおいて完全に共役となるように調整して、面倒れによる悪影響を排除する必要がある。
【0065】
以上のように、この実施形態によれば、ポリゴンミラー32に入射される光ビームの平行性を変化させることで像面の形状を調整して、像面を走査範囲全体にわたって光ビーム走査装置の焦点深度内に位置させているので、走査レンズ40の面精度を向上させることなく、像面湾曲を減少させることができる。つまり、この実施形態にかかる光ビーム走査装置によれば、装置のコスト上昇を防ぎながら、像面湾曲を減少させて走査範囲全体にわたって良好な画像品質で描画できる。
【0066】
また、面倒れ補正用のシリンドリカルレンズ20,50をそれぞれ光軸方向Zに移動自在とし、必要に応じてシリンドリカルレンズ20,50を移動させて面倒れ補正を達成しているので、面倒れの影響を抑えて良好な描画処理を行うことができる。
【0067】
なお、上記した第1および第2の実施形態においては、調整手段はコリメートレンズ12の移動により偏向手段に入射する光ビームの平行性を変化させて像面形状を調整しているが、半導体レーザ11とコリメートレンズ12とを相対的に移動させる構成をとることで平行性を変化させて像面形状を調整することができる。すなわち、コリメートレンズ12を固定しておき、半導体レーザ11のみを移動させてもよいし、半導体レーザ11およびコリメートレンズ12の両者を移動させるようにしてもよい。
【0068】
また、第1光学部10と偏向手段との間に主走査方向Yにパワーを有するシリンドリカルレンズを配置し、このシリンドリカルレンズを光軸OAに沿って移動させるように調整手段を構成してもよく。この調整手段によっても、上記した調整手段と同様に、偏向手段に入射する光ビームの平行性を変化させて像面形状を調整することができる。
【0069】
【発明の効果】
以上のように、この発明にかかる像面湾曲の補正方法によれば、偏向手段に入射される光ビームの平行性を変化させて、光ビーム走査装置によって形成される像面の形状を調整し、像面が走査範囲全体にわたって光ビーム走査装置の焦点深度内に位置するようにしているので、走査レンズの面精度を向上させることなく、像面湾曲を減少させることができる。
【0070】
また、この発明にかかる光ビーム走査装置によれば、調整手段によって偏向手段に入射される光ビームの平行性を変化させることで像面の形状を調整して、像面を走査範囲全体にわたって光ビーム走査装置の焦点深度内に位置させているので、像面湾曲を減少させるために走査レンズの面精度を向上させる必要がなくなり、装置のコスト上昇を防ぎながら走査範囲全体にわたって良好な画像品質で描画できる。
【図面の簡単な説明】
【図1】この発明にかかる光ビーム走査装置の第1の実施形態を示す斜視図である。
【図2】図1の光ビーム走査装置において像面湾曲を補正する手順を説明するための斜視図である。
【図3】図1の光ビーム走査装置において像面湾曲を補正する手順を説明するための斜視図である。
【図4】図1の光ビーム走査装置において像面湾曲を補正する手順を説明するための斜視図である。
【図5】この発明にかかる光ビーム走査装置の第2の実施形態を示す斜視図である。
【図6】図5の光ビーム走査装置において像面湾曲を補正する手順を説明するための図である。
【図7】図5の光ビーム走査装置において像面湾曲を補正する手順を説明するための図である。
【図8】図5の光ビーム走査装置において像面湾曲を補正する手順を説明するための図である。
【図9】この発明にかかる光ビーム走査装置の第3の実施形態を示す斜視図である。
【図10】図9の光ビーム走査装置の平面図である。
【図11】図9の光ビーム走査装置において像面湾曲を補正する手順を説明するための図である。
【図12】図9の光ビーム走査装置において像面湾曲を補正する手順を説明するための図である。
【図13】従来の光ビーム走査装置を示す平面図である。
【符号の説明】
10 第1光学部
11 半導体レーザ
12 コリメートレンズ
13 レーザホルダ
14 レンズホルダ
15 ガイド
16 調整ネジ
20 シリンドリカルレンズ(第1面倒れ補正レンズ)
21,51 レンズホルダ
22 ガイド
23 調整ネジ
30 ガルバノミラー(偏向手段)
32 ポリゴンミラー(偏向手段)
33 ミラー面
40 走査レンズ
50 シリンドリカルレンズ(第2面倒れ補正レンズ)
51 レンズホルダ
52 長孔
60 リレーレンズ
I 像面
OA 光軸
S 被走査面
X 副走査方向
Y 主走査方向
Z 光軸方向

Claims (6)

