JP2009544843A - 固体酸化物電解槽セル用の効率的な可逆電極 - Google Patents

固体酸化物電解槽セル用の効率的な可逆電極 Download PDF

Info

Publication number
JP2009544843A
JP2009544843A JP2009520863A JP2009520863A JP2009544843A JP 2009544843 A JP2009544843 A JP 2009544843A JP 2009520863 A JP2009520863 A JP 2009520863A JP 2009520863 A JP2009520863 A JP 2009520863A JP 2009544843 A JP2009544843 A JP 2009544843A
Authority
JP
Japan
Prior art keywords
oxide
electrolytic cell
cell according
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009520863A
Other languages
English (en)
Inventor
エランゴーバン・エス
ハートヴィッセン・ヨゼフ
Original Assignee
セラマテック・インク
エランゴーバン・エス
ハートヴィッセン・ヨゼフ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セラマテック・インク, エランゴーバン・エス, ハートヴィッセン・ヨゼフ filed Critical セラマテック・インク
Publication of JP2009544843A publication Critical patent/JP2009544843A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/077Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide
    • C25B11/0773Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the compound being a non-noble metal oxide of the perovskite type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本発明の電解セル(100)は、HO、CO又はそれら混合物などの含酸素分子を還元して酸素イオンと、H、CO又はそれら混合物などの燃料分子生成するカソード(104)を有する。電解質(106)は、カソード(104)と接し、アノード(102)に酸素イオンを輸送する。アノード(102)は、電解質(106)と接し、酸素イオンを受容し、酸素ガスを形成する。ある実施態様において、アノード(102)はペロブスカイト結晶性構造またはそれに類似の構造を有する電気伝導相を有する。このペロブスカイトは、実質的な化学式(Pr(1−x)La(z−y)A’BO(3−δ)(ただし、0≦x≦0.5、0≦y≦0.5、0.8≦z≦1.1)を有する。他の実施態様において、カソード(104)は、酸化マグネシウムと混合した酸化ニッケルを有する電気伝導相を含む。

