JP2009523620A - チェックプローブのためのタイミング測定 - Google Patents

チェックプローブのためのタイミング測定 Download PDF

Info

Publication number
JP2009523620A
JP2009523620A JP2008550749A JP2008550749A JP2009523620A JP 2009523620 A JP2009523620 A JP 2009523620A JP 2008550749 A JP2008550749 A JP 2008550749A JP 2008550749 A JP2008550749 A JP 2008550749A JP 2009523620 A JP2009523620 A JP 2009523620A
Authority
JP
Japan
Prior art keywords
reference signal
hfs
delay
signal
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008550749A
Other languages
English (en)
Other versions
JP5191904B2 (ja
JP2009523620A5 (ja
Inventor
アンドレア、フェラーリ
ロベルト、パドバーニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marposs SpA
Original Assignee
Marposs SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marposs SpA filed Critical Marposs SpA
Publication of JP2009523620A publication Critical patent/JP2009523620A/ja
Publication of JP2009523620A5 publication Critical patent/JP2009523620A5/ja
Application granted granted Critical
Publication of JP5191904B2 publication Critical patent/JP5191904B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Selective Calling Equipment (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Tests Of Electronic Circuits (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

事象を表わす信号を送信するためのシステムおよび方法は、第1の低周波クロック(101)および第1の遅延(TL)を発生するための低周波カウンタ(102)と、第2の高周波クロック(106)および第2の遅延(TH)を発生させるための高周波カウンタ(104)とを含む。システムは、第1および第2の遅延の和によって形成される事象からの遅延後に事象を表わす信号を送信するための送信器(105)を更に含む。第2の遅延は、例えばキャパシタ(99)を含むアナログ装置と、キャパシタの端部が予め設定された電圧に達するまでキャパシタを帯電させるための装置(97)とによっても発生され得る。本発明に係る無線送信システムは、チェックされるべき要素との接触を表わす信号を送信するため、接触検出プローブ(1)を有するチェックシステムで利用される。

Description

本発明は、事象を表わす信号を送信するためのシステムに関する。
また、本発明は、時間の特定の瞬間に起こる事象を表わす信号を送信するための方法であって、第1の周期基準信号を発生するステップと、第1の基準信号によって規定される第1の遅延を含む送信遅延後に事象を表わす信号を発生して送信するステップとを含む方法に関する。
本発明のシステムおよび方法は、機械部品をチェックするための接触検出プローブで有利に利用できる。
機械に装着されるヘッドまたは接触検出プローブをチェックすることにより生成される機械要素の位置及び/又は寸法を示す信号を送信するために、例えば数値制御工作機で利用される、信号の無線送信のための公知のシステムが存在する。より具体的には、サイクルをチェックする過程で、プローブは、チェックされるべき要素に対して移動して、要素の表面に接触するとともに、接触信号を発生することにより接触に応答する。接触信号は、適切な送信装置が接触を表わす信号を受信ユニットへ無線送信できるようにするために、処理装置によって処理される。また、各受信ユニットは、インタフェース装置によって、その関連する数値制御ユニットに対して接続される。プローブと要素との間の相互の空間的位置に関連する他の信号を処理することにより、数値制御ユニットは、要素表面の位置に関する情報を得る。送信された信号は、例えば、光学タイプまたは無線周波数タイプの電磁信号であっても良い。一般に、プローブは、プローブの内部に完全に位置されるバッテリによって給電される。バッテリ寿命を保つため、したがって、想定し得る動作欠陥および非常に頻繁な置き換えを回避するためには、電力消費をできる限り制限する必要がある。
プローブと要素との間の接触点を正確に特定するためには、−プローブの状態を送信する際に必然的に導入される−遅延が十分に短く、とりわけ正確で且つ再現可能であることが求められる。
極めて正確で再現可能な導入遅延を得ることができるシステムおよび方法が技術的に知られている。
例えば、プローブと要素との間の接触が起こる瞬間にパルス発生器または“クロック”発生器を作動させるとともに、チェックの最中にそれを作動状態に維持し、それにより、非常に安定した周波数を有する基準信号を発生させることは知られており、基準信号のサイクルはカウンタによってカウントされ、一方、プローブ論理回路が必要とされるチェック動作を行なう。カウンタによってカウントされる基準信号(あるいは、等価な方法では、クロック)のサイクルの総数は、プローブ論理回路がチェックの過程で行なう動作(例えば、前の接触信号、または、プローブの状態を表す信号の送信に関連する動作)がカウント終了前に常に完了されるような態様で予め設定される。カウントの最後に、接触を示す出力信号が受信ユニットへ送信される。
図1および図2は、プローブ論理回路が必要とされるチェック動作を完了できるようにするために必要な2つの異なる時間間隔Δt1CPUおよびΔt2CPUの場合において前述したものを簡略された形態で示している。より具体的には、これらの図は、基準信号RS、接触後に論理回路によって行なわれる動作を表わす信号CPUA、出力信号OS01、および、接触信号TS01の−瞬間t(接触が起こる瞬間)と瞬間t(出力信号の送信の瞬間)との間の時間間隔における時間tに応じた−傾向を示している。信号CPUAの時間間隔Δt1CPUおよびΔt2CPU、すなわち、チェックの過程でプローブ論理回路により行なわれる動作の継続時間にかかわらず、瞬間tを発端として、同一の遅延Δt01後に、図1および図2の両方の出力信号OS01が瞬間tで発生されて送信されるのが理解され得る。この公知の方法によれば、接触と関連する信号の送信との間に発生される遅延Δt01の精度は、基準信号の周波数の安定性と、接触信号または他の適当な信号のエッジに加えてクロックが作動するために必要な時間として規定されるクロックの短い作動(または“起動”)時間とに厳格に関連付けられる。信号の周期に対して長い時間間隔にわたって周波数が安定する基準信号を有するためには、例えば水晶共振器または同様の装置によってクロックを実現することが必要である。しかしながら、これらの装置は、発生される信号の周期の数万倍程度の可変の長い起動時間を有している。実際には、比較的長い時間間隔にわたって安定した周波数を与えると同時に比較的短い起動時間を与える発振器や共振器のような装置は技術的に知られていない。また、発振器の振動数が増大するにつれて発振器のエネルギ消費量が増大することも知られている。
説明の冒頭で言及された方法とほぼ同様の異なる方法は、チェックの開始時(接触が起こる前)に結晶共振器の作動を予見し、一方、接触信号のエッジでカウンタだけが作動される。
この場合、基準信号の周波数の選択は重要である。これは、振動周期が、接触の瞬間と出力信号の送信の開始との間の所定量の時間遅延で得られる分解能を規定するからである。
実際に、カウンタは、任意のどんな瞬間でも作動することができず、状態の変化、すなわち、エッジ、一般には基準信号の立ち上がりエッジを待たなければならない。
以上の結果を図3において容易に見ることができる。図3には、比較的遅いクロック(比較的長い周期TRSを有する基準信号RSを発生する)が示されており、3つの接触信号TSA,TSB,TSCが3つの異なる接触瞬間t0A,t0B,t0Cで表わされている。この場合、全ての接触信号TS,TS,TSにおいて、カウントは、常に、接触後に基準信号RSの同じ第1の立ち上がりエッジにおける時間tで始まり、それにより、それらの当初の時間分離はもはや存在せず、出力信号OSABCは、瞬間tからの同じ遅延Δtの直後に同じ時間tABCにおいて全ての信号に関して発生されて送信される。
この種の問題を克服するため、欧州特許出願EP−A−0826201は、接触を表わす出力信号の周期を僅かに変更する(増大するまたは減少する)ことにより、接触と出力信号の送信の最後との間の遅延を一定に保つことを提案する。
前述の問題を克服するための他の方法は、基準信号の周波数を増大させることにより遅延時間の分解能を増大することを予見する。
先に記載された出願において、一般に必要とされる分解能は1μs程度であり、これは1MHzの基準信号の最小周波数に対応する。同様の周波数での動作は、関連するクロックの電流の高い一定の消費量に起因して、バッテリ給電式のシステムにおいてはかなり問題である。