  1. 光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において発生する像面湾曲を補正する像面湾曲の補正方法であって、
    前記偏向手段に入射される光ビームの平行性を変化させることで前記光ビーム走査装置によって形成される像面の形状を調整した後、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源から前記走査レンズまでの光学要素を一体的に前記光ビーム走査装置の光軸に沿って移動させて、前記光ビーム走査装置による結像位置を前記被走査面とほぼ一致させることにより、当該像面を走査範囲全体にわたって前記光ビーム走査装置の焦点深度内に位置させることを特徴とする像面湾曲の補正方法。
  2. 光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において、
    前記偏向手段に入射される光ビームの平行性を調整する調整手段を備え、
    前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源を含む第1光学部と、前記調整手段と、前記偏向手段と、前記走査レンズとを一体的に光軸に沿って移動させて結像位置を変更する結像位置変更手段
    を、さらに備えたことを特徴とする光ビーム走査装置。
  3. 光源からの光ビームをポリゴンミラーに入射し、そのポリゴンミラーによって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において、
    前記ポリゴンミラーに入射される光ビームの平行性を調整する調整手段と、
    前記主走査方向と光軸とに直交する副走査方向にのみパワーを有し、前記光源と前記ポリゴンミラーとの間に配置された第1面倒れ補正レンズと、
    前記副走査方向にのみパワーを有し、前記走査レンズと前記被走査面との間に配置された第2面倒れ補正レンズと、
    前記第1面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記光源と前記ポリゴンミラーのミラー面とを光学的に共役とする第1面倒れ補正用移動手段と、
    前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記光源を含む第1光学部と、前記調整手段と、前記第1面倒れ補正レンズと、前記ポリゴンミラーと、前記走査レンズとを一体的に前記光軸に沿って移動させて結像位置を変更する結像位置変更手段と
    を、さらに備えたことを特徴とする光ビーム走査装置。
  4. 前記第2面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記ミラー面と前記被走査面とを光学的に共役とする第2面倒れ補正用移動手段を、さらに備えた請求項3記載の光ビーム走査装置。
  5. 光源からの光ビームを偏向手段に入射し、その偏向手段によって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において発生する像面湾曲を補正する像面湾曲の補正方法であって、
    前記偏向手段に入射される光ビームの平行性を変化させることで前記光ビーム走査装置によって形成される像面の形状を調整した後、前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記偏向手段および前記走査レンズを一体的に前記光ビーム走査装置の光軸に沿って移動させて、前記光ビーム走査装置による結像位置を前記被走査面とほぼ一致させることにより、当該像面を走査範囲全体にわたって前記光ビーム走査装置の焦点深度内に位置させることを特徴とする像面湾曲の補正方法。
  6. 光源からの光ビームをポリゴンミラーに入射し、そのポリゴンミラーによって反射偏向された光ビームにより走査レンズを介して被走査面を主走査方向に走査する光ビーム走査装置において、
    前記ポリゴンミラーに入射される光ビームの平行性を調整する調整手段と、
    前記主走査方向と光軸とに直交する副走査方向にのみパワーを有し、前記光源と前記ポリゴンミラーとの間に配置された第1面倒れ補正レンズと、
    前記副走査方向にのみパワーを有し、前記走査レンズと前記被走査面との間に配置された第2面倒れ補正レンズと、
    前記第1面倒れ補正レンズを前記光軸に沿って移動させて、前記副走査方向において前記光源と前記ポリゴンミラーのミラー面とを光学的に共役とする第1面倒れ補正用移動手段と、
    前記調整により光軸方向にずれた像面の結像位置を光軸方向に移動させるように、前記ポリゴンミラーおよび前記走査レンズを一体的に前記光軸に沿って移動させて結像位置を変更する結像位置変更手段と
    を、さらに備えたことを特徴とする光ビーム走査装置。
JP28350695A 1995-09-22 1995-10-31 像面湾曲の補正方法および該方法に使用する光ビーム走査装置 Expired - Lifetime JP3545115B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28350695A JP3545115B2 (ja) 1995-09-22 1995-10-31 像面湾曲の補正方法および該方法に使用する光ビーム走査装置
US08/715,547 US5808774A (en) 1995-09-22 1996-09-19 Method of correcting curvature of image surface and optical beam scanning apparatus for use with the same
EP96115155A EP0764868A1 (en) 1995-09-22 1996-09-20 Method of correcting curvature of image surface and optical beam scanning apparatus for use with the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-244435 1995-09-22
JP24443595 1995-09-22
JP28350695A JP3545115B2 (ja) 1995-09-22 1995-10-31 像面湾曲の補正方法および該方法に使用する光ビーム走査装置

Publications (2)

Publication Number Publication Date
JPH09146026A JPH09146026A (ja) 1997-06-06
JP3545115B2 true JP3545115B2 (ja) 2004-07-21

Family

ID=26536740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28350695A Expired - Lifetime JP3545115B2 (ja) 1995-09-22 1995-10-31 像面湾曲の補正方法および該方法に使用する光ビーム走査装置

Country Status (3)

Country Link
US (1) US5808774A (ja)
EP (1) EP0764868A1 (ja)
JP (1) JP3545115B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3679560B2 (ja) * 1997-08-22 2005-08-03 キヤノン株式会社 走査光学系の調整方法
JPH11305152A (ja) * 1998-04-21 1999-11-05 Asahi Optical Co Ltd 走査光学装置
JP2000105347A (ja) * 1998-07-29 2000-04-11 Ricoh Co Ltd マルチビ―ム光源装置、マルチビ―ム走査装置および画像形成装置
JP4007705B2 (ja) * 1998-11-20 2007-11-14 富士通株式会社 光走査型タッチパネル
US6057953A (en) * 1998-12-21 2000-05-02 Xerox Corporation Dual beam double pass raster output scanner
US6657760B2 (en) * 2000-01-14 2003-12-02 Canon Kabushiki Kaisha Image scanning apparatus
US7158321B2 (en) * 2004-03-19 2007-01-02 Lexmark International, Inc. Pre-scan assembly for aligning a pre-scan lens in a laser scanning unit
JP5112098B2 (ja) * 2008-02-05 2013-01-09 株式会社リコー 光走査装置及び画像形成装置
JP2010002852A (ja) * 2008-06-23 2010-01-07 Ricoh Co Ltd 光走査光学系、光走査装置並びにそれを用いた画像形成装置
JP6016645B2 (ja) * 2013-01-09 2016-10-26 シャープ株式会社 光走査装置、及びそれを備えた画像形成装置
CN104536132A (zh) * 2014-12-09 2015-04-22 中国科学院上海技术物理研究所 一种多孔径近距大视区光学系统及扫描镜的设计方法
JP6504450B2 (ja) * 2015-06-16 2019-04-24 株式会社リコー 光源装置及びこの光源装置を用いた光走査装置、物体検出装置
GB2566695A (en) * 2017-09-20 2019-03-27 Stratec Biomedical Ag Scanning device and method for use in an automated analyzer

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190920A (ja) * 1982-05-01 1983-11-08 Ricoh Co Ltd 光走査装置
JPS58192015A (ja) * 1982-05-04 1983-11-09 Toshiba Corp 複数光束走査装置
JPH0727125B2 (ja) * 1986-05-23 1995-03-29 株式会社日立製作所 光走査装置
JPS63216018A (ja) * 1987-03-05 1988-09-08 Sankyo Seiki Mfg Co Ltd 光走査装置
US5054866A (en) * 1988-12-29 1991-10-08 Ricoh Company, Ltd. Scanning optical apparatus
US5134511A (en) * 1989-12-08 1992-07-28 Kabushiki Kaisha Toshiba Optical unit for use in laser beam printer or the like
JPH04233867A (ja) * 1990-06-27 1992-08-21 Xerox Corp サブミクロンの揺動補正を有する光学的走査システム
US5276544A (en) * 1992-11-27 1994-01-04 Xerox Corporation Two element optical system for focus error correction in laser scanning systems

Also Published As

Publication number Publication date
US5808774A (en) 1998-09-15
JPH09146026A (ja) 1997-06-06
EP0764868A1 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
KR100374271B1 (ko) 다중 빔 주사 광학 시스템 및 그것을 이용한 화상 형성 장치
JP3545115B2 (ja) 像面湾曲の補正方法および該方法に使用する光ビーム走査装置
JPH10197821A (ja) 走査光学装置
JP3549666B2 (ja) マルチビーム書込光学系
US20010015747A1 (en) Multi-beam scanning optical system and image forming apparatus using the same
JP3627453B2 (ja) 光学走査装置
JPH10239615A (ja) デュアルフォーマット/解像度式スキャナ
JP2001021822A (ja) 光走査光学系及びそれを用いた画像形成装置
JPH07128604A (ja) 走査光学装置
JP3192537B2 (ja) 走査光学装置
JPH0618802A (ja) 光走査装置
JP2914504B2 (ja) 光走査装置
JPH1010448A (ja) 光走査装置
JPH10142542A (ja) 走査光学装置
US20030068126A1 (en) Array refracting element and exposure device
JPH0980331A (ja) 複数ビーム走査装置
JP3455485B2 (ja) 光走査用光源装置及びこれを用いた光走査装置
JP2001021823A (ja) 光走査装置の光学調整方法
JPH07318838A (ja) 光走査装置
JPS6355517A (ja) 光走査装置
JP3571808B2 (ja) 光走査光学系及びそれを備えるレーザービームプリンタ
JP3594821B2 (ja) 走査光学系
JP2817454B2 (ja) 走査光学装置
JPH02269305A (ja) 光走査装置
JP3387805B2 (ja) 走査光学系及びそれを用いた画像形成装置

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term