Description

本発明は、電解槽セルに関し、詳しくは、固体酸化物電解槽セル用の効率的な可逆電極に関する。本願は、2006年7月22日出願の米国仮出願第60/820,103号(発明の名称:固体酸化物電解槽セル用電極)の優先権を主張する出願である。なお、本発明は、米国エネルギー省の基金第DE−AC07−05ID14517号の援助に基づいてなされた発明である。
燃料電池は我々のエネルギーを確約する重要な役割を担うと期待されており、「水素経済」を確立する重要な構成材である。最近の研究は、外国への石油依存を減らすため、商業的に実施可能な水素燃料電池技術が自動車、トラック、家庭用およびビジネス用の電源として発展、実施されることに注がれている。燃料電池は内燃機関のような通常の電源により発生する有害排気物の減少または除去できるという可能性を有する。
多くの炭化水素と異なり、水素分子は集中して天然貯蔵地から得ることできない。そして、水素ガスの製造、貯蔵、輸送などにおけるインフラ基盤は、現在のところ水素経済を支持できるにはあまりにも不十分である。水素使用への転換のためには、現在の工業および輸送実務を莫大な規模で変更することが要求されるであろう。
コスト高および水素ガスの貯蔵や輸送問題により、水素製造にもっと分散型アプローチできることが推奨されている。たとえば、小さな地方工場、局所的な注入施設、家庭用水素発生器などは、配電網を介して供給されたエネルギーにより水素を使用して水素を製造することができる。これらの水素発生効率は集中型発生アプローチと比較して小さいものの、エンドユーザーに水素を移送するのに必要な全てのコストやエネルギーを考慮すると、総合的な効率は増加するであろう。
現在のところ、「可逆的」燃料電池が、1つの装置で電力と水素ガス(または合成ガス)の両方を発生できるための一つの解決策を提供する。可逆的燃料電池は、燃料電池モードにおいて作動させた場合は電力を発生させるのに使用され、電解モードで作動させた場合は水素(または合成ガス)を発生させるのに使用される。可逆的燃料電池は、必要に応じて電力を発生させるのに使用され、配電網が余剰状態であるオフピーク時においては水素燃料を製造する。そして、製造された燃料は、後で高電力必要時に使用されたり、車両や他の装置の電力に使用されたりする。また、可逆的燃料電池は一つの装置において電力を水素に又は水素を電力に変換することが出来るため、大幅にコスト削減できる可能性がある。そうは言っても、商業的成功を達成するためには、可逆的燃料電池は、他の水素製造手段に負けない十分な効率で水素を発生しなければならない。
種々の研究において、可逆的燃料電池が実現可能であることを示しているが、燃料電池モードにおいて良好に作動する電極は、一般的に電解モードにおいて良好に作動せず、また、その逆についても同じであることが示されている。例えば、ある研究報告では、Ni及びYSZから成る陰極とLSMを含有する陽極とから成る固体酸化物燃料電池(SOFC)は、同じ電極材料を使用した固体電解セル(SOEC)より性能が優れている。これに対し、白金から成る陰極とLSCoを含有する陽極とから成る固体電解セル(SOEC)は、同じ電極材料を使用した固体酸化物燃料電池(SOFC)よりも分極損失が少ない。また、他の研究報告では、代表的なSOFC材料を使用した場合、電解操作中の分極損失は、同じ両電極を使用した燃料電池の操作中のそれよりも大きくなってしまう。
上述のように、電極に要求されることは、燃料電池モードと電解セルモードの両方において同等に良好な性能を有することである。そのような電極は、両モードにおいて十分な性能を有する可逆型燃料/電解電池に使用できる。理想的には、そのような電極は、燃料電池モードと電解モードの両方の動作において、同じ分極性能および他の性能を示す。
本発明は、現在入手できる電解電極によって十分に解決できない当該技術分野における現状、問題および要求に応えるべく研究されたものである。
上述に合致し、本願において具体的かつ広範囲に記載されているものとして本発明に従えば、電解槽セルの一実施態様として、HO、CO又はそれら混合物などの含酸素分子を還元して酸素イオンと、H、CO又はそれら混合物などの燃料分子生成するカソードを有する。電解質は、カソードと接して酸素イオンをアノードに輸送する。アノードは、電解質と接して酸素イオンを受容し、酸素ガスを生成する。アノードは、電子伝導相から成り、電子伝導相は、ペロブスカイト結晶性構造またはそれに類似の構造を有していてもよい。このペロブスカイトは、実質的な化学式(Pr(1−x)La(z−y)A’BO(3−δ)(ただし、0≦x≦0.5、0≦y≦0.5、0.8≦z≦1.1)を有する。
好ましい実施態様において、アノードは、更に、電子伝導相と混合し且つ酸化物から成るイオン伝導相を有する。イオン伝導相は1種以上の酸化物を有する。例えば、好ましい態様として、酸化物は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化セリウムの少なくとも1つにドープされたジルコニアである。他の実施態様において、酸化物は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化ジルコニウムの少なくとも1つにドープされたセリアである。
ある実施態様において、アノードはガスが透過できるような多孔質である。更に、電気化学的効率を高めるために、アノードの多孔中に、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素の少なくとも1つから成る電解触媒を浸透されていてもよい。
ペロブスカイトの化学式におけるA’は、カルシウム及びストロンチウムの少なくとも1つから成るアルカリ土類金属である。また、ペロブスカイトの化学式におけるBは、マンガン、コバルト及び鉄の少なくとも1つから成る遷移金属である。
本発明の他の要旨は、HO、CO又はそれら混合物などの含酸素分子を還元して酸素イオンと、H、CO又はそれら混合物などの燃料分子生成するカソードを有する電解槽セルに存する。カソードは、マグネシウムと混合している酸化ニッケルから成る電子伝導相から成る。この酸化ニッケルは、電解槽セルを作動させるとニッケルに還元される。酸化マグネシウムは、酸化ニッケル結晶粒粗大化を減少させニッケル表面を維持し、近傍の粒子との伝導性を維持する。電解質は、カソードと接して酸素イオンをアノードに輸送する。アノードは、電解質と接して酸素イオンを受容し、酸素ガスを生成する。
好ましい態様としては、酸化マグネシウムに対する酸化ニッケルの比が3以上である。カソードが、更に、前記電子伝導相と混合し且つ酸化物から成るイオン伝導相を有する。イオン伝導相は1種以上の酸化物を有する。例えば、酸化物は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたジルコニアである。他の実施態様において、酸化物は、酸化サマリウム、酸化ガドリニウム、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたセリアである。
ある実施態様において、カソードはガスが透過できるような多孔質である。更に、電気化学的効率を高めるために、カソードの多孔中に、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素の少なくとも1つから成る電解触媒を浸透されていてもよい。
本発明は、可逆型燃料電池/電解セル用の改良された電極に関するものである。現在入手できる電解電極によって十分に解決できない当該技術分野における現状、問題および要求に応えたものである。本発明の実施形態の他の要旨および長所は、以下の記載および特許請求の範囲からより十分に明らかにされ、また、以下に記載の発明を実践することにより理解できるものである。
図1は、本発明の電解槽セルの1実施態様の高水準のブロック図である。 図2.aは、燃料電池モード及び電解モードにおいて作動させた際の好ましい電圧/電流特性を示すグラフである。 図2.bは、燃料電池モード及び電解モードにおいて作動させた際に生じる熱を示すグラフである。 図3は、燃料電池モード及び電解モードにおいて作動させた際の、本発明の単一ボタン電池の電圧/電流特性を示すグラフである。 図4は、燃料電池モード及び電解モードにおいて作動させた際の、本発明の単一ボタン電池の長期性能を示すグラフである。 図5は、燃料電池モード及び電解モードにおいて作動させた際の、本発明の25積層電池の電圧/電流特性を示すグラフである。 図5は、燃料電池モード及び電解モードにおいて作動させた際の、本発明の25積層電池の長期性能を示すグラフである。
本発明の利点を容易に理解するため、具体的な実施態様および添付の図面を用い、上記の本発明の簡単な記載よりも更に詳細な説明を行う。図面は本発明の代表的な実施態様を示しただけであって、本発明の要旨を限定するものではない。本発明は、添付の図面を用いて追加の具体例や詳細を記載し説明する。
添付図面に一般的に記載され、描かれた構成要素は、種々の異なる構成に配置、設計変更できることは容易に理解できる。それゆえ、以下の図面に例示された特定の実施形態は本発明の範囲を限定するものではなく、本発明に従った種々の実施態様の単なる代表例である。似たような構成要素は図面を通じて同じ符号を付し、記載されている実施態様は図面を参照することにより、よく理解できるであろう。
図1は、本発明の固体酸化物電解セル100(実施態様を選択することにより、電流の流れの向きが逆の場合は燃料電池100となる)の一般的な図を表し、固体酸化物電解セル100は、アノード102、カソード104及び電解質106を含む。アノード102、カソード104及び電解質106のそれぞれの層は、固体セラミック材料から成る。
一般的に、アノード102及びカソード104は、電気伝導およびイオン伝導の両方である材料から成る。一方電解質106は、イオン伝導ではあるが電気絶縁性の材料から成る。それゆえ、アノード102とカソード104との間を流れる電子は、電解質106を迂回するために、外部電気路108または回路108を介して流れる必要がある。電解質106は、イットリウム安定化ジルコニア(YSZ)、スカンジウム安定化ジルコニア(ScSZ)、ランタン−ストロンチウムガラートマグネサイト(LSGM)等の、1つ以上の公知のイオン伝導で電気絶縁性のセラミック材料から成っていてもよい。
電解モードで作動時は、HO、CO等の含酸素分子がカソード104で受容され、反応してH、CO又はそれら混合物などの燃料分子を生成する。この反応によって外部電源110から電子が流れて消費される。同様に、負に帯電した酸素イオンが遊離する。この酸素イオンは電解質層106を介してアノード102に伝導し、反応して酸素分子を形成する。アノード102における反応により、電子が放出され、電気路108または回路108を介して流れる。
上述のように、電極は、通常燃料電池モードにおいて良好に作動するが、電解モードにおいては良好に作動せず、また、その逆の場合もある。例えば、多くの燃料電池に仕様される電極は、電解モードで作動させた際に許容し難い高い分極損失を示す。これは電解モードにおいてセルを使用することの妨げとなる。なぜならば、このように不十分な性能であれば、他の水素(または一酸化炭素)の製造装置に対抗できないからである。それゆえ、燃料電池モードと電解モードの両方に等しく良好に作動する電極が望まれている。
例えば、図2aに記載された燃料電池モードでは、燃料電池を介する電流が増加してしまうために、燃料電池を通した電圧は降下する。これは、図中の下降する線200からもわかり、セルの内部抵抗または分極の指標となる。電解モードで作動させた際、図2aにおいて、セルを介して流れる電流の増加とほぼ等しいだけの傾きの大きな電圧が必要となる。これは、図2aの急な斜線からもわかり、多く燃料電池において電解モードで作動した際の高い抵抗または分極の指標となる。理想的には、セルの抵抗(すなわち線200及び線202の傾き)は、燃料電池モード及び電解セルモードの両方において最小となり、電解モードの抵抗と燃料電池モードの抵抗はほぼ等しくなる。それゆえ、理想的には、電解モードにおける斜線202の傾きは、燃料電池モードの斜線200の傾き(点線204で示される)とほぼ等しくなり、それぞれの傾きは可能な限り最小となる。
図2bは、図2aに記載された理想的な傾きの斜線204と一致するように電極102及び電極104が振る舞うかどうかを決定することに挑戦した図で、なぜならばセルの抵抗は温度によって大きく変化するからである。この問題は、H及び/又はCOをHO及び/又はCOに変換する場合(燃料電池モード)は発熱反応であり、HO及び/又はCOをH及び/又はCOに変換する場合(電解モード)は吸熱反応であるという要因によって対処できる。それゆえ、直線206に示されるように、燃料電池反応では熱が発生するのに対し、電解モード反応では吸熱となる。
一方、電流による抵抗損失(すなわちIR)で発生する熱は、曲線208に示すように、セルを介してどちらかの方向に流れる電流により発生する熱とほぼ同じである。2つの線206及び208を足し合わせれば点線210となる。得られる点線210によって示されるように、電解モードで作動するセルは最初は冷えた状態であるが、抵抗損失による熱のため加熱され、反応によって吸収される熱よりも大きくなる。この概念は図5に示す試験データを解釈する際に重要である。
図1を再び参照すると、ある実施態様において、燃料電池モードと電解モードの両方で実質的に同一の効率で作動する電解セル100は、イオン伝導相と混合している電子伝導相を有するアノード102を有する。電子伝導相は、化学式ABOで示されるペロブスカイトから成り、式中、“A”と“B”はそれぞれA側カチオン及びB側カチオンを表す。A側カチオンは、式(Pr(1−x)La(z−y)A’で示され、0≦x≦0.5、0≦y≦0.5、0.8≦z≦1.1であり、A’は、カルシウム、ストロンチウム等のアルカリ土類金属の少なくとも1つを示す。アルカリ土類金属はペロブスカイトの結晶構造に欠陥を作り、電気電導性を向上させる。
B側カチオンはマンガン、コバルト及び鉄の少なくとも1つから成る1つ以上の遷移金属を示す。δは、結晶化学および電気的中性に基づく酸素の非化学量論量である。電子伝導相は(Pr(1−x)La(z−y)A’BO(3−δ)で示される材料から成るのが好ましく、その具体例としては、Pr(1−x)La(z−y)SrMnO(3−δ)、(Pr(1−x)La(z−y)SrFeO(3−δ)、(Pr(1−x)La(z−y)SrCoO(3−δ)等が例示される。
イオン伝導相は1つ以上の酸化物を有する。例えば、イオン伝導相は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化セリウムの少なくとも1つにドープされたジルコニアを有する。他の実施態様において、イオン伝導相は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化ジルコニウムの少なくとも1つにドープされたセリアを有する。セリアが有利な点は電気伝導性およびイオン伝導性の両方を有し、ジルコニアよりもイオン伝導性が良好な点である。イオン伝導性が高いということは、少なくともジルコニア分子よりセリア分子の方がより酸素の付着が強くないという要因によるものであり、酸素伝導性が改良され、電気化学的特性もよりよいものとなる。
上記の化学式に示されるようにプラセオジム(Pr)の分子割合は、当量であっても、過剰であっても、完全にランタン(La)と置き換わっていても、従来の電極材料であってもよい。ランタン及びジルコニアは反応して絶縁物質ランタンジルコネートを形成し、それはイオン伝導相と電気伝導相の間に蓄積され、時間と共に電極抵抗を増加させる。この問題を解消するため、ランタンの一部または全てをジルコニアと反応しない要素であるプラセオジムに置換えて使用する。
ある実施態様において、アノード102は、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素などの少なくとも1つから成る電解触媒が浸透されている。アノード102は、約10〜20体積%の所望の多孔を有するように製造される。孔には、アノード102の触媒作用を増加させるための電解触媒が浸透されている。
ある実施態様において、アノード102は、電解触媒含有溶液でアノード102を飽和させることにより電解触媒が浸透されていてもよい。例えば、液中に懸濁している硝酸プラセオジムコバルトのナノ粒子を使用してアノード102の多孔を飽和させてもよい。硝酸塩は焼成除去され、アノード102の多孔表面上に触媒が緻密に浸透された構造が残る。
ある実施態様において、電解セル100のカソード104は、イオン伝導相と混合する電子伝導相を有する。ある実施態様において、電子伝導相は酸化ニッケルと酸化マグネシウムとの固溶体を有する。ある実施態様において、酸化ニッケルの酸化マグネシウムに対する分子比は3以上である。
電解セル100を作動させると、水素などの還元性ガスの存在下で酸化ニッケルは還元されてニッケルとなり、電気伝導相を形成する。一方、酸化マグネシウムはより安定な酸化物であるため酸化物中に残存する。酸化マグネシウムはニッケル中に微細に分散し続ける。
酸化マグネシウムは、長時間高温に曝された際のニッケルによる粗大化の挙動を低減させることが出来、カソード104の性能を改良する。そうしないと、高温に曝した際に、ニッケルの微粒子が焼成し成長する。これは、ニッケルの表面積を減少させるために少なくとも部分的に電気化学的性能を悪化させる。ある場合において、ニッケルの粗大化は、離れた近傍の粒子を引き寄せ、伝導性を悪化させる。ニッケル中への酸化マグネシウム粒子の分散はニッケルの粗大化を減少させるか、又は少なくとも遅らせることが出来、電気化学的特性を向上させる。
カソード104のイオン伝導相は、ジルコニアの酸化物、セリアの酸化物またはこれらの混合物などの1つ以上の酸化物を有していてもよい。例えば、イオン伝導相は、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたジルコニアを有する。また、他の実施態様では、イオン伝導相は、酸化サマリウム、酸化ガドリニウム、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたセリアを有する。上述のようにセリアはジルコニアよりも良好な電気伝導性およびイオン伝導性を提供できる。セリアのイオン伝導性と酸素発生能力は、電気化学的性能を更に改良する。
アノード102及びカソード104は、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素の少なくとも1つから成る電解触媒を浸透させてもよい。電解触媒は、カソード104に、HOやCOの分子の結合を切断する付加的活性エネルギーを提供し、更に電気化学的性能を更に改良する。
上述の材料から成るアノードとカソードの顕著な性能は、COをCOに電解した際の性能が顕著に改良されている点である。多くの従来の電極材料は、COからCOへの電解反応の動力学がHOからHへの反応動力学に比較して極端に悪いことが認められる。特に指定しない限り、従来の電極において、COからCOへ変換する際の内部抵抗が、HOからHへ変換する際の内部抵抗に比べて非常に高い。その結果として、総合的な電極性能の良好な指標は、いかにCOからCOへ変換を良好にするかである。本発明の電極102及び104は、従来の電極材料と比較して、COからCOへの変換反応の電解触媒性能が極めて改良されていることが示される。
電解セル100及び電極は種々の異なるプロセスや技術により製造できると理解されるべきである。例えば、本発明の電極材料は、電解質層106上にスクリーン印刷されたインクを製造するのに使用される。他の実施態様において、電解質層106上に、スプレー又はテープ製膜、積層および焼結により電極を形成してもよい。それゆえ、本発明の電極は製造方法が1つに限定されるわけではなく、本発明の新規な電極102及び104の製造に使用される全てのプロセス及び技術が包含されるものである。
以下の記載は本発明の電解セル100の製造方法の実施例の1つであり、これに限定されるわけではない。
アノード102の材料は、Pr0.8Sr0.2MnO(3−δ)で示されるペロブスカイト組成物を合成することにより製造した。この組成物は液体硝酸塩混合プロセスを使用して製造された。この組成物の製造において、構成硝酸塩の化学量論比量が混合され、約150℃のホットプレート上で炭化した。得られた炭化物は混合され、約1000℃で焼成され、ペロブスカイト結晶相を形成させた。合成ペロブスカイト粉末は、部分安定化ジルコニア媒体と共に容器内で粉砕され、適切な粒径分布と比表面積を有するように粒径を減少させ、スクリーン印刷用インクを調製した。インクは、市販の有機展色剤(Heraeus V−006)及びテルピネオールを使用して調製した。
カソード104の材料も液体硝酸塩混合プロセスを使用して製造された。具体的には、ニッケル、マグネシウムセリウム及びカルシウムの硝酸塩粉末を、Ni:Mg分子比が90:10となるように結合させた。最終的な混合物は約50〜70重量%のNi(Mg)O(酸化ニッケルと酸化マグネシウムの固溶体)と残余がCe(Ca)O(2−δ)(酸化カルシウムでドープされたセリア)であった。混合物は続いて約1000℃で焼成し、所望の粒径分布と比表面積を達成するように粉砕した。インクはアノード102の製造と同様の方法で製造した。
スカンジウムでドープしたジルコニアのバッチ(ダイイチ社、日本)をテープキャストし、焼結して約0.18〜0.20mm厚の電解質シートを作成した。アノードインク及びカソードインクを電解質シートのそれぞれ反対側にスクリーン印刷し、約1300℃で焼結した。ある場合は、カソードインクが先に印刷され、約1400℃で焼結された。アノードインクは続いて印刷され、約1250〜1300℃で焼結した。
上記のプロセスは、異なる2種の大きさの電解セルを製造するのに使用された。最初の大きさのセルは、約40mmの直径を有する電解質層を含むボタン型セルである。ボタン型セルは、基本的に電極特性評価のために使用した。第2の大きさのセルは、一辺が約10cmの正方形セルである。正方形セルは、基本的に積層評価のために使用した。スカンジウムでドープされたランタン輝コバルトインクをアノード102に印刷し、ニッケルインクをカソード104に印刷し、正方形セルのための集電体を設けた。ガス流路を有するステンレススチール層およびセル−セル内部接続体が設置され、正方形セルのアノード102及びカソード104を接続した。
ボタン型セル及び正方形セルの積層体を試験するに先立ち、アノード102及びカソード104を処理し触媒材料を浸透させた。これは、硝酸プラセオジムコバルト溶液を使用して、多孔質電極102及び104を飽和させることにより達成した。コバルトに対するプラセオジムの分子比はおおよそ1:1であった。ボタン型セル及び正方形セルの積層体は加熱して試験した。ある場合、種々の中間温度または600℃付近の加熱処理に伴って、複数の浸透が電極102及び104で行われた。
図3及び図4は、ボタン型セルの燃料電池モード及び電解モードにおいて作動させた際の性能を示す。図5及び図6は、正方形セルの25積層体の燃料電池モード及び電解モードにおいて作動させた際の性能を示す。
図3に示すグラフより、ボタン型セルは比抵抗(ASR)は、燃料電池モード及び電解モードの両方において0.5Ωcmであり、両モードにおいて等しく良好な性能を示した。この抵抗は、ボタン型セルに約50%のスチームと約50%の水素から成る混合物を供給しながら800℃付近の温度で作動させて測定した。ボタン型セルのような小さいサイズおよび周囲の環境は、回りから熱を吸収することも、周りに熱を発生放出することも可能である。それゆえ、ボタン型セルは、燃料電池モード及び電解モードの両方で作動させても800℃付近で実質的に等温となる。
図4は、約600時間以上のボタン型セルの長期間における作動性能を示す。作動期間中ボタン型セルは、燃料電池モードと電解モードとに切り替えを行った。燃料電池モードおよび電解モードの両方の電池の電圧と電流密度の関係から明らかなように、セルのASRは約600時間の作動中にほぼ安定していた。
図5のグラフから明らかなように、正方形セルの25積層体の燃料電池モードにおけるASRは約1.04Ωcmであり、電解モードにおけるASRは約1.3Ωcmであった。電解モードにおいて積層体は、中心温度が約816℃であり、スチームの利用が約49.4%であった。燃料電池モードにおいて、中心温度が約896℃であり、水素の利用が約72.4%であった。スチームに対する水素の比は約3:4であった。
図3に示すように、ボタン型セルと比較して積層セルのASRはより高く、これは、より長い電流路及び付加要素(内部接続体など)が積層セルの構築部品として使用されていることに起因する。更に、積層電池の燃料電池モードと電解モードとにおけるASRのばらつきは、図2bに示したように、両モードにおける中心温度が違うことに基本的に起因している。すなわち、燃料電池モードと電解モードとにおける積層中心温度の約80℃の違いが、測定されたASRの顕著な差の要因となっている。
図6は、約400時間以上の積層電池の長期間における作動性能を示す。作動期間中積層電池は電解モードで作動させた。電池の電圧と電流密度の関係から明らかなように、積層電池のASRは約400時間の作動中にほぼ安定していた。積層電池の電圧を監視し、高位置側と低位置側のそれぞれ5電池のグループについて測定した。これらは図中の下方部分に記載されている
本発明は、本発明の精神または必須要件から逸脱しない範囲において、他の実施態様を取ることが出来る。記載された実施態様は単なる例示であって、本発明はこれに限定されない。本発明の要旨は、上述の記載よりもむしろ特許請求の範囲で規定されるものである。特許請求の範囲と同等の意味および範囲の全ての変更も本発明の範囲に含まれる。

Claims (24)

  1. 含酸素分子を還元して酸素イオンと燃料分子生成するカソードと、当該カソードと接して酸素イオンを輸送する電解質と、当該電解質と接して酸素イオンを受容し、酸素ガスを生成するアノードとから成る電解槽セルであって、前記アノードが電子伝導相から成り、当該電子伝導相が、実質的な化学式(Pr(1−x)La(z−y)A’BO(3−δ)(ただし、0≦x≦0.5、0≦y≦0.5、0.8≦z≦1.1)で示されるペロブスカイトから成ることを特徴とする電解槽セル。
  2. 前記アノードが、更に、前記電子伝導相と混合し且つ酸化物から成るイオン伝導相を有する請求項1に記載の電解槽セル。
  3. 前記酸化物が、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化セリウムの少なくとも1つにドープされたジルコニアである請求項2に記載の電解槽セル。
  4. 前記酸化物が、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム、酸化スカンジウム及び酸化ジルコニウムの少なくとも1つにドープされたセリアである請求項2に記載の電解槽セル。
  5. 前記アノードが多孔質であり、多孔中に電解触媒を浸透されている請求項1に記載の電解槽セル。
  6. 電解触媒が、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素の少なくとも1つから成る請求項5に記載の電解槽セル。
  7. 前記ペロブスカイトの化学式におけるA’が、アルカリ土類金属である請求項1に記載の電解槽セル。
  8. 前記アルカリ土類金属が、カルシウム及びストロンチウムの少なくとも1つから成る請求項7に記載の電解槽セル。
  9. 前記ペロブスカイトの化学式におけるBが遷移金属である請求項1に記載の電解槽セル。
  10. 前記遷移金属がマンガン、コバルト及び鉄の少なくとも1つから成る請求項9に記載の電解槽セル。
  11. 前記含酸素分子が、水および二酸化炭素から成る群より選択される請求項1に記載の電解槽セル。
  12. 前記燃料分子が、水素および一酸化炭素から成る群より選択される請求項1に記載の電解槽セル。
  13. 前記カソードが電子伝導相から成り、当該電子伝導相がマグネシウムと混合している酸化ニッケルから成る請求項1に記載の電解槽セル。
  14. 含酸素分子を還元して酸素イオンと燃料分子生成し、マグネシウムと混合している酸化ニッケルから成る電子伝導相から成るカソードと、当該カソードと接して酸素イオンを輸送する電解質と、当該電解質と接して酸素イオンを受容し、酸素ガスを生成するアノードとから成る電解槽セル。
  15. 電解槽セルを作動させると前記酸化ニッケルがニッケルに還元される請求項14に記載の電解槽セル。
  16. 酸化マグネシウムに対する酸化ニッケルの比(酸化ニッケル/酸化マグネシウム)が3以上である請求項14に記載の電解槽セル。
  17. 前記カソードが、更に、前記電子伝導相と混合し且つ酸化物から成るイオン伝導相を有する請求項14に記載の検出システム。
  18. 前記酸化物が、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたジルコニアである請求項17に記載の電解槽セル。
  19. 前記酸化物が、酸化サマリウム、酸化ガドリニウム、酸化イットリウム、酸化イッテルビウム、酸化カルシウム、酸化マグネシウム及び酸化スカンジウムの少なくとも1つにドープされたセリアである請求項17に記載の電解槽セル。
  20. 前記カソードが多孔質であり、多孔中に電解触媒を浸透されている請求項14に記載の電解槽セル。
  21. 前記電解触媒が、プラセオジム、コバルト、セリウム、ユウロピウム及び他の希土類元素の少なくとも1つから成る請求項20に記載の電解槽セル。
  22. 前記含酸素分子が、水および二酸化炭素から成る群より選択される請求項14に記載の電解槽セル。
  23. 前記燃料分子が、水素および一酸化炭素から成る群より選択される請求項14に記載の電解槽セル。
  24. 前記アノードが電子伝導相から成り、当該電子伝導相が、実質的な化学式(Pr(1−x)La(z−y)A’BO(3−δ)(ただし、0≦x≦0.5、0≦y≦0.5、0.8≦z≦1.1)で示されるペロブスカイトから成る請求項14に記載の電解槽セル。
JP2009520863A 2006-07-22 2007-07-23 固体酸化物電解槽セル用の効率的な可逆電極 Withdrawn JP2009544843A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US82010306P 2006-07-22 2006-07-22
PCT/US2007/016596 WO2008013783A2 (en) 2006-07-22 2007-07-23 Efficient reversible electrodes for solid oxide electrolyzer cells

Publications (1)

Publication Number Publication Date
JP2009544843A true JP2009544843A (ja) 2009-12-17

Family

ID=38982012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009520863A Withdrawn JP2009544843A (ja) 2006-07-22 2007-07-23 固体酸化物電解槽セル用の効率的な可逆電極

Country Status (4)

Country Link
US (1) US7976686B2 (ja)
EP (1) EP2069556A4 (ja)
JP (1) JP2009544843A (ja)
WO (1) WO2008013783A2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277877A (ja) * 2009-05-29 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
WO2013180081A1 (ja) * 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 電気化学反応器及び燃料ガスの製造方法
JP2014167146A (ja) * 2013-02-28 2014-09-11 Jfe Steel Corp 二酸化炭素ガスの電気分解方法。
JP2015172213A (ja) * 2014-03-11 2015-10-01 国立大学法人九州大学 電気化学セルおよびその製造方法
WO2015156526A1 (ko) * 2014-04-10 2015-10-15 국립대학법인 울산과학기술대학교 산학협력단 수소 및 산소를 생성하는 고체 산화물 수전해 셀
KR20150117605A (ko) * 2014-04-10 2015-10-20 국립대학법인 울산과학기술대학교 산학협력단 일산화탄소를 생성하는 고체 산화물 전해 셀 및 그 제조 방법
KR20160000941A (ko) * 2014-06-25 2016-01-06 울산과학기술원 산학협력단 양방향 이온 전달형 고체 산화물 수전해 셀
JP2018131647A (ja) * 2017-02-14 2018-08-23 東京瓦斯株式会社 電気分解システム、制御装置、及びプログラム
JP2019502019A (ja) * 2015-11-16 2019-01-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 電気化学セルおよび方法
KR102228132B1 (ko) * 2020-11-02 2021-03-17 (주)시그넷이브이 수소연료전지차량 및 전기차량 충전을 위한 ess 시스템

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8354011B2 (en) * 2006-07-22 2013-01-15 Ceramatec, Inc. Efficient reversible electrodes for solid oxide electrolyzer cells
US7951283B2 (en) * 2006-07-31 2011-05-31 Battelle Energy Alliance, Llc High temperature electrolysis for syngas production
WO2008048445A2 (en) 2006-10-18 2008-04-24 Bloom Energy Corporation Anode with remarkable stability under conditions of extreme fuel starvation
US10615444B2 (en) 2006-10-18 2020-04-07 Bloom Energy Corporation Anode with high redox stability
US20080261099A1 (en) 2007-04-13 2008-10-23 Bloom Energy Corporation Heterogeneous ceramic composite SOFC electrolyte
US20080254336A1 (en) * 2007-04-13 2008-10-16 Bloom Energy Corporation Composite anode showing low performance loss with time
US8277631B2 (en) * 2007-05-04 2012-10-02 Principle Energy Solutions, Inc. Methods and devices for the production of hydrocarbons from carbon and hydrogen sources
US8366902B2 (en) * 2008-03-24 2013-02-05 Battelle Energy Alliance, Llc Methods and systems for producing syngas
JP5618485B2 (ja) * 2009-01-08 2014-11-05 株式会社東芝 電気化学セルの運転方法
EP2244322A1 (en) * 2009-04-24 2010-10-27 Technical University of Denmark Composite oxygen electrode and method for preparing same
US8617763B2 (en) * 2009-08-12 2013-12-31 Bloom Energy Corporation Internal reforming anode for solid oxide fuel cells
JP5323269B2 (ja) 2010-01-26 2013-10-23 ブルーム エナジー コーポレーション 燃料電池の構成物、特に固形酸化物型燃料電池の電解質材料
US8591718B2 (en) * 2010-04-19 2013-11-26 Praxair Technology, Inc. Electrochemical carbon monoxide production
US8440362B2 (en) 2010-09-24 2013-05-14 Bloom Energy Corporation Fuel cell mechanical components
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
US9236627B1 (en) * 2011-09-29 2016-01-12 University Of South Carolina Solid oxide redox flow battery
US8795417B2 (en) 2011-12-15 2014-08-05 Praxair Technology, Inc. Composite oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
JP6339582B2 (ja) 2012-11-20 2018-06-06 ブルーム エナジー コーポレーション ドープされたスカンジア安定化ジルコニア電解質組成物
US8658311B2 (en) * 2012-12-07 2014-02-25 Bruce S. Kang High temperature rechargeable battery for greenhouse gas decomposition and oxygen generation
WO2014100376A1 (en) 2012-12-19 2014-06-26 Praxair Technology, Inc. Method for sealing an oxygen transport membrane assembly
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
US9755263B2 (en) 2013-03-15 2017-09-05 Bloom Energy Corporation Fuel cell mechanical components
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
WO2015031889A1 (en) 2013-08-30 2015-03-05 Ceramatec, Inc. Hydrogen utilization and carbon recovery
MX2016004495A (es) 2013-10-07 2016-06-16 Praxair Technology Inc Reactor ceramico de conversion de conjunto de membranas de transporte de oxigeno.
CA2924201A1 (en) 2013-10-08 2015-04-16 Praxair Technology, Inc. System and method for temperature control in an oxygen transport membrane based reactor
WO2015084729A1 (en) 2013-12-02 2015-06-11 Praxair Technology, Inc. Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming
CA2937943A1 (en) 2014-02-12 2015-08-20 Praxair Technology, Inc. Oxygen transport membrane reactor based method and system for generating electric power
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US9574274B2 (en) * 2014-04-21 2017-02-21 University Of South Carolina Partial oxidation of methane (POM) assisted solid oxide co-electrolysis
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US10651496B2 (en) 2015-03-06 2020-05-12 Bloom Energy Corporation Modular pad for a fuel cell system
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
US10680251B2 (en) 2017-08-28 2020-06-09 Bloom Energy Corporation SOFC including redox-tolerant anode electrode and system including the same
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
GB2568563B (en) 2018-07-17 2023-03-08 Omnagen Ltd Chemical reactor for controlled temperature gas phase oxidation reactions
WO2020142111A1 (en) 2019-01-04 2020-07-09 Benjamin Moore & Co. Acrylic resin with internal plasticizer
US11965260B2 (en) 2022-03-22 2024-04-23 Dioxycle Augmenting syngas evolution processes using electrolysis
US11788022B1 (en) * 2022-03-22 2023-10-17 Dioxycle Augmenting syngas evolution processes using electrolysis

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1352995A (en) * 1970-04-22 1974-05-15 Nat Res Dev Catalytic processes
US6060420A (en) * 1994-10-04 2000-05-09 Nissan Motor Co., Ltd. Composite oxides of A-site defect type perovskite structure as catalysts
US6548203B2 (en) * 1995-11-16 2003-04-15 The Dow Chemical Company Cathode composition for solid oxide fuel cell
US5993986A (en) * 1995-11-16 1999-11-30 The Dow Chemical Company Solide oxide fuel cell stack with composite electrodes and method for making
US5670270A (en) * 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US6117582A (en) * 1995-11-16 2000-09-12 The Dow Chemical Company Cathode composition for solid oxide fuel cell
US6099985A (en) * 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US7553573B2 (en) * 1999-07-31 2009-06-30 The Regents Of The University Of California Solid state electrochemical composite
US6946213B2 (en) * 2003-04-28 2005-09-20 Nextech Materials, Ltd. Perovskite electrodes and method of making the same
US7150927B2 (en) * 2003-09-10 2006-12-19 Bloom Energy Corporation SORFC system with non-noble metal electrode compositions
US20060216575A1 (en) * 2005-03-23 2006-09-28 Ion America Corporation Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010277877A (ja) * 2009-05-29 2010-12-09 Nippon Telegr & Teleph Corp <Ntt> 固体酸化物形燃料電池
WO2013180081A1 (ja) * 2012-05-28 2013-12-05 国立大学法人 鹿児島大学 電気化学反応器及び燃料ガスの製造方法
CN104350180A (zh) * 2012-05-28 2015-02-11 国立大学法人鹿儿岛大学 电化学反应器和燃料气体的制造方法
JP2014167146A (ja) * 2013-02-28 2014-09-11 Jfe Steel Corp 二酸化炭素ガスの電気分解方法。
JP2015172213A (ja) * 2014-03-11 2015-10-01 国立大学法人九州大学 電気化学セルおよびその製造方法
KR20150117605A (ko) * 2014-04-10 2015-10-20 국립대학법인 울산과학기술대학교 산학협력단 일산화탄소를 생성하는 고체 산화물 전해 셀 및 그 제조 방법
WO2015156526A1 (ko) * 2014-04-10 2015-10-15 국립대학법인 울산과학기술대학교 산학협력단 수소 및 산소를 생성하는 고체 산화물 수전해 셀
KR101662652B1 (ko) 2014-04-10 2016-11-01 울산과학기술원 일산화탄소를 생성하는 고체 산화물 전해 셀 및 그 제조 방법
KR20160000941A (ko) * 2014-06-25 2016-01-06 울산과학기술원 산학협력단 양방향 이온 전달형 고체 산화물 수전해 셀
KR101642426B1 (ko) * 2014-06-25 2016-07-26 울산과학기술원 양방향 이온 전달형 고체 산화물 수전해 셀
JP2019502019A (ja) * 2015-11-16 2019-01-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 電気化学セルおよび方法
US11145871B2 (en) 2015-11-16 2021-10-12 Siemens Aktiengesellschaft Electrochemical cell and process
JP2018131647A (ja) * 2017-02-14 2018-08-23 東京瓦斯株式会社 電気分解システム、制御装置、及びプログラム
KR102228132B1 (ko) * 2020-11-02 2021-03-17 (주)시그넷이브이 수소연료전지차량 및 전기차량 충전을 위한 ess 시스템

Also Published As

Publication number Publication date
US7976686B2 (en) 2011-07-12
EP2069556A4 (en) 2009-12-09
WO2008013783A2 (en) 2008-01-31
EP2069556A2 (en) 2009-06-17
US20080029388A1 (en) 2008-02-07
WO2008013783A3 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
JP2009544843A (ja) 固体酸化物電解槽セル用の効率的な可逆電極
Hanif et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion
Shaikh et al. A review on the selection of anode materials for solid-oxide fuel cells
Jun et al. Achieving high efficiency and eliminating degradation in solid oxide electrochemical cells using high oxygen‐capacity perovskite
US8354011B2 (en) Efficient reversible electrodes for solid oxide electrolyzer cells
CN103430366B (zh) 催化剂层
Jörissen Bifunctional oxygen/air electrodes
JP5581216B2 (ja) 還元性ガス中で使用するための高性能多層電極
US20100167169A1 (en) Current Collectors for Solid Oxide Fuel Cell Stacks
JP2011507161A (ja) 酸素含有ガス中で使用するための高性能多層電極
US7655346B2 (en) Electrode material and fuel cell
JP2006283103A (ja) 水蒸気電解セル
Elangovan et al. Intermediate temperature reversible fuel cells
Xu et al. Oxide composite of La0. 3Sr0. 7Ti0. 3Fe0. 7O3-δ and CeO2 as an active fuel electrode for reversible solid oxide cells
Liu et al. Promoting electrocatalytic activity and stability via Er0. 4Bi1. 6O3− δ in situ decorated La0. 8Sr0. 2MnO3− δ oxygen electrode in reversible solid oxide cell
Shen et al. Comparison of different perovskite cathodes in solid oxide fuel cells
Liu et al. Study of high active and redox-stable La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sm0. 1Ce0. 9O2− δ composite ceramic electrode for solid oxide reversible cells
Maide et al. Influence of electrolyte scaffold microstructure and loading of MIEC material on the electrochemical performance of RSOC fuel electrodE
Li et al. Evaluation of Fe-doped Pr1. 8Ba0. 2NiO4 as a high-performance air electrode for reversible solid oxide cell
US20060257714A1 (en) Electrode material and fuel cell
JP2009263741A (ja) 高温水蒸気電解セル
Chuang Catalysis of solid oxide fuel cells
KR101274592B1 (ko) 혼합 활성 산화물이 코팅된 용융탄산염 연료전지용 공기극
Corre et al. High temperature fuel cell technology
KR101691699B1 (ko) 고체 산화물 연료전지의 애노드 기능층용 분말의 제조방법

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005