JP2009533625A - マニュアルトランスミッションによりエンジン速度を車両速度に調和させるシステムおよび方法 - Google Patents

マニュアルトランスミッションによりエンジン速度を車両速度に調和させるシステムおよび方法 Download PDF

Info

Publication number
JP2009533625A
JP2009533625A JP2009505348A JP2009505348A JP2009533625A JP 2009533625 A JP2009533625 A JP 2009533625A JP 2009505348 A JP2009505348 A JP 2009505348A JP 2009505348 A JP2009505348 A JP 2009505348A JP 2009533625 A JP2009533625 A JP 2009533625A
Authority
JP
Japan
Prior art keywords
clutch
speed
transmission gear
program code
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009505348A
Other languages
English (en)
Other versions
JP4932901B2 (ja
Inventor
ラディック・アンソニー・フランシス
Original Assignee
ラディック・アンソニー・フランシス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ラディック・アンソニー・フランシス filed Critical ラディック・アンソニー・フランシス
Publication of JP2009533625A publication Critical patent/JP2009533625A/ja
Application granted granted Critical
Publication of JP4932901B2 publication Critical patent/JP4932901B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/40Shifting activities
    • F16H2306/54Synchronizing engine speed to transmission input speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • F16H59/56Inputs being a function of the status of the machine, e.g. position of doors or safety belts dependent on signals from the main clutch

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)

Abstract

【課題】
【解決手段】マニュアルトランスミッション(37)がシフトされる間にエンジン速度を車両速度に自動的に調和させる方法。現在選択されている速度比は、エンジン速度および車両速度の比から決定される。運転者はクラッチ(26)を分離することによってシフトを開始する。クラッチ分離の前後の運転者のスロットル入力は、その者が1速度比のシフトアップかまたは、1または2速度比のシフトダウンを望んでいるのかを意味する。クラッチ(26)が分離されている間、エンジンコンピュータ(58)はエンジン(22)をクラッチの滑らかな再係合に必要な速度に至らしめるように動作する。エンジン速度制御はクラッチ係合時に運転者に戻る。次の意図されたトランスミッションギヤは、クラッチ分離の前後のスロットル位置に基づき決定される。
【選択図】図3A

Description

本発明は一般に、モータビークルにおけるマニュアルトランスミッションの操作に関する。より詳しくは、本発明は、運転者が車両のマニュアルトランスミッションをシフトする間にモータビークルのエンジン速度を車両速度に自動的に調和させるシステムおよび方法に向けられている。
自動車のような従来のモータビークルは一般に、かなり狭い範囲の高いエンジン速度にわたり低トルクを発生するエンジンを備える。しかし、駆動輪での高トルクおよびより幅広い範囲の低速度が自動車を動かすために要求される。従って、高速度の低エンジントルクは、自動車の多速度ドライブトレインによって、多様な駆動状態に適格な低速度の高車輪トルクに変換される。可変速比トランスミッションおよび1対のファイナルドライブギヤがそのような従来のドライブトレインにおける典型的要素である。マニュアルトランスミッションは可変速比トランスミッションの1つの主要な形式であり、名前が示す通り、自動車運転者は手動ギヤセレクタを用いていくつかの速度比から選択しなければならない。ギヤセレクタは、自動車およびトラックで一般的に見られるように棹に似ているハンドレバーであるか、またはオートバイで一般的に見られるようにフットペダルであるとしてよい。
従来のマニュアルトランスミッションは一般に、エンジンによって駆動される入力シャフト、入力シャフトによって駆動されるレイシャフト、およびレイシャフトによって駆動される1つ以上のメインシャフトを含む。レイシャフトおよびメインシャフトには絶えず噛み合っている数対の異なる比のギヤが取り付けられている。各対の入力ギヤはレイシャフトに堅固に取り付けられている。これらのギヤの対は前進速度比を付与する。レイシャフトによって駆動され、そして選択的にメインシャフトを駆動する3個のギヤの組が後退速度比を付与する。各対における出力ギヤはメインシャフトに関して自由に回転することができる。速度比または「ギヤ」は、ギヤセレクタによって位置決めされる歯付きカラーにより出力ギヤのうちの1個をメインシャフトにロックすることによって選択される。高段ギヤのメインシャフト速度に対する入力速度の数値比が低段ギヤに対して低い場合、1つのギヤは別のものより「高い」。ギヤは数値順で参照される。全部の前進ギヤについて、最も低いものは1速ギヤであり、次に低いものは2速ギヤであり、というようになる。モータビークルは一般に複数のギヤを有する。例えば、車、小型トラックおよびマニュアルトランスミッション付きオートバイは一般に、5または6の前進ギヤを有する。
モータビークルのマニュアルトランスミッションは、車および小型トラックのように同期させるか、オートバイ、レース車および大型トラックのように非同期にさせることができる。同期されたマニュアルトランスミッションのギヤが選択されると、シンクロナイザと呼ばれる付加的な構成要素がギヤとエンジン出力シャフトとの間に摩擦を導入し、カラーがロックされる前にギヤ速度をメインシャフト速度と同等にさせる。
クラッチアセンブリ(以下、「クラッチ」)は、ギヤが変えられる間エンジンとトランスミッション入力シャフトとを分離するために使用される。運転者は、車およびトラックに通常見られるフットペダル、またはオートバイに通常見られるハンドレバーに力を加えることによってクラッチを分離する。クラッチは一般に、エンジンに取り付けられたフライホイールおよびプレッシャープレート、およびトランスミッション入力シャフトに取り付けられたクラッチプレートを含む。クラッチは、プレッシャープレートをクラッチプレートに押しつけるスプリングによって係合させられ、それは転じてクラッチプレートをフライホイールに押しつける。フライホイールとクラッチプレートとの間の摩擦は、エンジントルクがドライブトレインの残りの部分に流れるのを可能にする。クラッチは、プレッシャープレートをクラッチプレートから引き離すためにスプリングに作用するクラッチ切断機構によって分離され、フライホイールとトランスミッションへのエンジントルクの流れとの間の摩擦を除去しドライブトレインへのトルクの流れを効果的に遮断する。
従来、車両が動いている間にギヤをシフトするプロセスは次の通りである。車両運転者は、シフトアップ、すなわち低段ギヤから高段ギヤへの変更を、エンジントルクを低減するためにスロットル入力を減少させ(例えば車ではアクセルペダルを緩め)、ドライブトレインへのエンジントルクの流れを低減するためにクラッチを分離する(例えば車ではクラッチペダルに力を加える)ことによって開始することができる。次に、運転者はギヤセレクタをニュートラル位置に動かす。その後、運転者は、スロットル入力をさらに減少させてエンジン速度を低減して、シフトアップから生じるはずであるより低いトランスミッション入力シャフト速度に調和させる。より低いトランスミッション入力シャフト速度は、駆動輪の回転速度、ファイナルドライブ比および次のトランスミッションギヤを掛けることによって得ることができる。運転者はギヤセレクタをニュートラル位置から高段ギヤ、すなわちより低い速度比の位置に動かすことを続け、カラーが新しく選択されたギヤを出力シャフトにロックするようにさせる。最後に運転者はクラッチを再係合させる(例えば車ではクラッチペダルを緩める)。
運転者は、シフトダウンを、すなわち高段ギヤから低段ギヤへの変更を2つの手順のうちの1つにより開始することができる。より頻繁に使用される手順において、運転者は、やはりエンジントルクを低減するためにスロットル入力を減少させ、ドライブトレインへのエンジントルクの流れを低減するためにクラッチを分離することによってシフトダウンを開始する。次に、運転者はギヤセレクタをニュートラル位置に動かす。その後、運転者は、スロットル入力を増大させてエンジン速度を高め、シフトダウンから生じるはずであるより高いトランスミッション入力シャフト速度に調和させる。やはり、より高いトランスミッション入力シャフト速度は、駆動輪の回転速度、ファイナルドライブ比および次のトランスミッションギヤを掛けることによって得ることができる。運転者はギヤセレクタをニュートラル位置から低段ギヤ、すなわち高い速度比の位置に動かすことを続け、カラーが新しく選択されたギヤを出力シャフトにロックするようにさせる。最後に運転者はクラッチを再係合させる。この方法は、クラッチがシフトにつき一度分離されることから、「シングルクラッチング」として知られている。
シフトダウンする第2の方法は、クラッチが二度分離されることを要求し、従って「ダブルクラッチ」または「ダブルデクラッチ」として知られている。運転者は、エンジントルクを低減するためにスロットル入力を減少させ、ドライブトレインへのエンジントルクの流れを遮断するためにクラッチを分離することによってシフトダウンを開始する。次に、運転者は、スロットル入力を増大させてエンジン速度を高め、シフトダウンから生じるはずであるより高いトランスミッション入力シャフト速度に調和させる。やはり、入力シャフト速度は、駆動輪の回転速度、ファイナルドライブ比および次のトランスミッションギヤを掛けることによって得られる。同時に、運転者はニュートラルにシフトし、クラッチを一時的に再係合させてから、再びクラッチを分離する。いったんシフトが完了すると、クラッチを滑らかに係合させるために必要なエンジン速度はまた、ギヤカラーを滑らかにロックするために出力ギヤ速度およびメインシャフト速度を調和させるトランスミッション入力シャフト速度でもある。トランスミッションがニュートラルにあってより高いエンジン速度でのクラッチの係合は、それが出力シャフトにロックされる前に出力ギヤの速度を高める。次に、運転者はギヤセレクタをニュートラル位置から低段ギヤの位置に動かし、そしてクラッチは再び分離される。シングルクラッチ手順に比べて、ダブルクラッチ手順は、新しく選択されたギヤのカラーを出力シャフトにロックするプロセスを容易にする。
[問題の概要]
前述の通り、クラッチプレートはトランスミッション入力シャフトに取り付けられており、フライホイールおよびプレッシャープレートはエンジン出力シャフトに取り付けられている。クラッチが分離されギヤが選択される間、トランスミッション入力シャフト速度は駆動輪の回転速度によって決定される。クラッチアセンブリの2つの半部分の速度はそれぞれエンジンの速度および車輪の速度によって決定されるので、そのプロセスは「エンジン速度を路面速度に調和させること」または「回転数を調和させること」として知られている。理想的には、フライホイールおよびプレッシャープレートの速度は、クラッチが再係合した時にクラッチプレート速度と等しいはずである。しかし、運転者はめったにそのような等化を達成することができず、代わりに実際のクラッチ係合に頼りフライホイールおよびクラッチプレート速度を等しくさせ、それはフライホイールおよびクラッチプレートを摩耗させドライブトレインを通じて衝撃を送る。転じてその衝撃は車両乗員の快適さを低減し、駆動輪に牽引力を失わせることになるかもしれず、旋回時の車両のハンドリングを狂わせるかもしれない。車またはトラックにブレーキをかけながらのシフトダウン手順の実行は、スロットルペダル、クラッチペダルおよびブレーキペダルの同時操作が要求されるので、特に難しい。
デソーテルズ(Desautels)他の米国特許第5569115号は、大型トラックのマニュアルトランスミッションのクラッチレスシフティングを助ける、マニュアルトランスミッションのためのエンジン速度同期システムを記載している。デソーテルズ他は、シフトレバーのシフト意向スイッチ、シフトレバーがニュートラルに動かされた時を決定するトランスミッションの位置センサ、およびトランスミッション出力シャフトの速度センサを利用する。シフト意向スイッチおよびトランスミッション位置センサは小型車両では一般に見られない。従って、それらの組み込みは、製造費用を増すかもしれず、シフト方法を再び学ぶことを運転者に要求する。さらに、デソーテルズ他は、2速シフトダウンのための手段を提供しておらず、そのエンジン速度同期プロセスはトランスミッションがニュートラルになるまで始動せず、同期に必要な時間を増大させる。