したがって、バッテリ給電式の接触検出プローブを備えるチェックシステムでは、良好な再現特性を伴う送信を確保するため、短い起動時間および経時的に安定した周波数を有する基準信号を保証する発振器/共振器を利用することが都合良い。また、バッテリ寿命を延ばすため、低いエネルギ消費量の要求もある。
残念ながら、前述したように、単一の発振器/共振器においてこれらの全ての特性を有することは実質的に不可能であり、また、既存の公知のシステムおよび方法においては、しばしば不満足な妥協的解決策を受け入れることが必要である。
本発明の目的は、送信精度及び/又は再現性に関して、より具体的には、意味のある事象が起こる瞬間とそのような事象を示す信号の送信の開始との間の遅延と共に低エネルギ消費に関して、高い性能基準を達成できる信号の無線送信のためのシステムおよび方法を提供することである。
この目的および他の目的は、請求項1に係るシステムおよび請求項13に係る方法によって達成される。
本発明に係るシステムおよび方法は、電気エネルギの消費量を最小にすることができ、したがって、有利な方法で且つ高い性能基準で、機械部品、例えば機械要素および工作機をチェックするためのバッテリ電源式接触検出プローブを利用する。
本発明が与える更なる利点は、低コスト構成部品およびハードウェアシステムを利用しても正確で且つ再現可能なシステムを保証するという点である。
これらの利点および他の利点は、以下の説明で明らかになる。
信号を無線送信するための本発明に係るシステムは、例えば数値制御工作機のための接触検出プローブで利用でき、事象を示す信号、例えばプローブとチェックされるべき要素との間で起こる接触を示す接触信号を受けるための回路システム及び/又は構成部品と、基準信号の少なくとも2つの発生器であって、基準信号のうちの少なくとも1つが周期的である少なくとも2つの発生器と、基準信号の少なくとも1つのサイクルの予め設定された数をカウントするための少なくとも1つのカウンタを含む処理手段と、考慮中の事象を示す出力信号の送信器とを含んでいる。処理手段は2つの別個の遅延を発生し、これらの遅延は、組み合わせられると、考慮中の事象と関連する出力信号の送信の開始との間の特に正確な再現可能な全体の遅延を規定する。より具体的には、第1の発生器は、非常に安定しており、遅延全体の大部分を発生するために利用され、一方、第2の発生器は、精度が比較的低いが、短い起動時間を有しており、全遅延の比較的短い間隔を発生するためだけに利用される。
本発明に係る方法において、周期基準信号を発生する第1の発生器は、システムが動作モードにあるときに作動し、一方、第2の基準信号を発生する第2の発生器は、事象が起こるとき、例えば接触検出プローブと要素との間の接触が起こるとき、正確にはそのような接触を信号が示すときに作動される。処理手段は、第2の発生器の作動(正確な近似をもって、接触が起こる瞬間に対応する)と例えば第1の基準信号の第1のその後の立ち上がりエッジとの間で第2の基準信号のパラメータの値をチェックする。チェックが短い時間間隔にわたって、より具体的には第1の基準信号の周期よりも短い時間間隔にわたって行なわれることは言うまでもない。第1の基準信号の第1のその後の立ち上がりエッジにおいては、第2の基準信号のパラメータのチェックが停止され、パラメータの現在の値が記憶される。この時点で、処理手段は、カウンタにより、第1の基準信号の予め設定されたサイクル数をカウントし、また、システムの他の回路及び/又は装置、例えば第2の発生器を有利にOFFすることができる。
第1の基準信号の予め設定されたサイクル数のカウントの最後に、第2の発生器が再び作動され、処理手段は、既に検出された値を発端として、予め設定された値まで、第2の基準信号のパラメータのチェックを続ける。予め設定された値に達すると、プローブと要素との間の接触を示す出力信号を無線送信することができる。
本発明の他の特徴は、非限定的な単なる例として与えられる添付の図面シートおよび以下の詳細な説明から更に明らかになると思われる。
図4を参照すると、本発明に係る送信システムは、第1の同期パルス発生器または第1の低周波クロック101を含んでいる。第1の低周波で第1の周期基準信号を発生する低周波クロック101は、例えば、公知のようにその周波数が低ければ低いほど電気エネルギ消費量が少なくなるという特性を有する水晶振動子によって実現され得る。一例として、32768Hzの周波数で振動する水晶振動子は、1μA程度の平均電流消費量で動作できる。低周波クロック101の出力は、第1の低周波カウンタ102、第2の高周波カウンタ104、および、論理ユニット103を含む処理手段に対して接続される。より具体的には、低周波クロック101の出力は、第1の低周波カウンタ102および論理ユニット103の適切な入力に対して接続される。通常の動作の過程で、論理ユニット103および低周波クロック101には常に電力が供給される。また、論理ユニット103は、入力において、事象を表わす信号、例えば、接触検出プローブとチェックされるべき要素との間の接触を示す接触信号TS、および、低周波カウンタ102の出力も受ける。論理ユニット103は、3つの出力、すなわち、低周波カウンタ102へ向かう第1の出力と、第2の同期パルス発生器または第2の高周波クロック106へ向かう第2の出力と、第2の高周波カウンタ104へ向かう第3の出力とを有している。高周波クロック106は、第2の高周波で第2の周期基準信号を発生するとともに、論理作動回路を含んでいる。論理ユニット103は高周波カウンタ104をゼロ設定し、また、高周波カウンタは、適切な入力で高周波クロック106の出力を受けるとともに、接触を表わす出力信号OSを送信するための公知のタイプの送信器105を制御する信号を供給する。高周波クロック106は、多くの方法で実現することができ、例えばそれが短い起動時間を有する場合には高周波発振器によって実現され得る。すなわち、より短い起動時間の利点に対して長期安定性の特徴を取っておくことができる。
高周波クロック106の長期安定性を取っておくことができ、ノイズを許容でき、高い位相歪みでさえ許容できる理由は、高周波クロック106が好ましくは後述するように低周波クロック101のほぼ周期程度で非常に短い時間間隔にわたってパルスを発生するというタスクのみを有しているからである。したがって、高周波クロック106が蓄積できるタイムエラーは、いかなる場合でも制限され、遅延全体にわたって実質的に影響がない。例えば、約30000Hzの周波数パルスを発生する水晶振動子を用いて低周波クロック101を実現することにより、また、3%の精度をもって1MHzの周波数でパスルを発生する高周波クロック106の利用可能性を有することにより、低周波クロック101により発生される信号の全周期で高周波クロック106によって引き起こされるエラーは約1μsである。また、32768Hzで動作する水晶低周波振動子を用いると、1MHzまたは2MHzでそれぞれ動作する発振器を用いて高周波クロック106を実現することにより、接触信号TSと出力信号OSの送信の開始との間の送信遅延において1μsまたは0.5μsの分解能を得ることができる。
クロック101,106、カウンタ102,104、および、論理ユニット103は、CMOSスタティック低消費電力型のロジックに適切に組み込むことができ、あるいは、他の類似の低消費電力技術によって実現できる。
図4に示される送信システムは、例えば、接触検出プローブの感触器と接触を伴ってチェックされるべき要素との間の接触を示すとともに、接触が起こる瞬間と出力信号の送信の開始との間の繰り返し可能な遅延を示す出力信号を送信するために、図5を参照してここで説明される本発明に係る方法によって有利に利用できる。
方法は、チェック開始時に送信システムをONすること(ステップ110)、より具体的には、第1の低周波基準信号を発生するために低周波クロック101に電力を供給すること、および、論理ユニット103に電力を供給することを予測する。この状態下で、システムは待機状態の低エネルギ消費モードにある。方法は、プローブと要素との間の接触が起こったかどうかを検証するステップ(ステップ120)と、システムを完全作動モードに置くために接触に加えてシステムを“目覚めさせる”ステップ(ステップ130)とを更に含んでいる。より具体的には、接触が起こると、論理ユニット103は、論理作動回路を用いて、第2の高周波基準信号を発生するために高周波クロック106の作動ONを制御すると同時に、高周波カウンタ104のゼロ設定を制御する。接触に加えて、高周波カウンタ104は、第2の基準信号のパラメータのチェックを開始し、より具体的には、接触の瞬間と低周波クロック101の立ち上がりエッジ、好ましくは第1のその後の立ち上がりエッジとの間の高周波基準信号のサイクル数のカウント(ステップ140)を開始する。高周波カウンタ104のカウント毎に、低周波基準信号の第1のその後の立ち上がりエッジの存在または不存在が検証される(ステップ150)。
そのような立ち上がりエッジが存在する場合には、ここまでにカウントされた高周波基準信号のサイクルの数Pが論理ユニット103によって記憶され(ステップ160)、高周波クロック106の作動を有利に停止させることができ(ステップ170)、また、低周波カウンタ102がゼロ設定される一方で、低周波基準信号のサイクルのカウントが作動される(ステップ180)。ステップ160,170,180は、接触後、低周波信号の第1の立ち上がりエッジでほぼ同時に行なわれる。
低周波カウンタ102が非常に安定した駆動源(低周波クロック101)によって駆動され、したがって、数十ミリ秒程度の時間間隔にわたって正確にカウントできることは言うまでもない。また、低周波カウンタ102によって行なわれるカウントの最中に、他の装置/回路をOFFできることが有益であり、より具体的には(ステップ170で示されるように)、前述したようにエネルギ消費に関して特に費用がかかる高周波クロック106をOFFできることが有益であることは言うまでもない。このようにすれば、電流の消費量を最小まで減らすことができる。
低周波基準信号のサイクル数のカウントは、予め設定された数QLFまで続く(ステップ190)。この場合、予め設定された数に達すると、論理ユニット103は、低周波カウンタ102をフリーズさせ、論理作動回路を用いて高周波クロック106を再びONする(クロックが既にOFFされていた場合)(ステップ200)。高周波クロック106がONされる瞬間には、第2の基準信号のパラメータのチェックが継続する。すなわち、高周波カウンタ104は、既に記憶された数Pを発端として、高周波基準信号のサイクル数のカウントを続ける(ステップ210)。
予め設定されたサイクル数QHFに達すると(ステップ220)、高周波クロック160をOFFすることができるとともに、高周波カウンタ104をフリーズさせることができ、また、システムは、プローブと要素との間の接触を示す出力信号を送信する(ステップ230)。
言うまでもなく、接触が起こる瞬間から、出力信号が送信される瞬間まで、低周波カウンタ102によって生み出される遅延(低周波基準信号の周期×予め設定された数QLF)と、高周波カウンタ104によって生み出される遅延(高周波基準信号の周期×予め設定された数QHF)と、高周波クロック106を2回作動させるために必要な時間との和から成る再現性の高い時間間隔が経過する。
接触と低周波基準信号の第1の立ち上がりエッジとの間の経過時間の一部に対する高周波カウンタ104により生み出される遅延の任意の依存関係を排除するため、高周波カウンタ104は、以下の条件を満たす予め設定されたサイクル数QHFまでカウントするようにプログラムされなければならない。
HF>(TLF/YHF)+1 (1)
ここで、TLFおよびTHFは、低周波基準信号および高周波基準信号のそれぞれの周期である。条件(1)を満たす全ての整数のうちで、QHFが最小値を有利にとることができる。
図6は、2つの接触信号TS,TSが2つの異なる瞬間t01,t02にそれぞれ発生される場合であるが、いかなる場合にも、第1の低周波クロック101によって発生され且つ図6に基準LFSによって特定される低周波基準信号の同一の周期TLF内で、図5の方法を利用する図4のシステムによって生成される2つの出力信号OS,OSの時間に応じた傾向を概略的に示している。いずれの場合にも、QLF,QHFは一定であり、QHFは例えば12である。第2の高周波クロック106は既知の起動時間ΔtHFを有しているものとする。言うまでもなく、そのような起動時間ΔtHFは極めて制限され、いかなる場合でも無視できる(このため、図6には示されていない)。
第1の接触信号TSの場合、論理ユニット103は、論理作動回路によって、起動時間ΔtHF後に信号HFSを発生する高周波クロック106を作動させる。カウンタ104は信号HFSのサイクルをカウントし始める。信号LFSの第1のその後の立ち上がりエッジが瞬間tで検出されると、論理ユニット103は、カウンタ104のカウントを停止し、カウントされるその瞬間まで数Pをフリーズさせる(図6の例では、それが8)とともに、信号LFSの予め設定されたサイクル数QLF(第1の遅延ΔTLを規定する)をカウントする低周波カウンタ102を時間tまで作動させる。QLFサイクルの過程で、高周波クロック106をOFFすることができる。QLFサイクルの最後に、論理ユニット103は、論理作動回路によって高周波クロック106を再び作動させ(導入される遅延は起動時間ΔtHFに等しい)、また、高周波カウンタ104は、既に記憶された(8)数Pから値QHF(12)まで、すなわち、特定のケースでは4まで、信号HFSのサイクルを再びカウントし始める。出力信号OSは、カウンタ104のカウントの最後の瞬間t11において送られる。この場合、接触の瞬間t01と瞬間t11との間の全送信遅延Δtは、高周波クロック106の起動時間ΔtHF(前述したように無視できる)の2倍の他、信号HFSの12(すなわち、8+4)サイクル(全体で第2の遅延ΔTHを規定する)と信号LFSのQLFサイクルによって規定される第1の遅延ΔTLとに等しい。
言うまでもなく、前述した条件(1)によれば、第2の遅延ΔTH(すなわち、QHF×THF)の継続時間は、第1の基準信号LFSの周期(TLF)の継続時間よりも長い。
接触信号TSが発生される瞬間t01とは異なる瞬間t02に発生される第2の接触信号TS(しかし、とにかく、常に信号LFSの同じ周期TLF内で)の場合、論理ユニット103は、論理作動回路により、先のケースと同様に起動時間ΔtHF後に信号HFSを発生する高周波クロック106を作動させる。しかしながら、この第2のケースにおいて、信号HFSは、それが瞬間tにおいて再び低周波クロック101によって発生される信号LFSの第1のその後の立ち上がりエッジ(先のケースで考慮された同じ立ち上がりエッジ)に直面する前に、ちょうど2つのサイクル(P=2)を果たす。先のケースと同様に、低周波カウンタ102が時間tまで信号LFSのQLFサイクル(第1の遅延ΔTL)をカウントする間に高周波クロック106をOFFすることができ、カウントの最後に、高周波クロック106が再び作動される(導入される遅延は常に起動時間ΔtHFに等しい)とともに、高周波カウンタ104が信号HFSの(QHF−P)サイクルをカウントする。特定の例では、(QHF−P)=10である。カウントの最後に、時間t12において、接触の瞬間t02からの遅延Δt後、第2の出力信号OSが送信される。この場合にも、遅延Δtは、高周波クロック106の起動時間ΔtHF(前述したように無視できる)の2倍の他、信号HFSの12(すなわち、2+10)サイクル(第2の遅延ΔTH)と信号LFSのQLFサイクル(第1の遅延ΔTL)とに等しい。すなわち、遅延Δtは遅延Δtにほぼ等しい。
好ましい実施形態では、第1の低周波クロック101としての32768Hz(約30.5μs周期)の水晶振動子、および、第2の高周波クロック106としての2μs起動時間を有する1MHz(1μs周期)のリング発振器RCのような市販の構成部品が利用される。QLFおよびQHFの値を適切に選択することにより、例えば、±2.5μsの精度および3.0V電源電圧で25μA未満または2.4V電源電圧で15μA未満の平均電流消費を伴って、接触の瞬間から出力信号の送信までの5msの送信遅延を生み出すことができる。
図7に示される他の実施形態によれば、アナログ/デジタル型の本発明に係る送信システムを実施するため、図4に示される送信システムの高周波クロック106および高周波カウンタ104が類似の構成部品と置き換えられている。
以下、図7および図8を参照して、本発明に係るアナログ/デジタルからの送信システムおよびその動作について説明する。図7および図8では、図4および図6の参照符号と同様の参照符号を使用して、同様の或いは類似の構成部品または信号を示す。
図7の送信システムは、同期パルスの第1の発生器または第1の低周波クロック101を含んでおり、第1の低周波クロック101は、第1の低周波基準信号LFSを発生するとともに、低周波カウンタ102、論理ユニット109、セレクタスイッチ107、および、コンパレータ96を含む処理手段に対して接続される。より具体的には、低周波クロック101は、信号LFSの予め設定されたサイクル数QLFをカウントするための低周波カウンタ102の適切な入力と、論理ユニット109の適切な入力とに対して接続され、また、論理ユニット109は、その入力において、低周波カウンタ102の出力、事象、例えば接触検出プローブとチェックされるべき要素との間の接触を表わす信号TS、および、コンパレータ96の出力信号を表わす信号を受ける。接触検出プローブがチェックサイクルを開始すると、基準信号LFSを発生させるために低周波クロック101(および、論理ユニット109)に電力が供給される。また、論理ユニット109は、2つの出力、すなわち、低周波カウンタ102に対して接続される第1の出力と、セレクタスイッチ107に対して接続される第2の出力とを有しており、セレクタスイッチ107は、第1のプレート90が一般にグランドに接続されるキャパシタ99のための3つの可能な接続を規定する。第1の位置Aにおいて、セレクタスイッチ107は、キャパシタ99を抵抗98に対して(例えば直列に)接続する。この第1の位置Aでは、第1の電圧発生器97によって抵抗98およびキャパシタ99が給電される。第1の電圧発生器97、抵抗98、および、キャパシタ99は、第2の基準信号を発生するための第2の発生器を形成する公知の帯電傾向を有する回路RCを実現する。回路RCは、例えばインピーダンスを含むリアクタンス回路と置き換えることができる。以下で更に詳しく説明するように、発生される信号は、公知の方法で変えることができる大きさを表わすアナログ信号である。より具体的には、図7に示される回路RCに関して、発生されるアナログ信号は電圧を表わし、当該電圧は、その値がチェックされるべき正にそのパラメータである。
時間t03で接触が起こると、接触信号TSが論理ユニット109に到達し、論理ユニットは、セレクタスイッチ107を制御して第1の位置Aに切り換える。第1の電圧発生器97は、論理ユニット109が信号LFSの立ち上がりエッジ、好ましくは第1のその後の立ち上がりエッジを時間tで検出する瞬間までキャパシタ99を帯電し始める。第1のその後の立ち上がりエッジにおいて、論理ユニット109は、セレクタスイッチ107を制御して第2の位置Bに切り換え、この第2の位置では、キャパシタ99が電気的に絶縁され、そのため、キャパシタ99の帯電は、事象(t03)と信号LFSの第1のその後の立ち上がりエッジ(t)との間の時間間隔に依存する特定の電圧値Vで中断される。図8において、基準VSは、キャパシタ99の端部の電圧値の時間に応じた傾向によって規定される第2の基準信号を示している。図4のシステムの場合と同様、低周波カウンタ102は、接触後の第1の立ち上がりエッジを発端として、信号LFSの予め設定されたサイクル数QLFをカウントする。時間tにおいて、低周波カウンタ102が信号LFSのQLFサイクルのカウントを終了すると、論理ユニット109は、セレクタスイッチ107を制御して元の第1の位置Aに切り換え、また、キャパシタ99が帯電を再開し、キャパシタの端部の電圧が、先に到達した値Vを発端として増大する。
コンパレータ96の非反転入力はキャパシタ99の端部に接続され、一方、同じコンパレータ96の反転入力は、基準電圧Vrefの第2の電圧発生器95に接続される。より具体的には、セレクタスイッチ107の位置にかかわらず、キャパシタ99の端部の電圧が基準電圧Vrefに等しい(または、基準電圧Vrefを上回る)値Vに達すると、コンパレータ96はゼロでない出力信号を送る。逆に、キャパシタ99の端部の電圧が基準電圧Vrefを下回ると、コンパレータ96の出力がゼロになる。
基準電圧Vrefを超えると、したがって、コンパレータ96がゼロでない出力信号を発すると、そのような出力信号を使用して、時間t13において、公知のタイプの送信器105により、考慮中の事象を表わす信号OSの送信を制御できるとともに、キャパシタ99がその後のチェックのために放電されなければならないという情報を論理ユニット109に対して与えることができる(図7において、破線は、コンパレータ96と論理ユニット109との間の接続を極めて簡単で概略的な態様で示している)。したがって、論理ユニット109がセレクタ107を制御して第3の位置Cに切り換え、この第3の位置では、例えば第2のプレート91もグランドに接続することによりキャパシタ99が放電される。
言うまでもなく、図7の実施形態においても、回路のエネルギ消費量が特に制限され、低周波信号LFSのQLFサイクルのカウントの過程で、セレクタスイッチ107が第2の位置Bにあり、この位置で、電流消費量が実質的にゼロになる。
図8を参照すると明らかなように、正確で且つ繰り返し可能な時間間隔Δtが時間t03と時間t13との間で経過する。実際に、そのような間隔Δtが、信号LFSのQLF周期(図4および図6に示されるケースの場合と同様、第1の遅延ΔTLを規定する)によって形成されるとともに、キャパシタをゼロ値から値V(信号LFSの第1の立ち上がりエッジにある)まで帯電させるため及び値Vから値V(コンパレータ96の基準電圧Vrefに等しい)まで帯電させるために要する時間量によって形成されることに留意すべきである。また、ゼロ値から値Vまでキャパシタ99を帯電させるためにどの程度の時間(第2の遅延ΔTVを規定する時間)量が必要なのかが、信号LFSの第1の立ち上がりエッジに関して事象が起こる瞬間に依存するのではなく、RC回路の特徴のみに依存することにも留意すべきである。
値V(Vref)は、図4の実施形態で起こる場合と同様、第2の遅延ΔTVが第1の基準信号LFSの周期TLFよりも(僅かな量だけ)長くなるように選択されて予め設定される。
前述したように、本発明に係るシステムおよび方法は、機械加工前、機械加工中および機械加工後に機械要素をチェックするために工作機上に装着される接触検出プローブに有利に設けることができる。図9は、工作機6上に装着された機械要素3の位置または寸法を検出するためのシステムを概略的に示している。この場合、チェックプローブ、例えば接触検出プローブ1は、アーム5を用いて感触器8を支持する。公知のタイプの検出装置2は、プローブ1と要素3との間の相互の移動に加えて、感触器8が要素3の表面と接触するときに接触信号を供給する。これまで説明され且つ図4−6または図7−8を参照して例示された送信システムの特徴を有する送信システム4は、検出装置2に(公知の方法で)接続され、接触信号を受けるとともに、プローブ1から離間して位置され且つインタフェース装置9によって工作機6の数値制御ユニット11に接続された受信器7に対して接触を表わす信号を無線送信する。プローブ1と要素3との間の互いの空間的な位置に関連する他の信号を処理することにより、数値制御ユニットは、要素3の表面の位置に関する情報を得る。無線送信される信号は、例えば、光学タイプであっても良く或いは無線周波数タイプであっても良く、ブルートゥース(登録商標)、WiFi(登録商標)、および、UWB(“ウルトラワイドバンド”)のような公知の技術を利用することができる。また、例えば機内プローブ回路の作動/停止のため、あるいは、本発明に直接に関与しない決定されたパラメータを公知の方法でプログラミングするために、受信器7からプローブ1へと信号を無線送信するための装置も予見できる。
大まかに言えば、本発明に係る送信システムは、事象を表わす信号の送信のために正確な、繰り返し可能な、低エネルギ消費システムの必要性があるときにいつでも利用できる。
公知の送信システムにおける幾つかの信号の時間に応じた傾向を概略的に示すグラフである。 公知の送信システムにおける幾つかの信号の時間に応じた傾向を概略的に示すグラフである。 公知の送信システムにおける幾つかの信号の時間に応じた傾向を概略的に示すグラフである。 本発明の第1の好ましい実施形態に係る送信システムの簡略化された機能ブロック図である。 本発明に係る方法を示す論理ブロック図である。 図5の方法を利用する図4の送信システムにおける2つの別個の事象を表わす出力信号の送信の瞬間を示すグラフである。 本発明の第2の好ましい実施形態にかかる送信システムの簡略化された機能ブロック図である。 図7の送信システムにおける事象を表わす出力信号の送信の瞬間を示すグラフである。 本発明に係る送信システムを有する接触検出プローブを支持する工作機の概略図である。

Claims (21)

  1. 事象を表わす信号(OS;OS,OS;OS)を送信するための送信システムであって、第1の周期基準信号(LFS)を発生するための第1の発生器(101)と、第2の基準信号(HFS,HFS;CS)を発生するための第2の発生器(106;97−99)と、前記第1の基準信号(LFS)に基づいて第1の遅延(ΔTL)を発生するとともに前記第2の基準信号(HFS,HFS;CS)に基づいて第2の遅延(ΔTH;ΔTV)を発生するようになっている処理手段(102,103,104;96,107,109)と、前記第1(ΔTL)および前記第2(ΔTH;ΔTV)の遅延の和によって規定される事象からの送信遅延(Δt,Δt;Δt)を伴って、事象を表わす前記信号(OS;OS,OS;OS)を送信するようになっている送信器(105)とを含み、前記第1および前記第2の遅延のうちの一方が他方よりも実質的に長い、送信システム。
  2. 前記処理手段は、第1のカウンタ(102)を含むとともに、前記第1の基準信号(LFS)の周期の予め設定された数(QLF)に基づいて前記第1の遅延(ΔTL)を発生するようになっている請求項1に記載の送信システム。
  3. 前記処理手段は、前記第1の発生器(101)および前記第2の発生器(106;97−99)に接続される論理ユニット(103;109)を含む請求項1または2に記載の送信システム。
  4. 前記第1の発生器(101)が同期パルスの発生器である請求項1〜3のいずれか一項に記載の送信システム。
  5. 前記第1の発生器(101)が水晶振動子である請求項4に記載の送信システム。
  6. 前記第2の発生器(106)が第2の周期基準信号(HFS,HFS)を発生するようになっており、前記処理手段は、第2のカウンタ(104)を含むとともに、前記第2の基準信号(HFS,HFS)の周期の予め設定された数(QHF)に基づいて前記第2の遅延(ΔTH)を発生するようになっている請求項1〜5のいずれか一項に記載の送信システム。
  7. 前記第2の発生器(106)が同期パルスの発生器である請求項6に記載の送信システム。
  8. 前記第2の発生器(106)がRCリング発振器である請求項7に記載の送信システム。
  9. 前記第1(101)および前記第2(106)の発生器のうちの少なくとも一方と、前記第1(102)および前記第2(104)のカウンタとがCMOSスタティックタイプの論理に組み込まれる請求項6〜8のいずれか一項に記載の送信システム。
  10. 前記第1の周期基準信号(LFS)が第1の周波数を有し、前記第2の周期基準信号(HFS,HFS)が前記第1の周波数よりも高い第2の周波数を有する請求項6〜9のいずれか一項に記載の送信システム。
  11. 前記第2の発生器(97−99)は、公知の方法で変えることができる大きさを表わすアナログ信号(CS)を発生するようになっている回路を含み、前記処理手段は、コンパレータ(96)を含むとともに、前記大きさの予め設定された値(Vref)に基づいて前記第2の遅延(ΔTV)を発生するようになっている請求項1〜5のいずれか一項に記載の送信システム。
  12. 前記第2の発生器がキャパシタ(99)を含み、前記処理手段は、キャパシタ(99)の帯電を制御するようになっているセレクタスイッチ(107)を含む請求項11に記載の送信システム。
  13. 時間の特定の瞬間(t01,t02,t03)に起こる事象を表わす信号(OS;OS,OS;OS)を送信するための方法であって、
    −第1の周期基準信号(LFS)を発生するステップ(110)と、
    −前記第1の基準信号(LFS)によって規定される第1の遅延(ΔTL)を含む送信遅延(Δt,Δt;Δt)後に事象を表わす信号(OS,OS;OS)を送信するステップ(240)と、
    を含む方法において、
    −事象が起こる瞬間(t01,t02;t03)にほぼ対応する作動の瞬間を発端として、第2の基準信号(HFS,HFS;CS)の発生を促すステップ(130)と、
    −前記第2の基準信号(HFS,HFS;CS)のパラメータの値をチェックするステップ(220)と、
    −前記第2の基準信号(HFS,HFS;CS)の前記パラメータの予め設定された値(QHF;V)の到達に基づいて第2の遅延(ΔTH;ΔTV)を特定するステップと、
    を更に含み、
    前記送信遅延(Δt,Δt;Δt)は、作動の前記瞬間(130)を発端として、前記第1(ΔTL)および前記第2(ΔTH;ΔTV)の遅延の和として規定されることを特徴とする方法。
  14. −作動の瞬間(130)後、前記第1の基準信号(LFS)の周期の開始を検出するステップ(150)と、
    −その結果として、前記第2の基準信号(HFS,HFS;CS)の前記パラメータの値のチェックを中断するステップと、
    −チェックされたパラメータの現在の値(P;V)を記憶するステップ(160)と、
    −前記第1の遅延(ΔTL)に対応する第1の基準信号(LFS)の周期の予め設定された数(QLF)の到達をチェックするステップ(190)と、
    −記憶された現在の値(P;V)を発端として、前記第2の基準信号(HFS,HFS;CS)の前記パラメータの値のチェックを続けるステップ(210)と、
    −前記第2の遅延(ΔTH;ΔTV)の結果的な識別および前記送信遅延(Δt,Δt;Δt)の定義を用いて、前記パラメータの予め設定された値(QHF;V)の到達をチェックするステップ(230)と、
    を含む請求項13に記載の方法。
  15. 前記パラメータの値のチェックが中断された後、前記チェックが再開される前に、前記第2の基準信号(HFS,HFS;CS)の発生を中断させるステップ(170)と、前記第2の基準信号(HFS,HFS;CS)の発生を再び促すステップ(200)とをそれぞれ更に含む請求項14に記載の方法。
  16. 前記第2の遅延(ΔTH;ΔTV)の継続時間は、前記第1の基準信号(LFS)の周期(TLF)の継続時間よりも短くない請求項13〜15のいずれか一項に記載の方法。
  17. 前記第2の基準信号(HFS,HFS)は、前記第1の基準信号(LFS)の周波数よりも高い周波数の周期信号である請求項13〜16のいずれか一項に記載の方法。
  18. 前記第2の基準信号の前記パラメータが周期の数である請求項17に記載の方法。
  19. 前記第2の基準信号は、公知の方法で変えることができる大きさを表わすアナログ信号(CS)である請求項13〜16のいずれか一項に記載の方法。
  20. 前記第2の基準信号の前記パラメータが電圧である請求項19に記載の方法。
  21. 機械部品(3)の位置及び/又は寸法をチェックするためのシステムであって、
    −チェックプローブ(1)と、
    −前記チェックプローブに設けられ、感触器(8)を支持する可動アーム(5)と、
    −前記感触器(8)と要素(3)との間の接触に加えて、接触信号(TS;TS,TS;TS)を供給するようになっている検出装置(2)と、
    −接触を示す信号(OS,OS;OS)を無線送信するようになっている送信システム(4)と、
    −接触を示す前記信号(OS,OS;OS)を受けるようになっている受信器(7)と、
    を含むシステムにおいて、
    前記送信システム(4)が請求項1〜12のいずれか一項に記載の送信システムであり、接触を伴う事象が前記感触器(8)と前記要素(3)との間で起こることを特徴とするシステム。
JP2008550749A 2006-01-18 2007-01-16 チェックプローブのためのタイミング測定 Expired - Fee Related JP5191904B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000031A ITBO20060031A1 (it) 2006-01-18 2006-01-18 Sistema e metodo di trasmissione a distanza di segnali via etere per sonde di controllo
ITBO2006A000031 2006-01-18
PCT/EP2007/050419 WO2007082892A1 (en) 2006-01-18 2007-01-16 Timing measurement for checking probes

Publications (3)

Publication Number Publication Date
JP2009523620A true JP2009523620A (ja) 2009-06-25
JP2009523620A5 JP2009523620A5 (ja) 2010-01-28
JP5191904B2 JP5191904B2 (ja) 2013-05-08

Family

ID=37969858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008550749A Expired - Fee Related JP5191904B2 (ja) 2006-01-18 2007-01-16 チェックプローブのためのタイミング測定

Country Status (10)

Country Link
US (1) US8107554B2 (ja)
EP (1) EP1982488B1 (ja)
JP (1) JP5191904B2 (ja)
KR (1) KR101293131B1 (ja)
CN (1) CN101375568B (ja)
AT (1) ATE513400T1 (ja)
CA (1) CA2637732C (ja)
ES (1) ES2366744T3 (ja)
IT (1) ITBO20060031A1 (ja)
WO (1) WO2007082892A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171563A (ja) * 2018-03-29 2019-10-10 ブラザー工業株式会社 工作機械

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5163901B2 (ja) * 2009-01-05 2013-03-13 ブラザー工業株式会社 工作機械
US8133446B2 (en) * 2009-12-11 2012-03-13 Uop Llc Apparatus for producing hydrocarbon fuel
US9074143B2 (en) * 2009-12-11 2015-07-07 Uop Llc Process for producing hydrocarbon fuel
US8193401B2 (en) * 2009-12-11 2012-06-05 Uop Llc Composition of hydrocarbon fuel
US20120197570A1 (en) * 2011-01-27 2012-08-02 Mehran Ramezani Measurement of Parameters Within an Integrated Circuit Chip Using a Nano-Probe
DE102011076504A1 (de) * 2011-05-26 2012-11-29 Dr. Johannes Heidenhain Gmbh Tastsystem und Verfahren zum Betrieb eines Tastsystems
JP6106963B2 (ja) * 2012-06-20 2017-04-05 富士電機株式会社 スイッチング電源装置
KR20190110733A (ko) * 2018-03-21 2019-10-01 에스케이하이닉스 주식회사 클럭 신호에 동기하여 신호를 전송 및 수신하는 반도체 장치
CN111490867B (zh) * 2020-04-26 2021-02-12 杭州锐讯科技有限公司 一种面向分布式应用的采样时钟同步系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505048A (ja) * 1995-05-11 1999-05-11 マーポス、ソチエタ、ペル、アツィオーニ 測定ヘッドとリモート受信機との間で信号を無線伝送するための装置および方法
JPH11154826A (ja) * 1997-09-04 1999-06-08 Tektronix Inc 周波数発生方法及び回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509266A (en) 1982-06-14 1985-04-09 Gte Valeron Corporation Touch probe
JPH0765883B2 (ja) 1986-06-05 1995-07-19 宣夫 福久 無線送受信器を有する位置検出装置
US5483201A (en) * 1993-09-30 1996-01-09 At&T Corp. Synchronization circuit using a high speed digital slip counter
US5473533A (en) * 1993-12-02 1995-12-05 Best Power Technology, Incorporated Method and apparatus for efficient phase and frequency coherence locking optimized for digital systems
JP2900836B2 (ja) * 1995-05-26 1999-06-02 松下電器産業株式会社 電子走査式超音波診断装置
DE19610626C2 (de) * 1996-03-19 2003-01-23 Bosch Gmbh Robert Nachlauferfassung von elektrischen Verstellmotoren
US6173207B1 (en) 1997-09-22 2001-01-09 Agilent Technologies, Inc. Real-time control system with non-deterministic communication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505048A (ja) * 1995-05-11 1999-05-11 マーポス、ソチエタ、ペル、アツィオーニ 測定ヘッドとリモート受信機との間で信号を無線伝送するための装置および方法
JPH11154826A (ja) * 1997-09-04 1999-06-08 Tektronix Inc 周波数発生方法及び回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019171563A (ja) * 2018-03-29 2019-10-10 ブラザー工業株式会社 工作機械
JP7067514B2 (ja) 2018-03-29 2022-05-16 ブラザー工業株式会社 工作機械

Also Published As

Publication number Publication date
US20090122934A1 (en) 2009-05-14
KR20080089634A (ko) 2008-10-07
CA2637732C (en) 2013-06-25
EP1982488A1 (en) 2008-10-22
JP5191904B2 (ja) 2013-05-08
EP1982488B1 (en) 2011-06-15
CA2637732A1 (en) 2007-07-26
ATE513400T1 (de) 2011-07-15
ES2366744T3 (es) 2011-10-25
ITBO20060031A1 (it) 2007-07-19
US8107554B2 (en) 2012-01-31
CN101375568A (zh) 2009-02-25
WO2007082892A1 (en) 2007-07-26
CN101375568B (zh) 2011-08-17
KR101293131B1 (ko) 2013-08-12

Similar Documents

Publication Publication Date Title
JP5191904B2 (ja) チェックプローブのためのタイミング測定
EP1585223B1 (en) Method and circuit for determining a slow clock calibration factor
US5565893A (en) Coordinate input apparatus and method using voltage measuring device
JP4932099B2 (ja) 電池交換時期判別方法及び電池交換時期判別装置
JP2007073954A5 (ja)
WO2005000591A1 (ja) 消耗品の残存量を計測可能な消耗品容器
WO2008114044A1 (en) Droplet spray generation device
KR20170082449A (ko) 위치 지시기 및 위치 지시 방법
JP2009523620A5 (ja)
JP3636097B2 (ja) 無線通信装置及びその受信タイミング推定方法
KR100450537B1 (ko) 부품공급기 및 그 제어방법
KR102120410B1 (ko) 액츄에이터 제어장치 및 방법
JP4827832B2 (ja) タイヤ圧力検知システム及びタイヤ圧力検知装置
JP2004261982A (ja) 消耗品の残存量を計測可能な消耗品容器
JP6754954B2 (ja) 端末機および端末機の制御方法、並びにこの端末機を用いた無線通信システム
JP2004355098A (ja) 超音波座標入力装置及び超音波座標入力方法
JP5573956B2 (ja) 低電力動作型ループ式車両検知装置
JP2016080397A (ja) ユーザ検出方法、ユーザ検出装置および画像形成装置
JP2011232915A (ja) タイマ
JP6296831B2 (ja) 電子時計および歩度測定器
JPH0583876A (ja) 二次電池の充電方法
JP2004261971A (ja) 消耗品の残存量を計測可能な消耗品容器
JPH08274845A (ja) マイクロコンピュータのスタンバイ時間調整装置
JP2012220276A (ja) 電子制御装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

R150 Certificate of patent or registration of utility model

Ref document number: 5191904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees