JP2010001949A - ボールねじ支持用転がり軸受 - Google Patents

ボールねじ支持用転がり軸受 Download PDF

Info

Publication number
JP2010001949A
JP2010001949A JP2008160553A JP2008160553A JP2010001949A JP 2010001949 A JP2010001949 A JP 2010001949A JP 2008160553 A JP2008160553 A JP 2008160553A JP 2008160553 A JP2008160553 A JP 2008160553A JP 2010001949 A JP2010001949 A JP 2010001949A
Authority
JP
Japan
Prior art keywords
rolling
ball
bearing
ball screw
rolling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008160553A
Other languages
English (en)
Inventor
Hiroshi Takiuchi
博志 瀧内
Toshiyuki Kataoka
俊之 片岡
Katsutoshi Muramatsu
勝利 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008160553A priority Critical patent/JP2010001949A/ja
Publication of JP2010001949A publication Critical patent/JP2010001949A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Ceramic Products (AREA)

Abstract

【課題】衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受を提供する。
【解決手段】ボールねじを構成するねじ軸を、ねじ軸に対向するように配置されるハウジングに対して回転自在に支持するスラストアンギュラ玉軸受1の玉13は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。
【選択図】図4

Description

本発明は、ボールねじ支持用転がり軸受に関し、より特定的には、βサイアロンを主成分とする焼結体からなる構成部品を備えたボールねじ支持用転がり軸受に関するものである。
ボールねじは、外周面に螺旋状の溝が形成されたねじ軸と、当該ねじ軸が貫通するように配置され、内周面にねじ軸の溝に対向する溝を有するボールナットと、ねじ軸およびボールナットの溝上を転走するとともにボールナットの内部を通って循環可能に配置されたボールとを備えている。そして、ねじ軸が回転することにより、ボールナットがねじ軸の軸方向に移動することができる。また、ねじ軸は、サポートユニットに組み込まれた転がり軸受により回転可能に支持される(たとえば特許文献1参照)。
ここで、サポートユニットに組み込まれるボールねじ支持用転がり軸受は以下のような苛酷な環境下において使用される。すなわち、ボールねじはボールナットに接続された部材を直線的に移動させる機能を果たすところ、機械装置内に組み込まれたボールねじは、機械装置の運転中も比較的長い時間停止状態を保つ場合がある。具体的には、たとえば工作機械のテーブル駆動機構を構成するボールねじにおいては、テーブル上に保持された被加工物を動かすことなく当該被加工物が加工される状態では、ボールねじは停止状態となっている。このとき、ねじ軸を支持するボールねじ支持用転がり軸受は停止状態のまま、工作機械の振動を受ける。そのため、当該転がり軸受を構成する軌道輪などの軌道部材と、玉、ころなどの転動体とが接触する領域において、フレッティングが発生する場合がある。そのため、フレッティングに対する耐久性(耐フレッティング性)の向上が求められている。また、上述のようなボールねじのねじ軸は高速回転する場合もあるため、これを支持するボールねじ支持用転がり軸受においては、転動体の軽量化が求められる。
これに対し、ボールねじ支持用転がり軸受の転動体として、窒化珪素製の転動体が採用される場合がある。窒化珪素は、転動体の素材として一般的に採用される鋼に比べて比重が小さいため、転動体の軽量化に寄与することができる。また、窒化珪素を転動体の素材として採用することにより、鋼からなる軌道輪などの軌道部材と、玉、ころなどの転動体とが異種材料となるとともに転動体の耐摩耗性が向上する。そのため、耐フレッティング性も向上する。したがって、ボールねじ支持用転がり軸受の転動体の素材として窒化珪素を採用することにより、上述の転動体の軽量化および耐フレッティング性の向上を達成することができる。
特開2000−104742号公報
一方、ボールねじに対しては、衝撃荷重が負荷される場合がある。たとえば、工作機械のテーブル駆動機構を構成するボールねじにおいては、工作機械の主軸とテーブルとが衝突するなどのトラブルが発生する場合がある。このような場合、ボールねじ支持用転がり軸受には衝撃荷重が負荷される。
ここで、窒化珪素は、鋼に比べてヤング率が大きく、弾性変形しにくいという特徴がある。そのため、鋼製の転動体に比べて、窒化珪素製の転動体と軌道部材との接触面積は小さくなり、接触面圧が大きくなる傾向にある。そのため、ボールねじ支持用転がり軸受の転動体として窒化珪素製の転動体が採用されている場合、当該軸受に衝撃荷重が負荷されると、軌道部材に圧痕などの損傷が発生しやすくなる。軌道部材における圧痕などの損傷は、ボールねじ支持用転がり軸受の短寿命化の要因となる。つまり、ボールねじ支持用転がり軸受の転動体として窒化珪素製の転動体を採用した場合、衝撃荷重が負荷された場合の軌道部材の損傷が大きくなるという問題があった。
そこで、本発明の目的は、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受を提供することである。
本発明に従ったボールねじ支持用転がり軸受は、ボールねじを構成するねじ軸を、ねじ軸に対向するように配置される部材に対して回転自在に支持するボールねじ支持用転がり軸受である。このボールねじ支持用転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、窒化珪素からなる場合に比べて軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている。より具体的には、たとえば転動体は、窒化珪素からなる場合に比べてヤング率が小さくなるセラミックスからなっている。
本発明のボールねじ支持用転がり軸受によれば、衝撃が作用した場合でも軌道部材における損傷が抑制されるため、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受を提供することができる。
本発明の一の局面におけるボールねじ支持用転がり軸受は、ボールねじを構成するねじ軸を、ねじ軸に対向するように配置される部材に対して回転自在に支持するボールねじ支持用転がり軸受である。このボールねじ支持用転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される。
本発明の他の局面におけるボールねじ支持用転がり軸受は、ボールねじを構成するねじ軸を、ねじ軸に対向するように配置される部材に対して回転自在に支持するボールねじ支持用転がり軸受である。このボールねじ支持用転がり軸受は、軌道部材と、軌道部材に接触し、円環状の軌道上に配置される転動体とを備えている。そして、転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される。
本発明の一の局面におけるボールねじ支持用転がり軸受においては、転動体にセラミックスであるβサイアロン焼結体(βサイアロンを主成分とする焼結体)が採用されている。そのため、転動体の軽量化および耐フレッティング性の向上が達成される。さらに、βサイアロン焼結体は、窒化珪素(Si)やアルミナ(Al)などの一般的なセラミックスからなる焼結体に比べてヤング率が小さい。そのため、衝撃荷重が負荷された場合における軌道部材の損傷を抑制することができる。以上のように、本発明の一の局面におけるボールねじ支持用転がり軸受によれば、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受を提供することができる。
また、本発明の他の局面におけるボールねじ支持用転がり軸受は、基本的には上記本発明の一の局面におけるボールねじ支持用転がり軸受と同様の構成を有し、同様の作用効果を奏する。しかし、本発明の他の局面におけるボールねじ支持用転がり軸受では、焼結体が焼結助剤を含む点で上記本発明の一の局面におけるボールねじ支持用転がり軸受とは異なっている。本発明の他の局面におけるボールねじ支持用転がり軸受によれば、焼結助剤の採用により、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能なボールねじ支持用転がり軸受を容易に提供することができる。
なお、焼結助剤としては、マグネシウム(Mg)、アルミニウム(Al)、珪素(Si)、チタン(Ti)、希土類元素の酸化物、窒化物、酸窒化物のうち少なくとも一種類以上を採用することができる。また、上記本発明の一の局面におけるボールねじ支持用転がり軸受と同等の作用効果を奏するためには、焼結助剤は、焼結体のうち20質量%以下とすることが望ましい。
上記ボールねじ支持用転がり軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす。
本発明者は、βサイアロン焼結体からなる転動体の転動疲労寿命とβサイアロンの組成との関係を詳細に調査した。その結果、以下の知見が得られた。βサイアロンは、燃焼合成を含む製造工程を採用することにより、上記zの値(以下、z値という)が0.1以上となる種々の組成を有するものを安価に製造することができる。そして、一般に転動疲労寿命に大きな影響を与える硬度は、製造の容易なz値4.0以下の範囲において、ほとんど変化しない。しかしながら、βサイアロン焼結体からなる転動体の転動疲労寿命とz値との関係を詳細に調査したところ、z値が3.5を超えると転動体の転動疲労寿命が低下することが分かった。
より具体的には、z値が0.1以上3.5以下の範囲においては、転動疲労寿命はほぼ同等で、転がり軸受の運転時間が所定時間を超えると、転動体の表面に剥離が発生して破損する。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。つまり、z値が3.5となる組成を境界として、βサイアロンからなる転動体の破損モードが変化し、z値が3.5を超えると転動疲労寿命が低下するという現象が明らかとなった。したがって、βサイアロン焼結体からなる転動体において、安定して十分な寿命を確保するためには、z値を3.5以下とすることが好ましい。以上のように、上記βサイアロンを0.1≦z≦3.5を満たすものとすることにより、安価で、かつ耐久性に優れたボールねじ支持用転がり軸受を提供することができる。
上記ボールねじ支持用転がり軸受において好ましくは、上記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす。
これにより、振動や衝撃が作用した場合におけるボールねじ支持用転がり軸受の耐久性を一層向上させることができる。
上記ボールねじ支持用転がり軸受において好ましくは、上記転動体のヤング率は180GPa以上270GPa以下である。
転動体のヤング率が高くなると、転動体を構成する素材(βサイアロン焼結体)の強度が上昇する傾向にある。しかし、その反面、転動体のヤング率が高くなると、転動体が弾性変形しにくくなるため、軌道部材との接触面積が小さくなり、接触面圧が高くなる。その結果、軌道部材に損傷が発生し易くなる。一方、転動体のヤング率が低くなると、転動体が弾性変形しやすくなるため、軌道部材との接触面積が大きくなり、接触面圧が低くなる。しかし、その反面、転動体のヤング率が低くなると、これに伴って転動体を構成する素材の強度が低下する傾向にある。そのため、転動体のヤング率は、転動体を構成する素材の強度の向上と、軌道部材との間における接触面圧の低減とのバランスを確保可能な範囲とすることが必要である。
より具体的には、βサイアロン焼結体からなる転動体のヤング率が180GPa未満の場合、転動体を構成する素材の強度低下の影響が接触面圧の低減の効果を上回り、転動体の転動疲労寿命が低下する。また、軌道部材との接触面積が増大することに伴い、軌道部材との間に作用する摩擦力が増加して軸受トルクが上昇し、ねじ軸の回転に対する抵抗が大きくなるという問題も発生する。したがって、βサイアロン焼結体からなる転動体のヤング率は、180GPa以上であることが好ましく、220GPa以上であることがより好ましい。
一方、βサイアロン焼結体からなる転動体のヤング率が270GPaを超えると、接触面圧の増加の影響が転動体を構成する素材の強度上昇の効果を上回り、軌道部材の転走面に圧痕などの損傷が発生しやすくなる。したがって、βサイアロン焼結体からなる転動体のヤング率は、270GPa以下であることが好ましく、260GPa以下であることがより好ましい。
上記ボールねじ支持用転がり軸受においては、軌道部材は鋼からなるものとすることができる。この場合、当該軌道部材の表面硬度はHV680以上であることが好ましい。これにより、振動や衝撃が作用した場合における軌道部材の損傷を抑制することができる。
上記ボールねじ支持用転がり軸受において好ましくは、上記転動体は、軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している。
上述のβサイアロン焼結体からなる転動体においては、その緻密性が転動疲労寿命に大きく影響する。これに対し、上記構成によれば、転走面を含む領域に内部よりも緻密性の高い層である緻密層が形成されていることにより、転動疲労寿命が向上する。その結果、十分な耐久性を安定して確保することが可能なボールねじ支持用転がり軸受を提供することができる。
ここで、緻密性の高い層とは、焼結体において空孔率の低い(密度の高い)層であって、たとえば以下のように調査することができる。まず、βサイアロン焼結体からなる転動体の表面に垂直な断面において転動体を切断し、当該断面を鏡面ラッピングする。その後、鏡面ラッピングされた断面を光学顕微鏡の斜光(暗視野)にて、たとえば50〜100倍程度で撮影し、300DPI(Dot Per Inch)以上の画像として記録する。このとき、白色の領域として観察される白色領域は、空孔率の高い(密度の低い)領域に対応する。したがって、白色領域の面積率が低い領域は、当該面積率が高い領域に比べて緻密性が高い。そして、記録された画像を、画像処理装置を用いて輝度閾値により2値化処理した上で白色領域の面積率を測定し、当該面積率により、撮影された領域の緻密性を知ることができる。
つまり、上記ボールねじ支持用転がり軸受において好ましくは、上記焼結体は、転走面を含む領域に内部よりも白色領域の面積率の低い層である緻密層が形成されている。なお、上記撮影は、ランダムに5箇所以上で行ない、上記面積率は、その平均値で評価することが好ましい。また、上記焼結体の内部における上記白色領域の面積率は、たとえば15%以上である。また、βサイアロン焼結体からなる転動体の転動疲労寿命を一層向上させるためには、上記緻密層は100μm以上の厚みを有していることが好ましい。
上記ボールねじ支持用転がり軸受において好ましくは、緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。
白色領域の面積率が7%以下となる程度に上記緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明のボールねじ支持用転がり軸受の耐久性を一層向上させることができる。
上記ボールねじ支持用転がり軸受において好ましくは、緻密層の表面を含む領域には、緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている。
緻密性のさらに高い高緻密層が緻密層の表面を含む領域に形成されることにより、βサイアロン焼結体からなる転動体の転動疲労に対する耐久性がより向上し、ボールねじ支持用転がり軸受の寿命を一層向上させることができる。
上記ボールねじ支持用転がり軸受において好ましくは、高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である。
白色領域の面積率が3.5%以下となる程度に上記高緻密層の緻密性を向上させることで、βサイアロン焼結体からなる転動体の転動疲労寿命がより向上する。したがって、上記構成により、本発明のボールねじ支持用転がり軸受の耐久性を一層向上させることができる。
以上の説明から明らかなように、本発明のボールねじ支持用転がり軸受によれば、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受を提供することができる。
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
図1は、本発明の一実施の形態におけるボールねじ支持用転がり軸受を備えた工作機械のテーブル駆動装置の構成を示す概略断面図である。また、図2は、図1の固定側サポートユニットを拡大して示す概略断面図である。また、図3は、図1の支持側サポートユニットを拡大して示す概略断面図である。図1〜図3を参照して、本発明の一実施の形態におけるボールねじ支持用転がり軸受を備えたテーブル駆動装置について説明する。
図1を参照して、テーブル駆動装置90は、ベース94と、ベース上に配置されたねじ軸91と、ねじ軸91を軸周りに回転可能に支持する固定側サポートユニット92および支持側サポートユニット93と、ねじ軸91が貫通するボールナット95と、ボールナット95上に配置されたブラケット96と、ブラケット96を介してボールナット95上に配置されたテーブル97とを備えている。
図2を参照して、固定側サポートユニット92は、互いに逆向きに配置された一対のスラストアンギュラ玉軸受1、1を備えている。スラストアンギュラ玉軸受1は、外輪11と、ねじ軸91の外周面に嵌め込まれた内輪12と、複数の転動体としての玉13とを含んでいる。さらに、固定側サポートユニット92は、内輪12に接触するようにねじ軸91の外周面に嵌め込まれたスリーブ81と、スリーブ81に接触するようにねじ軸91の外周面に嵌め込まれるとともに、スリーブ81を介して軸方向に締め付けることにより内輪12を固定するロックナット82とを備えている。また、固定側サポートユニット92は、外輪11が嵌め込まれるハウジング83と、外輪11に接触するようにハウジング83に嵌め込まれることにより外輪11を軸方向に固定する側蓋84とを備えている。これにより、外輪11はハウジング83に対して固定されるとともに、内輪12はねじ軸91に対して固定される。その結果、ねじ軸91は固定側サポートユニット92に対して軸周りに回転可能に支持されている。
さらに、一対のスラストアンギュラ玉軸受1から見て軸方向の一方側のねじ軸91とハウジング83との間、および一対のスラストアンギュラ玉軸受1から見て軸方向の他方側のスリーブ81と側蓋84との間には、シール部材85が配置されている。これにより、軸受内部への異物の侵入や軸受内部からのグリースなどの漏出を抑制することができる。
一方、図3を参照して、支持側サポートユニット93は、外輪21、内輪22および玉23を有する深溝玉軸受2と、外輪21が嵌め込まれるハウジング86とを備えている。また、内輪22は、ねじ軸91の外周に嵌め込まれている。これにより、外輪21はハウジング86に対して固定されるとともに、内輪22はねじ軸91に対して固定される。その結果、ねじ軸91は支持側サポートユニット93に対して軸周りに回転可能に支持されている。
すなわち、スラストアンギュラ玉軸受1および深溝玉軸受2は、ボールねじを構成するねじ軸91を、ねじ軸91に対向するように配置される部材であるハウジング83,86に対して回転自在に支持するボールねじ支持用転がり軸受である。
次に、テーブル駆動装置90の動作について説明する。図1を参照して、モータ(図示しない)の回転を受けたねじ軸91が回転すると、ねじ軸91の外周面に形成された螺旋状の溝と、ボールナット95の内周面に形成された溝との間を複数の玉が転走する。また、当該複数の玉は、ボールナット95の内部を通って循環する。これにより、ボールナット95とともにテーブル97が矢印αの方向(軸方向)に移動する。
次に、上記スラストアンギュラ玉軸受1について説明する。図4は、本実施の形態におけるボールねじ支持用転がり軸受としてのスラストアンギュラ玉軸受の要部を示す概略部分断面図である。
図2および図4を参照して、スラストアンギュラ玉軸受1は、第1軌道部材としての外輪11と、第2軌道部材としての内輪12と、複数の転動体としての玉13と、保持器14とを備えている。外輪11の内周面には、円環状の第1転走面しての外輪転走面11Aが形成されている。内輪12の外周面には、外輪転走面11Aに対向する円環状の第2転走面としての内輪転走面12Aが形成されている。また、複数の玉13には、転動体転走面としての玉転走面13A(玉13の表面)が形成されている。そして、当該玉13は、外輪転走面11Aおよび内輪転走面12Aの各々に玉転走面13Aにおいて接触し、円環状の保持器14により周方向に所定のピッチで配置され、円環状の軌道上に転動自在に保持されている。これにより、外輪11と内輪12とは互いに相対的に回転可能となっている。
ここで、スラストアンギュラ玉軸受1においては、玉13と外輪11との接触点と、玉13と内輪12との接触点とを結ぶ直線は、アキシャル方向(スラストアンギュラ玉軸受1の回転軸の方向)に対して角度をなしている。そのため、アキシャル方向(スラストアンギュラ玉軸受1の回転軸の方向)の荷重だけでなく、ラジアル方向の荷重をも受けることが可能であるとともに、ラジアル方向の荷重が負荷されると、アキシャル方向への分力が生じる。図2を参照して、本実施の形態の固定側サポートユニット92では、互いに逆向きに配置された一対のスラストアンギュラ玉軸受1を採用することにより、当該分力を相殺している。
そして、転動体としての玉13は、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たすβサイアロンを主成分とし、残部不純物からなる焼結体から構成され、ヤング率が180GPa以上270GPa以下となっている。
さらに、図4を参照して、玉13の転走面である玉転走面13Aを含む領域には、内部13Cよりも緻密性の高い層である玉緻密層13Bが形成されている。この玉緻密層13Bの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である。そのため、本実施の形態おけるスラストアンギュラ玉軸受1は、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受となっている。上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
さらに、図4を参照して、玉緻密層13Bの表面である玉転走面13Aを含む領域には、玉緻密層13B内の他の領域よりもさらに緻密性の高い層である玉高緻密層13Dが形成されている。玉高緻密層13Dの断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下となっている。これにより、玉13の転動疲労に対する耐久性がより向上し、スラストアンギュラ玉軸受1の耐久性が一層向上している。
なお、上記本実施の形態においては、スラストアンギュラ玉軸受1を構成する玉13は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成されていてもよい。焼結助剤を含むことで、焼結体の気孔率を低下させやすくなり、十分な耐久性を安定して確保することが可能なスラストアンギュラ玉軸受1を、容易に提供することができる。上記不純物は、原料に由来するもの、あるいは製造工程において混入するものを含む不可避的不純物を含む。
次に、上記深溝玉軸受2について説明する。図5は、本実施の形態におけるボールねじ支持用転がり軸受としての深溝玉軸受の要部を示す概略部分断面図である。
図3および図5を参照して、深溝玉軸受2は、基本的には上述のスラストアンギュラ玉軸受1と同様の構成を備えており、同様の効果を有している。すなわち、深溝玉軸受2は、軌道部材としての環状の外輪21と、外輪21の内側に配置された軌道部材としての環状の内輪22と、外輪21と内輪22との間に配置され、円環状の保持器24に保持された転動体としての複数の玉23とを備えている。外輪21の内周面には外輪転走面21Aが形成されており、内輪22の外周面には内輪転走面22Aが形成されている。そして、内輪転走面22Aと外輪転走面21Aとが互いに対向するように、外輪21と内輪22とは配置されている。さらに、複数の玉23は、内輪転走面22Aおよび外輪転走面21Aに玉転走面23A(玉23の表面)において接触し、かつ保持器14により周方向に所定のピッチで配置され、円環状の軌道上に転動自在に保持されている。以上の構成により、深溝玉軸受2の外輪21および内輪22は、互いに相対的に回転可能となっている。
さらに、図4および図5を参照して、深溝玉軸受2を構成する玉23は、上述の玉13に相当し、内部13C、玉緻密層13Bおよび玉高緻密層13Dと同様の構成を有する内部23C、玉緻密層23Bおよび玉高緻密層23Dを有している。そのため、本実施の形態おける深溝玉軸受2は、衝撃荷重が負荷された場合における軌道部材の損傷を抑制しつつ、転動体の軽量化および耐フレッティング性の向上を達成することが可能なボールねじ支持用転がり軸受となっている。
次に、本実施の形態におけるボールねじ支持用転がり軸受の製造方法について説明する。図6は、本発明の一実施の形態におけるボールねじ支持用転がり軸受の製造方法の概略を示す図である。また、図7は、本発明の一実施の形態におけるβサイアロン焼結体からなる転動体の製造方法の概略を示す図である。
図6を参照して、本実施の形態におけるボールねじ支持用転がり軸受の製造方法においては、まず、軌道部材を製造する軌道部材製造工程と、転動体を製造する転動体製造工程とが実施される。具体的には、軌道部材製造工程では、外輪11,21、内輪12,22などが製造される。一方、転動体製造工程では、玉13,23などが製造される。
そして、軌道部材製造工程において製造された軌道部材と、転動体製造工程において製造された転動体とを組み合わせることにより、ボールねじ支持用転がり軸受を組立てる組立工程が実施される。具体的には、たとえば外輪11および内輪12と、玉13とを組み合わせることにより、スラストアンギュラ玉軸受1が組立てられる。そして、転動体製造工程は、たとえば以下のβサイアロン焼結体からなる転動体の製造方法を用いて実施される。
図7を参照して、本実施の形態におけるβサイアロン焼結体からなる転動体の製造方法においては、まず、βサイアロンの粉末を準備するβサイアロン粉末準備工程が実施される。βサイアロン粉末準備工程においては、たとえば燃焼合成法を採用した製造工程により、安価にβサイアロンの粉末を製造することができる。
次に、βサイアロン粉末準備工程において準備されたβサイアロンの粉末に、焼結助剤を添加して混合する混合工程が実施される。この混合工程は、焼結助剤を添加しない場合、省略することができる。
次に、図7を参照して、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物を、転動体の概略形状に成形する成形工程が実施される。具体的には、上記βサイアロンの粉末またはβサイアロンの粉末と焼結助剤との混合物に、プレス成形、鋳込み成形、押し出し成形、転動造粒などの成形手法を適用することにより、玉13,23などの概略形状に成形された成形体が作製される。
次に、上記成形体の表面が加工されることにより、当該成形体が焼結後に所望の転動体の形状により近い形状になるよう成形される焼結前加工工程が実施される。具体的には、グリーン体加工などの加工手法を適用することにより、上記成形体が焼結後に玉13,23などの形状により近い形状になるように加工される。この焼結前加工工程は、成形工程において上記成形体が成形された段階で、焼結後に所望の転動体の形状に十分近い形状が得られる状態である場合には省略することができる。
次に、図7を参照して、上記成形体が焼結される焼結工程が実施される。具体的には、上記成形体が、たとえば1MPa以下の圧力下でヒータ加熱、マイクロ波やミリ波による電磁波加熱などの加熱方法により加熱されて焼結されることにより、玉13,23などの概略形状を有する焼結体が作製される。焼結は、不活性ガス雰囲気中または窒素と酸素との混合ガス雰囲気中において、1550℃以上1800℃以下の温度域に上記成形体が加熱されることにより実施される。不活性ガスとしては、ヘリウム、ネオン、アルゴン、窒素などが採用可能であるが、製造コスト低減の観点から、窒素が採用されることが好ましい。
次に、焼結工程において作製された焼結体の表面が加工され、当該表面を含む領域が除去される仕上げ加工が実施されることにより、転動体を完成させる仕上げ工程が実施される。具体的には、焼結工程において作製された焼結体の表面を研磨することにより、転動体としての玉13,23などを完成させる。以上の工程により、本実施の形態におけるβサイアロン焼結体からなる転動体は完成する。
ここで、上記焼結工程における焼結により、焼結体の表面から厚み500μm程度の領域には、内部よりも緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が7%以下である緻密層が形成される。さらに、焼結体の表面から厚み150μm程度の領域には、緻密層内の他の領域よりもさらに緻密性が高く、断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率が3.5%以下である高緻密層が形成される。したがって、仕上げ工程においては、除去される焼結体の厚みは、特に転走面となるべき領域において150μm以下とすることが好ましい。これにより、玉転走面13A,23Aを含む領域に、高緻密層を残存させ、玉13,23の転動疲労寿命を向上させることができる。
なお、上記焼結工程は、βサイアロンの分解を抑制するため、0.01MPa以上の圧力下で行なうことが好ましく、低コスト化を考慮すると大気圧以上の圧力下で行なうことがより好ましい。また、製造コストを抑制しつつ緻密層を形成するためには、焼結工程は1MPa以下の圧力下で行なうことが好ましい。また、βサイアロン焼結体からなる転動体のヤング率を180GPa以上270GPa以下の所望の値に調整するためには、たとえばβサイアロン粉末準備工程において準備されるβサイアロン粉末のz値を、0.1≦z≦3.5の範囲で調節すればよい。より具体的には、z値を増加させることにより、βサイアロン焼結体のヤング率を低下させることができる。
また、上記実施の形態における外輪11,21および内輪12,22の素材としては、たとえばJIS規格SUJ2などの高炭素クロム軸受鋼、SCM420などの機械構造用合金鋼、S53Cなどの機械構造用炭素鋼などの鋼を採用することができる。
上記実施の形態においては、本発明のボールねじ支持用転がり軸受であるスラストアンギュラ玉軸受を固定側サポートユニットに採用し、深溝玉軸受を支持側サポートユニットに採用する場合について説明したが、採用される軸受の形式はこれに限られず、他の形式の転がり軸受を採用してもよい。また、本発明のボールねじ支持用転がり軸受においては、内輪および外輪の軸方向両端部を閉じるシール部材を配置し、当該シール部材と内輪および外輪とで閉じられた空間内にウレア系増ちょう剤を含むグリースを封入してもよい。これにより、本発明のボールねじ支持用転がり軸受の耐久性を一層向上させることができる。さらに、上記実施の形態においては、本発明のボールねじ支持用転がり軸受の軌道部材として、外輪および内輪が採用される場合について説明したが、軌道部材は、転動体が表面を転走するように使用される軸、ハウジングなどの部材であってもよい。すなわち、軌道部材は、転動体が転走するための転走面が形成された部材であればよい。また、軌道部材が鋼からなる場合、当該軌道部材の転走面には、たとえば窒化処理により形成された窒化層などの表面改質層が形成されていてもよい。これにより、ボールねじ支持用転がり軸受の耐久性を一層向上させることができる。
以下、本発明の実施例1について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、z値と転動疲労寿命(耐久性)との関係を調査する試験を行なった。試験の手順は以下のとおりである。
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜4の範囲で作製したβサイアロンの粉末を準備し、上記実施の形態において図7に基づいて説明した転動体の製造方法と基本的に同様の方法で、z値が0.1〜4である転動体を作製した。具体的な作製方法は以下のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、球状の成形体を得た。
引き続き当該成形体に対して1次焼結として常圧焼結を行なった後、圧力200MPaの窒素雰囲気中でHIP(Hot Isostatic Press;熱間静水圧焼結)処理することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して転動体の破損状態を確認した。
表1に本実施例の試験結果を示す。表1においては、各実施例および比較例における寿命が、比較例A(窒化珪素)における寿命を1とした寿命比で表されている。また、破損形態は、転動体の表面に剥離が発生した場合「剥離」、剥離が発生することなく表面が摩耗して試験が中止された場合「摩耗」と記載されている。
表1を参照して、z値が0.1以上3.5以下となっている本発明の実施例A〜Hでは、窒化珪素(比較例A)と比較して遜色ない寿命を有している。また、破損形態も窒化珪素の場合と同様に「剥離」となっている。これに対し、z値が3.5を超える実施例Iでは、寿命が低下するとともに、転動体に摩耗が観察される。すなわち、z値が3.8である実施例Iでは、最終的には転動体に剥離が発生しているものの、転動体における摩耗が影響し、寿命が低下したものと考えられる。さらに、z値が4である実施例Jにおいては、短時間に転動体の摩耗が進行し、転がり軸受の耐久性がさらに低下している。
以上のように、z値が0.1以上3.5以下の範囲においては、βサイアロン焼結体からなる転動体を備えた転がり軸受の耐久性は、窒化珪素の焼結体からなる転動体を備えた転がり軸受とほぼ同等である。これに対し、z値が3.5を超えると転動体が摩耗しやすくなり、これに起因して転動疲労寿命が低下する。さらに、z値が大きくなると、βサイアロンからなる転動体の破損原因が「剥離」から「摩耗」に変化し、転動疲労寿命が一層低下することが明らかとなった。このように、z値を0.1以上3.5以下とすることにより、安価で、かつ耐久性に優れたβサイアロン焼結体からなる転動体が得られることが確認された。
なお、表1を参照して、z値が3を超える3.5の実施例Hにおいては、転動体には僅かな摩耗が発生しており、寿命も実施例A〜Gに比べて低下している。このことから、十分な耐久性をより安定して確保するためには、z値は3以下とすることが望ましいといえる。
また、上記実験結果より、窒化珪素からなる転動体と同等以上の耐久性(寿命)を得るには、z値は2以下とすることが好ましく、1.5以下とすることが、より好ましい。一方、燃焼合成を採用した製造工程によるβサイアロン粉体の作製の容易性を考慮すると、十分に自己発熱による反応が期待できる0.5以上のz値を採用することが好ましい。
以下、本発明の実施例2について説明する。種々のz値を有するβサイアロン焼結体からなる転動体を有する転がり軸受を作製し、当該転がり軸受に対して衝撃が作用する環境下におけるz値と転動疲労寿命との関係を調査する試験を行なった。試験の手順は以下のとおりである。
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法でz値を0.1〜3.5の範囲で作製したβサイアロンの粉末を準備し、上記実施例1と同様の方法で、z値が0.1〜3.5である転動体を作製した。そして、別途準備した様々な鋼材を素材として製作した軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(実施例A〜J)。軌道輪を構成する鋼としては、JIS規格SUJ2、SCM420、SCr420、S53C、S45C、S40CおよびAISI規格M50を採用した。また、比較のため、窒化珪素からなる転動体、すなわちz値が0である転動体も上記βサイアロンからなる転動体と同様の方法で作製し、同様に軸受に組立てた(比較例A)。
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:2.5GPa、軸受回転数:500rpm、潤滑:タービン油VG68循環給油、加振条件:2500N(50Hz)、試験温度:室温の条件の下で運転する加振衝撃疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、軸受に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。また、試験中止後、軸受を分解して軸受の破損状態を確認した。
表2に本実施例の試験結果を示す。表2においては、各欄内の上段に各実施例および比較例における寿命が、軌道輪の材質をSUJ2とした場合の比較例A(窒化珪素)の寿命を1とした寿命比で表されている。また、各欄内の下段には、軸受の破損部位(軌道輪または玉)が記載されている。
表2を参照して、z値が0.5以上3.0以下となっている本発明の実施例C〜Hは、窒化珪素(比較例A)と比較して明確に長寿命となっている。ここで、表2に示すように、破損部位は窒化珪素の場合と同様に軌道部材(軌道輪)となっており、破損形態は剥離であった。これに対し、z値が3.0を超える実施例IおよびJでは、寿命が低下するとともに、転動体(玉)の破損(剥離)が先行する。すなわち、z値が3.25である実施例Iでは、衝撃の影響によりβサイアロン焼結体からなる軸受部品(玉)に損傷が生じ、寿命が低下したものと考えられる。さらに、z値が3.5である実施例Jおいては、さらに短時間に転動体の剥離が生じ、転がり軸受の耐久性が一層低下している。
一方、z値が0.5より小さい実施例AおよびBでは、寿命が比較例Aとほぼ同じ程度にまで低下するとともに、軌道部材の破損(剥離)が先行する。すなわち、z値が0.25である実施例Bでは、z値が0(窒化珪素)である比較例Aとの物性の差が小さくなる。そのため、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、一方的に軌道部材側に損傷が生じ、窒化珪素焼結体からなる玉を採用した比較例A並みにまで寿命が低下したものと考えられる。
さらに、表2を参照して、z値が0.5以上3.0以下となっている場合であっても、相対する軌道輪の硬度(表面硬度)がHV680未満である場合、軌道輪の硬度がHV680以上の場合に比べて寿命が低下する傾向にある。これは、軌道輪の硬度が低い場合、βサイアロン焼結体からなる玉と、当該玉に相対する軌道部材との衝突によって、軌道部材側に損傷が生じ易くなるためであると考えられる。
以上のように、z値が3.0を超えるとβサイアロン焼結体からなる軸受部品自身が破損し易くなる一方、z値が0.5未満では、相手部材との間の接触面圧が増加し、相手部材に損傷が発生しやすくなる。そして、z値を0.5以上3.0以下とすることにより、転動体を構成する素材の強度と、軌道部材との間の接触面圧の低減とのバランスが確保される。その結果、軸受に対して衝撃が作用する環境下において、βサイアロン焼結体からなる転動体を含む転がり軸受の寿命が向上することが確認された。特に、軌道部材が鋼からなる場合、軌道部材の物性と転動体の物性とがほどよく調和して、衝撃、振動等による損傷の発生を抑制することができる。このように、転動体を構成するβサイアロンのz値を0.5以上3.0以下とすることにより、衝撃荷重が負荷されるおそれのあるボールねじ支持用転がり軸受の耐久性を向上可能であることが確認された。
また、軌道部材が鋼からなる場合、当該軌道部材の損傷を抑制するため、軌道部材の表面硬度はHV680以上とすることが好ましいことが確認された。
以下、本発明の実施例3について説明する。本発明のボールねじ支持用転がり軸受を構成するβサイアロンからなる転動体の緻密層および高緻密層の形成状態を調査する試験を行なった。試験の手順は以下のとおりである。
はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図7に基づいて説明した転動体の製造方法と同様の方法で、一辺が約10mmの立方体試験片を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で所定の形状に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない、成形体を得た。引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで(常圧焼結)、上記立方体試験片を製造した。
その後、当該試験片を切断し、切断された面をダイヤモンドラップ盤でラッピングした後、酸化クロムラップ盤による鏡面ラッピングを実施することにより、立方体の中心を含む観察用の断面を形成した。そして、当該断面を光学顕微鏡(株式会社ニコン製、マイクロフォト−FXA)の斜光で観察し、倍率50倍のインスタント写真(フジフイルム株式会社製 FP−100B)を撮影した。その後、得られた写真の画像を、スキャナーを用いて(解像度300DPI)パーソナルコンピューターに取り込んだ。そして、画像処理ソフト(三谷商事株式会社製 WinROOF)を用いて輝度閾値による2値化処理を行なって(本実施例での2値化分離閾値:140)、白色領域の面積率を測定した。
次に、試験結果について説明する。図8は、試験片の上記観察用の断面を光学顕微鏡の斜光で撮影した写真である。また、図9は、図8の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。また、図10は、図8の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理して白色領域の面積率を測定する際に、画像処理を行なう領域(評価領域)を示す図である。図8において、写真上側が試験片の表面側であり、上端が表面である。
図8および図9を参照して、上記実施の形態と同様の製造方法により作製された本実施例における試験片は、表面を含む領域に内部よりも白色領域の少ない層が形成されていることがわかる。そして、図10に示すように、撮影された写真の画像を試験片の最表面からの距離に応じて3つの領域(最表面からの距離が150μm以内の領域、150μmを超え500μm以内の領域、500μmを超え800μm以内の領域)に分け、領域毎に画像解析を行なって白色領域の面積率を算出したところ、表3に示す結果が得られた。表3においては、図10に示した各領域を1視野として、無作為に撮影された5枚の写真から得られる5視野における白色領域の面積率の、平均値と最大値とが示されている。
表3を参照して、本実施例における白色領域の面積率は、内部において18.5%であったのに対し、表面からの深さが500μm以下である領域においては3.7%、表面からの深さが150μm以下の領域においては1.2%となっていた。このことから、上記実施の形態と同様の上記製造方法により作製された本実施例における試験片においては、表面を含む領域に内部よりも白色領域の少ない緻密層および高緻密層が形成されていることが確認された。
以下、本発明の実施例4について説明する。本発明のボールねじ支持用転がり軸受を構成するβサイアロン焼結体からなる転動体の転動疲労寿命を確認する試験を行なった。試験の手順は以下のとおりである。
まず、試験の対象となる試験軸受の作製方法について説明する。はじめに、燃焼合成法で作製した組成がSiAlONであるβサイアロンの粉末(株式会社イスマンジェイ製、商品名メラミックス)を準備し、上記実施の形態において図7に基づいて説明した転動体の製造方法と同様の方法で直径9.525mmの3/8インチセラミック球を作製した。具体的な製造方法は次のとおりである。まず、サブミクロンに微細化されたβサイアロン粉末と、焼結助剤としての酸化アルミニウム(住友化学株式会社製、AKP30)および酸化イットリウム(H.C.Starck社製、Yttriumoxide grade C)とをボールミルを用いて湿式混合により混合した。その後、スプレードライヤーにて造粒を実施し、造粒粉を製造した。当該造粒粉を金型で球体に成形し、さらに冷間静水圧成形(CIP)で加圧を行ない球状の成形体を得た。
次に、当該成形体に対して焼結後の加工代が所定の寸法となるようにグリーン体加工を行ない、引き続き当該成形体を圧力0.4MPaの窒素雰囲気中で1650℃に加熱して焼結することで、焼結球体を製造した。次に、当該焼結球体にラッピング加工を行ない、3/8インチセラミック球(転動体;JIS等級 G5)とした。そして、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した。ここで、上記焼結球体に対するラッピング加工により除去される焼結球体の厚み(加工代)を8段階に変化させ、8種類の軸受を作製した(実施例A〜H)。一方、比較のため、窒化珪素および焼結助剤からなる原料粉末を用いて加圧焼結法により焼結した焼結球体(日本特殊陶業株式会社製 EC141)に対して、上述と同様にラッピング加工を行ない、別途準備した軸受鋼(JIS規格SUJ2)製の軌道輪と組み合わせて、JIS規格6206型番の軸受を作製した(比較例A)。ラッピング加工による加工代は0.25mmとした。
次に、試験条件について説明する。上述のように作製されたJIS規格6206型番の軸受に対し、最大接触面圧Pmax:3.2GPa、軸受回転数:2000rpm、潤滑:タービン油VG68(清浄油)の循環給油、試験温度:室温、の条件の下で運転する疲労試験を行なった。そして、振動検出装置により運転中の軸受の振動を監視し、転動体に破損が発生して軸受の振動が所定値を超えた時点で試験を中止するとともに、運転開始から中止までの時間を当該軸受の寿命として記録した。なお、試験数は実施例、比較例ともに15個ずつとし、そのL10寿命を算出した上で、比較例Aに対する寿命比で耐久性を評価した。
表4に本実施例の試験結果を示す。表4を参照して、実施例の軸受の寿命は、その製造コスト等を考慮するといずれも良好であるといえる。そして、加工代を0.5mm以下とすることにより転動体の表面に緻密層を残存させた実施例D〜Gの軸受の寿命は、比較例Aの寿命の1.5〜2倍程度となっていた。さらに、加工代を0.15mm以下とすることにより転動体の表面に高緻密層を残存させた実施例A〜Cの軸受の寿命は、比較例Aの寿命の3倍程度となっていた。このことから、本発明のボールねじ支持用転がり軸受は、耐久性において優れていることが確認された。そして、ボールねじ支持用転がり軸受は、βサイアロン焼結体からなる転動体の加工代を0.5mm以下として、表面に緻密層を残存させることにより寿命が向上し、加工代を0.15mm以下として、表面に高緻密層を残存させることにより寿命がさらに向上することが分かった。
今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
本発明のボールねじ支持用転がり軸受は、転動体の軽量化および耐フレッティング性の向上などが求められるボールねじ支持用転がり軸受に、特に有利に適用され得る。
ボールねじ支持用転がり軸受を備えた工作機械のテーブル駆動装置の構成を示す概略断面図である。 図1の固定側サポートユニットを拡大して示す概略断面図である。 図1の支持側サポートユニットを拡大して示す概略断面図である。 スラストアンギュラ玉軸受の要部を示す概略部分断面図である。 深溝玉軸受の要部を示す概略部分断面図である。 本発明の一実施の形態におけるボールねじ支持用転がり軸受の製造方法の概略を示す図である。 図7は、本発明の一実施の形態におけるβサイアロン焼結体からなる転動体の製造方法の概略を示す図である。 試験片の観察用の断面を光学顕微鏡の斜光で撮影した写真である。 図8の写真の画像を、画像処理ソフトを用いて輝度閾値により2値化処理した状態を示す一例である。 画像処理を行なう領域(評価領域)を示す図である。
符号の説明
1 スラストアンギュラ玉軸受、2 深溝玉軸受、11,21 外輪、11A,21A 外輪転走面、12,22 内輪、12A,22A 内輪転走面、13,23 玉、13A,23A 玉転走面、13B,23B 玉緻密層、13C,23C 内部、13D,23D 玉高緻密層、14,24 保持器、81 スリーブ、82 ロックナット、83 ハウジング、84 側蓋、85 シール部材、86 ハウジング、90 テーブル駆動装置、91 ねじ軸、92 固定側サポートユニット、93 支持側サポートユニット、94 ベース、95 ボールナット、96 ブラケット、97 テーブル。

Claims (12)

  1. ボールねじを構成するねじ軸を、前記ねじ軸に対向するように配置される部材に対して回転自在に支持するボールねじ支持用転がり軸受であって、
    軌道部材と、
    前記軌道部材に接触し、円環状の軌道上に配置される転動体とを備え、
    前記転動体は、窒化珪素からなる場合に比べて前記軌道部材に対する衝撃を抑制することが可能なセラミックスからなっている、ボールねじ支持用転がり軸受。
  2. 前記転動体は、βサイアロンを主成分とし、残部不純物からなる焼結体から構成される、請求項1に記載のボールねじ支持用転がり軸受。
  3. 前記転動体は、βサイアロンを主成分とし、残部焼結助剤および不純物からなる焼結体から構成される、請求項1に記載のボールねじ支持用転がり軸受。
  4. 前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.1≦z≦3.5を満たす、請求項2または3に記載のボールねじ支持用転がり軸受。
  5. 前記βサイアロンは、Si6−ZAl8−Zの組成式で表され、0.5≦z≦3.0を満たす、請求項2または3に記載のボールねじ支持用転がり軸受。
  6. 前記転動体のヤング率は180GPa以上270GPa以下である、請求項1〜5のいずれか1項に記載のボールねじ支持用転がり軸受。
  7. 前記転動体のヤング率は220GPa以上260GPa以下である、請求項1〜5のいずれか1項に記載のボールねじ支持用転がり軸受。
  8. 前記軌道部材は鋼からなり、
    前記軌道部材の表面硬度はHV680以上となっている、請求項1〜7のいずれか1項に記載のボールねじ支持用転がり軸受。
  9. 前記転動体は、前記軌道部材と接触する面である転走面を含む領域に、内部よりも緻密性の高い層である緻密層を有している、請求項1〜8のいずれか1項に記載のボールねじ支持用転がり軸受。
  10. 前記緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は7%以下である、請求項9に記載のボールねじ支持用転がり軸受。
  11. 前記緻密層の表面を含む領域には、前記緻密層内の他の領域よりもさらに緻密性の高い層である高緻密層が形成されている、請求項9または10に記載のボールねじ支持用転がり軸受。
  12. 前記高緻密層の断面を光学顕微鏡の斜光にて観察した場合、白色の領域として観察される白色領域の面積率は3.5%以下である、請求項11に記載のボールねじ支持用転がり軸受。
JP2008160553A 2008-06-19 2008-06-19 ボールねじ支持用転がり軸受 Pending JP2010001949A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008160553A JP2010001949A (ja) 2008-06-19 2008-06-19 ボールねじ支持用転がり軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008160553A JP2010001949A (ja) 2008-06-19 2008-06-19 ボールねじ支持用転がり軸受

Publications (1)

Publication Number Publication Date
JP2010001949A true JP2010001949A (ja) 2010-01-07

Family

ID=41583835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008160553A Pending JP2010001949A (ja) 2008-06-19 2008-06-19 ボールねじ支持用転がり軸受

Country Status (1)

Country Link
JP (1) JP2010001949A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213885A (ja) * 2012-03-31 2013-10-17 Fujifilm Corp 露光装置及び露光方法及びパターンフィルムの製造方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264973A (ja) * 1988-04-16 1989-10-23 Toyota Motor Corp β−サイアロン焼結体の製造方法
JPH11223220A (ja) * 1998-02-05 1999-08-17 Koyo Seiko Co Ltd 転がり軸受
WO1999063125A1 (fr) * 1998-06-04 1999-12-09 Nsk Ltd. Palier a roulement
JP2000097243A (ja) * 1998-09-21 2000-04-04 Toshiba Corp 軸受および軸受ユニット
JP2001012475A (ja) * 1999-04-28 2001-01-16 Nsk Ltd 転がり軸受
JP2001146479A (ja) * 1999-11-16 2001-05-29 Ngk Spark Plug Co Ltd 窒化珪素質セラミックボール及びそれを用いたセラミックボールベアリング
JP2002029852A (ja) * 2000-07-21 2002-01-29 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質ボール、窒化珪素質ベアリングボール、ボールベアリング、ベアリング付きモータ、ハードディスク装置及びポリゴンスキャナ
JP2003322154A (ja) * 2002-05-09 2003-11-14 Nsk Ltd 転がり軸受用転動体
JP2004091272A (ja) * 2002-09-02 2004-03-25 Matsushita Masashi βサイアロン燒結体
JP2006016233A (ja) * 2004-06-30 2006-01-19 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質工具、切削インサート、及び切削工具
JP2006504909A (ja) * 2002-10-30 2006-02-09 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト 航空機におけるころがり軸受
JP2006316850A (ja) * 2005-05-11 2006-11-24 Ntn Corp 正逆微動回転用転がり軸受
JP2007182334A (ja) * 2006-01-05 2007-07-19 Ismanj:Kk ベータサイアロン焼結体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264973A (ja) * 1988-04-16 1989-10-23 Toyota Motor Corp β−サイアロン焼結体の製造方法
JPH11223220A (ja) * 1998-02-05 1999-08-17 Koyo Seiko Co Ltd 転がり軸受
WO1999063125A1 (fr) * 1998-06-04 1999-12-09 Nsk Ltd. Palier a roulement
JP2000097243A (ja) * 1998-09-21 2000-04-04 Toshiba Corp 軸受および軸受ユニット
JP2001012475A (ja) * 1999-04-28 2001-01-16 Nsk Ltd 転がり軸受
JP2001146479A (ja) * 1999-11-16 2001-05-29 Ngk Spark Plug Co Ltd 窒化珪素質セラミックボール及びそれを用いたセラミックボールベアリング
JP2002029852A (ja) * 2000-07-21 2002-01-29 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質ボール、窒化珪素質ベアリングボール、ボールベアリング、ベアリング付きモータ、ハードディスク装置及びポリゴンスキャナ
JP2003322154A (ja) * 2002-05-09 2003-11-14 Nsk Ltd 転がり軸受用転動体
JP2004091272A (ja) * 2002-09-02 2004-03-25 Matsushita Masashi βサイアロン燒結体
JP2006504909A (ja) * 2002-10-30 2006-02-09 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト 航空機におけるころがり軸受
JP2006016233A (ja) * 2004-06-30 2006-01-19 Ngk Spark Plug Co Ltd 窒化珪素質焼結体、窒化珪素質工具、切削インサート、及び切削工具
JP2006316850A (ja) * 2005-05-11 2006-11-24 Ntn Corp 正逆微動回転用転がり軸受
JP2007182334A (ja) * 2006-01-05 2007-07-19 Ismanj:Kk ベータサイアロン焼結体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013213885A (ja) * 2012-03-31 2013-10-17 Fujifilm Corp 露光装置及び露光方法及びパターンフィルムの製造方法

Similar Documents

Publication Publication Date Title
EP2397713B1 (en) Rolling contact member, rolling bearing, and method of producing rolling contact member
JP5260158B2 (ja) 工作機械用転がり軸受
WO2008075535A1 (ja) 転がり軸受、ハブユニット、転動部材、自在継手、自在継手用トルク伝達部材およびその製造方法
JP2009115139A (ja) 風力発電装置用転がり軸受の転動部材および風力発電装置用転がり軸受
JP5260159B2 (ja) 風力発電装置用転がり軸受
WO2009154226A1 (ja) 軸受部品および転がり軸受
JP5219018B2 (ja) 転がり軸受、ハブユニット、転動部材およびその製造方法
JP2010001949A (ja) ボールねじ支持用転がり軸受
JP5550029B2 (ja) 転動部材の製造方法
JP5093811B2 (ja) モータ用転がり軸受
JP2010000708A (ja) フィルム延伸機テンタクリップ用ガイドローラ軸受
JP2010101382A (ja) 転がり軸受
JP5093812B2 (ja) 発電機用転がり軸受
JP2010001942A (ja) 軸受部品および転がり軸受
JP2009097658A (ja) 転動部材および転がり軸受
JP5024788B2 (ja) 摺動装置、摺動部材およびその製造方法
JP2010000576A (ja) 工作機械用ボールブッシュ
JP2010001985A (ja) 転がり軸受
JP5219019B2 (ja) 自在継手、自在継手用トルク伝達部材およびその製造方法
JP2010001943A (ja) 軸受部品および転がり軸受
WO2009154228A1 (ja) 軸受部品および転がり軸受
JP5093813B2 (ja) 転がり軸受
JP2010001994A (ja) 原動機用転がり軸受
JP2010001941A (ja) 自在継手用トルク伝達部材および自在継手
JP2010001995A (ja) 転がり軸受

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218