米国特許第5569115号 米国特許第5904068号
本発明は有利には、モータビークルのエンジン制御ユニット(ECU)といった既存のエンジンコンピュータを利用してフライホイール速度をクラッチプレート速度に調和させ、クラッチ再係合時のドライブトレイン衝撃を回避し車両運転者からのスロットル入力を必要とすることなく1速度比のシフトダウンを可能にすることによって少なくとも上記の問題および他の問題に対処する。
従って、本発明の実施形態は、車両が動いている間にマニュアルトランスミッションのエンジン速度を車輪回転速度と所望の比率に自動的に至らしめるために、すなわちシフトアップまたはシフトダウン中に「回転数を調和させる」または「エンジン速度を車両速度に調和させる」ために、今日のモータビークルにおいて利用可能なセンサおよびコントロールを使用するために自動車ECUをプログラムするシステムおよび方法を提供する。
実施形態は例証として例示されており、同じ数字が同じ要素を指示する以下の図に限定されない。
簡潔さおよび例証目的で、実施形態の原理は主にその実例に言及することによって説明する。以下の説明において、多数の特定の詳細が実施形態の完全な理解をもたらすために述べられる。しかし、実施形態がこれらの特定の詳細に限定されることなく実施され得ることは当業者にとって明白であろう。他の例において、周知の方法および構造は実施形態を不要に曖昧にしないために詳述していない。
図1は、本発明の実施形態が適用できる自動車といったモータビークルにおける典型的なクラッチ機構またはアセンブリ26の側面図を図示している。図1は、例証目的でその分離位置にあるクラッチアセンブリ26を図示している。しかし、クラッチアセンブリ26が定常的に係合していることに留意しなければならない。車両運転者は、クラッチを分離するためにクラッチペダルまたはレバーを加圧し保持することを要求される。ここで言及する通り、車両の運転者は、車両を操作する運転者またはいずれかの他の実体である。図1に図示の通り、クラッチアセンブリ26は、フライホイール27を駆動するエンジン出力シャフト23を介して一端で車両のエンジン(図示せず)に結合されている。クラッチアセンブリ26はまた、反対端でトランスミッション入力シャフト35を介して車両のトランスミッションに結合されている。ガイドピン31は、フライホイール27に取り付けられているクラッチカバー28に取り付けられている。クラッチプレート29は、それがトランスミッション入力シャフト35の軸に沿って動くのを可能にするスプラインを備えるトランスミッション入力シャフト35に取り付けられている。プレッシャープレート30のダイアフラムスプリング32の力は、クラッチプレート29をフライホイール27に固定させるために作用可能である。フライホイールとクラッチプレートとの間の摩擦は、エンジン出力シャフト23からトランスミッション入力シャフト35へのエンジントルクの伝達を可能にする。運転者がクラッチを分離するように行動すると、クラッチマスターシリンダー(図示せず)からの加圧流体がスレーブシリンダー34内に流入し、クラッチ切断機構ベアリング33がダイアフラムスプリング32の中心を加圧するようにさせる。ガイドピン31は、圧力がダイアフラムスプリング32の中心に加えられた時に、ダイアフラムスプリング32がプレッシャープレート30をクラッチプレート29から引き離ようにさせる。これはフライホイール27とクラッチプレート29との間の摩擦を除去し、それはさらにトランスミッション入力シャフト35へのエンジントルクの流れを除去する。
図2は、エンジン出力シャフト23を備えるエンジン22を有する全輪駆動車両における典型的なドライブトレインシステム200を図示している。ドライブトレインシステム200は、図1で詳述した通り、クラッチアセンブリ26を利用して、車両の(第1の出力により)リアドライブシャフト45および(第2の出力により)フロントドライブシャフト51を駆動するツイン出力を備える5速マニュアルトランスミッション37を駆動するトランスミッション入力シャフト35にエンジントルクを選択的に伝達する。リアドライブシャフト45は、ピニオンギヤ47、リングギヤ48およびディファレンシャル49を有するリアディファレンシャルアセンブリ46を駆動する。リアディファレンシャルアセンブリ46は、利用可能なトルクを配分し、車両の後輪を駆動する2本のリアハーフシャフト50の速度差を考慮する。フロントドライブシャフト51は、トルクをフロントディファレンシャルアセンブリ53に全輪駆動クラッチ52を通じて配給し、後者は路面が滑りやすい時にトルクをフロントアクスルに送り、車両が滑らない表面を旋回している時に生じるリアドライブシャフト45とフロントドライブシャフト51との間の速度差を考慮する。フロントディファレンシャルアセンブリ53は、利用可能なトルクを配分し、前輪を駆動する右フロントハーフシャフト54と左フロントハーフシャフト55との間の速度差を考慮する。ドライブトレインシステム200は、当業において理解されている通り、エンジン22の速度を制御し、エンジン速度センサ(図示せず)によりエンジン出力シャフト23におけるエンジン速度を感知または検出し、ディファレンシャル49における車両速度を感知または検出し、クラッチマスターシリンダーのスロットル位置センサ59およびクラッチ位置センサ60から入力を受け取る、エンジン制御ユニット(ECU)58を含む。エンジン速度センサ、スロットル位置センサおよびクラッチ位置センサは、当業において既知の電気式、機械式または電気機械式センサであるとしてよい。
トランスミッション入力速度(すなわち、クラッチが係合しておりスリップしていない時のエンジン速度)とトランスミッション出力速度との所定または既定の比を5速マニュアルトランスミッション37で利用可能な5つのギヤについてr、r、r、rおよびrと指定し、ピニオンギヤ47とのリングギヤ48のファイナルドライブ比をrと指定しよう。それゆえ、ドライブトレインの全速度比および対応する呼称は以下の通りである。
1f=r*r 1速ギヤ;
2f=r*r 2速ギヤ;
3f=r*r 3速ギヤ;
4f=r*r 4速ギヤ;
f=r*r 5速ギヤ。
車両速度がディファレンシャル49の代わりにリアドライブシャフト45で感知される別の実施形態において、ドライブトレインの全速度比は、各比について要求されたr項がないこと以外上記と同じである。
ドライブトレイン200といったマニュアルトランスミッションドライブトレインを備えるモータビークルの車両速度にエンジン速度を自動的に調和させるために利用可能なECUを使用する方法を、本発明の1実施形態に従って、図3〜5に図示されたプロセスフローに関してここで説明する。これらのプロセスフローは、車両エンジンが稼働している時にECU58によって連続的に実行される。
1実施形態において、プロセスフローはクラッチ管理モジュールによってインプリメントすることができ、それは、ECU58におけるいずれかの既知のプロセッサにより理解される、またはそれと互換性を有する、C、C++、C#、Java(登録商標)などといったいずれかの適格なコンピュータプログラミング言語によるコードを含むコンピュータ実行可能プログラム命令を有する、1つ以上のソフトウェアプログラム、アプリケーションまたはモジュールである。クラッチ管理モジュールは、ECUの内部で、例えばECUのメモリチップにおいて記憶され得る。しかし、別の実施形態も考えられ、それによってクラッチ管理モジュールは、プロセスフロー300を実行するためにECUによって依然アクセス可能であるが、ECUの外部に記憶することもできる。
ここで図3Aに図示されたプロセスフロー300に言及すれば。310において、ECU58は、例えば車両運転者によるクラッチ係合の指示または確認を、当業において一般に理解される方式で受け取る。
320において、ECU58は初めに、選択されたギヤがこの時点でECU58にとって未知のままであるので、選択されたトランスミッションギヤを表す所定の変数をゼロに設定する。例証目的で、所定の変数はxとして指定する。それゆえECU58はx=0に設定する。
次に、ECU58は以下のタスクを実行する。第1組のタスクに関して、332でECU58は、初めに別の変数、例えばrを、車両のエンジン速度と車両速度との観測または監視された比、すなわち観測ドライブトレイン速度比であると指定する。次いで、ドライブトレインシステム200における前述のそれぞれのセンサによって供給される既定の時間間隔でのエンジン速度および車両速度の各々の所定の周期的な読みについて、ECU58は、観測ドライブトレイン速度比rを、例えば5速マニュアルトランスミッションの場合、各々のトランスミッションギヤi=1〜5に関係する計算ドライブトレイン速度比rififと比較する。334において、観測速度比がドライブトレイン速度比とほぼ等しいとわかった場合、例えば観測速度比と5速マニュアルトランスミッション37における5つの所定のドライブトレイン速度比のうちのいずれか1つとの差が所定の許容差またはしきい値の範囲内である場合、ECU58は、運転者が当該ドライブトレイン速度比に関係するトランスミッションギヤを選択したと仮定し、そしてxはx=iであると設定される。ここでiはトランスミッションギヤ数である(例えば5速マニュアルトランスミッションの場合i=1〜5)。そうでなければ、ECU58は観測ドライブトレイン速度比rの各々の周期的な読みについてそうした決定を行い続ける。前述の許容差は、クラッチスリップおよび、エンジン速度および車両速度センサからの信号におけるノイズに対する余裕を与える。
342において、ECU58は、利用可能なスロットルセンサから入手可能な通り、運転者からのスロットル入力(例えばアクセルペダル)の位置を監視し周期的に記憶する。例証目的で、スロットル入力は変数aとして指定される。
352において、ECU58は、クラッチ分離の受信を待つために運転者による入力としてのクラッチ位置(例えばクラッチペダル)をさらに監視する。356において、いったんクラッチが分離されると、システムは所定の短時間pの間休止し、その後再びスロットル位置を読取り、それによってスロットル位置はこの時bとして指定される。休止は、運転者がスロットルおよびクラッチ入力を操作できるよりもECU58のほうがより迅速に連続するセンサの読みを受け取ることができるので望ましい。
エンジン速度と車両速度との観測ドライブトレイン速度比rは、エンジンが稼働したままで車両が停止している時には無限であることに留意しなければならない。そのような場合、ECU58は引き続き、エンジン速度および車両速度の読みに続き既知のドライブトレイン速度比との比較という第1組のタスク332、334を実行する。運転者は一般に1速ギヤで静止から前進させるが、プロセスフロー300は運転者がいずれのギヤから始動させることにも適用可能である。さらに、ある程度のクラッチスリップがエンジンをストールさせることなく車両を動かすために必要かもしれない。
図3Aに図示し上述した通り、いったんクラッチが完全に係合しもはやスリップしなくなると(310にて)、ECU58は運転者が選択したギヤを決定することができる(332、334にて)。ここで典型的な1段ギヤシフトアップを例証するために例を提示する。運転者が初めに1速ギヤ、すなわちx=lを選択したと仮定する。次に運転者は、1速から2速ギヤへのシフトのための最低限所要の速度に少なくとも等しい速度まで1速ギヤにおいて加速し、次いでスロットルを部分的に開放しクラッチを分離することによってシフトアップを開始する。運転者は、スロットルをさらに開放してフライホイール27の速度を低減させ、シフトアップから結果的に生じるはずであるクラッチプレート29の速度を調和させ、それによって運転者はシフトレバーを1速ギヤからニュートラルを経て2速ギヤに動かす。運転者はその後、クラッチを再係合させてシフトアップを完了する。
図3Bは、本発明の実施形態に従った図3Aから続くプロセスフロー300を図示している。クラッチ分離の前後の相対スロットル位置aおよびb(図3Aにおいてそれぞれ342および356)が運転者の意図したシフティングを推論するために使用される。従って、360において、ECU58は記憶されたスロットル位置の読みの間の差を評価し、車両速度がシフトアップするための所定の最小値を超えているかどうかを確かめるために確認し、現在選択されているトランスミッションギヤを確認する。
370aにおいて、ECU58は360での評価および確認に基づき運転者がシフトアップするつもりであるかどうかを決定する。以前のスロットル位置「a」が現在のスロットル位置「b」よりも大きい場合、すなわちb−a<0であれば、車両速度はシフトアップのための所定の最小値を超えており、そして現在のギヤは可能な最も高いトランスミッションギヤ(例えばx<5)よりも低く、ECU58は、運転者が、例えばシフトアップのための上記の例における1速ギヤから2速ギヤへの1段ギヤシフトアップを意図していると推論し、そしてシフトアップされたギヤの対応する速度比rnewが取得され得る。ECU58は、可能な最も高いギヤ未満のいずれかの利用可能な高段ギヤについて2速から3速ギヤへ、3速から4速ギヤへ等々のシフトアップについて類似の決定を行う。シフトアップ回転数調和のための前述の最小速度要求条件は、運転者が1速ギヤにある間にクラッチを連続して係合し分離することによって低速で進行することを可能にする。この状況では、クラッチ分離は、運転者がシフトアップしたいと望んでいることを意味しない。運転者が最小速度を達成する前にシフトアップすることを選んだ場合、ECU58は単にクラッチ係合を待機し、クラッチ係合時に通常動作を再開する。
シフトアップとは対照的に、シフトダウンは順番にではなく実行されるかもしれず、現在選択されているギヤに応じて本発明のいくつかの実施形態のうちの1つに従う。2速ギヤ(x=2)または3速ギヤ(x=3)からのシフトダウンは順次的である、すなわち1段ギヤシフトダウンであると仮定される。4速ギヤ以上からのシフトダウンの場合、運転者は1段ギヤまたは2段ギヤシフトダウンの選択肢を有すると仮定される。本発明の各種実施形態は、単一ギヤまたは2段ギヤシフトダウンのためのシングルクラッチまたはダブルクラッチ操作のどちらかにより適用可能である。単一ギヤおよび2段ギヤシフトダウンのための典型的なシングルクラッチおよびダブルクラッチ操作を例示するための例が以下に提示されている。
単一ギヤまたは2段ギヤシフトダウンのどちらかを実行するシングルクラッチ操作についての第1の例において、車両は3速ギヤで一定速度で動いていると仮定する。運転者は、スロットルを開放しクラッチを分離することによってシフトダウンを開始する。運転者はその後、スロットルを増大させてクラッチフライホイール27の速度を高め、シフトから生じるはずであるクラッチプレート29の速度を調和させる。次に運転者はシフトレバーを3速ギヤからニュートラルを経て2速ギヤへ動かす。最後に運転者はクラッチを再係合させてシフトダウンを完了する。
単一ギヤシフトダウンを実行するダブルクラッチ操作についての第2の例において、車両は3速ギヤで一定速度で動いていると仮定し、運転者はスロットルを開放しクラッチを分離することによってシフトダウンを開始する。運転者はその後、スロットルを増大させてクラッチフライホイール27の速度を高め、シフトから生じるはずであるクラッチプレート29の速度を調和させる。次に運転者はシフトレバーを3速ギヤからニュートラルに動かす。シフトレバーがニュートラルにある状態で、運転者はクラッチを再係合させてから再びクラッチを分離する。これはトランスミッション入力シャフト速度を、2速ギヤを滑らかに係合するために必要な値に至らしめる。運転者はその後さらに、シフトレバーをニュートラルから2速ギヤに動かす。最後に運転者はクラッチを再係合させてシフトダウンを完了する。
2段ギヤシフトダウンを実行するダブルクラッチ操作についての第3の例において、車両は4速ギヤで一定速度で動いていると仮定する。運転者は、スロットルを完全に開放しクラッチを分離することによって2段ギヤシフトダウンを開始する。次に運転者はシフトレバーを4速ギヤからニュートラルに動かす。レバーがニュートラルにある状態で、運転者はクラッチを再係合させ、スロットルを増大させてトランスミッション入力シャフト速度の速度を、2速ギヤを滑らかに係合させるために必要な値まで高める。運転者はクラッチを再び分離し、シフトレバーをニュートラルから2速ギヤに動かす。同時に、運転者はスロットルを操作してクラッチフライホイール27の速度をシフトから生じるはずであるクラッチプレート29の速度と調和するように至らしめる。最後に運転者はクラッチを係合させて2段ギヤシフトダウンを完了する。
従って、再び図3Bに言及すれば、370bにおいて、ECU58は、運転者がシフトダウンするつもりであるかどうかを360における評価および確認に基づき決定する。現在のスロットル位置「b」が以前のスロットル位置「a」に等しいかそれより大きい場合、すなわちb−a≧0であれば、ECU58は、運転者が、シフトダウンのための例における3速ギヤから2速ギヤへの1段ギヤシフトダウンを意図していると推論し、そしてシフトダウンされたギヤの対応する速度比rnewが取得され得る。ECU58が2速ギヤから1速ギヤへの1段ギヤシフトダウンについて類似の決定を実行するためにさらに動作可能であることに留意しなければならない。このように、たとえ運転者がシフティングの前にスロットルを完全に開放し、クラッチが分離された後にスロットルを増加しない、すなわちb−a=0であるとしても、ECU58は、1段ギヤシフトダウンが望まれていると推論するように依然として動作可能である。これは運転者が、ブレーキ中または減速惰行の間に容易にシフトダウンすることを可能にする。
車両が3速ギヤよりも高いギヤで、例えば4速または5速ギヤで動いている場合、運転者は、1段ギヤまたは2段ギヤシフトダウン、シングルクラッチまたはダブルクラッチの選択肢を有する。記憶されたスロットル位置「a」および「b」間の差もまた、1段ギヤおよび2段ギヤシフトダウンを区別する付加的な規則により、運転者のシフト意向を決定するために使用される。従って、再び370bにおいて、クラッチ分離後の現在のスロットル位置「b」が最大スロットルのほぼ50%未満であり、そしてそれがクラッチ分離前のスロットル位置「a」に等しいかまたはそれより大きい場合、すなわちb−a≧0であれば、ECU58は1段ギヤシフトダウンを推論し、そしてシフトダウンされたギヤの対応する速度比rnewが取得され得る。
370cにおいて、クラッチ分離後の現在のスロットルbが最大スロットルのほぼ50%であるかまたはそれより大きく、またそれがクラッチ分離前のスロットルaより大きい場合、すなわちb−a≧0であれば、ECU58は2段ギヤシフトダウンを推論し、シフトダウンされたギヤの対応する速度比rnewが取得され得る。
本発明の1実施形態によれば、いったん運転者のシフトの意向が決定されると、ECU58は、図4に例示されたプロセスフロー500において例示される通り付加的な手順を実行する。
410において、ECU58は、クラッチ係合時にクラッチプレート29の速度を調和させ達成するように望まれるエンジン出力シャフト23でのエンジン速度を決定する。いったんシフトアップまたはシフトダウンされたギヤが係合した時のクラッチプレート29の速度は、当該ギヤに対応する全ドライブトレイン速度比と現在観測される車両速度との積である。これは以下の式によって与えられる。
=rif*車両速度=r*r*車両速度
式中、iは前述の通りトランスミッションギヤ数である。車両速度、そしてさらに所要のエンジン速度は、地勢、空力抵抗、機械的摩擦などの効果を説明するために、クラッチが分離されている間、絶えず更新される。
420において、ECU58は、クラッチが分離されている限り、エンジン速度を所要のエンジン速度、すなわちクラッチプレート29の速度Oに自動的に調整する。ECU58は、所要のエンジン速度が達成されたかどうかに関わらず、クラッチが再係合されるやいなや、エンジン速度制御を運転者に返す。所要のエンジン速度がエンジンの許容範囲外にあれば、エンジン速度制御は同じく返され、ECUは310でプロセスフロー300を再開する。このように、例えば所要のエンジン速度がシフトアップにおいてアイドル速度未満であると決定された場合、ECU58はクラッチの再係合を待つことなくエンジン速度制御を運転者に返し、再びプロセスを開始するためにクラッチ係合を待つ。同様に、所要のエンジン速度がシフトダウンにおいてエンジンレッドラインを超えていると決定された場合、エンジン速度制御はただちにユーザに返される。
430において、クラッチが分離された時にECU58がエンジン速度を所要の速度に調整する間、それはまたクラッチが再係合された時を決定するために所定の周期に基づきクラッチ位置を連続的に監視する。
本発明の1実施形態によれば、単一ギヤシフトダウンのためのダブルクラッチ操作の場合、ECU58はプロセスフロー400における付加的な手順を実行する。詳細には、440において、いったんクラッチがダブルクラッチ操作で再係合すると、ECU58は所定の短い間隔pの間休止し、再びクラッチ位置を確認する。クラッチが係合したままであれば、ECU58は運転者がシングルクラッチ操作を採っていると推論し、310でプロセスフロー300を再開する。しかし、クラッチが2度分離された場合、ECU58は運転者がダブルクラッチ操作を採っていると推論する。その場合、ECU58は、410、420および430において、車両速度を監視して所要のエンジン速度を決定し、エンジンを所要の速度に至らしめるように動作し、クラッチ位置を監視するタスクに戻る。いったんダブルクラッチシフトダウンが完了すると、運転者は、シングルクラッチ操作と同様に、クラッチを係合したままにし、そしてECU58は310でプロセスフロー300を再実行する。
2段ギヤシフトダウンのためのダブルクラッチ操作の場合、ECU58は当該シフトダウンに対応するために付加的な手順を実行する。詳細には、運転者が最初のクラッチ分離(352にて、図3A)の後にスロットルを増加しないので、ECU58は最初に1段ギヤシフトダウンが要求されている、すなわちrnew=(x−l)速の速度比であると推論する。432において、ECUは1段ギヤシフトダウンが推論されるかどうか、そして現在のギヤが、(順次的であると仮定される2速および3速ギヤからのシフトダウンに関し)2段ギヤシフトダウンが望ましい選択肢であるほど十分に高いかどうか、例えば4速ギヤまたはそれ以上であるかどうかを確認する。両方の条件が満たされた場合、ECUはプロセスフロー500を実行する。エンジン速度制御はクラッチ再係合(430にて、図4)時に運転者に返される。トランスミッションがニュートラルにある間、ドライブトレイン速度はエンジン速度に関連しない。このことは、図5に例示された通り、プロセスフロー500においてECU58によって利用される。
従って、本発明の1実施形態において、図5のプロセスフロー500で図示の通り、ECU58が440で既定の時間pの間休止する間、それは観測エンジン速度が次の低段ギヤ(例えば3速ギヤ)のドライブトレイン速度比および既定の許容差を超えているかどうかを決定する(520にて)ためにエンジン速度および車両速度の両方を観測または監視し続ける(510にて)。否定であれば、ECU58は既定の時間pが尽きるまでエンジン速度および車両速度を監視し続け、そしてECU58は、前述の通り、440で決定を行う。肯定であれば、ECU58は、例えば4速ギヤから2速ギヤへの2段ギヤシフトダウンが要求されていると推論することができる。その後、ECU58は、シフトダウンされたギヤの対応する速度比rnewをダブルシフトダウンされたギヤ(例えば2速ギヤ)に再定義する(530にて)。このように、再び図4に言及すれば、クラッチが運転者によって再び分離された時、ECU58は、車両速度を監視し、この時点で図5の530で再定義された所要のエンジン速度を決定し、エンジンをそのような所要の速度に至らしめるように動作し、そしてクラッチ位置を監視するタスク410、420および430に戻る。いったんシフトが完了すると、運転者はクラッチを係合したままにし、エンジン速度制御は運転者に返され、ECU58は再び新たにプロセスフロー300を実行する。
当業において既知の閉ループ制御方策によりシフティング中にエンジン速度制御を達成することが可能であり、それによって制御変数はエンジン速度であり、そして参照変数はシフティング中に本発明の種々の上記実施形態によって決定される所要のエンジン速度である。さらに、実際のエンジン速度を所要のエンジン速度に至らしめるための所望の閉ループ制御方策が車両のエンジンの形式に基づいて選択することができる。例えば、火花点火エンジンの速度は一般に空気スロットルにより制御されるのに対し、ディーゼルエンジンの速度は燃料供給比によって制御される。
図6は、図3〜5に図示された方法が同じく適用可能なフルタイム四輪駆動において典型的なドライブトレインシステム600を図示している。ドライブトレインシステム600は、出力シャフト23を備えるエンジン22を含む。クラッチアセンブリ26はエンジントルクを、フルタイムトランスファーケース39にトルクを供給するトランスミッション出力シャフト38を有する5速マニュアルトランスミッション36を駆動するトランスミッション入力シャフト35に選択的に伝達する。遊星ギヤセット41は運転者がシフターを通じて低伝達比と高伝達比のどちらかを選択することを可能にする。センターディファレンシャル42がトルクをリアドライブシャフト45とフロントドライブシャフト51を駆動するチェーンドライブ43との間で配分し、リアドライブシャフト45とフロントドライブシャフト51との間の速度差を考慮する。リアドライブシャフト45は、ピニオンギヤ47、リングギヤ48およびディファレンシャル49を有するリアディファレンシャルアセンブリ46を駆動する。ディファレンシャル49は、利用可能なトルクを配分し、車両の後輪を駆動する2本のハーフシャフト50間の速度差を考慮する。フロントドライブシャフト51はトルクをフロントアクスルディファレンシャルアセンブリ53に供給し、後者は利用可能なトルクを配分し、前輪を駆動する右フロントハーフシャフト54および左フロントハーフシャフト55間の速度差を考慮する。図2におけるドライブトレインシステム200と同様に、ECU58はエンジン22の速度を制御するために既知の方法を使用する。ECU58は、当業において一般に使用されるセンサによって、エンジン出力シャフト23でのエンジン速度、センターディファレンシャル42での車両速度、遊星ギヤセット41での伝達比選択、59におけるスロットル位置およびクラッチマスターシリンダー60のクラッチ位置を感知する。
再度、トランスミッション入力速度(エンジン速度)とトランスミッション出力速度との比をr、r、r、rおよびrと指定する。遊星ギヤセット41は低伝達比rt,lowおよび高伝達比rt,highを形成する。それゆえ、ドライブトレインの全速度比および対応する呼称は以下の通りである。
1Lf=r*rt,low 1L
2Lf=r*rt,low 2L
3Lf=r*rt,low 3L
4Lf=r*rt,low 4L
5Lf=r*rt,low 5L
1Hf=r*rt,high 1H
1Hf=r*rt,high 2H
1Hf=r*rt,high 3H
1Hf=r*rt,high 4H
1Hf=r*rt,high 5H
低伝達比が選択された時に、運転者に指示するために、例えば車両ダッシュボードのインジケータライトを点灯するために、センサが一般に設けられている。ECU58は、このセンサの出力を使用して、観測速度比との比較のためにドライブトレイン速度比の適切な集合を選定する。例えば、低レンジが選択されていることをセンサが指示した場合、ECUは観測速度比を1L、2L、3L、4Lおよび5Lの既知の速度比と比較するであろう。代替実施形態では、伝達比選択のいかなる指示も提示されない。伝達比および選択されたトランスミッション比の両方とも、車両速度とエンジン速度との比から決定される。この代替実施形態において、ECUは観測速度比を全部の10個の既知のドライブトレイン比と比較する。
本発明の1実施形態によれば、シフトアップ回転数調和のための2つの別個の最小速度要求条件は、現在のギヤxが1Lまたは1Hであると決定されるかどうかに依存して設定されるはずである。ECU58は、車両が動いている間にクラッチでなされたシフトがトランスミッションギヤチェンジを伴うにすぎないと推論する。従って、たとえ5Lより高い、または1Hより低いトランスミッション比および伝達比の組合せが存在するとしても、5Lからのシフトアップも1Hからのシフトダウンも認識されない。しかし、運転者はクラッチを用いずに、それゆえ図3〜5に図示されたプロセスフローのいずれの所要の実行も伴わず、伝達比をシフトすることができる。従って、プロセスフローは、新しいドライブトレイン速度比およびトランスファーケースからの信号を組み込み、当該プロセスフローの前述の検討に矛盾しない様態での実行のために相応に、選択されたギヤの決定を更新するように動作可能である。
図7は、図3〜5に図示されたプロセスフローが同様に適用可能なパートタイム4輪駆動における典型的なドライブトレインシステム700を図示している。ドライブトレインシステム700は、出力シャフト23を備えるエンジン22を含む。クラッチアセンブリ26は、エンジントルクを、パートタイムトランスファーケース40にトルクを供給するトランスミッション出力シャフト38を有する5速マニュアルトランスミッション36を駆動するトランスミッション入力シャフト35に選択的に伝達する。遊星ギヤセット41は運転者がシフターを通じて低伝達比と高伝達比のどちらかを選択することを可能にする。チェーンドライブ43は、運転者からのシフター入力によりフロントドライブシャフト51と選択的に係合するかみあいクラッチ44にトルクを供給する。フロントおよびリアドライブシャフト間の速度差のための考慮がまったく存在しないので、車両は乾いた舗道を2輪駆動モードで、すなわちかみあいクラッチ44が分離した状態で動作するはずである。リアドライブシャフト45は、ピニオンギヤ47、リングギヤ48およびディファレンシャル49を有するリアディファレンシャルアセンブリ46を駆動する。ディファレンシャル49は、利用可能なトルクを配分し、車両の後輪を駆動する2本のハーフシャフト50間の速度差を考慮する。フロントドライブシャフト51はトルクをフロントアクスルディファレンシャルアセンブリ53に供給し、後者は利用可能なトルクを配分し、前輪を駆動する右フロントハーフシャフト54および左フロントハーフシャフト55間の速度差を考慮する。前述の通り、ECU58はエンジン22の速度を制御するためにいずれかの既知の方法を使用することができる。やはり、ECU58は、当業において利用可能な了解される典型的なセンサにより、エンジン出力シャフト23でのエンジン速度、リアディファレンシャル49での車両速度、遊星ギヤセット41での伝達比選択、59におけるスロットル位置およびクラッチマスターシリンダー60のクラッチ位置を感知する。
トランスミッション入力速度(エンジン速度)とトランスミッション出力速度との比をr、r、r、rおよびrと指定する。遊星ギヤセット41は、低伝達比rt,lowおよび高伝達比rt,highを形成する。リングギヤ48およびピニオンギヤ47はファイナルドライブ比rを形成する。それゆえ、ドライブトレインの全速度比および対応する呼称は以下の通りである。
1Lf=r*rt,low*r 1L
2Lf=r*rt,low*r 2L
3Lf=r*rt,low*r 3L
4Lf=r*rt,low*r 4L
5Lf=r*rt,low*r 5L
1Hf=r*rt,high*r 1H
1Hf=r*rt,high*r 2H
1Hf=r*rt,high*r 3H
1Hf=r*rt,high*r 4H
1Hf=r*rt,high*r 5H
代替実施形態において、車両速度は、ディファレンシャル49の代わりにリアドライブシャフト45で感知される。ドライブトレインの全速度比は、各比について要求されたr項がないこと以外上記と同じである。
低伝達比が選択された時に、例えば車両ダッシュボードのインジケータライトを点灯することによって、運転者に指示するために、センサが一般に設けられている。ECU58は、このセンサの出力を使用して、観測速度比との比較のためにドライブトレイン速度比の適切な集合を選定する。やはり、シフトアップ回転数調和のための2つの別個の最小速度要求条件は、現在のギヤxが1Lまたは1Hであると決定されるかどうかに依存して設定されるはずである。ECU58は、車両が動いている間にクラッチでなされたシフトがトランスミッションギヤチェンジを伴うにすぎないと推論する。従って、たとえ5Lより高い、または1Hより低いトランスミッション比および伝達比の組合せが存在するとしても、5Lからのシフトアップも1Hからのシフトダウンも認識されない。しかし、運転者はクラッチを用いずに、従って図3〜5に図示されたプロセスフローへのいかなる変更も伴わず、伝達比をシフトすることができる。従って、プロセスフローは、新しいドライブトレイン速度比およびトランスファーケースからの信号を組み込み、当該プロセスフローの前述の説明に矛盾しない様態での実行のために相応に、選択されたギヤの決定を更新するように動作可能である。
図8は、図3〜5に図示されたプロセスフローが同様に適用可能なオートバイドライブトレインシステム800を図示している。ドライブトレインシステム800は、クラッチアセンブリ26を駆動するシャフト25を転じて駆動するプライマリドライブ24を駆動する出力シャフト23を備えるエンジン22を含む。入力シャフト35は、後輪ハブ57を駆動するファイナルドライブ56を駆動する出力シャフト38を有する多速度マニュアルトランスミッション36を駆動する。前述の通り、ECU58はエンジン22の速度を制御するためにいずれかの既知の方法を使用することができる。ECU58は、当業において利用可能な了解される典型的なセンサにより、エンジン出力シャフト23でのエンジン速度、後輪ハブ57での車両速度、59におけるスロットル位置およびクラッチマスターシリンダー60のクラッチ位置を感知する。
トランスミッション入力速度(エンジン速度)とトランスミッション出力速度との比をr、r、r、rおよびrと指定する。プライマリドライブ24は、プライマリドライブ比rを形成する、2個のスプロケットを連結するチェーンを含む。ファイナルドライブ56は、ファイナルドライブ比rを形成する、2個のスプロケットを連結するチェーンを含む。それゆえ、ドライブトレインの適用可能な速度比および対応する呼称は以下の通りである。
*r*r 1速
*r*r 2速
*r*r 3速
*r*r 4速
*r*r 5速
代替実施形態において、車両速度は、後輪ハブ57の代わりにトランスミッション出力シャフト38で感知される。ドライブトレインの全速度比は、各比について要求されたr項がないこと以外上記と同じである。
オートバイは一般にシーケンシャルギヤセレクタ機構を装備しており、それは2段ギヤシフトダウンの選択肢を可能にせずニュートラル位置を持たないので、ダブルクラッチシフトダウンを不可能にする。一部の車はシーケンシャルトランスミッションを同様に装備している。シーケンシャルトランスミッションを備える車両の場合、ECU58は、クラッチ分離後のスロットル位置がクラッチ分離前のスロットル位置に等しいかそれより大きい場合、1段ギヤシフトダウンを推論する。従って、図3〜5に図示されたプロセスフローはまた、いずれかの2段ギヤシフトダウンのための、またはいずれかのダブルクラッチシフトダウンのための付加的な手順を伴うことなく、ここに適用可能である。
車、トラックおよびオートバイのための他の利用可能なドライブトレインシステムが存在する。例えば、前輪駆動車は、トランスミッションおよびディファレンシャルアセンブリをトランスアクスルとして知られる1つのユニットに組合せている。別のシステム選択肢はトランスミッションギヤの数である。本発明の各種実施形態を説明するためにここに提示された例は、トランスミッションが5つの速度を有することを前提としている。しかし、そのような実施形態が異なる数のギヤ比を備えるトランスミッションに同様に適用可能であることを理解しなければならない。さらに、ここで例証した通り、2段ギヤシフトダウンは4速以上の高いギヤから可能とされている。しかし、そのようなシフトダウンは3速ギヤからも同じく可能であるかもしれない。
要約すれば図3〜5に図示されたプロセスフローは、適用可能ドライブトレイン速度比についての対応する計算および、ひいては、各々のドライブトレインシステムについてのシフティング中の所要のエンジン速度の決定とともに、全部のドライブトレインシステムに適用可能である。
ここに説明し例示したことは、それらの変種のいくつかとともに実施形態である。ここで使用した用語、記述および図は、例証としてのみ述べられており、限定として意味しない。当業者は、全部の用語が別段に指示されていない限りそれらの最も幅広い合理的な意味で言われている以下の請求の範囲(およびそれらの等価物)によって定義されるように意図されている、その内容の精神および範囲内で多くの変種が可能であることを認識するであろう。
本発明の各種実施形態が適用可能であるモータビークルの典型的なクラッチアセンブリを図示している。 本発明の各種実施形態が適用可能であるモータビークルの典型的な全輪駆動ドライブトレインシステムを図示している。 本発明の実施形態に従ったエンジン速度を車両速度に調和させるためのプロセスフローを図示している。 本発明の実施形態に従ったエンジン速度を車両速度に調和させるためのプロセスフローを図示している。 本発明の実施形態に従ったエンジン速度を車両速度に調和させるための付加的なプロセスフローを図示している。 本発明の実施形態に従ったエンジン速度を車両速度に調和させるためのさらに付加的なプロセスフローを図示している。 本発明の各種実施形態が適用可能であるフルタイム4輪駆動車両の典型的なドライブトレインシステムを図示している。 本発明の各種実施形態が適用可能であるパートタイム4輪駆動車両の典型的なドライブトレインシステムを図示している。 本発明の各種実施形態が適用可能である典型的なオートバイのドライブトレインシステムを図示している。
符号の説明
22 エンジン
23 エンジン出力シャフト
24 プライマリドライブ
25 シャフト
26 クラッチアセンブリ
27 フライホイール
28 クラッチカバー
29 クラッチプレート
30 プレッシャープレート
31 ガイドピン
32 ダイアフラムスプリング
33 クラッチ切断機構ベアリング
34 スレーブシリンダー
35 トランスミッション入力シャフト
36 マニュアルトランスミッション
37 5速マニュアルトランスミッション
38 トランスミッション出力シャフト
39 フルタイムトランスファーケース
40 パートタイムトランスファーケース
41 遊星ギヤセット
42 センターディファレンシャル
43 チェーンドライブ
44 かみあいクラッチ
45 リアドライブシャフト
46 リアディファレンシャルアセンブリ
47 ピニオンギヤ
48 リングギヤ
49 ディファレンシャル
50 リアハーフシャフト
51 フロントドライブシャフト
52 全輪駆動クラッチ
53 フロントディファレンシャルアセンブリ
54 右フロントハーフシャフト
55 左フロントハーフシャフト
56 ファイナルドライブ
57 後輪ハブ
58 エンジン制御ユニット(ECU)
59 スロットル位置センサ
60 クラッチ位置センサ
60 クラッチマスターシリンダー
200、600、700、800 ドライブトレインシステム

Claims (20)

  1. ドライブトレインシステムを有する車両の運転を制御する方法であって、ドライブトレインシステムは、エンジン、エンジンの速度を検出するエンジン速度センサ、マニュアルトランスミッション、エンジンおよびマニュアルトランスミッションと結合されたクラッチ、クラッチの係合または分離を検出するクラッチセンサ、車両の速度を検出するために車両と結合された車両速度センサ、スロットル入力、およびスロットル入力のスロットル位置を検出するスロットルセンサを含んでおり、方法は、
    (a)クラッチセンサからクラッチの第1の係合を検出するステップと、
    (b)クラッチが第1の係合にある状態で車両速度センサにより車両の第1の速度を検出するステップと、
    (c)クラッチが第1の係合にある状態でエンジン速度センサによりエンジンの第1のエンジン速度を検出するステップと、
    (d)少なくとも第1の車両速度および第1のエンジン速度に基づきマニュアルトランスミッションの選択されたトランスミッションギヤを決定するステップと、
    (e)クラッチが第1の係合にある状態でスロットルセンサによりスロットル入力の第1のスロットル位置を検出し記憶するステップと、
    (f)第1の係合に続きクラッチセンサによりクラッチの第1の分離を検出するステップと、
    (g)クラッチが第1の分離にある状態でスロットルセンサによりスロットル入力の第2のスロットル位置を検出し記憶するステップと、
    (h)クラッチが第1の分離にある状態で車両速度センサにより車両の第2の速度を検出するステップと、
    (i)少なくとも第1のスロットル位置、第2のスロットル位置、および選択されたトランスミッションギヤに基づきマニュアルトランスミッションの次の意図されたトランスミッションギヤを決定するステップと、
    (j)次の意図されたトランスミッションギヤおよび第2の車両速度に基づきエンジンのエンジン速度について所要の値を決定するステップと、
    (k)所要の値を達成するためにエンジン速度を自動的に調整するステップと、
    (1)第1の分離に続きクラッチが第2の係合において再係合しているかどうかをクラッチセンサにより検出するステップと、
    (m)クラッチが第2の係合にあるという検出に際し方法をステップaから繰り返すステップとを含む、方法。
  2. クラッチが第2の係合にあるという検出に際し方法をステップaから繰り返すステップの前に、方法は、
    (n)所定の時間後に、クラッチが第2の係合のままであるか、または第2の係合に続き第2の分離にあるどうかをクラッチセンサによりさらに検出するステップをさらに含む、請求項1の方法。
  3. クラッチが所定の時間後に第2の係合のままであるというさらなる検出に際して、方法をステップaから繰り返すステップを続行するステップをさらに含む、請求項2の方法。
  4. クラッチが第2の分離にあるというさらなる検出に際して、方法をステップjから繰り返すステップをさらに含む、請求項2の方法。
  5. クラッチが第2の係合にある状態で車両速度センサにより車両の第3の速度を検出するステップと、
    クラッチが第2の係合にある状態でエンジン速度センサによりエンジンの第2のエンジン速度を検出するステップと、
    第2のエンジン速度が所定の許容差および積の合計よりも大きいかどうかを決定するステップとをさらに含み、積は、第3の車両速度と選択されたトランスミッションギヤの隣り合う低いトランスミッションギヤのドライブトレイン速度比との積である、請求項2の方法。
  6. 第2のエンジン速度が合計よりも大きいという決定に際し、選択されたトランスミッションギヤよりも2段低い次のトランスミッションギヤを決定し、方法におけるステップ(n)を続行するステップをさらに含む、請求項5の方法。
  7. 第2のエンジン速度が合計以下であるという決定に際し、方法におけるステップnを続行するステップをさらに含む、請求項5の方法。
  8. 選択されたトランスミッションギヤを決定するステップdは、
    第1のエンジン速度と第1の車両速度との観測ドライブトレイン速度比を決定するステップと、
    マニュアルトランスミッションにおける複数の利用可能なトランスミッションギヤ各々1つのドライブトレイン速度比を計算するステップと、
    所定の許容差の範囲内で調和を求めるために観測ドライブトレイン速度比を計算されたドライブトレイン速度比と比較するステップと、
    調和に基づき選択されたトランスミッションギヤを決定するステップとを含む、請求項1の方法。
  9. 第2のスロットル位置を検出し記憶するステップgは、
    クラッチの第1の分離の検出に続き所定の時限後に第2のスロットル位置を検出し記憶するステップを含む、請求項1の方法。
  10. 次の意図されたトランスミッションギヤを決定するステップiは、
    第2のスロットル位置が第1のスロットル位置未満であり、第1の車両速度がシフトアップのための所定の最小速度よりも大きく、そして選択されたトランスミッションギヤがマニュアルトランスミッションにおける可能な最も高いトランスミッションギヤ未満である時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤの次の高いトランスミッションギヤであると設定するステップと、
    第2のスロットル位置が第1のスロットル位置にほぼ等しいかそれより大きく、選択されたトランスミッションギヤがマニュアルトランスミッションにおいて可能な最も低いトランスミッションギヤから次のより高いトランスミッションギヤであるか、または第2の次の高いトランスミッションギヤである時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも1段低いものであると設定するステップと、
    第2のスロットル位置が第1のスロットル位置にほぼ等しいかそれより大きく、第2のスロットル位置がスロットル入力の最大可能スロットル位置の50%未満であり、選択されたトランスミッションギヤが可能な最も低いトランスミッションギヤよりも少なくとも3段高い時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも1段低いものであると設定するステップと、
    第2のスロットル位置が第1のスロットル位置よりも大きく、第2のスロットル位置がスロットル入力の最大可能スロットル位置の50%よりも大きく、選択されたギヤが可能な最も低いトランスミッションギヤよりも少なくとも3段高い時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも2段低いものであると設定するステップとを含む、請求項1の方法。
  11. ドライブトレインシステムを有する車両の運転を制御するためのプログラムコードが符号化されているコンピュータ可読媒体であって、ドライブトレインシステムは、エンジン、エンジンの速度を検出するエンジン速度センサ、マニュアルトランスミッション、エンジンおよびマニュアルトランスミッションと結合されたクラッチ、クラッチの係合または分離を検出するクラッチセンサ、車両の速度を検出するために車両と結合された車両速度センサ、スロットル入力、およびスロットル入力のスロットル位置を検出するスロットルセンサを含んでおり、プログラムコードは、
    (a)クラッチセンサからクラッチの第1の係合を検出するためのプログラムコードと、
    (b)クラッチが第1の係合にある状態で車両速度センサにより車両の第1の速度を検出するためのプログラムコードと、
    (c)クラッチが第1の係合にある状態でエンジン速度センサによりエンジンの第1のエンジン速度を検出するためのプログラムコードと、
    (d)少なくとも第1の車両速度および第1のエンジン速度に基づきマニュアルトランスミッションの選択されたトランスミッションギヤを決定するためのプログラムコードと、
    (e)クラッチが第1の係合にある状態でスロットルセンサによりスロットル入力の第1のスロットル位置を検出し記憶するためのプログラムコードと、
    (f)第1の係合に続きクラッチセンサによりクラッチの第1の分離を検出するためのプログラムコードと、
    (g)クラッチが第1の分離にある状態でスロットルセンサによりスロットル入力の第2のスロットル位置を検出し記憶するためのプログラムコードと、
    (h)クラッチが第1の分離にある状態で車両速度センサにより車両の第2の速度を検出するためのプログラムコードと、
    (i)少なくとも第1のスロットル位置、第2のスロットル位置、および選択されたトランスミッションギヤに基づきマニュアルトランスミッションの次の意図されたトランスミッションギヤを決定するためのプログラムコードと、
    (j)次の意図されたトランスミッションギヤおよび第2の車両速度に基づきエンジンのエンジン速度について所要の値を決定するためのプログラムコードと、
    (k)所要の値を達成するためにエンジン速度を自動的に調整するためのプログラムコードと、
    (1)第1の分離に続きクラッチが第2の係合において再係合しているかどうかをクラッチセンサにより検出するためのプログラムコードと、
    (m)クラッチが第2の係合にあるという検出に際し(a)のプログラムコードに行くためのプログラムコードとを含む、コンピュータ可読媒体。
  12. (n)クラッチが第2の係合にあるという検出に際し(a)から始まるプログラムコードを繰り返すプログラムコードの実行前に、所定の時間後に、クラッチが第2の係合のままであるか、または第2の係合に続き第2の分離にあるどうかをクラッチセンサによりさらに検出するプログラムコードをさらに含む、請求項11のコンピュータ可読媒体。
  13. クラッチが所定の時間後に第2の係合のままであるというさらなる検出に際して、(a)のプログラムコードに行くためのプログラムコードをさらに含む、請求項12のコンピュータ可読媒体。
  14. クラッチが第2の分離にあるというさらなる検出に際して、(j)のプログラムコードに行くためのプログラムコードをさらに含む、請求項12のコンピュータ可読媒体。
  15. クラッチが第2の係合にある状態で車両速度センサにより車両の第3の速度を検出するためのプログラムコードと、
    クラッチが第2の係合にある状態でエンジン速度センサによりエンジンの第2のエンジン速度を検出するためのプログラムコードと、
    第2のエンジン速度が所定の許容差および積の合計よりも大きいかどうかを決定するためのプログラムコードとをさらに含み、積は、第3の車両速度と選択されたトランスミッションギヤの隣り合う低いトランスミッションギヤのドライブトレイン速度比との積である、請求項12のコンピュータ可読媒体。
  16. 第2のエンジン速度が合計よりも大きいという決定に際し、選択されたトランスミッションギヤよりも2段低い次のトランスミッションギヤを決定し、方法におけるステップ(n)を続行するためのプログラムコードをさらに含む、請求項15のコンピュータ可読媒体。
  17. 第2のエンジン速度が合計以下であるという決定に際し、方法におけるステップ(n)を続行するためのプログラムコードをさらに含む、請求項15のコンピュータ可読媒体。
  18. 選択されたトランスミッションギヤを決定するためのプログラムコードは、
    第1のエンジン速度と第1の車両速度との観測ドライブトレイン速度比を決定するためのプログラムコードと、
    マニュアルトランスミッションにおける複数の利用可能なトランスミッションギヤ各々1つのドライブトレイン速度比を計算するためのプログラムコードと、
    所定の許容差の範囲内で調和を求めるために観測ドライブトレイン速度比を計算されたドライブトレイン速度比と比較するためのプログラムコードと、
    調和に基づき選択されたトランスミッションギヤを決定するためのプログラムコードとを含む、請求項11のコンピュータ可読媒体。
  19. 第2のスロットル位置を検出し記憶するためのプログラムコードは、
    クラッチの第1の分離の検出に続き所定の時限後に第2のスロットル位置を検出し記憶するためのプログラムコードを含む、請求項11のコンピュータ可読媒体。
  20. 次の意図されたトランスミッションギヤを決定するためのプログラムコードは、
    第2のスロットル位置が第1のスロットル位置未満であり、第1の車両速度がシフトアップのための所定の最小速度よりも大きく、そして選択されたトランスミッションギヤがマニュアルトランスミッションにおける可能な最も高いトランスミッションギヤ未満である時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤの次の高いトランスミッションギヤであると設定するためのプログラムコードと、
    第2のスロットル位置が第1のスロットル位置にほぼ等しいかそれより大きく、選択されたトランスミッションギヤがマニュアルトランスミッションにおいて可能な最も低いトランスミッションギヤから次のより高いトランスミッションギヤであるか、または第2の次のより高いトランスミッションギヤである時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも1段低いものであると設定するためのプログラムコードと、
    第2のスロットル位置が第1のスロットル位置にほぼ等しいかそれより大きく、第2のスロットル位置がスロットル入力の最大可能スロットル位置の50%未満であり、選択されたトランスミッションギヤが可能な最も低いトランスミッションギヤよりも少なくとも3段高い時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも1段低いものであると設定するためのプログラムコードと、
    第2のスロットル位置が第1のスロットル位置よりも大きく、第2のスロットル位置がスロットル入力の最大可能スロットル位置の50%よりも大きく、選択されたギヤが可能な最も低いトランスミッションギヤよりも少なくとも3段高い時に、次の意図されたトランスミッションギヤを選択されたトランスミッションギヤよりも2段低いものであると設定するためのプログラムコードとを含む、請求項11のコンピュータ可読媒体。
JP2009505348A 2006-03-06 2006-07-17 マニュアルトランスミッションによりエンジン速度を車両速度に調和させるシステムおよび方法 Active JP4932901B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/368,749 US7468018B2 (en) 2006-03-06 2006-03-06 System and method for matching engine speed to vehicle speed with a manual transmission
PCT/US2006/027854 WO2007142659A1 (en) 2006-03-06 2006-07-17 System and method for matching engine speed to vehicle speed with a manual transmission

Publications (2)

Publication Number Publication Date
JP2009533625A true JP2009533625A (ja) 2009-09-17
JP4932901B2 JP4932901B2 (ja) 2012-05-16

Family

ID=37607112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009505348A Active JP4932901B2 (ja) 2006-03-06 2006-07-17 マニュアルトランスミッションによりエンジン速度を車両速度に調和させるシステムおよび方法

Country Status (12)

Country Link
US (1) US7468018B2 (ja)
EP (1) EP2035727B8 (ja)
JP (1) JP4932901B2 (ja)
KR (1) KR101262672B1 (ja)
CN (1) CN101395408B (ja)
AT (1) ATE463689T1 (ja)
AU (1) AU2006344387B2 (ja)
BR (1) BRPI0621218A2 (ja)
CA (1) CA2644741C (ja)
DE (1) DE602006013518D1 (ja)
ES (1) ES2344223T3 (ja)
WO (1) WO2007142659A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270689A (ja) * 2009-05-21 2010-12-02 Denso Corp 内燃機関の自動停止制御装置
JP2015145155A (ja) * 2014-01-31 2015-08-13 日野自動車株式会社 自動制動制御装置
JP7367544B2 (ja) 2020-01-29 2023-10-24 日産自動車株式会社 変速時のエンジン制御方法およびエンジン制御装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793331B2 (ja) * 2007-06-13 2011-10-12 日産自動車株式会社 車両変速時の制御装置
DE602007005240D1 (de) * 2007-07-05 2010-04-22 Magneti Marelli Spa Verfahren zur Steuerung eines mit einer mechanischen Servogetriebe ausgerüsteten Fahrzeugs
EP2080884A3 (en) * 2008-01-16 2013-11-20 Yamaha Hatsudoki Kabushiki Kaisha Control system and saddle-straddling type vehicle including the same
JP4687764B2 (ja) * 2008-06-09 2011-05-25 トヨタ自動車株式会社 手動変速機付車両の制御装置
JP5121654B2 (ja) * 2008-10-06 2013-01-16 ヤマハ発動機株式会社 変速制御システムおよび車両
US8042641B2 (en) * 2009-02-09 2011-10-25 Lawson Martin E All wheel drive motorcycle
BE1019006A3 (nl) * 2009-11-19 2011-12-06 Cnh Belgium Nv Een tractor met een stuurinrichting.
US8412428B2 (en) * 2010-05-28 2013-04-02 Honda Motor Co., Ltd. System for and method of detecting clutch engagement of a manual transmission
US8515633B2 (en) 2010-07-06 2013-08-20 GM Global Technology Operations LLC Control system and method for shift quality and performance improvement in manual transmissions using engine speed control
DE102010040455A1 (de) * 2010-09-09 2012-03-15 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Antriebsstrangs
US8290669B2 (en) 2010-12-29 2012-10-16 Honda Motor Co., Ltd. System and method for controlling an engine
CN102834635B (zh) * 2011-04-15 2015-03-18 丰田自动车株式会社 手动变速器的换档判定装置
DE102011102427B4 (de) 2011-05-24 2018-01-18 Audi Ag Verfahren zum Steuern einer Brennkraftmaschine
CN103781656B (zh) * 2011-10-24 2016-08-17 川崎重工业株式会社 电动车辆
SE1250720A1 (sv) * 2012-06-27 2013-12-28 Scania Cv Ab Förfarande för att byta växel hos ett fordon
US9797318B2 (en) * 2013-08-02 2017-10-24 GM Global Technology Operations LLC Calibration systems and methods for model predictive controllers
CN103253270B (zh) * 2013-05-10 2016-03-30 浙江吉利汽车研究院有限公司杭州分公司 一种减轻升挡时耸车的方法及装置
US9567920B2 (en) 2015-03-30 2017-02-14 Fca Us Llc Rev-matching without gear or clutch position sensors
CN108343740A (zh) * 2017-01-22 2018-07-31 微宏动力系统(湖州)有限公司 手动变速箱的换档控制方法
CN108343738B (zh) * 2017-01-22 2022-09-16 微宏动力系统(湖州)有限公司 一种车辆手动变速箱的换挡控制方法
CN110832217B (zh) * 2017-06-30 2021-06-08 本田技研工业株式会社 车辆用变速系统
WO2019014876A1 (en) * 2017-07-19 2019-01-24 Cummins Inc. INTELLIGENT SPEED CHANGE ASSIST SYSTEM FOR MANUAL TRANSMISSION
KR102027862B1 (ko) 2017-12-26 2019-10-02 현대트랜시스 주식회사 Amt 차량의 기어빠짐 방지 제어방법
CN108999964A (zh) * 2018-08-24 2018-12-14 潍柴动力股份有限公司 一种发动机转速的控制方法及控制装置
US12000478B1 (en) * 2023-07-31 2024-06-04 Fca Us Llc Method for synchronized four wheel drive low range shifts with vehicle in motion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151547A (ja) * 1986-12-15 1988-06-24 Mitsubishi Motors Corp 車両の発進制御装置
JPH11325230A (ja) * 1998-05-18 1999-11-26 Mitsubishi Motors Corp 自動変速機の変速制御装置
JP2001173769A (ja) * 1999-12-20 2001-06-26 Nissan Diesel Motor Co Ltd 車両の自動変速装置
JP2001280472A (ja) * 2000-03-31 2001-10-10 Isuzu Motors Ltd 変速機の回転同期制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4740898A (en) * 1986-07-17 1988-04-26 Deere & Company Automatic engine/transmission control system
DE69231397T2 (de) * 1991-05-23 2001-02-01 Toyoda Automatic Loom Works Vorrichtung zur drehzahlregelung bei einer fahrzeugbrennkraftmaschine
JP3538472B2 (ja) * 1995-03-02 2004-06-14 本田技研工業株式会社 自動変速機の制御装置
US5680307A (en) * 1995-06-28 1997-10-21 Chrysler Corporation Method of shifting in a manual mode of an electronically-controlled automatic transmission system
US5569115A (en) * 1995-07-27 1996-10-29 Rockwell International Corporation Engine speed synchronization system for assisting in manual transmission shifting
US5904068A (en) * 1996-04-30 1999-05-18 Eaton Corporation Semi-automatic shift implementation with synchronized transmission emulation
JP4125067B2 (ja) * 2002-06-12 2008-07-23 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP3900049B2 (ja) * 2002-09-12 2007-04-04 トヨタ自動車株式会社 車両用自動変速機の油圧制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63151547A (ja) * 1986-12-15 1988-06-24 Mitsubishi Motors Corp 車両の発進制御装置
JPH11325230A (ja) * 1998-05-18 1999-11-26 Mitsubishi Motors Corp 自動変速機の変速制御装置
JP2001173769A (ja) * 1999-12-20 2001-06-26 Nissan Diesel Motor Co Ltd 車両の自動変速装置
JP2001280472A (ja) * 2000-03-31 2001-10-10 Isuzu Motors Ltd 変速機の回転同期制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270689A (ja) * 2009-05-21 2010-12-02 Denso Corp 内燃機関の自動停止制御装置
JP2015145155A (ja) * 2014-01-31 2015-08-13 日野自動車株式会社 自動制動制御装置
JP7367544B2 (ja) 2020-01-29 2023-10-24 日産自動車株式会社 変速時のエンジン制御方法およびエンジン制御装置

Also Published As

Publication number Publication date
AU2006344387A8 (en) 2009-08-06
DE602006013518D1 (de) 2010-05-20
WO2007142659A1 (en) 2007-12-13
CN101395408A (zh) 2009-03-25
CA2644741C (en) 2012-01-31
EP2035727A1 (en) 2009-03-18
US7468018B2 (en) 2008-12-23
EP2035727B8 (en) 2011-01-26
AU2006344387B2 (en) 2011-06-30
CN101395408B (zh) 2012-11-14
ES2344223T3 (es) 2010-08-20
AU2006344387A1 (en) 2007-12-13
US20070207896A1 (en) 2007-09-06
ATE463689T1 (de) 2010-04-15
KR101262672B1 (ko) 2013-05-15
WO2007142659A8 (en) 2010-09-16
CA2644741A1 (en) 2007-12-13
JP4932901B2 (ja) 2012-05-16
KR20080109011A (ko) 2008-12-16
BRPI0621218A2 (pt) 2011-12-06
EP2035727B1 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4932901B2 (ja) マニュアルトランスミッションによりエンジン速度を車両速度に調和させるシステムおよび方法
JP3590939B2 (ja) 駆動系統トルクの検出に基づく変速機の制御装置およびその方法
JP3508002B2 (ja) 変速装置のシフト制御方法および装置
JP5479109B2 (ja) パワーユニット群の動作を制御する方法
KR100300300B1 (ko) 자동클러치의선택가능한향상된크리프제어장치및방법과이를이용한차량자동기계변속장치
EP2194298B1 (en) Apparatus for controlling automatic transmission
US8771144B2 (en) Manual downshift control method for automatic transmission
US9776637B2 (en) Transmission
EP1826445B1 (en) Control device and method for vehicle automatic clutch
JP4792883B2 (ja) 複数クラッチ式変速機の制御装置
US6907801B2 (en) Automatic transmission
US8251871B2 (en) Method for operating an automatic or semi-automatic transmission of a heavy vehicle when in idle-driving mode
US6878095B2 (en) Automatic-clutch control system of automatic clutch type transmission
JP2006292055A (ja) 複数クラッチ式変速機の制御装置
JP4770363B2 (ja) 複数クラッチ式変速機の制御装置
US6865966B2 (en) Automatic transmission for a vehicle
US20230258264A1 (en) Method for controlling a powertrain of a vehicle having a dual-clutch transmission
JP4778208B2 (ja) 自動変速装置
JP2003148602A (ja) 車両用有段変速機の変速制御装置
JPS6280341A (ja) 自動変速装置の変速制御方法
JPH01135950A (ja) 自動変速機のキックダウン制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4932901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250