JP2009540531A - イオンビーム装置およびイオン注入方法 - Google Patents

イオンビーム装置およびイオン注入方法 Download PDF

Info

Publication number
JP2009540531A
JP2009540531A JP2009515500A JP2009515500A JP2009540531A JP 2009540531 A JP2009540531 A JP 2009540531A JP 2009515500 A JP2009515500 A JP 2009515500A JP 2009515500 A JP2009515500 A JP 2009515500A JP 2009540531 A JP2009540531 A JP 2009540531A
Authority
JP
Japan
Prior art keywords
ion
ion implantation
beamline
magnet
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009515500A
Other languages
English (en)
Other versions
JP5210304B2 (ja
Inventor
グラビッシュ,ヒルトン・エフ
ジェーコブソン,デール・コンラッド
ホースキー,トーマス・エヌ
ハフト,サミ・ケイ
Original Assignee
セムイクウィップ・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セムイクウィップ・インコーポレーテッド filed Critical セムイクウィップ・インコーポレーテッド
Publication of JP2009540531A publication Critical patent/JP2009540531A/ja
Application granted granted Critical
Publication of JP5210304B2 publication Critical patent/JP5210304B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3171Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/10Irradiation devices with provision for relative movement of beam source and object to be irradiated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26566Bombardment with radiation with high-energy radiation producing ion implantation of a cluster, e.g. using a gas cluster ion beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/004Charge control of objects or beams
    • H01J2237/0041Neutralising arrangements
    • H01J2237/0044Neutralising arrangements of objects being observed or treated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0455Diaphragms with variable aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • H01J2237/30477Beam diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31701Ion implantation
    • H01J2237/31703Dosimetry

Abstract

従来の単原子ドーパントイオン種およびクラスターイオンの注入を可能にする、多目的イオン注入ビームライン構成であって、このビームライン構成は質量解析磁石を有し、質量解析磁石は、実質的に磁石の強磁性体の極間の幅の極ギャップ、および質量選択開口を画定する。この解析磁石は、スロット形状のイオン源引き出し開口からのイオンビームを受け入れ、且つ、質量選択開口における、ビーム幅に対応する面での分散を生じさせるように寸法決めされる。質量選択開口は、クラスターのビームを選択するために寸法決めされた質量選択幅を設定でき、また、質量選択開口は、実質的に狭い質量選択幅を設定できる。解析磁石は、質量選択開口において、実質的に単原子または単分子の質量の単原子ドーパントイオンのビームを選択するのに十分な分解能を備える。
【選択図】図1

Description

本発明は、半導体ウェハおよびその他の基板ターゲットへのイオン注入に関する。特に、周期表のC、Si、GeおよびSnのようIV族の両側にあるB、P、As、Sb、In元素のような、電気的ドーパント種の原子を複数含む、分子イオンの効率的な注入に関する。また、たとえばアモルファス化、ドーパント拡散制御、ストレスエンジニアリング、欠陥ゲッタリングなどの半導体基板の改変を行うための、S、Si、Geのような原子を複数含む分子イオンの効率的な注入に関する。このような分子の注入、特に、関心原子の大きな、すなわち4より大きい多重度の分子の注入は、60nmおよびそれ以下の臨界的な集積回路の製造に有効である。本発明は、また、一般的に使用されている単一原子ドーパントイオンに好適な注入装置の注入ビームライン構成、および、特に、多目的の注入装置のビームライン構成、上述の3つのクラスのイオンの注入に有効な構成に関する。
高ドーズ、低エネルギー注入の場合、関心元素の複数の原子を含む分子イオンを用いる潜在的な利点が、ここ数年よく認識されてきた。与えられたイオンビーム電流のため、関心元素の原子の多重度に比例してドーズ量は増加する。このようなイオンは、ソースから引き出され、関心元素の原子量に対する分子量の比に比例して、より高エネルギーで、ウェハまたは他のターゲット基板に輸送される。従って、比較的高ドーズの注入にとって、ウェハの処理量は、内部空間電荷力、イオンビーム中の固有熱イオン温度によりそれほど制限的されない。また、与えられたドーズ量のため、ビームによりウェアに運搬される電荷量は実質的に小さい。
しかし、このような分子イオンを従来の注入装置において使用することを試みるときに、いくつかの欠点を克服することが望まれる。第1に、従来の注入装置のイオン源は、比較的高密度であり、熱プラズマおよび重い分子イオンが実質的にこのようなソースにより崩壊され、しばしば、小さな分子イオンしか得られない。第2に、分子イオンは、しばしば、イオン内の水素原子の様々な量の結果として、および、発生したイオンに1つ以上の同位元素が存在する場合、同位体質量の二項分布の結果として、質量の範囲を伴って発生される。この異なる質量のイオンは、一般に、注入ビームラインを通して異なる経路を描き、結果として、ウェハ表面上への好ましくない角度および/またはドーズの変化をもたらす。第3に、比較的大きい分子イオンの質量は、単原子注入エネルギーを制限し、しばしば、従来の解析磁石(およびもしあれば他の磁気部品)のサイズおよび磁場の強さにより数keVに制限する。
イオン注入装置の製造および運転に関する商業コストを最小限にするために、分子イオンの注入に関する不利益を克服するだけでなく、従来の単原子ドーパント種の注入もできる、多目的なイオン注入を提供することが望まれる。
さらに、主に従来の単原子ドーパント種を注入するために構成されたイオン注入装置でも、大きな動的なドーズ範囲に適合させるために、ビームの広範囲なイオン密度にわたる効率的な運転をできるようにすることが望まれる。これは、イオンのエネルギー分解能に関して、および半導体構造の質を低下させるイオン種からの自由に関して、主に、ターゲットにおいて高純度のイオンを提供するために必要であり、また、イオンを、ウェハ基板に、ウェハ表面にわたって小さな角度広がりで、よい角度定義で、よいドーズ均一性で衝突させるために必要である。
従来の単原子ドーパントイオン種、および以下に定義されるクラスターイオンの注入を可能にする多目的イオン注入ビームライン構成が特徴付けられる。ここで、クラスターイオンは、たとえば、ドーパント種の原子を多く含む実質的に大きな分子のイオンであり、これには、ボロハイドライド化合物のデカボランB1014およびオクタデカボランB1822から生成されるイオンが含まれる。このビームライン構成は、質量解析磁石を有し、質量解析磁石は、質量選択開口および質量解析磁石の強磁性体の極間の実質的な幅の極ギャップを画定し、解析磁石は、少なくとも約80mmの高さおよび少なくとも約7mmの幅の、広い面積のスロット形状のイオン源引き出し開口からのイオンビームを受け入れるように寸法決めされ、且つ、ビーム幅に対応する面における、質量選択開口での分散を生成し、質量選択開口は、同種であるが段階的に分子量の異なるクラスターイオンのビームを選択するように寸法決めされた質量選択幅を設定することが可能であり、また、質量選択開口は、実質的に狭い質量選択幅を設定することが可能であり、且つ、解析磁石が、質量選択開口において、実質的に単一の原子量または分子量の単原子ドーパントイオンのビームの選択を可能にするのに十分な分解能を備える。
好ましい実施形態は、以下の1つまたはそれ以上の特徴を備える。
質量選択開口は、単原子イオン種のための第1の設定値、および、クラスターイオンを受け入れるために、第1の設定値の少なくとも15倍の質量選択幅の第2の設定値を設定可能である。
単原子ドーピングイオンのための、質量選択開口における質量分析磁石の分解能は、少なくとも60である。
質量解析磁石は、質量選択開口において、イオン源の引き出し開口の幅の質量分散面で共役像を形成するように、構成および配置されるように寸法決めされる。
質量選択開口は、少なくとも30mmの開口幅を設定することができる。
解析磁石は、少なくとも12mmの幅および90mmの高さのスロット形状のイオン源引き出し開口から引き出されたビームを解析するように構成される。
イオン源は、幅が約12.5mmであり、高さが約100mmのスロット形状の引き出し開口を備える。
質量選択開口は、単原子イオン種のために第1の設定値、および、クラスター化合物のから生成されたクラスターイオンを受け入れるために第1の設定値の少なくとも15倍の質量選択幅の第2の設定値を設定可能であり、単原子ドーパントイオンのための質量選択開口における質量解析磁石の分解能は、少なくとも60である。
イオン注入ビームラインは、形成された電子ビームを用いるイオン化モードにより約1mA/cmまでの電流密度のイオンを生成するように構成されたイオン源と組み合わされ、イオン源は、ガスおよび蒸気の形態の供給材料を二者択一に受け取るように構成される。このイオン化モードは、時々、電子衝突によるイオン化と言及される。
イオン源は、アーク放電を利用する第2のイオン化モードで代替的に機能する。
イオンビーム内で、ガスとイオンビームとの相互作用により負のイオンを発生させるために、ビームラインは、解析磁石の下流で、ガスを導入する手段が提供される。
解析磁石は、単一のコイル対に関連付けられた扇形の双極子磁石であり、磁石は、入口および出口の極縁を備え、極縁は、極のギャップに出入りするイオンビーム経路の主軸に実質的に垂直であり、解析磁石は、扇形磁石内で、イオンビームの曲げ面に垂直な面におけるビームの集束効果を実質的に備えず、磁石に先立つイオン集束システムが、磁石の質量分散面に垂直なででのビーム集束を提供する。
集束システムは、イオン源に関連したイオン引き出しシステムのレンズ要素を有する。
解析磁石の極ギャップは、実質的に、通過する最大サイズのイオンビームの対応する寸法よりも大きく、極の表面とビーム経路との間にグラファイトまたはシリコンのライニングが存在する。
極ギャップを画定する極部材は、溝およびシムが形成された極表面を備え、溝およびシムは、ビーム経路の中間面に対してそれぞれ極表面を低くおよび高くし、極ギャップ寸法に対して相対的に小さな極幅を使用できるような磁場を成形する。
極ギャップを画定する極部材は、非磁性体の真空ハウジングの壁に埋め込まれ且つ該壁にシールされ、解析磁石の磁場にさらされながら真空ハウジングを通ってイオンビームが通過し、極部材間の磁石の強磁性体構造は、真空ハウジングの外側に配置される。
解析磁石は、極ギャップ中に、約10kガウスを超える磁場を含む、調節可能な磁場を生成するように構成された扇形磁石である。
オクタデカボランから生成される約80keVのイオンを選択するように構成される。
質量解析装置は、約400mmより大きな半径Rをもつ扇形磁石を備え、扇形の角度φは約90度以上であり、有効極出口境界から質量分解開口までの距離bが約200mmであり、質量解析装置は約−1.2から−0.80の拡大率Mを備えている。
半径Rは約500mm、φは約120°、bは約195mm、Mは約−0.83であり、解析磁石は、開口幅約12.5mmのソースからのイオンビームを解析するように構成され、解析磁石は、約88のオーダーの質量分解能m/Δmを備える。
質量解析磁石は、約205amuと約220aumとの間の全質量範囲にわたってイオンを受け入れるように構成される。
質量解析磁石は、約113amuと約123amuとの間の全質量範囲にわたってイオンを受け入れるように構成される。
質量選択開口は、一対の反対回転する円筒形表面により画定され、円筒形表面は、平行な偏心軸を中心とする反対方向の同期した回転のために取り付けられる。
円筒形の表面の少なくとも1つは、水冷式であり且つグラファイトまたはシリコンのカバーを備える。
解析磁石の後続のビームラインの一部において、複数の素子の、四極子集束レンズを備え、レンズは、ビーム断面の直交方向のビームの寸法を制御するように構成される。レンズは、少なくとも3つの四極子素子を備え、かつ、ビームの断面の直交方向の角度発散および寸法を同時に制御するように構成される。レンズは、三枚構造四極子集束レンズであり、好ましくは磁気三枚構造四極子集束レンズである。
ビームラインは、解析磁石内でイオンビームの曲げ面に垂直な面での長い寸法のビームプロファイルを備える、三枚構造四極子集束レンズに入る細長い断面プロファイルを備えるビームを生成するように構成され、三枚構造の第1のレンズ素子が、長いプロファイルの寸法を集束させ、第2のレンズ素子が、第1の素子と反対の極を持ち、短い寸法における集束および長い寸法におけるデフォーカスを生じさせ、第3のレンズ素子が、第1の素子と同じ極を持つように構成された制御装置と組み合わされ、細長いプロファイルの両方の寸法における同時の集束を達成するために、レンズ素子の場の強さはそれぞれ制御される。
イオン注入ビームラインは、イオン源に関連付けられた調整可能な引出し光学系を備え、この光学系は、解析磁石の非分散面におけるビーム集束角を生成し、このビーム集束角は、総イオンビーム電流およびイオンエネルギーにの大きさにより変化し、また、数マイクロアンペアから数ミリアンペアのビーム電流の範囲にわたって、および約4keVから80keVの広いエネルギー範囲にわたって、ビームが四極子の入口に受け入れられるように、ビームを寸法決めするように最適化され、三枚構造四極子は、注入されるウェハまたは基板での、非分散面(垂直)および分散面(水平)の両方におけるビームサイズおよび角度発散の最終的な最適化を提供し、この最適化には、エネルギーおよび電流の範囲にわたって引き出し光学系により導入されるビームサイズおよび角度の変化の補償を含む。
ビームラインは、解析磁石の後に且つ四極子レンズの前に、減速ユニットを含み、レンズは、減速ユニットにおけるビームの減速により生じるビームの発散を制御するために制御される。
ビームラインは、クラスターイオンの少なくとも1つのイオンビームを生成するためのイオン源と組み合わされ、解析磁石の質量選択開口は、同一のクラスターイオン種の質量の範囲を伝達するように調整され、四極子レンズのレンズ要素の個別の場の強さは、同時且つ実質的に、ターゲット基板における、イオンビーム中の異なる質量の範囲により生じうる角度ずれを取り除くように調整される。
ビームラインは、高電流のボロン含有クラスターイオンを低エネルギー且つ高ドーズ注入条件で生成するように構成される。
ビームラインは、4つの強磁性体コア部材の周りに個別的に巻かれた4つのコイルを備える磁気四極子レンズを有し、コア部材は強磁性体極部材に固定されており、強磁性体極部材は、ビームが通る非強磁性体の真空ハウジングを貫通し且つこれをシールし、隣接するコイルは、反対の極になるように巻かれて4つの極間の領域に四極子場を形成し、磁束は、1つの極から他の極へ磁気的に強磁性体ヨーク構造に結合されたコア部材を介して戻る。
ビームラインは、四極子レンズの後ろでイオンビームを走査するように構成された磁気スキャナと、スキャナと協働して、ターゲット基板に渡ってビームを平行に走査することを可能にするように構成されたコリメータとを含む。
ビームラインは、実質的に以下の値、すなわち
A.解析磁石:R=500mm、φ=120°;G=118mm;s=31mm;s=8.6mm;h=8.7mm;h=4.7mm;W=166mm;曲げ力=80keV オクタデカボラン
B.質量選択開口:最小約8mmから最大約38mm
C.三枚構造四極子集束レンズ:開口:80極先端間の対角;極先端の場は0ガウスから5kガウスの範囲で調整可能、
のビームライン特徴およびパラメータを備える。
また、本発明の特徴は、関心ピーク付近の複数の質量のクラスターイオンの注入を可能にするための、イオン注入ビームライン構成であって、ビームライン構成は、磁石の強磁性体の極の間の極ギャップおよび質量選択開口を画定する質量解析磁石を有し、極ギャップは、クラスターイオンを生成する低密度のイオン源からのイオンビームを受け入れるように寸法決めされ、質量選択開口は、同一のドーパント種であるが分子量が段階的に異なるクラスターイオンのビームを選択するように寸法決めされた質量選択幅を設定でき、イオン注入ビームラインは、解析磁石の後ろのビームラインの一部において、複数素子の集束システムを含み、集束システムは、複数の四極子集束素子を含み、レンズシステムのレンズ素子の個別的な場の強さは、ビーム断面の直交方向におけるビームの寸法を制御するように調整され、また、同時且つ実質的に、ターゲット基板における、イオンビーム中におけるクラスターイオンの異なる質量の範囲の結果として生じ得る角度ずれを取り除く。
実施形態は、以下1つまたはそれ以上の特徴を備えることができる。
ビームラインは、形成された電子ビームを採用するイオン化モードにより約1mA/cmまでの電流密度のイオンを生成するように構成されたイオン源と組み合わされ、イオン源は、加熱された蒸気の形態の供給物質を受け取るように構成される。
質量選択開口は、約113amuから約123amuの範囲の質量を持つイオンを選択するように設定可能であり、また、約205amuから220amuの範囲の質量を持つイオンを選択するように設定可能である。
レンズシステムは、少なくとも3つの四極子素子を備え、かつ、四極子場によって、ビーム断面の直交方向のビームの寸法および角度発散を同時に制御するように構成される。
レンズシステムは、三枚構造四極子集束レンズである。
レンズは、磁気三枚構造四極子集束レンズである。ビームラインは、解析磁石の曲げ面に垂直な面内にビームプロファイルの長い寸法を備える、三枚構造四極子集束レンズに入る細長い断面プロファイルを備えるビームを生成し、三枚構造の第1のレンズ素子が、長いプロファイル寸法での集束を生じさせ、第2のレンズ素子が、第1の極と反対の極を持ち短い寸法での集束を生じさせかつ長い寸法においてデフォーカスを生じさせ、第3のレンズ素子が、第1の素子と同一の極を持つように構成された制御装置と組み合わされ、レンズ素子の場の強さは、それぞれ、細長いプロファイルの両方の寸法において同時の集束を達成するように制御される。
ビームラインは、解析磁石の後ろ且つレンズシステムの四極子レンズ素子の前に減速ユニットを含み、この四極子レンズ素子は、減速ユニットにおけるビームの減速の結果として生じるビームの発散を制御するために制御される。
三枚構造四極子レンズが減速ユニットの後ろに続く。
ビームラインは、解析磁石の後ろに続く減速ユニットを含み、減速ユニットは、一対の四極子集束素子の間に配置され、減速ユニットの先の四極子レンズ素子は、減速ユニットでのビームの減速の結果として生じるビーム発散を制御するように制御される。
減速ユニットは、イオン加速をも可能にするように構成される。ビームラインは、減速器または加速器、およびそれに続く四極子素子の後ろに、少なくとも1つの磁気ビームライン素子を含み、減速器また加速器は、イオンビーム中のイオンの異なる質量に起因する、磁気ビームライン素子において生じる質量分散を相殺するため、イオンビーム中の異なる質量を持つイオンの交差を可能にする。
磁気スキャナおよび磁気コリメータの後ろに最終エネルギー磁石が存在し、磁気スキャナおよび磁気コリメータは同じ方向に調整され、最終エネルギー磁石は反対方向に調整される。
円筒形の3電極ポスト加速器構造が質量選択開口の先に存在し、3電極ポスト加速器は、ソース引き出しエネルギーから異なるエネルギーへイオンをポスト加速またはポスト減速でき、ポスト加速器の中心電極は、イオンがポスト加速器領域を通るときに、イオンビームの様々な集束角度を得るために、調整可能な電圧が適用されるように連結され、四極子素子が、ポスト加速器の両側に位置し、ポスト加速器に続いて、ポスト加速(または減速)の間に不適切なエネルギーを持って生成されたイオンまたは中性粒子を取り除くための最終エネルギー磁石が存在し、最終エネルギー磁石の後ろには、磁気コリメータレンズと協働する磁気スキャナがあり、コリメータレンズは、ビームをスキャナ磁石と同じ方向に曲げ、ポスト加速器集束電極と協働する四極子素子の強さは、ターゲット基板でのビームサイズおよび角度発散を最適化し、複数の質量のイオンの存在により生じうる角度ずれを最小化するように調整される。
ポスト加速器集束電極と協働する四極子素子の強さは、ビーム中の複数の質量のイオンの存在に起因する、ターゲット基板におけるビームの広がりを実質的に取り除くために、最終エネルギー磁石に関して、同等に調節される。
質量解析磁石のギャップは、解析磁石の曲げ面に垂直な方向における少なくとも80mmの最小断面寸法のイオン源引き出し開口からのイオンビームを受け入れるように寸法決めされる。
解析磁石の質量選択開口は、約8mmと約38mmとの間の幅の開口に調整できる。
ビームラインは、質量選択開口において、スロット形状イオン源引き出し開口から引き出されたビームを少なくとも10mmの幅に集束させるように構成される。
解析磁石の極ギャップは、実質的に、通過するイオンビームの最大サイズの対応する寸法よりも大きく、極の表面とビーム経路との間にグラファイトまたはシリコンのライニングが存在する。
極ギャップを画定する極部材は、溝およびシムが形成された極表面を備え、溝およびシムは、ビーム経路の中間面に対してそれぞれ極表面を低くおよび高くし、極ギャップ寸法およびビームの断面寸法に関して相対的に小さな極幅の使用を可能にするような磁場を形成する。
極ギャップを画定する極部材は、非磁性体材料の真空ハウジングの壁に埋め込まれ且つ該壁にシールされ、イオンビームは、解析磁石の磁場にさらされながら真空ハウジングを通り、極部材間の磁石の強磁性体構造は、真空ハウジングの外側に位置する。
解析磁石は、約500mmの半径を持つ扇形磁石であり、且つ、極ギャップ内に約10kガウスを超える磁場を含む調整可能な磁場を生成するように構成される。
ビームラインは、オクタデカボランから生成される約80keVのイオンを選択するように構成される。
質量解析装置は、約400mmより大きい半径R、約90°よりも大きい扇角φ、および約200mmの、極出口から質量選択開口までの距離b、を備える扇形磁石を有する。
扇形磁石の半径Rは約500mm、φは約120°、bは約195mmであり、解析磁石は、約12.5mmの引き出し開口幅を持つイオン源からのイオンビームを解析するように構成される。
上述のいずれかのビームラインは、電子衝突によりクラスターイオンを生成するために材料をイオン化することができるイオン源を有し、イオン注入装置は、真空ハウジング内に、質量解析磁石に続いてビームスキャナおよびコリメータを備え、ビームラインは、ビームに中和のための負のイオンを提供するために、クラスターイオンビームとの相互作用により負のイオンを形成することができるガスを、スキャナまたはコリメータの真空ハウジングの領域に導入するためのシステムを備える。
本発明の他の側面は、電子衝突イオン化によりクラスターイオンを生成するために、材料をイオン化することができるイオン源と組み合わされるイオン注入ビームラインであって、ビームラインは、関連する真空ハウジング部分内でおよび注入ステーションに先立ち、クラスターイオンビームを生成するために、イオン源からイオンを引き出すことができる引き出し電極アセンブリと、ビームのための質量解析磁石と、解析されたビームが通るイオンビームスキャナおよびイオンビームコリメータとを有し、イオンビームスキャナおよびイオンビームコリメータは、解析磁石の下流で、ビームを中和する負のイオンを提供するために、クラスターイオンビームとの相互作用により負のイオンを形成することができるガスを提供するシステムに組み合わされる。
本発明の他の側面は、注入に好適なイオン種を生成するために、材料をイオン化することができるイオン源に組み合わされるイオン注入ビームラインであって、ビームラインは、関連する真空ハウジング部分内でおよび注入ステーションに先立ち、イオン種のビームを生成するために、イオン源からイオンを引き出すことができる引き出し電極アセンブリと、ビームのための質量解析磁石と、解析されたビームが通るイオンビームスキャナおよびイオンビームコリメータとを有し、イオンビームスキャナおよびイオンビームコリメータは、解析磁石の下流で、ビームを中和する負のイオンを提供するために、イオンビームとの相互作用により負のイオンを形成することができるガスを提供するシステムに組み合わされる。
このようなガス供給を備えるイオン注入ビームラインの実施形態は、以下の1つまたはそれ以上の特徴を備えることができる。
ガスはSFである。
SFガスは、約5×10−7から10−5torrの圧力で提供される。
磁気解析装置の先にポスト加速器構造が存在し、ポスト加速器構造は、イオンをソース引き出しエネルギーから低いエネルギーまでポスト減速することができる。
また、本発明の特徴は、イオン注入ビームラインのための、調整可能な質量選択開口を提供する装置であって、質量選択開口は、平行な偏心した軸を中心に同期した回転のために取り付けられた一対の反対回転する円筒形表面により画定される。
好ましい実施形態は、以下の1つまたはそれ以上の特徴を備えることができる。
円筒形表面の少なくとも一方は水冷式であり、グラファイトまたはシリコンの被覆を備える。
装置は、2つのギア駆動の、反対回転する偏心する水冷式の非鉄材料の中空シリンダを有し、各シリンダは、グラファイトまたはシリコンのそれぞれのスリーブにより覆われ、シリンダは、反対回転するために、平行な偏心軸上に取り付けられて、イオン注入装置のビームラインに整合した、調整可能な質量選択開口を形成する。
装置は、イオン注入のための最小分解スリット幅、および最小分解スリット幅の約4倍から6倍の幅を含む分解スリット幅を提供するように構成される。
装置は、少なくとも約38mmの最大イオン注入スリット幅を備える。
説明される特徴として、商用のイオン注入装置のためのビームラインおよびイオン源システムが提供され、60nmおよびそれ以下の臨界的な寸法の集積回路の製造に必要とされる、高ドーズ、低エネルギー注入への挑戦に適合することができる。ソースから生成されるB10 、またはB18 の強いボロハイドライドイオンビームは、ポリゲートおよびソースドレインエクステンション注入のような低エネルギー、高ドーズ応用での、商業的に許容できるウェハスループットを達成するために用いられる。イオン源からウェハへのビーム輸送要素は、注入エネルギー2−4keVで30pmAより大きいウェハボロン電流を達成する、また、200eV程度の低エネルギーで3pmAより大きい電流を達成するように構成される。これらの高電流は、低エネルギーで、ウェハの直前で減速する必要なく達成される。従って、ウェハまたは他のターゲット表面へのビームの衝突は、エネルギー的に極めて純粋であり、一般に浅い接合注入の品質を低下させる高エネルギーの素子が無い。
複数の四極子ビーム集束素子(たとえば、三枚構造磁気四極子)は、ターゲット表面における角度分散を避けるために、イオン注入ビームラインの質量分散特性を補償する。これがなければ、この角度分散が、選択されたボロハイドライドイオンビーム中の異なる質量の範囲に起因して生じる。
本発明のこの側面の好ましい実施形態は、以下の1つまたはそれ以上の特徴を備えることができる。
非常に高電流のボロハイドライドイオン源が採用され、これは、高密度プラズマではなく、形成された電子ビームをボロハイドライド蒸気をイオン化するために用いる。
解析磁石は、イオン源の大きな開口(たとえば、12.5mm幅×100mm高さ)からのビームを受け入れるための大きなワーキング開口を備える。
解析磁石は、80keVのオクタデカボランイオンを解析でき、これは4keVの粒子ボロン注入エネルギー(または、デカボランの場合は7keV)に相当する。
ビームラインは、ドリフトモードにおいて、ウェハ直前で減速させる必要なく高ビーム電流を達成できるように構成され、それゆえ、減速の前または減速中に中和された高エネルギー粒子の望ましくない注入を避けることができる。
幅広のソーススリット幅とともに、解析磁石システムは、m/Δm>60の質量分解能を持ち、これは、用いられるボロハイドライドイオンと同様に従来のイオンを使用できる程度に十分に高い。
ビームラインは、ボロハイドライドイオンを用いることにより得られる高ウェハスループット性能を備えるとともに、ビームラインシステムはまた、たとえば、12.6amu−MeVの質量−エネルギー能力を備える、80keVの最大エネルギーまでの、従来の単原子イオンの輸送を可能にするように構成される。
ビームラインは、広くまたは十分に利用できる道具の要求に適合するために、従来のイオンおよびボロハイドライドイオンの両方を提供することができる一般的なイオン源に適合し、これは、効果において、60nmおよびそれ以下の臨界的な寸法を持つ装置の製造コストを最小化する。
本発明の他の側面によれば、説明されたシステムは、100−200Hzの範囲の周波数で、ウェハに渡って、磁気的にイオンビームを平行に走査するように構成される。
本発明の他の側面によれば、複数の四極子ビーム集束素子(たとえば、三枚構造磁気四極子)は、ターゲット表面における角度分散を避けるために、イオン注入ビームラインの質量分散特性を補償する。これがなければ、この角度分散が、選択されたボロハイドライドイオンビーム中の異なる質量の範囲に起因して生じる。そして、ビームラインシステムは、分散素子が後に続く、イオンビーム経路において交差ポイントを備え、このシステムは、角度ずれとともに、ターゲット表面における水平方向の広がりを取り除くように構成され、これらは、複数の質量のイオンの存在に起因して生じ得る。
本発明の上述の側面および特徴の1つまたはそれ以上の実施形態の詳細は、添付の図面および以下の説明により説明される。本発明のその他の特徴、目的、利点は詳細な説明、図面、および特許請求の範囲から明らかとなるであろう。
扇形質量分析磁石を備えるイオン注入装置の概略図である。 図1の線分A−AおよびB−Bに沿った、磁気分析装置を通る断面図である。 図1の減速器の拡大図である。 分析装置磁石の高電圧分離コイルの断面図である。 図4に示すコイルの断面の一部の拡大図である。 異なる質量のイオンの経路を示す概略図である。 曲げ角に対する分散(D/R)の変化を示す図である。 分析装置の極の形状の断面図である。 分析装置の極の形状の断面図である。 極の取り付けの拡大詳細図である。 オクタデカボランの高分解能質量スペクトルを示す図である。 調整可能な質量分解アパーチャ装置を示す図である。 調整可能な質量分解アパーチャ装置を示す図である。 調整可能な質量分解アパーチャ装置を示す図である。 調整可能な質量分解アパーチャ装置を示す図である。 イオン源の領域における水平面でのビームの包絡線を示す図である。 縦方向に3枚構造の四極磁石を示す図である。 四極磁石の横断断面図である。 磁気走査ビームラインの中間面の断面を示す斜視図である。 図1から図13の実施形態に有効なイオン源のイオンビーム引き出し面の垂直断面図である。 図1から図13の実施形態に有効なイオン源の他の有効な電極形状の例を示す図である。 ビームラインの分散面における、図14のイオン源に関するイオン引き出しシステムを示す図である。 ビームラインの非分散面における、図14のイオン源に関するイオン引き出しシステムを示す図である。 ビームラインの分散面における、図12Aおよび12Bの3枚構造の四極磁石を通るイオンビーム包絡線を示す図である。 ビームラインの非分散面における、図12Aおよび12Bの3枚構造の四極磁石を通るイオンビーム包絡線を示す図である。 図13のシステムの運転中に測定した注入エネルギーに対するボロン粒子ビーム電流のプロットを示す図である。 SFおよび減速器を用いた注入エネルギーに対するボロン粒子ビーム電流のプロットを示す図である。 図14に類似するデュアルモードイオン源を示す図である。 中位電流注入装置のためのビームラインの概略図である。
ここで図面を参照すると、図面では、同一の部分は同一の参照符号で示され、機能的に類似の部分は図1の参照符号にアクセントをつけて示されており、これらの図は、特に分子イオンを注入するのに有効なイオン注入装置の実施形態を概略的に示している。ここで分子イオンは、B、P、As、Sb元素のような電気的ドーパント種の原子を複数含み、これらは、周期表のC、Si、GeおよびSnのIV族元素の両側に位置する。また、図面は、半導体基板を実施化するために修正するのに有効なC、Si、Ge元素のような原子を複数含む分子イオンの効率的な注入のための実施形態を示す。基板の修正は、たとえば、アモルファス化、ドーパント拡散制御、ストレスエンジニアリング、欠陥ゲッタリングなどである。このような分子イオンは、臨界的な寸法である60nmおよびそれ以下の寸法の集積回路を製造するのに有効である。以下において、このようなイオンを集合的に「クラスター」イオンと記載する。
1価の電荷のクラスターイオンの化学構造は、一般式
(1)
で示され、ここでMはC、SiまたはGeのような基板の材料改変に有効な原子であり、Dは、基板中に電荷キャリアを注入するためのB、P、As、SbまたはInのようなドーパント原子(周期表のIIIまたはIV族)であり、Rは、ラジカル、リガンド、または分子であり、Hは水素原子である。一般的に、RまたはHは、安定なイオンを生成または形成するために必要とされる完全な化学構造の一部であり、注入プロセスのためには特に必要ではない。一般に、Hは、注入プロセスに特に有害ではない。これは、Rにも同様に当てはまる。たとえば、Feのような金属原子、またはBrのような原子を含むRは望ましくない。上述の式において、m、n、x、yは0以上の整数であり、mとnの和は2以上、すなわちm+n≧2である。イオン注入の特別の関心は、高いMおよび/またはD原子多重度を持つ、すなわちm+n≧4のクラスターイオンである。これは、低エネルギー、高ドーズ注入のための改良された効率のためである。
材料改変のために用いることができるクラスターイオンの例は、ベンゼン環から派生する、C 、C14 、C16 、およびC18 である。ドーピングに使うことができるクラスターイオンの例は、
・ボロハイドライドイオン:B18 、B10
・カルボランイオン:C10 、C18
・フォスフォラスハイドライドイオン:P 、P(SiH 、P(SiCH
・ヒ素ハイドライドイオン:As(SiH 、As(SiCH
である。
当業者は、上述の例のリスト以外のクラスターイオンを用いることができる可能性があることを認識できる。これには、材料改変のためのSiおよびGeを含むイオン、ドーパント原子の異なる量および同位体のイオン、異なる等軸構造のイオンが含まれる。また、2価の電荷のクラスターイオンでは、一般により小さい歩留まりになり、この場合、高ドーズ、低エネルギー注入にそれほど有効でない。
本発明の技術分野は、また、従来用いられていた単原子ドーパントイオンに好適な注入ビームライン構成に関連し、特に、上述のイオンの3つのクラス全ての注入に有効な多目的注入ビームライン構成に関連する。
引き出し電極14とイオン源チャンバ10との間に印加される、典型的には1kVから80kVの範囲の加速電圧(Ve)13により、イオンは、イオン源本体11内のイオン源チャンバ10から開口12を通って、引き出される。逆流電子は、絶縁フィードスルー8を介して、イオン源真空ハウジング15に対してマイナス2kVから10kVの電圧(Vs)9の引き出し電極14、および抑制電極7、を適用することにより抑制される。抑制電極7は、イオン源真空ハウジング15と同じ電位である。イオン源本体11は、イオン源真空ハウジング15から環状絶縁体16により絶縁される。商業的に利用できる一実施形態において、開口12は、幅Ws=12.5mm、高さh=100mmのスロット形状である。このような開口幅は、B、P、As、BF 等のような従来のイオンの生成に用いられる典型的な従来のイオン源に用いられる約3mmから5mmの間の範囲よりも大きい。125mmの総面積を提供する、イオン源の大きな開口幅および高さの目的は、引き出しクラスターイオンへの大きな面積を提供するためである。これは、イオン密度がチャンバ10内で低い、クラスターイオン(図14−16Bおよび関連説明を参照)の生成のための有効なソースの1タイプのためである。これは、イオン源は、クラスターイオンを生成する蒸気をイオン化するために、高密度プラズマよりもむしろ形成された電子ビームを用いるからである。たとえば、このようなタイプのイオン源は、ソースの中のボロハイドライド蒸気を有意に分解することなく、ボロハイドライドイオンを生成でき、大きなサイズの開口により、ボロハイドライドイオンの高い電流を生成し、これは非常に高いドーズのデュアルポリゲート構造および中位ドーズであるが非常に低いエネルギーのボロンソースドレインエクステンション注入の、今日の重要な商用ウェハのスループット要求に適合する。
真空ポンプ17によりイオン源の真空ハウジング15の真空度は、典型的には10−6torrから10−4torrの間に維持される。図11を参照すると、引き出し電極14とイオン源本体11との間の電場、および開口12は、ほぼ単一エネルギーのリボン形状のイオン19のビームを形成し、このビームは、イオン開口高さhの高さに類似する高さ寸法、イオン源開口12の幅w(5)の半分にほぼ等しい最小幅w(56)、すなわちw≒0.5w、を備える。この幅wはイオン源開口12および引き出し電極の領域59に位置する。イオン源開口と引き出し電極との間の空間d(57)は、概ね、与えられるイオン種、イオンエネルギー、イオン質量、およびイオンビーム電流のための引き出しおよびビーム形成に最適化するように調整される。
イオン源11からの引き出しの後、ビーム19は、真空ハウジング20を通過し、その後、双極磁石21の磁場ギャップGに入り、ここで、ビーム包絡線は楕円形状になる(図1、2参照)。磁石21は、電流運搬コイル40、および以下の強磁性体の要素部分、すなわち、極26、コア28、ヨークチーク30、ヨークリターン32および34を有する。特に図2を参照すると、コイルアセンブリ40を通る通過DC電流は、概ね、極26間のギャップ内に垂直方向に静磁場24を生成し、ここで、「垂直」とはイオン源開口12の長い方向の向きであると定義され、図1および2に示す実施形態では、この方向は、概ね磁石21の「水平」曲げ(分散)面に直交する。
イオン源11からのガスの排出は、イオン源ハウジング上に配置される真空ポンプ17により取り除かれる。真空ポンプは、イオン源ハウジング15の真空圧力を、約10−6から3×10−5torrの間に維持できる十分な能力(たとえば1000から2000リットル/秒)を備える。イオン源10、11のメンテナンスの便宜のため、イオン源ハウジング15は、真空弁23により磁石真空ハウジング20から分離可能である。磁石ハウジング20は、磁性体との相互作用を防止するために、非強磁性体材料(たとえばアルミニウム)である。これは、真空ポンプ29により排気される。
磁場24により生成される半径方向の力は、イオンの電荷に作用し、この力は、イオンが磁石21の水平曲げ面内で実質的に円形の軌道42、43、44を描くように作用する。イオン源チャン10から引き出されたイオンは全てほぼ同じエネルギーを有しているので、磁石21は、磁石の極のギャップの中心の経路46を通るイオン42よりも、それぞれ高いおよび低い質量を備えるイオン43および44の軌跡を空間的に分離する。磁石を適当に大きく構成することにより、磁場24は、1kガウス未満から約12kガウスの範囲で設定され、磁場は、中心経路46に向かうイオン42に対応する質量を選択するために、質量の範囲にわたって広範囲に調整可能である。一実施形態において、中心経路46は約500mmの半径を持ち、この場合、12kガウスの磁場で、磁場解析装置は、オクタデカボラン(B1822)蒸気から生成される80keVのイオンを選択することができる。これは、4keVボロン注入エネルギーに相当し、今日のデュアルポリゲートドーピングに必要な典型的な最も高いエネルギーである。同様に、7keVのボロン注入エネルギーに相当する、デカボラン(B1014)蒸気から生成される80keVのイオンを選択することができる。
図1および11を参照すると、イオン42の経路は、引き出し電極14から始まり、水平面内で、中心参照経路46に対して概ね−50ミリラジアンから+50ミリラジアンの角度範囲をもつ。これは、イオン源チャンバ10内でのイオンの発生源での熱運動、および同一電荷間に作用するクーロン力のような要因により発生する。一実施形態において、極26の形状は、質量選択を可能にするために、選択された質量のイオンの経路を、水平面内で、磁石の出口におけるスリット形状の質量分解開口50に向かって再集束させるような磁場をギャップ内に発生させる。磁場解析装置21のこの実施形態の重要な点は、この質量選択開口50がビーム経路に沿う位置に位置しているということであり、この位置は、横向きの、水平のイオンの運動に関する、イオンの開口幅12の光学的共役像の近くである。共役像の光学倍率Mは、典型的には、約−0.8から約−1.2であり、マイナス符号は、実際の逆像の構成を意味している。質量分解スリット50の幅wが、ビームウェスト幅w≒0.5wと倍率Mとの積に等しい、すなわち
≒0.5|M|w (1)
であるなら、約−50ミリラジアンから約+50ミリラジアンの水平角度内のイオン源11から発生した、選択された質量mのほとんどのイオン42は、分解スリット50を通して集束される(真空ハウジング20内の残留ガスとの衝突により逸れまたは中和された、数パーセントの少量のイオンを除く)。
図6を参照すると、磁気解析システム21の性質は、質量分解開口50において、m±Δmの質量のイオン(102,103)が、ビーム経路46の中心を通る選択された質量mのイオン(104)から距離Δx(101)だけ分離されるように、ビームを分散させる。望んでいない質量のイオンは、図示しないブロック板または開口50を形成する材料の本体51により遮蔽される。従来の単原子ドーパントイオンの場合には、一般的にm/Δm≧60の質量分解能が必要とされ、これは、60amuの質量のイオンが分解開口50の中心を通る場合、61amu以上のイオンまたは59amu以下のイオンはブロックされるということを意味する。双極磁石における集束および分散の効果の原理は、Engeにより、「Focusing of Charged Particles」, Chapter 4.2 Deflecting Magnets, Ed. A. Septier, pp203-264の中で詳細に述べられている。
図3および6を参照すると、ビームの中心経路46が極エッジ49に対して実質的に垂直であり、中心経路46についてのビーム22の領域にわたる極間の磁場が実質的に均一かつ垂直である場合、Δm/mの質量変化による分離Δxは、おおむね
Δx=D(Δm/2m) (2)
であり、ここで、Dは磁気分散とよばれ、
D≒R(1−cosφ)+bsinφ (3)
で与えられる。上式において、Rは中心経路46の半径53であり、φは中心経路46に沿って磁石を通るイオンが曲がる角度46であり、b(55)は出口極の有効磁場境界から質量分解開口50への距離である。分解開口幅wによりm/Δmの質量分解能を達成するために、式(1)−(3)から
m/Δm=D/2w≒D/|M|w≒{R(1−cosφ)+bsinφ}/|M|w (4)
が導かれる。上述のように、高いボロハイドライド電流を引き出すために、およびデュアルポリゲートおよびソースドレインエクステンションボロン注入に対する今日のウェハスループット要求に適合するために、大きなソース開口幅wが必要である。このような磁気解析装置の実施形態の重要な点は、このような大きなソース開口幅wにおいても、これらが十分に高い質量分解能を備えた多目的システムを提供するということである。式(3)を参照すると、これは十分に大きなRおよび曲げ角φを用いることで達成できることが分かる。商用に有効な一実施形態において、R=500nm、φ=120°、b=195mm、M=−0.83であり、この場合、ソース開口幅w=12.5mmのために、質量分解能はm/Δm≒88であり、そのため、従来のイオンに対して十分である。大きな曲げ角φを採用する意義は図7に示されており、ここで、b=195mmの共役像のために、D/Rはφに対してプロットされている。曲げ角を60°から120°に2倍にすることは、分散Dを2倍にすること、すなわち質量分解能m/Δmを2倍にする以上のことである。
図8Aおよび図8Bを参照すると、ビームが通過する極26間の空間はギャップ高さG(106)を備え、これは典型的にはソース開口の高さhよりも10から20mm高い。これは、磁石を通るビームのクリアな通路を提供するためであり、また、極表面をたとえばグラファイト(116)やシリコンで裏打ちできるようにするためである。これは、ビームストライクによる、強磁性体の極材料からの望ましくない重金属不純物の放出を防止するためである。与えられる最大の磁場容量のため、磁石の質量は、ギャップ内のワーキング磁気容積Vに比例し、これは、極を通る経路長φR、ギャップ寸法G、および極の幅Wの積、すなわち、
V≒φRGW (4)
である。
式3から分かるように、幅広のソーススリットwのための質量分解能m/Δmを実現するために、高分散の要求は、大きな値のφおよびRを必要とする。次に、高いボロハイドライドイオン電流を実現するために、ギャップGは、大きな高さのソース開口からのイオンを収容できるように大きくなければならない。集合的に、これらの要求は、式4に従って、適切な高いワーキング磁気容積による高い磁石質量によって実現できる。最後に、80keVのオクタデカボランを用いて、デュアルポリゲート注入のための4keVのボロン注入を実行できるようにするために、ヨークおよびコイルの質量は、ギャップ内の対応する大きな磁場を支持できるように十分大きくなければならない。これは12kガウスであり、R=500mmの曲げ半径の場合に相当する。式4によれば、ワーキング磁気容積Vを最小化するのに利用できる唯一の頼りは、極幅W(108)を最小化することである。不運にも、この幅は、ギャップ寸法G(106)およびビーム22の断面寸法との関係で自由に減少させることができない。二次以上の項がギャップの磁場で増大し、これが質量分解開口50におけるビームの広がりから収差を発生させ、これが質量分解力を低下させるからである。商用に有用な一実施形態において、図8Aおよび8Bに示されているように、極26の外縁は、溝112およびシム111を備えるように形成され、これらはそれぞれ中間面117に向かって極26の面より低くおよび高くなっている。片側にある2つのシムは、幅s(107)および中央領域に対する高さh(115)を持つ。このそれぞれのシムのすぐ内側に位置する溝は、幅s(109)およびシムの頂上に対する深さh(114)を持つ。この技術は、有意に小さな極幅W(108)を、ギャップ寸法G(106)およびビーム22の断面寸法との関係において使用できるようにし、ワーキングギャップの磁場形状の十分な制御を維持し、二次、三次、四次の収差を分解開口50におけるビームの広がりから防止する。
さらに三次の収差を制御するために、他の実施形態は、図8Aの左側および右側でわずかに異なる溝およびシムのパラメータを用いることができる。
公称上均一な118mmのギャップGおよび166mmの極幅wを備える図示の例は、イオン源開口から出るビームを受け入れるのに十分であり、まら、極表面をカバーするグラファイトまたはシリコンのライナー116のための空間を提供する。
この例において、単純で強靭な設計を達成するために、磁石の入口および出口の極エッジは、ビームの軸に垂直であり、磁石のワーキングギャップ内において有意な一次の磁場勾配は存在しない(すなわち、磁石は、非分散の垂直面においてなんらの集束も発生させず、これは、以下に説明される他の設備により操作される)。従って、分散面において、ソース物体及び質量分解開口50のための共役像の位置は、単純に幾何学的規則(Barber’s rule)により決定される(Enge, Focusing of Charged Particle, Chapter 4.2 Deflecting Magnets, Ed. A. Septier, pp203-264参照)。特定の例において、ソース物体の位置は、有効入口磁場境界の400mm手前に位置し、質量分解開口は、磁石の有効出口磁場境界からb=195mmのところに位置する。400mmの物体距離は、高速真空引きが可能なポンプ17のための空間、直列式真空分離弁23のための空間、および広エネルギー範囲の引き出し光学システム14、7のための空間を提供する。
この設計は、本発明の広範囲な側面のために、広範囲にわたって優れた能力を提供する一方で、磁気解析システムは、上述の説明に限定されるべきではない。当業者は、所望の多目的な能力を提供するために、解析光学系の様々な実施形態を認識することができる。これには、非均一で、集束、収差、分散を制御するために一次および二次の勾配を備える極間の磁場の利用;曲げ角、半径、極間のギャップ、磁場の範囲の選択;磁石入口に対するイオン源の位置;磁石出口に対する質量分解開口の位置および寸法、および共役像位置に対する正確な位置;質量分解開口において広がる一次および二次の像を最小化するための、特定のシムおよび溝の極形状の選択;などが含まれる。
しばしば出会う、クラスターイオンの特性、およびドーピング種の原子を多く含むボロハイドライドイオンを用いるときに生じる特性は、イオンが異なる数の水素イオンを含んで生成されることであり、それゆえ質量が異なることである。図9を参照すると、同図は、図14および図15Aとともにより完全に説明するような、形成された電子ビームを採用するタイプのイオン源中でオクタデカボランB1822蒸気をイオン化することにより発生するイオンの高分解能質量スペクトルを示しており、この質量スペクトルは、発生するイオンの質量の範囲を示しており、これは、異なる量の水素原子を含む1価のイオン、および18個のボロンを1つのイオンに含み、2つのボロン同位体質量の異なる混合物を含むの1価のイオンの構成に対応する。高イオン電流を達成するという視点から、図9から、生成されるイオンの総量は、広範囲な質量ピークにわたって広がり、それゆえ、約205amuから約220amuの質量のイオン全てを受け入れることが有効であることが明らかであり、これはm/Δm≒16に相当する。これらの全ての範囲の質量を、分解開口50を通って伝達するために、質量分解開口の幅wは、半導体ウェハにおける従来のイオン注入の場合よりも約4から6倍の広さが必要であり、たとえば、約8mmから38mmの範囲の開口が必要である。同様の考えをデカボランB1014から生成されるイオンにも適用し、ここで、約113amuから約123amuの範囲の質量のイオンを受け入れることが有利である。ボロハイドライドの質量は、望まれない不純物イオンの質量よりも十分に大きな値なので、このような相応して低い質量分解能の幅広の分解開口が許容されることがわかる。従来のイオンのための小さい幅からボロハイドライドイオンの複数のピークを受け入れる大きな幅まで、連続的または段階的に調節可能な質量分解開口幅は、多目的質量解析システムの実施形態の重要な側面である。同様の考えを、概ね他のクラスターイオンについても適用でき、特に、上述の異なる有用なクラスターイオンの例に適用できる。
図10A、10B、10Cおよび10Dを参照すると、商用に有用な、連続的に調整可能な質量分解開口の一実施形態が示されており、この実施形態は、2つのギア駆動の、反対回転する、水冷式偏心シリンダ140を備え、このシリンダ140はステンレス鋼または他の適当な非鉄金属からなる。円筒形スリーブ142は、イオンビーム144の入射によりシリンダ140から望ましくない重金属不純物がはじき出されないように、シリンダの外側の全面においてグラファイトが固定されている。(シリコンのスリーブ142を同様に採用することもできる。)シリンダ140およびそれぞれのグラファイトスリーブ142は、偏心中心143および145上で反対方向に回転し、軸方向に整合した調整可能な質量分解開口幅を形成し、最小幅150が図10Aに示され、180°回転した後の最大幅151が図10Bに示されている。一実施形態において、最小開口幅150は約8mmであり、最大開口幅約38mmである。シリンダ140およびスリーブ寸法142の適切な調整、および回転中心143および145の位置により、他の値や範囲も可能である。冷却水または他の適当な流体は、シリンダ140の穴146を通って通過できる。冷却は、一般に、ビームの遮断により発生する熱を取り除くために必要とされ、特に、イオンビーム144が高電流、高エネルギーな従来のイオンを含む場合である。電気駆動モータ148は、ギア152、ベアリングブロック、および回転真空シール154を介してシリンダ140を回転させる。アセンブリ全体は、フランジ156上に取り付けられ、フランジ156は、解析磁石真空ハウジング20に嵌りシールされる。出口開口161を備えるグラファイト板159は、以下に説明される減速システムの第1の電極として機能することができる。
調整可能な質量分解開口(質量選択スリット)は、上述の説明に限定されるべきではない。当業者は、様々な実施形態を認識可能であり、これには、冷却部、伝動部、モータ駆動部、取り付け機構、回転角度、真空シール部などの異なる幾何学的配置;シリンダの代りに回転翼の使用;回転運動ではなく直線運動の使用などが含まれる。
図2および図8Aに示す実施形態において重要な点は、極26が真空ハウジングを貫通しかつシールされることであり、この構成は、極間の空間が、典型的には真空ハウジングの構造に用いられる非強磁性体材料の存在により減少しないので、効果において、磁気の効率を最大化する。極26とコア28との間の隣接面に空気ギャップが存在しないので、磁気効率はさらに改良される。真空ハウジング20および極26は、コア28の表面の間に挟まれるが、磁石の他の部分を分解することなく容易に引き出すことができ、これは、効果において、メンテナンスコストを最小化する。
極のシール構成が図8Cに示されている。極26は極26のそれぞれの縁に沿って延びる、側方に突出するリブ26Aを備える。各リブは、ハウジング壁の極へ開口部分に形成された棚部20Aと、図示しないねじ固定具によりハウジングに固定される、覆い被さる保持ストリップ27との間に捕捉される。圧縮可能な真空シール要素は、リブ26Aの外縁面とハウジング20の表面および保持ストリップ27との間に捕捉され圧縮される。
図1および図2を参照すると、双極磁石の一対のコイルアセンブリ40は、極間のワーキングギャップの外側の浮遊磁場を最小化するため、そして、ヨーク部材30、32、34の重量およびコストを最小化するために、極26およびコア28の一般的な平面図形状を取り囲みかつこれに追従するように形成される。図4に示される商用に有効な一実施形態において、コイルアセンブリ40は、電気的に直列に接続される4つの別々の巻き要素80A、80B、80C、80Dを含む。巻き要素80A−Dは、たとえば、1.626mm×38.1mmの寸法の銅を60回巻いて、0.08mmの厚さの巻き間電気絶縁体ともに連続的に巻きつけることで作ることができる。マイラー(MYLAR;登録商標)またはカプトン(KAPTON;登録商標)などの絶縁体が好適である。コイル電流は240A程度であり、また、コイル端の間の総電圧は120Vdc程度であり、これは、28.8kVAの総コイル電力に対応する。これは、120mmのギャップ寸法を持つ極26間に、10キロガウス以上の磁場24を発生させるのに十分である。
一実施形態において、3つの冷却板82B、82C、82Dが、隣接して配置された巻き要素80A−Dのそれぞれの対の間に配置される。外側の冷却板82Aおよび82Eが、巻き要素80Aおよび80Dの外側表面に配置される。冷却板82A−Eは、任意の適当な厚さ、たとえば10mm、を備えることができる。冷却板82A−Eは、巻き要素80A−Dを通って通過する電流により生成されるオーム熱を取り除くまたは放熱させる手段を備える。水のような冷却流体が、冷却管84を介して冷却板82A−Eを通って循環する。冷却管84は、たとえば冷却板82A−Eに挿入された銅管である。説明された実施形態の構造の重要な点は、冷却管84の巻き要素80A−Dからの電気的絶縁である。水冷式の場合、冷却管84の巻き要素80A−Dからの電気的絶縁は、電気分解および脱イオン冷却水の使用の必要性を除去する。これは、運転コストおよびメンテナンスを最小化する効果がある。
図5を参照し、一実施形態において、巻き要素80A−Dを冷却板82A−Eから電気的に絶縁するために一手段として、挟み込まれたファイバーグラスの布81を使することができる。また、コイルアセンブリ40の全体は、単一の堅固な不透過性のコイルアセンブリ40を実現するために、ファイバーグラステープで包み、エポキシ樹脂を注入して排気するこができる。コイルアセンブリ40は、運転中における熱膨張および収縮により発生する応力に対する高い信頼性を備えなければならない。巻き要素80A−Dの縁と冷却板82A−Eの隣接表面との間のファイバーグラスに注入された樹脂は、効率的な熱伝達のための十分に高い熱伝導性を提供する。一実施形態では、これは29kWになる。
コイルアセンブリの実施形態は、上述の説明に限定されない。当業者は様々な実施形態を認識でき、これには、機能し得る任意の数の巻き要素80A−Dおよび冷却板82A−E(たとえば、それぞれ2つおよび3つ);アルミニウムのような巻き要素80A−Dに用いられる他の適当な材料、が含まれる。さらに、巻き要素80A−Eは、ストリップではなく長方形、正方形または円形の固体の銅またはアルミニウムワイヤを用いて作ることができる。代替実施形態において、冷却板82A−Eへの熱伝導による間接的な冷却を使用する代りに、伝導管の穴を通って流れる脱イオン冷却流体を通過させることにより直接的に冷却される、長方形、正方形、または円形の銅またはアルミニウムを巻き要素80に用いることができる。
巻き間絶縁は、絶縁テープで導体を包む、絶縁スリーブを導体上にスライドさせる、たとえばエナメル銅または陽極酸化処理したアルミニウムのように絶縁フィルムで導体を被覆する等のように、他の方法または材料により実現することができる。
一実施形態において、イオンビームを、質量分解開口50から出た後に減速することができる。減速は、低エネルギー、高ドーズの注入の場合に有用となり得る。これは、従来のイオンまたはボロハイドライドイオンが、最終注入エネルギーよりも高いエネルギーで、ソースから引き出され、解析磁石を通って輸送されることがあるからである。このような高エネルギーにおいて、ビーム内の空間電荷力および熱イオン温度の効果は、分解開口50において実現されるビーム電流の大きさに対する制限が小さい。一実施形態において、減速は、図1および図3に示されるように、ビームを連続する3つの非強磁性体の電極60、61、62を通して通過させることで実現される。減速電圧(Vd)64は、典型的には0−30kVであり、電極60と電極62との間に印加でき、イオンを減速して低エネルギーにする。図1に示す減速装置の実施形態は、真空ハウジング20内に組み込まれ、最終エネルギー電極62は、ハウジング20から絶縁体66により絶縁される。減速電場の存在下において、空間電荷中和電子はビームの外に押しだされる。結果として生じる発散する空間電荷力は、真空ハウジング20に取り付けられたフィードスルー63を介して集束電極61に電圧(Vf)65を適用することにより、打ち消される。電圧Vfは、典型的には電極62に対してマイナス0−30kVである。
イオン減速のための実施形態は図1および図3に示される特定の構成に限定されない。当業者は、特定の入射イオンの条件のためにイオン減速を最適化するための様々な実施形態を認識できる。これには、機能し得る任意の数の電極(たとえば、2個、3個、4個など);円形またはスロット形状の開口を持つ電極;平面または湾曲した電極;アルミニウム、グラファイトまたはモリブデンなどの電極を構成する、軽量または重量の非強磁性体材料;および電極が磁気真空ハウジング20内に取り付けられる、または電極がイオン注入装置の特定の構成に依存した別個の真空ハウジング内に取り付けられる、等の様々な真空構成、などが含まれる。
イオン減速装置が駆動されるとき、磁石真空ハウジング20、および極26、コア28、ヨーク部30、32、34等の電気的に真空ハウジングに接続された磁石の他の部分は、すべてアース電位から、減速電圧Vd(64)に対応する電圧、すなわちアース電位に対してマイナス0−30kVの範囲の電圧により、電気的にバイアスされる。
この実施形態の1つの重要な側面において、巻き部80A−Dおよび冷却板82A−Eは、ファイバーグラスのような多孔性の絶縁材料で包まれてエポキシが真空注入され、コイルアセンブリ40全体の周りに約6−8mmの厚さの不透性の被覆86を形成する。他の実施形態において、エポキシを充填するために、ファイバーグラスの代りにアルミニウム酸化物のような絶縁パウダーを用いることができ、被覆は鋳型を用いて形成される。絶縁被膜86は、コイルアセンブリを磁石構造の残りの部分、つまりコア28、極26、真空ハウジング20、ヨーク部材30、32、34から30kV程度まで電気的に隔離することを可能にする。それゆえ、磁石の残りの部分がアース電位に対してマイナス30kV程度のバイアスを持ったとしても、巻き部80A−D及び冷却板82A−Eは、公称上、アース電位のままであり、これは、効果において、実質的なコスト利益をもたらす。これは、コイルの電力供給機100(図2)は、標準の接地ac電源102を用いてアース電位において運転することができるからである。説明された実施形態は、コイル電力供給機100に30kVに対する絶縁を提供する必要性をなくす。さらに、重要なことに、コイル電力供給機100のための30−40kVA入力ac電力のための30kV絶縁変圧器を使用する必要性をなくす。さらなる利点は、冷却板82A−Eに集められた熱を取り除くために必要な流体冷却は、たとえば一実施形態では29kWであるが、脱イオン流体を用いる必要なくアース電位源98から提供することができる、という事実に基づいている。実際、冷却流体は通常の脱イオンしていない生水とすることができる。
図1および図2を参照すると、コイル端子87と磁石の周囲との間で生じるアーク放電および電気絶縁破壊することなく、30kV程度の電圧隔離が巻き部80A−Dおよび冷却板82A−Eに適用されるように、巻き部の電流の端子87は、磁石の任意の隣接する部品から典型的には40mmの距離またはそれより大きい距離の位置で被覆86を貫通する。同時に、冷却管88は、アーク放電および電気絶縁破壊を防止するために、磁石の周囲から少なくとも40mmの安全ワーキング距離を提供するような方法で、被覆86を通って外に出る。冷却管は、コロナ放電を避けえるために丸い縁および角を備えるように構成されたマニホルド89に溶接される。
電流導線90および冷却ライン92は、磁石リターンヨークを通過する絶縁PVCスリーブ94を介して、コイルからアース包囲部96まで通る。
隔離被膜を形成する実施形態および、巻き部端子および冷却管をコイルの外に出す実施形態は、上述の方法に限定されない。当業者は、異なるタイプのエポキシレシピおよび絶縁物質の利用を含む様々な実施形態を認識できる。
図1を参照すると、磁気解析に続いて、ビームは、三枚構成の四極磁石210を通過し、最後に真空下でビームライン76を通ってウェハ処理チャンバに輸送されてウェハ70に照射される。ウェハは連続的に所定時間に1度処理されるか、または、ビームを通るバッチウェハの繰り返しの機械的な通過により、所定時間に数度処理される。ウェハ70は、ドアおよび真空ロックなどの適切な電子機械機構を介してクリーンルーム領域から出し入れされる。
ビームラインおよびプロセスチャンバの実施形態は、特定の構成に限定されない。たとえば、当業者は、ビームラインは、単なる弾道のドリフト領域とすることができることを認識でき、または、他の多くの特徴を備えることがでる。たとえば、ビームが三枚構造の4極磁石210に入る前に減速される場合において発生する中性粒子を除去するための曲げ磁石のようなイオン光学系が含まれる。このような中性粒子は、減速されたイオンよりも大きなエネルギーを有し、これをビームから除去しないと、ウェハ70のより深いところに注入され、半導体装置の性能を有意に低下させる。また、ビームライン76は、ビームをウェハ上で一方向に平行に走査するために、結合されたコリメータ磁石を備える、磁気式または電気式ビームスキャナーを備えてもよい。これは、商用の注入装置に有益である。最終的に均一なドーズを達成するために、ウェハを単にビームの走査方向に直交する方向に機械的に走査する必要があるだけであるからである。
図12Aを参照すると、3枚構造の磁気四極子210は、下流のビームライン76の構成要素の詳細に関わらず、従来のイオンおよびクラスターイオンの両方の場合の商用のイオン注入装置に有効である。第1に、三枚四極子の3つの独立の要素211、212、213の磁場の強さは独立に調整でき、ウェハ70におけるビームの垂直および水平の両方の方向における寸法および角度発散を制御でき、それによって、ウェハ70上のビーム注入条件を最適化できる。これは、商用のイオン注入装置において、特に、ビームラインの下流の構成要素は、通常、容易に調整できる広範囲な集束能力を備えていないので、高品質な注入を達成するために重要である。第2に、従来の、イオンビームの減速が生じる場合、3枚四極子は、また、減速プロセスの後にしばしば少なくとも一方向生じるビームの発散を制御するのに有効である。共通の一実施形態において、ビームが入る3枚四極子210は、垂直方向に長手方向をもつリボン形状である。この場合、第1要素211は、極性が操作され、これが、水平方向のデフォーカスとともに、垂直方向の集束を生じさせる。第2要素212は、水平方向の集束および垂直方向のデフォーカスを生じさせる、第1要素211と反対の極性を備える。最後に、第3要素213は、第1要素211と同様の極性を備える。集束(F)およびデフォーカス(D)の組み合わせは、それゆえ、水平面はDFDであり垂直面はFDFである。それぞれの要素211、212、213において適切な磁場強度をそれぞれ用いることにより、垂直面および水平面の両方において、総合的に正味の集束が同時に達成される。
とても重要なことに、クラスターイオンの場合において、質量分解開口50が、所定範囲のイオン質量、たとえば、オクタデカボランの場合は約205amuから約218amuの範囲、デカボランの場合は約108amuから約115amuの範囲、を通過させられるように十分に広く設定されるとき、3枚構造の四極子の個別の要素の磁場強度は、同時に且つ実質的に、ウェハ70において角度偏差を取り除くように調整することができる。これがなければ、イオンビーム中にある範囲の異なる質量のイオンが存在する場合、一般に、ウェハ70において角度偏差が生じる。図12Aを参照すると、質量m±Δmの選択されたイオンは、水平経路に沿って四極子に入り、この経路は、イオン質量mに対応する中央イオン経路からわずかに異なる角度を持ってずれている。図1とともに前述したように、これらの分離は、複数の質量のイオンが解析磁石を通って輸送されるので生じる。DFD集束シーケンスの適切な調整により、イオン経路203は、互いにほぼ平行に四極子から出る。このような角度ずれを取り除くことは商業的に重要である。なぜなら、それにより、ウェハに衝突するビーム中に1つ以上のイオン質量が存在することにより生じるウェハ70上での注入角度の質を低下させることなく、高電流のクラスターイオンを、低エネルギー、高ドーズの注入応用に用いることができるからである。
1つまたはそれ以上の質量分散要素が、ビームラインの3枚四極子の下流に存在する場合、3枚構造の差分調整が、異なる質量のクラスターイオンの全体の範囲のための解析磁石の質量分散効果とともに、これらの下流の要素の質量分散効果を補償する。
図12Aおよび図12Bを参照すると、一実施形態において、四極子の磁場は、コイル206を通る電流の通過により発生する。各四極子要素は、4つの強磁性体コア部材217の周りに独立に巻きつけられた4つのコイルを備える。コア部材は強磁性体の極部材214に固定される。極部材214は、真空ハウジング219を貫通してこれをシールする。真空ハウジング219は、アルミニウムやステンレス鋼のような非強磁性体材料から構成される。隣接するコイルは、4つの極の間の領域にいわゆる四極子磁場を形成するために、反対の極性に巻かれる。磁束は、1つの極から他の極へコア部材217を介して戻り、コア部材217は、強磁性体ヨーク構造221を介して磁気的に結合されている。コイル206の巻き部は、矩形区分銅管215から作られ、これは直接に水または他の適当な冷却流体により冷却される。グラファイトライナー216は、ビームが極214の表面および真空ハウジング219の内側壁に当たり、重金属がはじき出されることを防止する。
四極構造は、上述した図12Aおよび12Bの説明に限定されず、当業者は様々な実施形態を認識できる。これには、DFおよびFDシーケンスを提供するために3つではなく2つの要素を用い、垂直面および水平面の全体にわたる集束を得ること;および、四極磁場ではなく静電力を用いること、が含まれる。
従来のイオンとともに、クラスターイオンをイオン注入するのに好適であり、磁気スキャンビームラインを採用する一実施形態が図13に示されている。リボン形状のビーム300が、図1とともに説明したように、イオン源から、12.5mmの開口幅wおよび100mmの高さhで引き出される。ビームは、図2、4、5に図示し、説明したうように、分離コイル304を備える120度の扇形磁石302で磁気的に解析される。極の形状は、図8Aおよび8Bに図示し、説明したように極縁シムを備える。ビームは、図10A−Dに示すよう調整可能な質量分解(選択)開口、図3に示されるような3電極減速ユニット306、および図12Aおよび12Bに示されるような3枚磁気四極子380を通って進む。その後、ビームは、磁気スキャナー310およびコリメータ312を通り、これらは共同で、ビームを水平方向に、ウェハ70に渡って一方の側320から他方の側321まで平行に走査する。図13を参照すると、ウェハの一方の側のビーム314、ウェハの中心のビーム318、他方の側のビーム316が概略的に示されている。この実施形態の重要な点は、ビームスキャナおよびコリメータの両方は、ビームを同じ方向に曲げるという事実である。従って、イオンビームの経路長およびスキャナおよびコリメータの組み合わせの磁気集束特性は、3つのビーム位置314、318、316に関して類似する。従って、ウェハ上のビームの水平方向のスキャン位置に関わらず、3つの磁気四極子要素に対して1組の磁場強度設定を用いることができ、四極子は、同時にビームサイズ、角度広がりを最適化して、そしてとても重要なことに、複数の質量のボロハイドライドイオンおよびクラスターイオンが一般的に用いられる場合において、角度偏差を取り除く。
図13に示される、商業的に有用な一実施形態において、前述のビームラインパラメータは位階の値を持つ。
A.解析磁石:R=500mm、φ=120°;G=118mm;s1=31mm;s2=8.6mm;h=8.7mm;h=4.7mm;W=166mm;曲げ力=80keV オクタデカボラン、ソース開口w=12.5およびh=100mmからのイオンを受け入れる
B.質量分解開口:最小値約8mmから最大値約38mm、連続的に調整可能。
C.減速電極:開口サイズ50mm幅×118mm高さの3つの平面
D.3枚四極子:開口:80、極先端の間の対角;極先端磁場、0−5kガウス、調整可能
E.ビームスキャン磁石:垂直ギャップ=80mm;曲げ力=80keV オクタデカボラン
F.コリメータ:曲げ半径900mm;極ギャップ=80mm;曲げ力=80keV オクタデカボラン
スキャナ310およびコリメータ312により共同で生成される総方向偏差は、30°である。イオン注入装置の幅を最小化するために、曲げ方向は解析磁石の曲げ方向と反対方向であり、これは、コストおよび設置面積を減らす効果をもたらす重要な考慮事項である。
ウェハでのビームサイズおよび角度発散は、3枚四極子の個別の四極子要素の強度を区別して調整することによって制御される。重要なことに、一般にボロハイドライドイオンおよびクラスターイオンの場合、3枚四極子は、解析磁石、磁気ビームスキャナおよび磁気コリメータによって導入された集団的な質量分散を補償する。四極子要素の強度を適切に設定することによって、複数の質量の成分から生じる角度偏差は、実質的に取り除かれる、すなわち全体の走査範囲にわたって0.15°以下に減少させることができる。
質量選択開口に続く減速の後に、ビームに残っている高エネルギーの粒子は、ウェハに到達しない、これらの粒子は、スキャナおよびコリメータによる組み合わされたビーム偏向によりビームから取り除かれるからである。
図1および図13の実施形態において使用する図14および図14Aのイオン源11はクラスターイオンを生成し、たとえば、B1822またはB1014蒸気からのボロハイドライドイオンB18 、またはB10 である。図1および図6において前述したように、および本実施形態のために図14および図15Bに示すように、イオンは、静電引き出し電極システムによりイオン化チャンバから引き出される。引き出し電極システムは、抑制電極および接地電極を有し、イオンは、幅wおよび高さhを持つイオン源本体の正面プレートにおける垂直方向を向いたスロット状に形成された引き出し開口12を通って引き出される。イオンビームラインの分散面は図15Aにおける幅wの方向であり、非分散面は図15Bにおける高さhの方向である。
図14は、クラスターイオン引き出しシステムの2つのタイプの分散面断面を示している。引き出し電極システムは3つのプレートからなる。すなわち、イオン引き出し開口(I)であり、ここを通ってイオンがソース電位(たとえば、電極電位より60kV高い)でイオン源から引き出される。それから、逆流電子を抑制するために典型的には電極接地電位よりも数kV低く維持される、抑制電極(II)である。そして、電極電位に保持される接地電極(III)である。
引き出し開口プレート(I)は約20mmの厚さである。引き出し開口に隣接する平坦な部分は両タイプ(I)において同一である。第1のタイプにおいて、斜面はプレートの厚さ全体にわたって均一の角度であり、一方、第2のタイプにおいて、傾斜は増加する角度の2つの斜面がある。
両方の設計のシステムは、広い角度に渡って調整可能である。
図14、14A、15A、15Bの実施形態は、イオン化チャンバ10´内でクラスターイオンを生成するために、形成された加速電子のビーム330を用いる。このタイプのイオン源は、引き出し電極14´が、イオン源本体の正面プレート370に機械加工されたスロット開口12´から約1mA/cmの電流密度を引き出すことを可能にするために、分子イオンの十分な密度を生成する。図1および図6に使用するのに好ましい実施形態において、スロット寸法は約100mmの高さh、12.5mmの幅wである。より大きなまたはより小さなスロットは、実質的に類似のピーク引き出し電流密度を備えるそれぞれより大きなまたはより小さな量の総引き出しイオン電流を生成するであろう。
前述のT.Horskyにより説明される原理を利用すると、これらの図のイオン源11´は、イオン化される蒸気の完全性を保護するのに必要な穏やかなイオン化を提供するために、エネルギーが与えられた電子ビーム330(図14)の衝突を用いる。また、このようなイオン源は、ボロハイドライド供給物質の蒸気を用いてよいビーム電流性能を提供するように構成されるとき、従来のガスボックスおよびイオン化チャンバ10´へのガス材を用いて、ヒ素ガスおよびホスフィンガスから数mAのヒ素イオンおよびリンイオンビームを生成することができる。図14のイオン源は、形成された加速電子のビームを生成するために、離れて配置された電子銃340を採用し、電子銃340は、フィラメントおよびイオンチャンバ10´外の電子光学システムを備える。イオンの侵食によるフィラメントの摩損はこのように最小化され、フィラメントの長い寿命を保証するのを助ける。外部で発生されたエネルギーが与えられた電子ビーム330は、長方形スロット12´のすぐ後ろに全体の長さに沿ってイオンの領域を形成し、ここからイオンがイオン光学システムによって引き出される。この目的のため、電子銃340は、1mAから100mAまでの電子ビームを生成する。この電子ビームは、磁気双極場によって90度曲げられる。曲げられたら、ビームはイオン化チャンバ10´に注入され、引き出しスロット開口12´の長さに平行な垂直経路を横断する。電子ビームは、垂直方向を向いた磁場350によりこの経路に閉じ込められ、磁気閉じ込めは、各設計において、注入電子ビームのイオン化効率を最大化するために最適化される。引き出し開口12´の後ろを通過した後、電子ビーム330の使われなかった部分は、ビームダンプ360で遮断される。
電子の放出電流およびイオン源11への供給材料の流れを変化させることで、5μAから3mAの安定した電気的イオンビーム電流が達成される。一例として、典型的には、B1822またはB1014蒸気が、外側に取り付けられた加熱される蒸発装置から、イオン化チャンバ10´に入る蒸気の流れを規制する圧力制御装置を通って、イオン源へ導入される。アルシンおよびホスフィンのようなソースガスの形態の供給物質のために、分離したガス供給通路がイオン化チャンバに提供される。
このような大きなギャップのビームラインシステムの利点は、従来のイオンを採用する場合でも、大きな総ビーム電流および良好なビーム輸送を含む。大きな引き出し開口を用い、低イオン密度で引き出すことにより、ビーム電流密度におけるチャイルド・ラングミュア限界が避けられ、大きなギャップのシステムを通る輸送のための大きな総ビーム電流が引き出される。また、引き出したイオンビームの低イオン密度、およびそれゆえ低電荷密度のために(従来のバーナス型のイオン源に対して)、内部のクーロン空間電荷力による拡散は減少する。これは、イオンビームが小さな角度発散でターゲットに到達することを可能にし、ターゲット表面に対する改良された入射角度の均一性を可能にする。熱運動と同様に空間電荷力は、引き出しイオンビームが、分散面および非分散面の両方において広がる原因になる。図15Aおよび図15Bのイオン光学引き出しシステムは、イオンビームを分散面および非分散面において、レンズ電圧の適用により、効率的に形成および集束させるように構成される。
図15Aは、イオンチャンバ10´の前面プレート370、このプレートに形成された引き出しスロット開口12´、抑制電極14´、および接地電極7´を示し、すべて水平断面で示され、図の面は分散面である。分散面において、イオンビーム19´は、図1の解析磁石21の受け入れ部にwで集束される。イオン源の開口プレート370に対するビーム方向に沿う方向の電極要素7´および14´の位置は、本技術分野において知られている運動制御装置により変更できる。
この好ましい実施形態において、図15および図15Bに示すように、イオン源チャンバ10´の前面プレート370は、スロット開口12´においてナイフエッジ12Aとして形成され、また、調整可能なレンズ素子として機能する。この目的のために、T.Horskyらにより前述されたように、開口プレート370´は、イオン源本体の他の部分から、絶縁体12Bにより電気的に分離される。
ビームウェストwを生成するための分散面におけるこのレンズシステムの焦点距離は、形状および適用される電圧によるとともに、ビームエネルギーおよび電極素子の位置により決定される。前述のように、ビーム22は、その後、解析磁石により集束され、図3とともに説明したように、質量選択開口50のところで幅wの分散面における共役像を形成し、その後、ビーム210は、3枚構造に入るのに適切なサイズで、3枚構造四極子に到達する。中心質量ピークの場合の、3枚構造210を通過する水平面での典型的なビーム包絡線が、図16Aに示されている。質量ピークの範囲の分離および主光線経路は、図12Aにおいて前述されている。
図1および図13のシステムにおいて、Y(非分散)平面内で、3枚四極子210への集束は、イオン源の引き出し光学系によりなされ、非Y方向の集束は、解析磁石において生じる。図15Bの実施形態において、非分散面においてイオンビームを集束させることは、抑制プレート7´および接地プレート14´は、開口スロット12´のナイフエッジ12Aと同様に、おのおのがイオン源に対して凸状の形状を備え、下流ビームラインに対して凹面の形状を備えるような曲率半径で製造される。この曲率は、図1Bに示されているように、引き出しビーム19´の高さの集束を生成する。本実施形態において、1メートルの曲率半径Rが採用される。他の実施形態において、他の半径も採用可能であり、一般に、引き出しプレートに適用される小さな半径は、短い分散面の焦点距離を生成し、つまり大きな集束角度を生成し、そして大きな半径についてはその逆である。形成された三極管を用いることにより、非分散面における単純な空間的に効率的な集束が達成され、図16Bを参照すると、解析されたビーム22´は、非分散面において3枚構造210に入るように寸法決めされた包絡線内で、3枚四極子210に到達する。
解析磁石の非分散面における、イオン源の引き出し光学系により生成されるビームの集束角度は、総クラスターイオン電流の大きさおよびイオンエネルギーの範囲で変化し、四極子への入口において、数ミクロンアンペアから数ミリアンペアの範囲にわたるビーム電流、および4keVから80keVの範囲のエネルギーにわたって受け入られるようにビームを寸法決めするように最適化される。3枚四極子は、ウェハ70において、非分散面(垂直)および分散面(水平)の両方におけるウェハでのビームサイズおよび角度分散の最終的な最適化を提供する。
しかし、解析磁石の前の非分散面のビーム集束のためのシステムの実施形態は、特定の構成に限定されない。開口プレートがレンズ素子として機能しないシステム、追加のレンズ素子が採用されるシステム、または四極子集束素子が含まれるシステムが可能である。
解析磁石に先立つ光学システムにより非分散面での集束を提供することにより、解析磁石の設計要求が単純化され、一方で、解析磁石および解析後の3枚四極子210を通る高効率なイオンビーム伝達が提供される。低イオン密度引き出しにより得られる低減された発散とともに、これは、通路壁へのイオンの衝突を減らす傾向にあり、有害な堆積を減らし、ビーム電流の有用性を向上させ、ビームの汚染を減らす。図16Bに示すように、このように生成された、約6mmの垂直高さを備えるよくコリメートされたビームは、ビームは10cmの高さの引き出しスロットから生成されているが、示された非分散面の集束とともに3枚四極子に入ることができる。
図17は、磁気的に走査された、オクタデカボラン由来のボロン粒子電流を示しており、ここでは、図13による走査システム、図14、15A、15Bによるイオン源を採用している。電流は、図13のコリメータ312の真空ハウジングの出口ポートにおいて測定された。ビーム電流は、dcから170Hzの走査周波数範囲の全走査にわたって、本質的に変化しなかった。これらの測定された粒子ビーム電流は、従来の固定ビーム、高電流イオン注入装置からこれまで報告されたものよりもとても高い。さらに、これらのビーム電流は、ウェハの直前に減速器を用いる必要なしに達成された。従来の高電流注入装置において、低エネルギービーム電流を高めるためにしばしば用いられる技術であるが、(a)ウェハへのイオン注入の数度の大きな角度広がりを導入すること、(b)減速後の中性粒子フィルタがない場合において、高エネルギーの粒子が減速中またはその前に中性化されてウェハに到達することを許す、という不利益をもつ。このような高エネルギーの粒子は、ウェハ中により深く進入し、これは一般に注入の質を低下させ、今日の極浅CMOS接合の製造には望ましくない。
バーナス型のイオン源から、B、P、Asのような単原子ドーピングイオンのとても高いビーム電流(5mA以上)を低エネルギー(10keV以下)で引き出し、解析するのが非常に困難であることはよく知られている。たとえイオン源自体から高電流を引き出すことに成功したとしても、磁気解析装置への注入および輸送は困難であることが分かる。これは、低エネルギーにおいては、イオンビーム内の電子を中和する空間電荷を形成するためのイオンのイオン化断面積は、非常に小さく、10keVから15keVのエネルギー状態より低いエネルギーに急速に落ちるからである。直接的に電子をビームに挿入することによる、または、電子プラズマ銃を介して導入することによる、ビームの中和を改良する試みは、解析装置自身の磁場の存在により不都合であり、それゆえ、一般に商用のイオン注入装置には不向きな技術である。
他のよく知られた技術は、ビーム内の低速の負イオンを中和させるより多くの空間電荷を発生させるために、ガスまたは蒸気をイオン源の真空ハウジングおよび/または解析磁石に導入し、ビーム経路を高圧のガスで満たす。P、Asイオン電流は、窒素ガスの導入により若干増加するが、これは一般に、Bイオン電流を減少させる。Sinclairら(米国特許第5,814,819号)は、水蒸気が、バーナス型イオン源から引き出され、解析磁石を通って輸送される単原子のボロン電流を増強することを発見した。これらの中和方法は、広くは成功しておらず、あるいは、商業的な注入装置には採用されていない。これは、低エネルギーでの高ビーム電流は、一般に、特に解析磁場の存在下では、安定的なプラズマの物理的状態を超えるからである。従って、生成されたイオンは、しばしば不安定であり、この不安定性は、ビームサイズおよびイオン源から引き出された電流の統計的な小さなゆらぎにより生じる。ビーム電流はしばしば再現性がなく、温度変化に関連する正確なイオン源パラメータのチューニングおよび変更に過度に依存する。
図14、14A、15A、15Bに示されるクラスタータイプのイオン源の利点は、追加的なバックグラウンドのガス中和が一般に必要とされないということである。これは、実際のクラスターイオンビームは、比較的に有効な単原子イオンビームの場合よりも、より高エネルギーでかつより低電流であり、そのためプラズマの不安定性を導く状態を避けられるからである。
図13に示されるような長いビームラインの場合、解析装置の出口からウェハまでの経路長は、2mよりも長く、ビームラインの四極子、スキャニング磁石、コリメータ磁石、および最終処理チャンバを通る0.5mから0.7mのドリフトを収容するために3m程度の長さであり、これは低エネルギーにおいて有利であることが分かった。ここで、イオンビームは、完全には電子により中和されておらず、ビームは、スキャナやコリメータのような磁場を通らなければならず、ウェハへのビーム輸送を改善するために、スキャナおよびコリメータ領域に少量の電気的に負に帯電したSFのようなガスを追加し、ウェハにおけるビームサイズを減少させ、これらの両者は、ウェハのスループットおよび注入効率を改善する。
図13および図17を参照すると、単一粒子の1keVより小さい注入エネルギーにおいて、ウェハ上のビーム電流は、少量のSFガスを、流れ制御弁307および管309を介して押し出し磁石310の真空ハウジング中に入れることにより、1.5から2.0のファクターで有意に高まる。これは、SFは、クラスターイオンビーム内で、クラスターイオンとの相互作用を介して容易に負のイオンを形成するからである。このような負の重イオンは低い移動度を持ち、電気ポテンシャル井戸内にエネルギー的にトラップされることは、ビーム内で内部空間電荷力を中和するのに有効であり、さもなくばビームが、ビームラインの許容開口を超えて発散する原因になる。また、DF6の存在は、コリメータ312の出口とウェハ70の位置との間のドリフト領域におけるビームの発散が減少する結果、50%から70%、ウェハ上でのビームサイズを有意に減少させる。SFのビーム電流を向上させるのに必要な典型的な流速は、0.1標準cc/分であり、2−3E−6torrの増圧を生成する。SFは比較的不活性なガスであり、このような低圧で使用することは、直接的に用いる場合でもあるいはクラスターイオンビームとの相互作用を介する場合でも、一般的に注入プロセスに有害ではないと考えられる。
図17Aを参照すると、図13の実施形態において、1keV以下、特に0.5keV以下のビーム電流は、図3に示す3電極減速システム306を駆動することにより、さらに増強される。最適な操作において、減速率は約2:1であり、これは、最終的に減速されたエネルギーが、解析磁石302を通るビームのエネルギーの約半分であることを意味する。中心集束電極61(図3参照)上の電圧Vf65は、約1kVから3kVだけ、解析磁石の解析真空ハウジング20よりもわずかにマイナスである。この現象は完全には理解されていないが、低エネルギー様式において、少し小さな約100Vの減速電圧Vdを適用することにより、ビーム電流は、10%から30%改善されることが分かった。
図17Aのデータに示されるように、減速システム306の後続の領域に注入されるSFのような中和ガスの使用は、減速に続く低エネルギーのビームおよび図13に示されるような、長いビームラインにおける空間電荷の発散に対する影響されやすさのために、特に有効である。
当業者は、低エネルギーのイオンビームの内在する正の空間電荷を実質的に中和するガスまたは蒸気を使用する他の実施形態を認識でき、これには、水蒸気(HO)またはBFのような他の負に帯電するガスを利用し、長いビームラインの解析磁石の後の、四極子またはコリメータ真空チャンバのようなその他の領域に、このガスまたは蒸気を導入することを含み、ここでこのビームは、低エネルギーで、空間電荷の拡散に対して影響されやすい。
このシステムの性能は、一般に、クラスターイオン、特にボロハイドライドイオンを用いることで実現できるドリフトモードビーム電流における顕著な改良および実効性を示す。この結果は、新しい世代のイオン注入装置への道を提供し、真空システムおよびイオン注入装置において従来用いられていた一般的なビームライン構成において、このようなビームを輸送するのが困難であり、および走査するのが困難であるという、以前の幾分広く残る懸念に対処した。スキャン磁石およびコリメータ磁石を通る長いビーム経路であっても、ガスの減衰測定は、ガス散乱、中和、イオンの崩壊によるビームの損失が数パーセントだけであることを示す。
図1および図13の代替実施形態はデュアルモードイオン源を採用する。T.Horskyによって前述したように、デュアルモードイオン源の一形態は、先ほど説明した、たとえば、分子イオンを生成するための電子衝突モード、または、単量体および多価イオンの高電流を生成するためのアーク放電モード、のいずれかで動作することができる。各操作モードで生成されたイオンは、同一のイオン光学システムによって、同一のスロット形状開口を通って引き出すことができ、解析磁石の同じ大きさのギャップを通り、図4または図10A−10Dの質量選択開口50の適切な経路とともに、説明されたイオン注入装置のビームラインを通る。このように、狭い、たとえば、6mmから8mm開口を用いて、単量体ドーパントの質量分解能≧60の利点が得られ、一方で、多くの質量ピークからの電流を用いるために、複数のドーパント原子を含む分子イオンのための、より大きな質量選択開口を採用することができる。たとえば、B18およびB10のイオンのために28mmまたは29mmの開口である。
好ましい一形態において、デュアルモードイオン源は、形成された電子ビームおよび別個のアークエミッタを提供する電子銃を備えるように構成される。電子衝突イオン化のために、大きな単量体電流および多価イオンを生成するために電子銃のみが用いられ、アーク操作のみが用いられ、アークエミッタは、典型的にはバーナスイオン源において従来用いられていたのよりも小さな強度で、バーナス型のイオン源に類似のプラズマ放電を打つ。このようなデュアルモードイオン源は蒸気およびガスの両方の入口通路を含む。
デュアルモードイオン源の一例が図18に示されている。イオン源11´´は図14のイオン源に類似しているが、図14のビームダンプ360が部材380に代えられている。この部材は、アーク放電モードの間、フィラメント390により加熱される間接的な加熱カソードとして機能する。一般に知られているように、間接的な加熱カソードを用いることは、ソースプラズマから離れて高真空環境に配置されたフィラメントのために、むきだしのフィラメントエミッタよりも長い寿命をもたらす。
電子衝突イオン化モードでは、図18の実施形態の電子銃340´および関連する磁場は、図14について説明したのと同様に機能する。電子のビーム使われなかった部分を、部材380(この部材は、アーク放電モードの間はカソードとして機能するようにスイッチされる)により提供されるビームダンプにより遮断することができる。
アーク放電モードにおいて、電子銃340´は使われない。カソード部材380は、加熱フィラメント390によりエネルギーが与えられて、チャンバ10´´の壁にアーク放電が生成される。これは、磁場350´の方向に沿ってプラズマ柱を形成し、磁場は典型的には約100ガウスよりも小さいけれど、プラズマ閉じ込めを提供できる程度に十分に大きい。本稿で説明された前述の図の大きなギャップのビーム輸送光学系の利点を用いる実施形態において、イオン引き出しスロット12´´は80mmの高さh、10mmの幅wとすることができる。
本稿で説明された大きなギャップのビーム輸送を採用することができる他の実施形態において、引き出しスロットはたとえば100mmの高さ、12.5mmの幅に大きくすることができ、その一方で、60より大きな質量分解能を達成することができる。他のより小さな寸法もまた、採用可能である。これらの実施形態の、従来のバーナス型のプラズマ源に対して大きな引き出し領域により、また、アーク放電の小さな強度により、アーク放電モードで生成されるプラズマ密度は、典型的なバーナス型のプラズマ源よりも小さく、しかし、典型的には1011ions/cmよりも大きく、中くらいのドーズ量の従来の注入装置、および高ドーズ、低エネルギーのクラスタードーピングおよび材料改変注入を提供することができる万能のイオン注入装置に非常に有効である。
図19を参照すると、中くらいの電流イオン注入装置のための他の実施形態が示されている。ボロハイドライドイオンの運転のために、引き出し電極414に電圧を印加することにより、異なる質量416、417、418のイオンがイオン源410から開口412を通って引き出される。その後、イオンは、90度の解析磁石426を通過し、調整可能な分解質量選択開口450を通る。円筒形の3つの電極のポスト加速構造441、442、443は、イオンを、40keVのソース引き出しエネルギーから、5keVから250keVの範囲の最終的なエネルギーを与えるためにポスト加速または減速することができる。ポスト加速器の中心の電極は、ポスト加速器領域および、磁気的または電気的にポスト加速器の両側に位置している四極子440、441を通過したときに、イオンビームを様々な角度で集束させるために、調整可能な電圧が付与される。ポスト加速器に続いて、最終エネルギー磁石444が存在し、これは、ポスト加速器(または減速器)において発生した不適切なエネルギーを持つイオンまたは中性粒子を取り除く。最終エネルギー磁石の後ろには磁気スキャナ446があり、これはスキャナ磁石446と同じ方向にビームを曲げるコリメータ448と共同で動作する。
四極子440および441の強さは、ポスト加速器の集束電極442の電圧と共同して、ウェハ70での、ビームサイズおよび垂直方向および水平方向での角度発散を最適化するために調節可能することができる。さらに、とても重要なことに、ボロハイドライドイオン、さらには一般的にはクラスターイオンのために、同時に、角度ずれを最小化することを可能にする。角度ずれがあると、複数の質量のイオンが存在することになる。最終エネルギー磁石444があるので、四極子440および441の強さを、ポスト加速器の集束電極442と共同して、調節することができ、複数の質量のイオンによる角度ずれが実質的に除かれるだけでなく、ウェハ70をスキャンするときに、複数の質量のイオンの存在による水平方向の広がりを、ビームから実質的に除くことができる。異なる質量のイオン416、417、418の中心の光線の経路は、集束電極442の近くの地点419で交差する。これは、その後の、最終エネルギー電極444、ビームスキャナ磁石446、コリメータ448で生じる集合的な質量分散を補償する。このような特徴は、中くらいの電流の注入装置において、商業的に有用であり、注入の質を向上し、ウェハのスループットを最大化する。
図19の実施形態で採用されるイオン源および引き出し光学系は、図14−16Bおよび図18において説明されたものを適切に寸法変更したものとすることができる。
多くの実施形態が説明された。それにもかかわらず、本発明の趣旨および範囲から逸脱することなく、様々な変形形態を作成することができることを理解されたい。従って、他の実施形態も、添付の特許請求の範囲に含まれる。

Claims (81)

  1. 従来の単原子ドーパントイオン種およびクラスターイオンの注入を可能にする多目的イオン注入ビームライン構成であって、
    前記ビームライン構成は、質量解析磁石を有し、前記質量解析磁石は、質量選択開口および質量解析磁石の強磁性体の極間の実質的な幅の極ギャップを画定し、前記解析磁石は、少なくとも約80mmの高さおよび少なくとも約7mmの幅の、スロット形状のイオン源引き出し開口からのイオンビームを受け入れるように寸法決めされ、且つ、ビーム幅に対応する面における、前記質量選択開口での分散を生成し、前記質量選択開口は、同種であるが段階的に分子量の異なるクラスターイオンのビームを選択するように寸法決めされた質量選択幅を設定することが可能であり、また、前記質量選択開口は、実質的に狭い質量選択幅を設定することが可能であり、且つ、前記解析磁石が、前記質量選択開口において、実質的に単一の原子量または分子量の単原子ドーパントイオンのビームの選択を可能にするのに十分な分解能を備える、ビームライン構成。
  2. 請求項1に記載のイオン注入ビームラインであって、前記質量選択開口は、単原子イオン種のための第1の設定値、および、クラスターイオンを受け入れるために、前記第1の設定値の少なくとも15倍の質量選択幅の第2の設定値を設定可能である、イオン注入ビームライン。
  3. 請求項1または2に記載のイオン注入ビームラインであって、単原子ドーピングイオンのための、前記質量選択開口における前記質量分析磁石の分解能は、少なくとも60である、イオン注入ビームライン。
  4. 請求項1乃至3のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析磁石は、前記質量選択開口において、イオン源の引き出し開口の幅の質量分散面で共役像を形成するように、構成および配置されるように寸法決めされる、イオン注入ビームライン。
  5. 請求項1乃至4のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石の前記質量選択開口は、少なくとも30mmの開口幅を設定することができる、イオン注入ビームライン。
  6. 請求項1乃至5のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石は、少なくとも12mmの幅および90mmの高さのスロット形状のイオン源引き出し開口から引き出されたビームを解析するように構成される、イオン注入ビームライン。
  7. 請求項1乃至6のいずれか一項に記載のイオン注入ビームラインであって、前記スロット形状の引き出し開口幅は約12.5mmであり、高さが約100mmである、イオン注入ビームライン。
  8. 請求項1乃至7のいずれか一項に記載のイオン注入ビームラインであって、前記質量選択開口は、単原子イオン種のために第1の設定値、および、クラスター化合物のから生成されたクラスターイオンを受け入れるために前記第1の設定値の少なくとも15倍の質量選択幅の第2の設定値を設定可能であり、単原子ドーパントイオンのための前記質量選択開口における前記質量解析磁石の分解能は、少なくとも60である、イオン注入ビームライン。
  9. 請求項1乃至8のいずれか一項に記載のイオン注入ビームラインであって、前記イオン注入ビームラインは、形成された電子ビームを用いるイオン化モードにより約1mA/cmまでの電流密度のイオンを生成するように構成されたイオン源と組み合わされ、前記イオン源は、ガスおよび蒸気の形態の供給材料を二者択一に受け取るように構成される、イオン注入ビームライン。
  10. 請求項1乃至9のいずれか一項に記載のイオン注入ビームラインであって、前記イオン源は、アーク放電を利用する第2のイオン化モードで代替的に機能する、イオン注入ビームライン。
  11. 請求項1乃至10のいずれか一項に記載のイオン注入ビームラインであって、前記イオンビーム内で、ガスとイオンビームとの相互作用により負のイオンを発生させるために、前記ビームラインは、前記解析磁石の下流で、ガスを導入する手段を備える、イオン注入ビームライン。
  12. 請求項1乃至11のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石は、単一のコイル対を備える扇形の双極子磁石であり、前記磁石は、入口および出口の極縁を備え、前記極縁は、前記極のギャップに出入りするイオンビーム経路の主軸に実質的に垂直であり、前記解析磁石は、前記扇形磁石内で、イオンビームの曲げ面に垂直な面におけるビームの集束効果を実質的に備えず、前記磁石に先立つイオン集束システムが、前記磁石の質量分散面に垂直なででのビーム集束を提供する、イオン注入ビームライン。
  13. 請求項12に記載のイオン注入ビームラインであって、前記集束システムは、前記イオン源に関連したイオン引き出しシステムのレンズ要素を有する、イオン注入ビームライン。
  14. 請求項1乃至13のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石の前記極ギャップは、実質的に、通過する最大サイズのイオンビームの対応する寸法よりも大きく、前記極の表面と前記ビーム経路との間にグラファイトまたはシリコンのライニングが存在する、イオン注入ビームライン。
  15. 請求項1乃至14のいずれか一項に記載のイオン注入ビームラインであって、前記極ギャップを画定する極部材は、溝およびシムが形成された極表面を備え、前記溝およびシムは、前記ビーム経路の中間面に対してそれぞれ極表面を低くおよび高くし、極ギャップ寸法に対して相対的に小さな極幅を使用できるような磁場を成形する、イオン注入ビームライン。
  16. 請求項1乃至15のいずれか一項に記載のイオン注入ビームラインであって、前記極ギャップを画定する極部材は、非磁性体の真空ハウジングの壁に埋め込まれ且つ該壁にシールされ、前記解析磁石の磁場にさらされながら前記真空ハウジングを通ってイオンビームが通過し、前記極部材間の磁石の強磁性体構造は、前記真空ハウジングの外側に配置される、イオン注入ビームライン。
  17. 請求項1乃至16のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石は、前記極ギャップ中に、約10kガウスを超える磁場を含む、調節可能な磁場を生成するように構成された扇形磁石である、イオン注入ビームライン。
  18. 請求項1乃至17のいずれか一項に記載のイオン注入ビームラインであって、オクタデカボランから生成される約80keVのイオンを選択するように構成される、イオン注入ビームライン。
  19. 請求項1乃至18のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析装置は、約400mmより大きな半径Rをもつ扇形磁石を備え、扇形の角度φは約90度以上であり、有効極出口境界から質量分解開口までの距離bが約200mmであり、前記質量解析装置は約−1.2から−0.80の拡大率Mを備えている、イオン注入ビームライン。
  20. 請求項19に記載のイオン注入ビームラインであって、Rは約500mm、φは約120°、bは約195mm、Mは約−0.83であり、前記解析磁石は、開口幅約12.5mmのソースからのイオンビームを解析するように構成され、前記解析磁石は、約88のオーダーの質量分解能m/Δmを備える、イオン注入ビームライン。
  21. 請求項1乃至20のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析磁石は、約205amuと約220aumとの間の全質量範囲にわたってイオンを選択するように構成される、イオン注入ビームライン。
  22. 請求項1乃至21のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析磁石は、約113amuと約123amuとの間の全質量範囲にわたってイオンを受け入れるように構成される、イオン注入ビームライン。
  23. 請求項1乃至22のいずれか一項に記載のイオン注入ビームラインであって、前記質量選択開口は、一対の反対回転する円筒形表面により画定され、前記円筒形表面は、平行な偏心軸を中心とする反対方向の同期した回転のために取り付けられる、イオン注入ビームライン。
  24. 請求項23に記載のイオン注入ビームラインであって、前記円筒形の表面の少なくとも1つは、水冷式であり且つグラファイトまたはシリコンのカバーを備える、イオン注入ビームライン。
  25. 請求項1乃至24のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石の後続のビームラインの一部において、複数の素子の、四極子集束レンズを備え、前記レンズは、ビーム断面の直交方向のビームの寸法を制御するように構成される、イオン注入ビームライン。
  26. 請求項25に記載のイオン注入ビームラインであって、前記レンズは、少なくとも3つの四極子素子を備え、かつ、ビームの断面の直交方向の角度発散および寸法を同時に制御するように構成される、イオン注入ビームライン。
  27. 請求項25または26に記載のイオン注入ビームラインであって、前記レンズは、三枚構造四極子集束レンズである、イオン注入ビームライン。
  28. 請求項25乃至27のいずれか一項に記載のイオン注入ビームラインであって、前記レンズは、磁気三枚構造四極子集束レンズである、イオン注入ビームライン。
  29. 請求項25乃至28のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記解析磁石内でイオンビームの曲げ面に垂直な面での長い寸法のビームプロファイルを備える、前記三枚構造四極子集束レンズに入る細長い断面プロファイルを備えるビームを生成するように構成され、前記三枚構造の第1のレンズ素子が、長いプロファイルの寸法を集束させ、第2のレンズ素子が、前記第1の素子と反対の極を持ち、短い寸法における集束および長い寸法におけるデフォーカスを生じさせ、第3のレンズ素子が、第1の素子と同じ極を持つように構成された制御装置と組み合わされ、前記細長いプロファイルの両方の寸法における同時の集束を達成するために、レンズ素子の場の強さはそれぞれ制御される、イオン注入ビームライン。
  30. 請求項25乃至29のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記解析磁石の後に且つ前記四極子レンズの前に、減速ユニットを含み、前記レンズは、前記減速ユニットにおけるビームの減速により生じるビームの発散を制御するために制御される、イオン注入ビームライン。
  31. 請求項25乃至30のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記クラスターイオンの少なくとも1つのイオンビームを生成するためのイオン源と組み合わされ、前記解析磁石の前記質量選択開口は、同一のクラスターイオン種の質量の範囲を伝達するように調整され、前記四極子レンズのレンズ要素の個別の場の強さは、同時且つ実質的に、ターゲット基板における、イオンビーム中の異なる質量の範囲により生じうる角度ずれを取り除くように調整される、イオン注入ビームライン。
  32. 請求項1乃至31のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、高電流のボロン含有クラスターイオンを低エネルギー且つ高ドーズ注入条件で生成するように構成される、イオン注入ビームライン。
  33. 請求項25乃至32のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、4つの強磁性体コア部材の周りに個別的に巻かれた4つのコイルを備える磁気四極子レンズを有し、前記コア部材は強磁性体極部材に固定されており、前記強磁性体極部材は、ビームが通る非強磁性体の真空ハウジングを貫通し且つこれをシールし、隣接するコイルは、反対の極になるように巻かれて4つの極間の領域に四極子場を形成し、磁束は、1つの極から他の極へ磁気的に強磁性体ヨーク構造に結合されたコア部材を介して戻る、イオン注入ビームライン。
  34. 請求項25乃至33のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記四極子レンズの後ろでイオンビームを走査するように構成されたスキャナと、前記スキャナと協働して、ターゲット基板に渡ってビームを平行に走査することを可能にするように構成されたコリメータとを含む、イオン注入ビームライン。
  35. 請求項25乃至34のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、実質的に以下の値、すなわち
    A.解析磁石:R=500mm、φ=120°;G=118mm;s=31mm;s=8.6mm;h=8.7mm;h=4.7mm;W=166mm;曲げ力=80keV オクタデカボラン
    B.質量選択開口:最小約8mmから最大約38mm
    C.三枚構造四極子集束レンズ:開口:80極先端間の対角;極先端の場は0ガウスから5kガウスの範囲で調整可能、
    のビームライン特徴およびパラメータを備える、イオン注入ビームライン。
  36. 関心ピーク付近の複数の質量のクラスターイオンの注入を可能にするための、イオン注入ビームライン構成であって、
    前記ビームライン構成は、磁石の強磁性体の極の間の極ギャップおよび質量選択開口を画定する質量解析磁石を有し、前記極ギャップは、クラスターイオンを生成する低密度のイオン源からのイオンビームを受け入れるように寸法決めされ、前記質量選択開口は、同一のドーパント種であるが分子量が段階的に異なるクラスターイオンのビームを選択するように寸法決めされた質量選択幅を設定でき、前記イオン注入ビームラインは、前記解析磁石の後ろのビームラインの一部において、複数素子の集束システムを含み、前記集束システムは、複数の四極子集束素子を含み、前記レンズシステムのレンズ素子の個別的な場の強さは、ビーム断面の直交方向におけるビームの寸法を制御するように調整され、また、同時且つ実質的に、ターゲット基板における、イオンビーム中におけるクラスターイオンの異なる質量の範囲の結果として生じ得る角度ずれを取り除く、イオン注入ビームライン構成。
  37. 請求項36に記載のイオン注入ビームラインであって、前記ビームラインは、形成された電子ビームを採用するイオン化モードにより約1mA/cmまでの電流密度のイオンを生成するように構成されたイオン源と組み合わされ、前記イオン源は、加熱された蒸気の形態の供給物質を受け取るように構成される、イオン注入ビームライン。
  38. 請求項36または37に記載のイオン注入ビームラインであって、前記質量選択開口は、約113amuから約123amuの範囲の質量を持つイオンを選択するように設定可能であり、また、約205amuから220amuの範囲の質量を持つイオンを選択するように設定可能である、イオン注入ビームライン。
  39. 請求項36乃至38のいずれか一項に記載のイオン注入ビームラインであって、前記レンズシステムは、少なくとも3つの四極子素子を備え、かつ、四極子場によって、ビーム断面の直交方向のビームの寸法および角度発散を同時に制御するように構成される、イオン注入ビームライン。
  40. 請求項36乃至39のいずれか一項に記載のイオン注入ビームラインであって、前記レンズシステムは、三枚構造四極子集束レンズである、イオン注入ビームライン。
  41. 請求項40に記載のイオン注入ビームラインであって、前記レンズは、磁気三枚構造四極子集束レンズである、イオン注入ビームライン。
  42. 請求項41に記載のイオン注入ビームラインであって、前記ビームラインは、前記解析磁石の曲げ面に垂直な面内にビームプロファイルの長い寸法を備える、前記三枚構造四極子集束レンズに入る細長い断面プロファイルを備えるビームを生成し、
    前記三枚構造の第1のレンズ素子が、前記長いプロファイル寸法での集束を生じさせ、第2のレンズ素子が、前記第1の極と反対の極を持ち短い寸法での集束を生じさせかつ前記長い寸法においてデフォーカスを生じさせ、第3のレンズ素子が、前記第1の素子と同一の極を持つように構成された制御装置と組み合わされ、レンズ素子の場の強さは、それぞれ、前記細長いプロファイルの両方の寸法において同時の集束を達成するように制御される、イオン注入ビームライン。
  43. 請求項24乃至26のいずれか一項に記載のイオン注入ビームラインであって、イオン源に関連付けられた調節可能な引き出し光学系は、前記解析磁石の非分散面における所定のビームの集束角度を生成し、数マイクロアンペアからすうミリアンペアまでの幅広いビーム電流、および約4keVから約80keVまでの広い範囲のエネルギーにわたって、前記四極子への入口において受け入れられるようにビームを寸法決めするように最適化され、前記三枚構造四極子は、ウェハまたは基板において、ウェハまたは基板の非分散面(垂直)および分散面(水平)の両方でのビームサイズおよび角度発散の最終的な最適化を提供し、前記最終的な最適化は、エネルギーおよび電流の範囲にわたって前記引き出し光学系により導入されるビームサイズおよび角度の変化の補償を含む、イオン注入ビームライン。
  44. 請求項36乃至43のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記解析磁石の後ろ且つ前記レンズシステムの四極子レンズ素子の前に減速ユニットを含み、この四極子レンズ素子は、前記減速ユニットにおけるビームの減速の結果として生じるビームの発散を制御するために制御される、イオン注入ビームライン。
  45. 請求項44に記載のイオン注入ビームラインであって、三枚構造四極子レンズが前記減速ユニットの後ろに続く、イオン注入ビームライン。
  46. 請求項36乃至45のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記解析磁石の後ろに続く減速ユニットを含み、前記減速ユニットは、一対の四極子集束素子の間に配置され、前記減速ユニットの先の四極子レンズ素子は、前記減速ユニットでのビームの減速の結果として生じるビーム発散を制御するように制御される、イオン注入ビームライン。
  47. 請求項43乃至46のいずれか一項に記載のイオン注入ビームラインであって、前記減速ユニットは、イオン加速をも可能にするように構成される、イオン注入ビームライン。
  48. 請求項43乃至45のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記減速器または加速器、およびそれに続く四極子素子の後ろに、少なくとも1つの磁気ビームライン素子を含み、前記減速器また加速器は、イオンビーム中のイオンの異なる質量に起因する、前記磁気ビームライン素子において生じる質量分散を相殺するため、イオンビーム中の異なる質量を持つイオンの交差を可能にする、イオン注入ビームライン。
  49. 請求項43乃至48のいずれか一項に記載のイオン注入ビームラインであって、磁気スキャナおよび磁気コリメータの後ろに最終エネルギー磁石が存在し、前記磁気スキャナおよび前記磁気コリメータは同じ方向に調整され、最終エネルギー磁石は反対方向に調整される、イオン注入ビームライン。
  50. 請求項43乃至49のいずれか一項に記載のイオン注入ビームラインであって、円筒形の3電極ポスト加速器構造が前記質量選択開口の先に存在し、前記3電極ポスト加速器は、ソース引き出しエネルギーから異なるエネルギーへイオンをポスト加速またはポスト減速でき、前記ポスト加速器の中心電極は、イオンが前記ポスト加速器領域を通るときに、イオンビームの様々な集束角度を得るために、調整可能な電圧が適用されるように連結され、四極子素子が、前記ポスト加速器の両側に位置し、前記ポスト加速器に続いて、ポスト加速(または減速)の間に不適切なエネルギーを持って生成されたイオンまたは中性粒子を取り除くための最終エネルギー磁石が存在し、前記最終エネルギー磁石の後ろには、磁気コリメータレンズと協働する磁気スキャナがあり、前記コリメータレンズは、ビームを前記スキャナ磁石と同じ方向に曲げ、前記ポスト加速器集束電極と協働する前記四極子素子の強さは、ターゲット基板でのビームサイズおよび角度発散を最適化し、複数の質量のイオンの存在により生じうる角度ずれを最小化するように調整される、イオン注入ビームライン。
  51. 請求項50に記載のイオンビームラインであって、前記ポスト加速器集束電極と協働する前記四極子素子の強さは、ビーム中の複数の質量のイオンの存在に起因する、ターゲット基板におけるビームの広がりを実質的に取り除くために、前記最終エネルギー磁石に関して、同等に調節される、イオンビームライン。
  52. 請求項36乃至51のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析磁石のギャップは、前記解析磁石の曲げ面に垂直な方向における少なくとも80mmの最小断面寸法のイオン源引き出し開口からのイオンビームを受け入れるように寸法決めされる、イオン注入ビームライン。
  53. 請求項52に記載のイオン注入ビームラインであって、前記解析磁石の前記質量選択開口は、約8mmと約38mmとの間の幅の開口に調整できる、イオン注入ビームライン。
  54. 請求項36乃至53のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、前記質量選択開口において、スロット形状イオン源引き出し開口から引き出されたビームを少なくとも10mmの幅に集束させるように構成される、イオン注入ビームライン。
  55. 請求項36乃至54のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石の前記極ギャップは、実質的に、通過するイオンビームの最大サイズの対応する寸法よりも大きく、前記極の表面と前記ビーム経路との間にグラファイトまたはシリコンのライニングが存在する、イオン注入ビームライン。
  56. 請求項36乃至55のいずれか一項に記載のイオン注入ビームラインであって、前記極ギャップを画定する極部材は、溝およびシムが形成された極表面を備え、前記溝およびシムは、前記ビーム経路の中間面に対してそれぞれ極表面を低くおよび高くし、前記極ギャップ寸法およびビームの断面寸法に関して相対的に小さな極幅の使用を可能にするような磁場を形成する、イオン注入ビームライン。
  57. 請求項36乃至56のいずれか一項に記載のイオン注入ビームラインであって、前記極ギャップを画定する極部材は、非磁性体材料の真空ハウジングの壁に埋め込まれ且つ該壁にシールされ、イオンビームは、前記解析磁石の磁場にさらされながら前記真空ハウジングを通り、極部材間の磁石の強磁性体構造は、前記真空ハウジングの外側に位置する、イオン注入ビームライン。
  58. 請求項1乃至57のいずれか一項に記載のイオン注入ビームラインであって、前記解析磁石は、約500mmの半径を持つ扇形磁石であり、且つ、前記極ギャップ内に約10kガウスを超える磁場を含む調整可能な磁場を生成するように構成される、イオン注入ビームライン。
  59. 請求項1乃至58のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、オクタデカボランから生成される約80keVのイオンを選択するように構成される、イオン注入ビームライン。
  60. 請求項1乃至59のいずれか一項に記載のイオン注入ビームラインであって、前記質量解析装置は、約400mmより大きい半径R、約90°よりも大きい扇角φ、および約200mmの、極出口から質量選択開口までの距離b、を備える扇形磁石を有する、イオン注入ビームライン。
  61. 請求項60に記載のイオン注入ビームラインであって、Rは約500mm、φは約120°、bは約195mm、およびMは約0.83であり、前記解析磁石は、約12.5mmの引き出し開口幅を持つイオン源からのイオンビームを解析するように構成される、イオン注入ビームライン。
  62. 請求項1乃至61のいずれか一項に記載のイオン注入ビームラインであって、前記ビームラインは、電子衝突によりクラスターイオンを生成するために材料をイオン化することができるイオン源を有し、前記イオン注入装置は、真空ハウジング内に、前記質量解析磁石に続いてビームスキャナおよびコリメータを備え、前記ビームラインは、ビームに中和のための負のイオンを提供するために、クラスターイオンビームとの相互作用により負のイオンを形成することができるガスを、前記スキャナまたはコリメータの真空ハウジングの領域に導入するためのシステムを備える、イオン注入ビームライン。
  63. 電子衝突イオン化によりクラスターイオンを生成するために、材料をイオン化することができるイオン源と組み合わされるイオン注入ビームラインであって、前記ビームラインは、関連する真空ハウジング部分内でおよび注入ステーションに先立ち、クラスターイオンビームを生成するために、イオン源からイオンを引き出すことができる引き出し電極アセンブリと、ビームのための質量解析磁石と、解析されたビームが通るイオンビームスキャナおよびイオンビームコリメータとを有し、前記イオンビームスキャナおよびイオンビームコリメータは、前記解析磁石の下流で、ビームを中和する負のイオンを提供するために、クラスターイオンビームとの相互作用により負のイオンを形成することができるガスを提供するシステムに組み合わされる、イオン注入ビームライン。
  64. 注入に好適なイオン種を生成するために、材料をイオン化することができるイオン源に組み合わされるイオン注入ビームラインであって、前記ビームラインは、関連する真空ハウジング部分内でおよび注入ステーションに先立ち、前記イオン種のビームを生成するために、イオン源からイオンを引き出すことができる引き出し電極アセンブリと、ビームのための質量解析磁石と、解析されたビームが通るイオンビームスキャナおよびイオンビームコリメータとを有し、前記イオンビームスキャナおよびイオンビームコリメータは、前記解析磁石の下流で、ビームを中和する負のイオンを提供するために、イオンビームとの相互作用により負のイオンを形成することができるガスを提供するシステムに組み合わされる、イオン注入ビームライン。
  65. 請求項11、62、63または64に記載のイオン注入ビームラインであって、前記ガスはSFである、イオン注入ビームライン。
  66. 請求項65に記載のイオン注入ビームラインであって、前記SFガスは、約5×10−7から10−5torrの圧力で提供される、イオン注入ビームライン。
  67. 請求項11および請求項62乃至66のいずれか一項に記載のイオン注入ビームラインであって、前記磁気解析装置の先にポスト加速器構造が存在し、前記ポスト加速器構造は、イオンをソース引き出しエネルギーから低いエネルギーまでポスト減速することができる、イオン注入ビームライン。
  68. イオン注入ビームラインのための、調整可能な質量選択開口を提供する装置であって、前記質量選択開口は、平行な偏心した軸を中心に同期した回転のために取り付けられた一対の反対回転する円筒形表面により画定される、装置。
  69. 請求項68に記載の装置であって、前記円筒形表面の少なくとも一方は水冷式であり、グラファイトまたはシリコンの被覆を備える、装置。
  70. 請求項68または69に記載の装置であって、前記装置は、2つのギア駆動の、反対回転する偏心する水冷式の非鉄材料の中空シリンダを有し、各シリンダは、グラファイトまたはシリコンのそれぞれのスリーブにより覆われ、前記シリンダは、反対回転するために、平行な偏心軸上に取り付けられて、イオン注入装置のビームラインに整合した、調整可能な質量選択開口を形成する、装置。
  71. 請求項68、69または70に記載の装置であって、前記装置は、イオン注入のための最小分解スリット幅、および最小分解スリット幅の約4倍から6倍の幅を含む分解スリット幅を提供するように構成される、装置。
  72. 請求項68乃至71のいずれか一項に記載の装置であって、前記装置は、少なくとも約38mmの最大イオン注入スリット幅を備える、装置。
  73. イオン注入ビームラインのための解析磁石であって、前記解析磁石は、約500mmの中心経路半径、約120°の扇角度、および少なくとも約80mmの極ギャップを備える扇形磁石を有し、前記磁石は、単一のコイル対に関連付けられ、前記磁石は、前記極ギャップに入り且つ出るイオンビームの主軸に実質的に垂直な、入口極縁および出口極縁を備え、前記磁石は、前記扇形磁石の曲げ面に垂直な面での、ビームの集束に実質的に影響を与えない、解析磁石。
  74. 請求項73に記載の解析磁石であって、前記解析磁石は、前記磁石に先立つイオン集束システムと組み合わされ、前記イオン集束システムは、前記磁石の質量分散面に垂直な面でのビームの集束を提供する、解析磁石。
  75. 請求項73または74に記載の解析磁石であって、前記集束システムは、前記イオン源に関連付けられたイオン引き出しシステムのレンズ素子を有する、解析磁石。
  76. 請求項73乃至75のいずれか一項に記載の解析磁石であって、前記解析磁石の前記極ギャップは、イオンビームが通る対応するイオンビームの最大サイズの寸法よりも実質的に大きく、前記極表面とビーム経路との間にグラファイトまたはシリコンのライニングが存在する、解析磁石。
  77. 請求項73乃至76のいずれか一項に記載の解析磁石であって、前記極ギャップを画定する極部材は、溝およびシムが形成された極表面を備え、前記溝およびシムは、前記ビーム経路の中間面に対してそれぞれ極表面を低くおよび高くし、前記極ギャップ寸法関して相対的に小さな極幅の使用を可能にするような磁場を形成する、イオン注入ビームライン。
  78. 請求項73乃至77のいずれか一項に記載の解析磁石であって、前記極ギャップを画定する極部材は、非磁性材料の真空ハウジングの壁に埋め込まれかつシールされ、前記真空ハウジングを通って、イオンビームが前記解析磁石の磁場にされされながらが通過し、前記極部材間の前記磁石の強磁性体構造は、前記真空ハウジングの外側に位置する、解析磁石。
  79. 請求項73乃至78のいずれか一項に記載の解析磁石であって、前記解析磁石は、前記極ギャップにおいて、約10kガウスを超える磁場を含む、調節可能な磁場を生成するように構成される扇形磁石である、解析磁石。
  80. 請求項73乃至79のいずれか一項に記載の解析磁石であって、前記解析磁石は、少なくとも12mmの幅および90mmの高さの、スロット形状イオン源引き出し開口から引き出されたイオンを解析するように構成される、解析磁石。
  81. イオン注入を行う方法であって、前記方法は、請求項1乃至80のいずれか一項に記載の装置を採用する、方法。
JP2009515500A 2006-06-13 2007-06-13 イオンビーム装置およびイオン注入方法 Expired - Fee Related JP5210304B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81343106P 2006-06-13 2006-06-13
US60/813,431 2006-06-13
PCT/US2007/013984 WO2007146394A2 (en) 2006-06-13 2007-06-13 Ion beam apparatus and method for ion implantation

Publications (2)

Publication Number Publication Date
JP2009540531A true JP2009540531A (ja) 2009-11-19
JP5210304B2 JP5210304B2 (ja) 2013-06-12

Family

ID=38832545

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009515501A Expired - Fee Related JP5258757B2 (ja) 2006-06-13 2007-06-13 イオンビーム装置およびイオン注入方法
JP2009515500A Expired - Fee Related JP5210304B2 (ja) 2006-06-13 2007-06-13 イオンビーム装置およびイオン注入方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2009515501A Expired - Fee Related JP5258757B2 (ja) 2006-06-13 2007-06-13 イオンビーム装置およびイオン注入方法

Country Status (7)

Country Link
US (3) US7851773B2 (ja)
EP (1) EP2027586A4 (ja)
JP (2) JP5258757B2 (ja)
KR (3) KR20090018954A (ja)
CN (1) CN101467217A (ja)
TW (2) TWI416573B (ja)
WO (2) WO2007146395A2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534791A (zh) * 2011-05-13 2014-01-22 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
WO2014076921A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
WO2014076933A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
WO2014076945A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099465A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099477A (ja) * 2012-11-13 2014-05-29 Sumco Corp 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP2014099451A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099481A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099450A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099476A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
KR20160074588A (ko) * 2013-10-22 2016-06-28 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 듀얼 모드 이온 주입기
JP2017123477A (ja) * 2017-02-28 2017-07-13 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017143292A (ja) * 2017-03-28 2017-08-17 株式会社Sumco 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP2017175145A (ja) * 2017-05-01 2017-09-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2018132518A (ja) * 2017-02-17 2018-08-23 株式会社リガク X線光学デバイス
JP2019537816A (ja) * 2016-11-11 2019-12-26 日新イオン機器株式会社 イオン源

Families Citing this family (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027586A4 (en) * 2006-06-13 2010-11-24 Semequip Inc ION EMBELLER AND METHOD FOR ION IMPLANTATION
US8471452B2 (en) 2006-06-30 2013-06-25 Nordiko Technical Services Limited Apparatus
EP1970935B1 (en) * 2007-03-14 2011-01-12 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Lens coil cooling of a magnetic lens
JP5242937B2 (ja) * 2007-04-10 2013-07-24 株式会社Sen イオン注入装置及びイオン注入方法
WO2009039884A1 (en) * 2007-09-26 2009-04-02 Ion Beam Applications S.A. Particle beam transport apparatus and method of transporting a particle beam with small beam spot size
US7981483B2 (en) * 2007-09-27 2011-07-19 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US8192805B2 (en) * 2007-09-27 2012-06-05 Tel Epion Inc. Method to improve electrical leakage performance and to minimize electromigration in semiconductor devices
US7915597B2 (en) * 2008-03-18 2011-03-29 Axcelis Technologies, Inc. Extraction electrode system for high current ion implanter
JP5212465B2 (ja) * 2008-03-31 2013-06-19 富士通セミコンダクター株式会社 半導体装置の製造方法、イオンビームの調整方法及びイオン注入装置
JP5194975B2 (ja) * 2008-04-10 2013-05-08 日新イオン機器株式会社 イオン注入装置
US7994488B2 (en) * 2008-04-24 2011-08-09 Axcelis Technologies, Inc. Low contamination, low energy beamline architecture for high current ion implantation
US8330118B2 (en) * 2008-05-16 2012-12-11 Semequip, Inc. Multi mode ion source
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
EP2283509A1 (en) * 2008-05-30 2011-02-16 Axcelis Technologies, Inc. Control of particles on semiconductor wafers when implanting boron hydrides
US8124946B2 (en) * 2008-06-25 2012-02-28 Axcelis Technologies Inc. Post-decel magnetic energy filter for ion implantation systems
US8227768B2 (en) * 2008-06-25 2012-07-24 Axcelis Technologies, Inc. Low-inertia multi-axis multi-directional mechanically scanned ion implantation system
US8809800B2 (en) * 2008-08-04 2014-08-19 Varian Semicoductor Equipment Associates, Inc. Ion source and a method for in-situ cleaning thereof
US8003956B2 (en) * 2008-10-03 2011-08-23 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for controlling beam current uniformity in an ion implanter
US8164070B2 (en) * 2008-12-05 2012-04-24 Nissin Ion Equipment Co., Ltd. Collimator magnet for ion implantation system
US8044375B2 (en) * 2009-03-18 2011-10-25 Kingstone Semiconductor Company, Limited Apparatus and method for ion beam implantation using scanning and spot beams
US8350236B2 (en) * 2010-01-12 2013-01-08 Axcelis Technologies, Inc. Aromatic molecular carbon implantation processes
US8669539B2 (en) * 2010-03-29 2014-03-11 Advanced Ion Beam Technology, Inc. Implant method and implanter by using a variable aperture
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US9693443B2 (en) 2010-04-19 2017-06-27 General Electric Company Self-shielding target for isotope production systems
US8344337B2 (en) * 2010-04-21 2013-01-01 Axcelis Technologies, Inc. Silaborane implantation processes
GB2488429B (en) * 2011-02-28 2016-09-28 Agilent Technologies Inc Ion slicer with acceleration and deceleration optics
US8525106B2 (en) * 2011-05-09 2013-09-03 Bruker Daltonics, Inc. Method and apparatus for transmitting ions in a mass spectrometer maintained in a sub-atmospheric pressure regime
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
WO2013068796A2 (en) * 2011-11-09 2013-05-16 Brookhaven Science Associates, Llc Molecular ion source for ion implantation
JP5404950B1 (ja) * 2012-07-18 2014-02-05 ラボテック株式会社 堆積装置および堆積方法
US9484176B2 (en) * 2012-09-10 2016-11-01 Thomas Schenkel Advanced penning ion source
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US9267982B2 (en) * 2013-02-11 2016-02-23 Taiwan Semiconductor Manufacturing Company, Ltd. Processing apparatus and ion implantation apparatus
US9142386B2 (en) 2013-03-15 2015-09-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US9865422B2 (en) 2013-03-15 2018-01-09 Nissin Ion Equipment Co., Ltd. Plasma generator with at least one non-metallic component
US8994272B2 (en) 2013-03-15 2015-03-31 Nissin Ion Equipment Co., Ltd. Ion source having at least one electron gun comprising a gas inlet and a plasma region defined by an anode and a ground element thereof
US9502213B2 (en) 2013-03-15 2016-11-22 Nissin Ion Equipment Co., Ltd. Ion beam line
US9275819B2 (en) * 2013-03-15 2016-03-01 Nissin Ion Equipment Co., Ltd. Magnetic field sources for an ion source
US9437397B2 (en) 2013-06-27 2016-09-06 Varian Semiconductor Equipment Associates, Inc. Textured silicon liners in substrate processing systems
JP6253375B2 (ja) * 2013-12-02 2017-12-27 住友重機械イオンテクノロジー株式会社 イオン注入装置
TWI626675B (zh) * 2014-03-05 2018-06-11 聯華電子股份有限公司 質量狹縫組件、離子佈植機及其操作方法
JP6324223B2 (ja) * 2014-06-09 2018-05-16 住友重機械イオンテクノロジー株式会社 イオン注入装置及びイオン注入方法
US9443708B2 (en) 2014-09-10 2016-09-13 Battelle Memorial Institute Ion implantation system and process for ultrasensitive determination of target isotopes
CN104409313B (zh) * 2014-12-22 2016-08-17 北京中科信电子装备有限公司 一种离子质量分析装置
TWI686838B (zh) 2014-12-26 2020-03-01 美商艾克塞利斯科技公司 改善混合式掃描離子束植入機之生產力的系統及方法
US9396903B1 (en) * 2015-02-06 2016-07-19 Varian Semiconductor Equipment Associates, Inc. Apparatus and method to control ion beam current
US9583308B1 (en) * 2015-08-27 2017-02-28 Varian Semiconductor Equipment Associates, Inc. Light bath for particle suppression
US9793087B2 (en) * 2015-09-10 2017-10-17 Varian Semiconductor Equipment Associates, Inc. Techniques and apparatus for manipulating an ion beam
US9697988B2 (en) * 2015-10-14 2017-07-04 Advanced Ion Beam Technology, Inc. Ion implantation system and process
DE102015118443A1 (de) * 2015-10-28 2017-05-04 Eugen Forschner Gmbh Vorrichtung zum Verbinden von elektrischen Bauteilen mit einer Stromversorgung
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10468241B2 (en) * 2016-04-04 2019-11-05 West Virginia University Monolithic collimator and energy analyzer for ion spectrometry
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
JP7271425B2 (ja) 2016-09-09 2023-05-11 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム 照射電子ビームの磁気制御用の装置および方法
US10147584B2 (en) * 2017-03-20 2018-12-04 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for decelerated ion beam with no energy contamination
JP6928943B2 (ja) * 2017-03-28 2021-09-01 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置
US10490386B2 (en) * 2017-06-27 2019-11-26 Peter F. Vandermeulen Methods and systems for plasma deposition and treatment
US10037877B1 (en) * 2017-06-29 2018-07-31 Axcelis Technologies, Inc Ion implantation system having beam angle control in drift and deceleration modes
TWI795448B (zh) * 2017-10-09 2023-03-11 美商艾克塞利斯科技公司 用於在角能量過濾器區域中穩定或移除射束線組件上所形成之膜的離子植入系統及方法
CN111527639A (zh) * 2018-03-02 2020-08-11 株式会社村田制作所 全固体电池及其制造方法
US11164722B2 (en) * 2018-07-31 2021-11-02 Taiwan Semiconductor Manufacturing Co., Ltd. Ion implantation method
CN109148248B (zh) * 2018-08-13 2020-10-16 江苏未名华芯半导体有限公司 一种芯片生产用离子植入设备
US11114270B2 (en) * 2018-08-21 2021-09-07 Axcelis Technologies, Inc. Scanning magnet design with enhanced efficiency
US10651011B2 (en) * 2018-08-21 2020-05-12 Varian Semiconductor Equipment Associates, Inc. Apparatus and techniques for generating bunched ion beam
US10468226B1 (en) * 2018-09-21 2019-11-05 Varian Semiconductor Equipment Associates, Inc. Extraction apparatus and system for high throughput ion beam processing
JP6813048B2 (ja) * 2019-03-27 2021-01-13 日新イオン機器株式会社 質量分離器
US11011343B2 (en) 2019-07-15 2021-05-18 Applied Materials, Inc. High-current ion implanter and method for controlling ion beam using high-current ion implanter
KR102544486B1 (ko) * 2020-04-07 2023-06-16 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 이온 주입 시스템
US11476087B2 (en) * 2020-08-03 2022-10-18 Applied Materials, Inc. Ion implantation system and linear accelerator having novel accelerator stage configuration
US11217427B1 (en) * 2020-11-27 2022-01-04 Applied Materials, Inc. System, apparatus and method for bunched ribbon ion beam
US11818830B2 (en) * 2021-01-29 2023-11-14 Applied Materials, Inc. RF quadrupole particle accelerator
US11569063B2 (en) 2021-04-02 2023-01-31 Applied Materials, Inc. Apparatus, system and method for energy spread ion beam
US20230343727A1 (en) * 2022-04-23 2023-10-26 Plasma-Therm Nes Llc Electrostatic discharge prevention in ion beam system
US20240098871A1 (en) * 2022-09-21 2024-03-21 Applied Materials, Inc. Drift tube electrode arrangement having direct current optics

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation
JP2006515711A (ja) * 2002-06-26 2006-06-01 セムエキップ インコーポレイテッド 水素化ホウ素クラスターイオンの注入によるイオン注入装置及び半導体製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800100A (en) * 1987-10-27 1989-01-24 Massachusetts Institute Of Technology Combined ion and molecular beam apparatus and method for depositing materials
US5311028A (en) * 1990-08-29 1994-05-10 Nissin Electric Co., Ltd. System and method for producing oscillating magnetic fields in working gaps useful for irradiating a surface with atomic and molecular ions
NL9101083A (nl) * 1991-06-24 1993-01-18 Procornea Holding Bv Houder voor het opbergen van een contactlens.
US5350926A (en) 1993-03-11 1994-09-27 Diamond Semiconductor Group, Inc. Compact high current broad beam ion implanter
JP3358336B2 (ja) * 1994-10-14 2002-12-16 日新電機株式会社 イオン注入装置における注入条件異常検出方法
US5629528A (en) * 1996-01-16 1997-05-13 Varian Associates, Inc. Charged particle beam system having beam-defining slit formed by rotating cyclinders
US5814819A (en) * 1997-07-11 1998-09-29 Eaton Corporation System and method for neutralizing an ion beam using water vapor
US20020003208A1 (en) * 1997-12-01 2002-01-10 Vadim G. Dudnikov Space charge neutralization of an ion beam
US6130436A (en) * 1998-06-02 2000-10-10 Varian Semiconductor Equipment Associates, Inc. Acceleration and analysis architecture for ion implanter
GB2355337B (en) * 1999-10-12 2004-04-14 Applied Materials Inc Ion implanter and beam stop therefor
US6403967B1 (en) * 1999-10-15 2002-06-11 Advanced Ion Beam Technology, Inc. Magnet system for an ion beam implantation system using high perveance beams
JP4820038B2 (ja) * 1999-12-13 2011-11-24 セメクイップ, インコーポレイテッド イオン注入イオン源、システム、および方法
EP1538655A3 (en) 1999-12-13 2009-06-03 Semequip, Inc. Ion implantation ion source
US6703628B2 (en) 2000-07-25 2004-03-09 Axceliss Technologies, Inc Method and system for ion beam containment in an ion beam guide
EP1347804A4 (en) 2000-11-30 2009-04-22 Semequip Inc ION IMPLANTATION SYSTEM AND CONTROL METHOD
JP4252237B2 (ja) * 2000-12-06 2009-04-08 株式会社アルバック イオン注入装置およびイオン注入方法
KR100883237B1 (ko) * 2001-01-18 2009-02-10 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 이온 주입기용 조절 가능한 컨덕턴스 제한 개구
JP3840108B2 (ja) * 2001-12-27 2006-11-01 株式会社 Sen−Shi・アクセリス カンパニー イオンビーム処理方法及び処理装置
US6774378B1 (en) 2003-10-08 2004-08-10 Axcelis Technologies, Inc. Method of tuning electrostatic quadrupole electrodes of an ion beam implanter
US7087913B2 (en) 2003-10-17 2006-08-08 Applied Materials, Inc. Ion implanter electrodes
US7112789B2 (en) * 2004-05-18 2006-09-26 White Nicholas R High aspect ratio, high mass resolution analyzer magnet and system for ribbon ion beams
EP2027586A4 (en) * 2006-06-13 2010-11-24 Semequip Inc ION EMBELLER AND METHOD FOR ION IMPLANTATION

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060097645A1 (en) * 1999-12-13 2006-05-11 Horsky Thomas N Dual mode ion source for ion implantation
JP2006515711A (ja) * 2002-06-26 2006-06-01 セムエキップ インコーポレイテッド 水素化ホウ素クラスターイオンの注入によるイオン注入装置及び半導体製造方法

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673811B2 (ja) * 2011-05-13 2015-02-18 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
US9847370B2 (en) 2011-05-13 2017-12-19 Sumco Corporation Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
US9496139B2 (en) 2011-05-13 2016-11-15 Sumco Corporation Method of producing semiconductor epitaxial wafer, semiconductor epitaxial wafer, and method of producing solid-state image sensing device
CN103534791B (zh) * 2011-05-13 2016-05-11 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
CN103534791A (zh) * 2011-05-13 2014-01-22 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片及固体摄像元件的制造方法
KR20150066597A (ko) * 2012-11-13 2015-06-16 가부시키가이샤 사무코 반도체 에피텍셜 웨이퍼의 제조 방법, 반도체 에피텍셜 웨이퍼, 및 고체 촬상 소자의 제조 방법
KR101669603B1 (ko) * 2012-11-13 2016-10-26 가부시키가이샤 사무코 반도체 에피텍셜 웨이퍼의 제조 방법, 반도체 에피텍셜 웨이퍼, 및 고체 촬상 소자의 제조 방법
JP2014099481A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099472A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099450A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
JP2014099476A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099482A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099454A (ja) * 2012-11-13 2014-05-29 Sumco Corp 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099477A (ja) * 2012-11-13 2014-05-29 Sumco Corp 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP2014099465A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
CN104781919A (zh) * 2012-11-13 2015-07-15 胜高股份有限公司 半导体外延晶片的制造方法、半导体外延晶片以及固体摄像元件的制造方法
WO2014076945A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
WO2014076921A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2014099451A (ja) * 2012-11-13 2014-05-29 Sumco Corp エピタキシャルシリコンウェーハの製造方法、エピタキシャルシリコンウェーハ、および固体撮像素子の製造方法
WO2014076933A1 (ja) * 2012-11-13 2014-05-22 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2016541091A (ja) * 2013-10-22 2016-12-28 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド デュアルモードイオン注入装置
KR20160074588A (ko) * 2013-10-22 2016-06-28 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 듀얼 모드 이온 주입기
KR102297764B1 (ko) * 2013-10-22 2021-09-06 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. 이온 주입기 및 이온 주입기를 동작시키는 방법, 이온 주입기에서 듀얼 모드 동작을 위한 시스템
JP2019537816A (ja) * 2016-11-11 2019-12-26 日新イオン機器株式会社 イオン源
JP7093506B2 (ja) 2016-11-11 2022-06-30 日新イオン機器株式会社 イオン源及びイオン注入機
JP2018132518A (ja) * 2017-02-17 2018-08-23 株式会社リガク X線光学デバイス
JP7052996B2 (ja) 2017-02-17 2022-04-12 株式会社リガク X線光学デバイス
JP2017123477A (ja) * 2017-02-28 2017-07-13 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法
JP2017143292A (ja) * 2017-03-28 2017-08-17 株式会社Sumco 貼り合わせウェーハの製造方法および貼り合わせウェーハ
JP2017175145A (ja) * 2017-05-01 2017-09-28 株式会社Sumco 半導体エピタキシャルウェーハの製造方法、半導体エピタキシャルウェーハ、および固体撮像素子の製造方法

Also Published As

Publication number Publication date
TWI416572B (zh) 2013-11-21
TW200816255A (en) 2008-04-01
WO2007146395A3 (en) 2008-04-10
KR20090029209A (ko) 2009-03-20
CN101467217A (zh) 2009-06-24
KR20090018954A (ko) 2009-02-24
US20110089321A1 (en) 2011-04-21
US8436326B2 (en) 2013-05-07
US7851773B2 (en) 2010-12-14
KR20140018392A (ko) 2014-02-12
WO2007146395A2 (en) 2007-12-21
US8110820B2 (en) 2012-02-07
JP5210304B2 (ja) 2013-06-12
JP2009540532A (ja) 2009-11-19
WO2007146394A2 (en) 2007-12-21
JP5258757B2 (ja) 2013-08-07
US20090206270A1 (en) 2009-08-20
US20090261248A1 (en) 2009-10-22
TW200826138A (en) 2008-06-16
WO2007146394A3 (en) 2008-07-31
EP2027586A4 (en) 2010-11-24
TWI416573B (zh) 2013-11-21
EP2027586A2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP5210304B2 (ja) イオンビーム装置およびイオン注入方法
US8071958B2 (en) Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
US7960709B2 (en) Ion implantation device and a method of semiconductor manufacturing by the implantation of boron hydride cluster ions
KR100702582B1 (ko) 기판에 도핑 물질을 주입하는 방법
JP5107567B2 (ja) イオン注入イオン源、システム、および方法
Glavish et al. A Beam Line System for a Commercial Borohydride Ion Implanter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120906

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees