JP2009289887A - 金属用研磨液、化学的機械的研磨方法、および新規化合物 - Google Patents

金属用研磨液、化学的機械的研磨方法、および新規化合物 Download PDF

Info

Publication number
JP2009289887A
JP2009289887A JP2008139397A JP2008139397A JP2009289887A JP 2009289887 A JP2009289887 A JP 2009289887A JP 2008139397 A JP2008139397 A JP 2008139397A JP 2008139397 A JP2008139397 A JP 2008139397A JP 2009289887 A JP2009289887 A JP 2009289887A
Authority
JP
Japan
Prior art keywords
group
polishing
metal
general formula
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008139397A
Other languages
English (en)
Inventor
Hiroshi Inada
寛 稲田
Susumu Yoshikawa
将 吉川
Tadashi Inaba
正 稲葉
Makoto Kikuchi
信 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008139397A priority Critical patent/JP2009289887A/ja
Publication of JP2009289887A publication Critical patent/JP2009289887A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

【課題】半導体ウエハの化学的機械的研磨において、高い研磨速度、低ディッシングならびにディフェクトの低減を可能とする金属用研磨液を提供する。
【解決手段】下記一般式(1)で表される化合物、酸化剤、および有機酸を含有することを特徴とする金属用研磨液(一般式(1)中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。但し、R、R、R、R、R、およびRの全てが水素原子となることはない。)。
Figure 2009289887

【選択図】なし

Description

本発明は、半導体デバイスの製造工程において、化学的機械的な平坦化を行う際に用いられる金属用研磨液、該金属用研磨液を用いた化学的機械的研磨方法、および、前記金属用研磨液に好適な新規化合物に関する。
近年、半導体集積回路(以下LSIと記す)で代表される半導体デバイスの開発においては、小型化・高速化のため、近年配線の微細化と積層化による高密度化・高集積化が求められている。このための技術として化学的機械的研磨(Chemical Mechanical Polishing、以下CMPとも記す)などの種々の技術が用いられてきている。
このCMPは層間絶縁膜などの被加工膜の表面平坦化、プラグ形成、埋め込み金属配線の形成などを行う場合に必須の技術であり、この技術を用いて、基板の平滑化や配線形成時の余分な金属薄膜の除去を行っている(特許文献1および2参照。)。
CMPの一般的な方法は、円形の研磨常盤(プラテン)上に研磨パッドを貼り付け、研磨パッド表面を研磨液で浸して、パッドに基板(ウエハ)の表面を押しつけ、その裏面から所定の圧力(研磨圧力)を加えた状態で、研磨常盤および基板の双方を回転させ、発生する機械的摩擦により基盤の表面を平坦化するものである。
CMPに用いる金属用研磨溶液は、一般には、砥粒(例えばアルミナ、シリカ)と酸化剤(例えば過酸化水素)とが含まれる。基本的なメカニズムは、酸化剤によって金属表面を酸化し、その酸化皮膜を砥粒で除去することで研磨していると考えられており、その方法は、例えば、非特許文献1に記載されている。
しかしながら、このような固体砥粒を含む金属用研磨液を用いてCMPを行うと、研磨傷(スクラッチ)、研磨面全体が必要以上に研磨される現象(シニング)、研磨金属面が皿上にたわむ現象(ディッシング)、金属配線間の絶縁体が必要以上に研磨されたうえ、配線金属面が皿上にたわむ現象(エロージョン)などが発生することがある。
これらの弊害、特にディッシングを抑止する手段として、例えば、特許文献3および4には、1,2,3−ベンゾトリアゾールや2−アミノチアゾールを研磨液に含ませることが効果的であるとの記載がある。また、特許文献5には、ベンゾトリアゾール誘導体がディッシング低減に効果的であるとの記載がある。
米国特許4944836号明細書 特開平2−278822号公報 特開平8−64594号公報 特開平8−83780号公報 特開平2005−116987号公報 ジャーナル・オブ・エレクトロケミカルソサエティ誌(Journal of Electrochemical Society)、1991年、第138巻、第11号、3460〜3464頁
しかしながら、本発明者がディッシング現象に対して研究を行ったところ、1,2,3−ベンゾトリアゾールやその誘導体、2−アミノチアゾールでは、ディッシング現象の抑止は十分に改良されないことを見出した。さらに、被研磨面に生じる欠陥(ディフェクト)の改良も不十分であることが判明した。
そこで、上記のように、高速研磨とディッシングの低減との両立に加え、ディフェクト低減には未だ不十分であり、本発明は、この問題点に鑑みなされたもので、以下の目的を達成することを課題とする。
即ち、本発明の目的は、被研磨体(ウエハ)を研磨する際に、高い研磨速度と低ディッシングとの両立に加え、ディフェクトの低減をも可能とする金属用研磨液、およびそれを用いた化学的機械的研磨方法を提供することにある。
また、本発明の他の目的は、半導体デバイス製造工程における化学的機械的研磨に用いられる上記の金属用研磨液に好適な新規化合物を提供することにある。
本発明者は上記課題に対し鋭意検討した結果、下記の金属用研磨液およびそれを用いた研磨方法により、前記課題を解決しうることを見出し、本発明を完成するに至った。
本発明の金属用研磨液およびそれを用いた研磨方法、および、それに好適に用いられる新規化合物は、以下の通りである
<1> 半導体デバイス製造工程における化学的機械的研磨に用いられ、下記一般式(1)で表される化合物、酸化剤、および有機酸を含有することを特徴とする金属用研磨液。
Figure 2009289887
上記一般式(1)中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとR、RとR、またはRとRは、互いに連結して環を形成してもよい。但し、R、R、R、R、R、およびRの全てが水素原子となることはない。
<2> 前記一般式(1)中、R、R、R、R、R、およびRのうち少なくとも一つがヘテロ環基であることを特徴とする<1>に記載の金属用研磨液。
<3> 前記ヘテロ環基が、イミダゾール、1,2,4−トリアゾール、テトラゾール、またはベンズイミダゾールから一個の水素原子を取り除いた一価の基であることを特徴とする<1>または<2>に記載の金属用研磨液。
<4> 前記一般式(1)中のR、R、R、R、R、およびRのうち一つがヘテロ環基であり、かつ、それ以外が、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする<2>または<3>に記載の金属用研磨液。
<5> 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基であることを特徴とする<4>に記載の金属用研磨液。
<6> 前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする<1>に記載の金属用研磨液。
Figure 2009289887
上記一般式(2)中、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとRまたはRとRは、互いに連結して環を形成してもよい。
<7> 前記一般式(2)中、R、R、R、およびRが、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする<6>に記載の金属用研磨液。
<8> 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基である<7>に記載の金属用研磨液。
<9> 下記一般式(3)で表される界面活性剤をさらに含有することを特徴とする<1>〜<8>のいずれか1項に記載の金属用研磨液。
R−Ar−O−Ar−SO 一般式(3)
上記一般式(3)中、Rは、炭素数8〜20の直鎖または分岐のアルキル基を表す。Arは、アリール基を表す。Mは、水素イオン、アルカリ金属イオン、またはアンモニウムを表す。
<10> 砥粒をさらに含有することを特徴とする<1>〜<9>のいずれか1項に記載の金属用研磨液。
<11> 前記砥粒が、一次粒子径が20nm〜40nmであり、かつ、会合度が2以下のコロイダルシリカであること特徴とする<10>に記載の金属用研磨液。
<12> 前記コロイダルシリカが、表面のケイ素原子の少なくとも一部がアルミニウム原子で修飾されているコロイダルシリカであること特徴とする<11>に記載の金属用研磨液。
<13> 前記有機酸が、アミノ酸であることを特徴とする<1>〜<12>のいずれか1項に記載の金属用研磨液。
<14> <1>〜<13>のいずれか1項に記載の金属用研磨液を、研磨定盤上の研磨パッドに供給し、該研磨定盤を回転させることで、該研磨パッドを被研磨体の被研磨面と接触させつつ相対運動させて研磨することを特徴とする化学的機械的研磨方法。
<15> 下記一般式(2)で表される化合物。
Figure 2009289887
上記一般式(2)中、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとRまたはRとRは、互いに連結して環を形成してもよい。
<16> 前記一般式(2)中、R、R、R、およびRが、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする<15>に記載の化合物。
<17> 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基である<16>に記載の化合物。
本発明によれば、被研磨体(ウエハ)を研磨する際に、高い研磨速度と低ディッシングとの両立に加え、ディフェクトの低減をも可能とする金属用研磨液、およびそれを用いた化学的機械的研磨方法を提供することができる。
また、本発明によれば、半導体デバイス製造工程における化学的機械的研磨に用いられる上記の金属用研磨液に好適な新規化合物を提供することができる。
以下、本発明の金属用研磨液、化学的機械的研磨方法、新規化合物の具体的態様について説明する。
<金属用研磨液>
本発明の金属用研磨液は、半導体デバイス製造における化学的機械的研磨に用いる研磨液であって、一般式(1)で表される化合物、酸化剤、および有機酸を含有することを特徴とする金属用研磨液である。
以下に各成分について詳細に説明する。
なお、本発明の金属用研磨液を構成する各成分については、それぞれの成分は1種のみを用いてもよく、2種以上を併用してもよい。
なお、本発明において「金属用研磨液」とは、研磨に使用する組成(濃度)の研磨液のみならず、使用時に必要により希釈して用いる研磨濃縮液も本発明では特に断りのない限り、研磨液と称する。濃縮液は研磨に使用する際に、水または水溶液などで希釈して、研磨に使用されるもので、希釈倍率は一般的には1〜20体積倍である。
<一般式(1)で表される化合物>
本発明の金属用研磨液は、下記一般式(1)で表される化合物(以下、適宜、「特定含窒素化合物」と称する。)を含有する。
Figure 2009289887
上記一般式(1)中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとR、RとR、またはRとRは、互いに連結して環を形成してもよい。但し、R、R、R、R、R、およびRの全てが水素原子となることはない。
一般式(1)中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。但し、R、R、R、R、RおよびRの全てが水素原子となることはない。
前記脂肪族炭化水素基としては、炭素数1〜30、好ましくは炭素数1〜10の直鎖、分岐、または環状のアルキル基が挙げられ、これらは置換基を有していてもよい。
直鎖、分岐の置換または無置換のアルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、エイコシル基、カルボキシメチル基、スルホキシメチル基、2−クロロメチル基、2−ブロモメチル基、ヒドロキシメチル基、2−ヒドロキシエチル基、2−シアノエチル基、または2−エチルヘキシル基などを挙げることができる。
また、環状のアルキル基には置換または無置換のシクロアルキル基が含まれ、この例としては、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基、4−ヒドロキシシクロヘキシル基などを挙げることができる。
前記アリール基としては、炭素数6〜30、好ましくは炭素数6〜15の置換または無置換のアリール基が挙げられる。
具体的には、例えば、フェニル、p−トリル、ナフチル、m−クロロフェニル、o−ヘキサデカノイルアミノフェニル、5−ベンゾトリアゾリルなどが挙げられる。
前記ヘテロ環基としては、5員または6員の芳香族非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基が挙げられ、これらは置換基を有していてもよく、また、縮環していてもよい。
ヘテロ環基の例には、置換位置(水素原子を取り除いた位置)を限定しないで例示すると、ピリジン、ピラジン、ピリダジン、ピリミジン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ベンズオキサゾール、チアゾール、テトラゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾール、イソオキサゾール、ベンズイソオキサゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジン、チアゾリンなどのヘテロ環化合物から一個の水素原子を取り除いた一価の基が挙げられる。
一般式(1)中のR、R、R、R、R、およびRとしては、高い研磨速度と低ディッシングとをより効率良く両立できるという観点から、少なくとも一つがヘテロ環基であることが好ましい。また、R、R、R、R、R、およびRのうち1つから2つがヘテロ環基であることが好ましい。
この場合、ヘテロ環基として好ましくは、ピラゾール、イミダゾール、1,2,4−トリアゾール、テトラゾール、ベンズイミダゾール、ベンゾトリアゾールから一個の水素原子を取り除いた一価の基であり、より好ましくは1,2,4−トリアゾール、テトラゾールから一個の水素原子を取り除いた一価の基である。
一般式(1)において、R、R、R、R、R、およびRのうち一つがヘテロ環基であり、かつ、それ以外が、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることが、高い研磨速度と低ディッシングとをより効率良く両立でき、ディフェクトの低減を達成する観点から、好ましい。また、この態様の中でも、RとR、RとR、およびRとRは、いずれも一方がヘテロ環基、または親水性基を有する脂肪族炭化水素基であることが好ましい。
ここで、親水性基としては、一般式(1)で表される化合物の水溶性を高めるための官能基であり、具体的には、カルボキシ基、スルホキシ基、水酸基、アミノ基、3−カルボキシ−2−ヒドロキシプロピル基等が挙げられる。中でも、高い研磨速度と低ディッシングとの両立に加え、ディフェクト低減の点から、水酸基が好ましい。
親水性基を有する脂肪族炭化水素基の例としては、カルボキシメチル基、スルホキシエチル基、ヒドロキシメチル基、2−ヒドロキシエチル基、ビス(ヒドロキシメチル)メチル基、トリス(ヒドロキシメチル)メチル基などが挙げられ、好ましくは、カルボキシメチル基、ヒドロキシメチル基、1,2−ジヒドロキシプロピル基、2−ヒドロキシエチル基、ビス(ヒドロキシメチル)メチル基、トリス(ヒドロキシメチル)メチル基であり、より好ましくは、1,2−ジヒドロキシプロピル基、2−ヒドロキシエチル基、ビス(ヒドロキシメチル)メチル基、トリス(ヒドロキシメチル)メチル基である。
一般式(1)において、RとR、RとR、またはRとRは、互いに連結して環を形成してもよい。形成される環としては、ピリジン、ピペリジン、ピペラジン、モルホリン等が挙げられる。
本発明においては、一般式(1)で表される化合物の中でも、下記一般式(2)で表される化合物(本発明の新規化合物)が好ましい。
Figure 2009289887
上記一般式(2)中、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとRまたはRとRは、互いに連結して環を形成してもよい。
一般式(2)におけるR、R、R、およびRは、前記一般式(1)におけるR、R、R、およびRと同義であり、好ましい例も同様である。
一般式(2)において、R、R、R、およびRは、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることが好ましい。また、この態様の中でも、RとR、およびRとRは、いずれも一方が親水性基を有する脂肪族炭化水素基であることが好ましい。
また、親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基であることがより好ましい。
以下に、本発明の一般式(1)で表される化合物の具体例〔例示化合物(A−1)〜(A−15)〕を挙げるが、本発明はこれに限定されるものではない。
Figure 2009289887
Figure 2009289887
本発明で用いる一般式(1)で表される化合物(特定含窒素化合物)の含有量は、総量として、研磨に使用する際の金属用研磨液1L中、1×10−8mol〜1×10−1molが好ましく、より好ましくは1×10−7mol〜1×10−2molで、さらに好ましくは1×10−6mol〜1×10−3molの範囲である。上記範囲内であれば、より優れた研磨速度と低ディッシングとが達成され、さらには低ディフェクトとなることから好ましい。
<酸化剤>
本発明の金属用研磨液は、研磨対象の金属を酸化できる化合物(酸化剤)を含有する。具体的には、過酸化水素、過酸化物、硝酸塩、ヨウ素酸塩、過ヨウ素酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、過硫酸塩、重クロム酸塩、過マンガン酸塩、オゾン水、銀(II)塩、鉄(III)塩が挙げられるが、中でも、研磨速度とディッシングにより優れるという観点から、過酸化水素がより好ましく用いられる。これらは、単独で用いてもよく、2種以上を併用してもよい。
酸化剤の含有量は、研磨に使用する際の金属用研磨液の1L中、0.003mol〜8molが好ましく、0.03mol〜6molがより好ましく、0.1mol〜4molが特に好ましい。即ち、酸化剤の含有量は、金属の酸化が十分で高いCMP速度を確保する点で0.003mol以上が好ましく、研磨面の荒れ防止の点から8mol以下が好ましい。
<有機酸>
本発明に係る金属用研磨液は、有機酸を含有する。ここでいう有機酸は、金属の酸化剤ではなく、酸化の促進、pH調整、緩衝剤としての作用を有する。つまり、前述の金属を酸化するための酸化剤とは構造の異なる化合物であり、前述の酸化剤として機能する酸を含有するものではない。
有機酸は単独で用いてもよいし、2種以上併用してもよい。
有機酸の一例であるアミノ酸としては、水溶性のものが好ましい。
具体的には、以下の群から選ばれたものがより適している。即ち、グリシン、L−アラニン、β−アラニン、L−2−アミノ酪酸、L−ノルバリン、L−バリン、L−ロイシン、L−ノルロイシン、L−イソロイシン、L−アロイソロイシン、L−フェニルアラニン、L−プロリン、サルコシン、L−オルニチン、L−リシン、タウリン、L−セリン、L−トレオニン、L−アロトレオニン、L−ホモセリン、L−チロシン、3,5−ジヨード−L−チロシン、β−(3,4−ジヒドロキシフェニル)−L−アラニン、L−チロキシン、4−ヒドロキシ−L−プロリン、L−システィン、L−メチオニン、L−エチオニン、L−ランチオニン、L−シスタチオニン、L−シスチン、L−システィン酸、L−アスパラギン酸、L−グルタミン酸、S−(カルボキシメチル)−L−システィン、4−アミノ酪酸、L−アスパラギン、L−グルタミン、アザセリン、L−アルギニン、L−カナバニン、L−シトルリン、δ−ヒドロキシ−L−リシン、クレアチン、L−キヌレニン、L−ヒスチジン、1−メチル−L−ヒスチジン、3−メチル−L−ヒスチジン、エルゴチオネイン、L−トリプトファン、アクチノマイシンC1、アパミン、アンギオテンシンI、アンギオテンシンII、およびアンチパインなどが挙げられる。
アミノ酸以外の有機酸としても、水溶性のものが望ましい。
具体的には、以下の群から選ばれたものがより適している。即ち、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ヒドロキシエチルイミノ二酢酸、イミノ二酢酸、アセドアミドイミノ二酢酸、ニトリロ三プロパン酸、ニトリロ三メチルホスホン酸、ジヒドロキシエチルグリシン、トリシン、およびそれらのアンモニウム塩やアルカリ金属塩などの塩、硫酸、硝酸、アンモニア、アンモニウム塩類、またはそれらの混合物などが挙げられる。
本発明においては、上記の有機酸の中でも、グリシン、イミノ二酢酸、メチルイミノ二酢酸、n−メチルグリシン、ニトリロ三プロパン酸、ヒドロキシエチルイミノ二酢酸、β−アラニン、グリシルグリシン、ジヒドロキシエチルグリシン、アセドアミドイミノ二酢酸、トリシンが、実用的なCMP速度を維持しつつ、エッチング速度を効果的に抑制できるという点で好ましい。
有機酸の含有量は、研磨に使用する際の金属用研磨液の1L中、0.005〜0.5molが好ましく、0.01〜0.3molがより好ましく、0.05〜0.3molが特に好ましい。即ち、有機酸の含有量は、研磨速度向上の点で0.005mol以上が好ましく、ディッシングを悪化させない点で0.5mol以下が好ましい。
<一般式(3)で表される界面活性剤>
本発明の金属用研磨液は、さらにディッシングを低減する目的で、下記一般式(3)で表される界面活性剤を含有することが好ましい。
R−Ar−O−Ar−SO 一般式(3)
一般式(3)におけるRは、炭素数8〜20の直鎖または分岐のアルキル基を表す。このアルキル基としては、炭素数10〜20が好ましく、炭素数12〜20がより好ましい。なお、Rで表されるアルキル基は、直鎖、および分岐のいずれであってもよいが、直鎖であるものが好ましい。
Rで表されるアルキル基として、具体的には、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基が挙げられ、中でもディッシング現象をより抑制できるという観点から、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基、ノナデシル基、エイコシル基が好ましい。
一般式(3)におけるArは、アリール基を表す。Arで表されるアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル等が挙げられ、中でもディッシング現象をより抑制できるという観点から、フェニル基が好ましい。
なお、一般式(3)中に存在する複数のArは、同じであっても異なっていてもよく、同じものであることが好ましい。
上記アルキル基、または、アリール基は、さらに置換基を有していてもよい。導入可能な置換基としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、またはヨウ素原子)、アルキル基(直鎖、分岐または環状のアルキル基であり、ビシクロアルキル基のように多環アルキル基であっても、活性メチン基を含んでもよい)、アルケニル基、アルキニル基、アリール基、ヘテロ環基(置換する位置は問わない)、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基(置換基を有するカルバモイル基としては、例えば、N−ヒドロキシカルバモイル基、N−アシルカルバモイル基、N−スルホニルカルバモイル基、N−カルバモイルカルバモイル基、チオカルバモイル基、N−スルファモイルカルバモイル基)、カルバゾイル基、カルボキシ基またはその塩、オキサリル基、オキサモイル基、シアノ基、カルボンイミドイル基、ホルミル基、ヒドロキシ基、アルコキシ基(エチレンオキシ基もしくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、アシルオキシ基、(アルコキシまたはアリールオキシ)カルボニルオキシ基、カルバモイルオキシ基、スルホニルオキシ基、アミノ基、(アルキル、アリール、またはヘテロ環)アミノ基、アシルアミノ基、スルホンアミド基、ウレイド基、チオウレイド基、N−ヒドロキシウレイド基、イミド基、(アルコキシまたはアリールオキシ)カルボニルアミノ基、スルファモイルアミノ基、セミカルバジド基、チオセミカルバジド基、ヒドラジノ基、アンモニオ基、オキサモイルアミノ基、N−(アルキルまたはアリール)スルホニルウレイド基、N−アシルウレイド基、N−アシルスルファモイルアミノ基、ヒドロキシアミノ基、ニトロ基、4級化された窒素原子を含むヘテロ環基(例えば、ピリジニオ基、イミダゾリオ基、キノリニオ基、イソキノリニオ基)、イソシアノ基、イミノ基、メルカプト基、(アルキル、アリール、またはヘテロ環)チオ基、(アルキル、アリール、またはヘテロ環)ジチオ基、(アルキルまたはアリール)スルホニル基、(アルキルまたはアリール)スルフィニル基、スルホ基、スルファモイル基(置換基を有するスルファモイル基としては、例えば、N−アシルスルファモイル基、N−スルホニルスルファモイル基)、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基などが挙げられる。
これらの中でも、高い研磨速度と低ディッシングとをより効果的に両立させることができるという観点から、アルキル基やスルホ基が好ましい。
さらに、一般式(3)におけるMは、水素イオン、アルカリ金属イオン、またはアンモニウムを表す。
で表されるアルカリ金属イオンとしては、ナトリウムイオン、カリウムイオンが好ましく、ナトリウムイオンがより好ましい。
また、Mで表されるアンモニウム(NH )には、アンモニウムの水素原子をアルキル基で置換したものも含まれる。例えば、メチルアンモニウム、エチルアンモニウムなどが挙げられる。
としては、より好ましくは、水素イオン、またはアンモニウムであり、特に、水素イオンが好ましい。
一般式(3)で表される界面活性剤として、具体的には、ドデシルジフェニルエーテルジスルホン酸、テトラデシルジフェニルエーテルジスルホン酸、ヘキサデシルジフェニルエーテルジスルホン酸、オクタデシルジフェニルエーテルジスルホン酸、エイコシルジフェニルエーテルジスルホン酸などのアルキルジフェニルエーテルジスルホン酸およびその塩、ドデシルジフェニルエーテルモノスルホン酸、テトラデシルジフェニルエーテルモノスルホン酸、ヘキサデシルジフェニルエーテルモノスルホン酸、オクタデシルモノフェニルエーテルジスルホン酸、エイコシルモノフェニルエーテルジスルホン酸などのアルキルジフェニルエーテルモノスルホン酸およびその塩、ドデシルジナフチルエーテルジスルホン酸、ドデシルジアントリルエーテルジスルホン酸、ドデシルジナフチルエーテルモノスルホン酸、ドデシルジアントリルエーテルモノスルホン酸、およびそれらの塩などが挙げられる。
中でも、一般式(3)で表される界面活性剤としては、ディッシングを低減する点から、アルキルジフェニルエーテルジスルホン酸もしくはその塩を含むことが好ましく、また、アルキルジフェニルエーテルジスルホン酸とアルキルジフェニルエーテルモノスルホン酸との混合物、もしくは、これらの塩の混合物であることが好ましい。
なお、上記のような混合物である場合、アルキルジフェニルエーテルモノスルホン酸が混合物中10モル%以上含まれることが好ましく、より好ましくは30モル%以上含まれ、さらに好ましくは50モル%以上含まれる。
一般式(3)で表される界面活性剤は、使用する際の金属用研磨液中、0.0001質量%〜0.1質量%含まれることが好ましく、0.0005質量%〜0.05質量%含まれることがより好ましく、0.001質量%〜0.01質量%含まれるがさらに好ましい。
一般式(3)で表される界面活性剤の合成方法は、特に限定されず、市販品を好ましく用いることができる。
<その他の界面活性剤、親水性ポリマー>
本発明の金属用研磨液は、前記一般式(3)で表される界面活性剤の他に、以下のような界面活性剤や、親水性ポリマーを用いることができる。
本発明における界面活性剤と親水性ポリマーは、いずれも被研磨面の接触角を低下させる作用を有して、均一な研磨を促す作用を有する。
なお、以下のような各種の界面活性剤や親水性ポリマーを、前記一般式(3)で表される界面活性剤と併用してもよい。
陰イオン界面活性剤としては、例えば、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられる。
陽イオン界面活性剤としては、例えば、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩が挙げられる。
両性界面活性剤としては、例えば、カルボキシベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げられる。
非イオン界面活性剤としては、例えば、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられる。
また、フッ素系界面活性剤も用いることもできる。
また、親水性ポリマーとしては、ポリエチレングリコールなどのポリグリコール類、ポリビニルアルコール、ポロビニルピロリドン、アルギン酸などの多糖類、ポリメタクリル酸等のカルボン酸含有ポリマーなどが挙げられる。
なお、上記のものは、酸またはそのアンモニウム塩の方が、アルカリ金属、アルカリ土類金属、ハロゲン化物などによる汚染がなく望ましい。上記例示化合物の中でも、高い研磨速度と低ディッシングとをより効果的に両立させることができるという観点から、シクロヘキサノール、ポリアクリル酸アンモニウム塩、ポリビニルアルコール、コハク酸アミド、ポロビニルピロリドン、ポリエチレングリコール、ポリオキシエチレンポリオキシプロピレンブロックポリマーがより好ましい。
これらの界面活性剤や親水性ポリマーの重量平均分子量としては、500〜100000が好ましく、特には2000〜50000が好ましい。
前記一般式(3)で表される界面活性剤以外の界面活性剤および/または親水性ポリマーの含有量は、使用する際の金属用研磨液中、0.0001質量%〜1.0質量%含まれることが好ましく、0.0005質量%〜0.5質量%含まれることがより好ましく、0.001質量%〜0.1質量%含まれるがさらに好ましい。上記範囲内であれば、高い研磨速度と低ディッシングとをより効果的に両立させることができるという観点から好ましい。
<砥粒>
本発明の金属用研磨液は、研磨効果に優れるという観点から、さらに砥粒を含有することが好ましい。
好ましい砥粒としては、例えば、シリカ(沈降シリカ、フュームドシリカ、コロイダルシリカ、合成シリカ)、セリア、アルミナ、チタニア、ジルコニア、ゲルマニア、酸化マンガン、炭化ケイ素、ポリスチレン、ポリアクリル、ポリテレフタレートなどが挙げられる。特に、コロイダルシリカを用いると、本発明の顕著な効果である高い研磨速度と低ディッシングとをより効果的に両立させることができ好ましい。
砥粒の平均粒径としては5〜1000nmが好ましい。特に、平均粒径が10〜200nmの砥粒を用いると本発明の効果が顕著に得られ、好ましい。
本発明における砥粒としては、一次粒子径が20nm〜40nmであり、かつ、会合度が2以下のコロイダルシリカ(以下、適宜、「特定コロイダルシリカ」と称する。)が好適に用いられる。このようなコロイダルシリカを含有する場合、高い研磨速度と低ディッシングとをより効果的に両立させることができ、好ましい。
特定コロイダルシリカは、一次粒子径が20nm〜40nmであり、好ましくは20nm〜30nmである。コロイダルシリカ粒子の一次粒子径は小さすぎると、研磨パッドの空孔に目詰まりが起こり、研磨速度が低下することがある。また、ディッシング低減効果が顕著に発現する点で40nm以下が好ましい。
ここで、本発明におけるコロイダルシリカ粒子の一次粒子径とは、コロイダルシリカ粒子の粒子径と、その粒子径を持つ粒子数を積算した累積度数と、の関係を示す粒度累積曲線を求め、この曲線の累積度数が50%のポイントでの粒子径を意味するものである。
なお、このコロイダルシリカ粒子の粒子径は、動的光散乱法から得られた粒度分布において求められる平均粒子径を表す。例えば、粒度分布を求める測定装置しては堀場製作所製LB−500などが用いられる。
会合度とは、一次粒子が凝集してなる二次粒子の径を一次粒子の径で除した値(二次粒子の径/一次粒子の径)を意味する。会合度が1とは、単分散した一次粒子のみのものを意味する。なお、二次粒子径は電子顕微鏡で測定することができ、撮影された写真画像内の2個以上の二次粒子の直径を計測し、それらの値を平均した値である。
本発明における特定コロイダルシリカは、表面の珪素原子の少なくとも一部がアルミニウム原子で修飾されているコロイダルシリカであることが好ましい。このように、表面の珪素原子の少なくとも一部がアルミニウム原子で修飾されているコロイダルシリカを用いることにより、ディッシングのより一層の低減が可能となる。
本発明において「表面の珪素原子の少なくとも一部がアルミニウムで修飾されているコロイダルシリカ」とは、配位数4の珪素原子を含むサイトを有するコロイダルシリカ表面に、アルミニウム原子が存在している状態を意味するものである。該コロイダルシリカ表面に4個の酸素原子が配位したアルミニウム原子が結合し、アルミニウム原子が4配位の状態で固定された新たな表面が生成した状態であってもよく、また、表面に存在する珪素原子が一旦引き抜かれて、アルミニウム原子と置き換わった新たな表面が生成した状態であってもよい。
特定コロイダルシリカの調製に用いられるコロイダルシリカとしては、粒子内部にアルカリ金属などの不純物を含有しない、アルコキシシランの加水分解により得たコロイダルシリカであることがより好ましい。一方、ケイ酸アルカリ水溶液からアルカリを除去する方法で製造したコロイダルシリカも用いることができるものの、この場合、粒子の内部に残留するアルカリ金属が徐々に溶出し、研磨性能に影響を及ぼす懸念があるため、そのような観点からは、上記アルコキシシランの加水分解により得られたものが原料としてはより好ましい。
このようなコロイダルシリカ粒子表面のケイ素原子をアルミニウム原子に修飾し、特定コロイダルシリカを得る方法としては、例えば、コロイダルシリカの分散液にアルミン酸アンモニウムなどのアルミン酸化合物を添加する方法を好適に用いることができ、より具体的には、アルミン酸アルカリ水溶液を添加して得られたシリカゾルを80〜250℃で0.5〜20時間加熱し、陽イオン交換樹脂または陽イオン交換樹脂と陰イオン交換樹脂に接触させる方法、酸性珪酸液とアルミニウム化合物水溶液をSiO含有アルカリ水溶液またはアルカリ金属水酸化物水溶液に添加する方法、またはアルミニウム化合物が混在する酸性珪酸液をSiO含有アルカリ水溶液またはアルカリ金属水酸化物水溶液に添加する方法、によって調製したアルミニウム化合物含有アルカリ性シリカゾルを陽イオン交換樹脂で処理して脱アルカリする方法が挙げられる。これらの方法は、特許第3463328号公報、特開昭63−123807号公報に詳細に記載され、この記載を本発明に適用することができる。
また、その他の方法として、コロイダルシリカの分散液にアルミニウムアルコキシドを添加する方法が挙げられる。ここで用いるアルミニウムアルコキシドは如何なるものでもよいが、好ましくは、アルミニウムイソプロポキシド、アルミニウムブトキシド、アルミニウムメトキシド、アルミニウムエトキシドであり、特に好ましくはアルミニウムイソプロポキシド、アルミニウムブトキシドである。
特定コロイダルシリカは、4配位のアルミン酸イオンとコロイダルシリカ表面のシラノール基との反応によって生成したアルミノシリケイトサイトが負の電荷を固定し、粒子に負の大きなゼータポテンシャルを与えることによって、酸性においても分散性に優れている。したがって、前述の如き方法によって製造した特定コロイダルシリカは、アルミニウム原子が4個の酸素原子に配位された状態で存在することが重要である。
このような構造、すなわちコロイダルシリカ表面においてケイ素原子とアルミニウム原子との修飾が生じていることは、例えば、砥粒のゼータ電位を測定することによって容易に確認することができる。
コロイダルシリカ表面の珪素原子をアルミニウム原子に修飾する場合の、アルミニウム原子への修飾量は、コロイダルシリカ分散液に添加するアルミン酸化合物、アルミニウムアルコキシドなどの添加量(濃度)を制御することにより、適宜制御することができる。
ここで、コロイダルシリカ表面へのアルミニウム原子の導入量(導入アルミニウム原子数/表面珪素原子サイト数)は、分散液中に添加したアルミニウム系化合物のうち、反応後に残存する未反応アルミニウム系化合物から消費されたアルミニウム系化合物の量を算出し、それらが100%反応したと仮定し、コロイダルシリカ直径から換算される表面積、コロイダルシリカの比重2.2、および、単位表面積あたりのシラノール基数(5〜8個/nm)から見積もることができる。実際の測定は、得られた特定コロイダルシリカ自体を元素分析し、アルミニウムが粒子内部に存在せず、表面に均一に薄くひろがると仮定し、上記コロイダルシリカの表面積/比重、および、単位表面積あたりのシラノール基数を用いて求める。
表面の珪素原子の少なくとも一部がアルミニウムで修飾されているコロイダルシリカの具体的な製法例を挙げる。まず、コロイダルシリカを5〜25質量%の範囲で水に分散させた分散液を調製する。該分散液にpH調整剤を加えてpHを5〜11に調整し、その後、攪拌しながらAl濃度3.6質量%、NaO/Alモル比1.50のアルミン酸ナトリウム水溶液15.9gを数分以内にゆっくり添加し0.5時間攪拌する。その後、溶媒を除去して、特定コロイダルシリカを得る。
上述の砥粒の含有量としては、使用する際の金属用研磨液の全質量に対して0.01質量%〜20質量%が好ましく、0.05質量%〜5質量%がより好ましい。研磨速度の向上とウエハ面内の研磨速度のばらつき低減における充分な効果を得る上で0.01質量%以上が好ましく、CMPによる研磨速度が飽和するため20質量%以下が好ましい。
本発明の金属用研磨液における特定コロイダルシリカの含有量は、ディッシングやスクラッチなどの低減という観点から、研磨に使用する際の金属用研磨液の全質量に対して、1質量%以下であることが好ましく、より好ましくは0.001質量%以上0.9質量%以下であり、さらに好ましくは0.01質量%以上0.7質量%以下である。
また、金属用研磨液中に、砥粒を含有しないか、濃度0.01質量%未満で砥粒を含有する場合、好ましくはpH3.5以上、特にはpH4.0以上とすることにより、研磨速度とディッシングの特性が向上する。この場合、ポリアクリル酸など前述の親水性ポリマーを含有させることが好ましく、含有量は一般的には金属研磨液の全質量に対して0.0001質量%〜5質量%、好ましくは0.01質量%〜0.5質量%である。
本発明の金属用研磨液には、特定コロイダルシリカに加えて、本発明の効果を損なわない範囲で他の砥粒を含むことができる。
なお、本発明の金属用研磨液に含有される砥粒のうち、特定コロイダルシリカの質量割合は、好ましくは50%以上であり、特に好ましくは80%以上である。含有される砥粒の全てが特定コロイダルシリカであってもよい
本発明の金属研磨液に用いうる砥粒としては、ヒュームドシリカ、コロイダルシリカ、セリア、アルミナ、チタニアなどが好ましく、特に好ましくはコロイダルシリカである。特定コロイダルシリカ以外の砥粒のサイズは、特定コロイダルシリカと同等以上2倍以下であることが好ましい。
<他の成分>
本発明の金属用研磨液は、さらに他の成分を含有してもよく、例えば、pH調整剤、その他の添加剤を挙げることができる。
〔pH調整剤〕
本発明の金属用研磨液は、所定のpHとすべく、酸剤、アルカリ剤、または緩衝剤を含有することが好ましい。
酸剤としては、無機酸が用いられ、この無機酸としては、硫酸、硝酸、ホウ酸、燐酸などが挙げられる。中でも硫酸が好ましい。
アルカリ剤および緩衝剤としては、アンモニア、水酸化アンモニウムおよびテトラメチルアンモニウムハイドロキサイドなどの有機水酸化アンモニウム、ジエタノールアミン、トリエタノールアミン、トリイソプロパノールアミンなどのようなアルカノールアミン類などの非金属アルカリ剤、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどのアルカリ金属水酸化物、炭酸ナトリウムなどの炭酸塩、リン酸三ナトリウムなどのリン酸塩、ホウ酸塩、四ホウ酸塩、ヒドロキシ安息香酸塩などを挙げることができる。
特に好ましいアルカリ剤としては、水酸化アンモニウム、水酸化カリウム、水酸化リチウムおよびテトラメチルアンモニウムハイドロキサイドである。
pH調整剤の含有量としては、pHが好ましい範囲に維持される量であればよく、研磨に使用する際の金属用研磨液の1L中、0.0001mol〜1.0molとすることが好ましく、0.003mol〜0.5molとすることがより好ましい。
研磨に使用する際の金属用研磨液のpHは3〜12が好ましく、より好ましくは4〜9であり、特に5〜8が好ましい。上記酸剤、アルカリ剤、緩衝剤を用いることで、本発明の金属用研磨液のpHを上記好ましい範囲に調整するものである。
〔キレート剤〕
本発明の金属用研磨液は、混入する多価金属イオンなどの悪影響を低減させるために、必要に応じてキレート剤(即ち、硬水軟化剤)を含有していてもよい。
キレート剤としては、カルシウムやマグネシウムの沈澱防止剤である汎用の硬水軟化剤やその類縁化合物を用いることができ、必要に応じてこれらを2種以上併用してもよい。例えば、ニトリロ三酢酸、ジエチレントリアミン五酢酸、エチレンジアミン四酢酸、N,N,N−トリメチレンホスホン酸、エチレンジアミン−N,N,N’,N’−テトラメチレンスルホン酸、トランスシクロヘキサンジアミン四酢酸、1,2−ジアミノプロパン四酢酸、グリコールエーテルジアミン四酢酸、エチレンジアミンオルトヒドロキシフェニル酢酸、エチレンジアミンジ琥珀酸(SS体)、N−(2−カルボキシラートエチル)−L−アスパラギン酸、β−アラニンジ酢酸、2−ホスホノブタン−1,2,4−トリカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、N,N’−ビス(2−ヒドロキシベンジル)エチレンジアミン−N,N’−ジ酢酸、1,2−ジヒドロキシベンゼン−4,6−ジスルホン酸などが挙げられる。
キレート剤の含有量は混入する多価金属イオンなどの金属イオンを封鎖するのに充分な量であればよく、例えば、研磨に使用する際の金属用研磨液の1L中、0.0003mol〜0.07molとすることが好ましい。
本発明の金属用研磨液は、その製造方法については特に制限されない。例えば、一般式(1)で表される化合物、酸化剤、および有機酸と、必要に応じて使用することができる砥粒、一般式(3)で表される界面活性剤、一般式(3)で表される界面活性剤と併用することができる界面活性剤および親水性ポリマー、その他添加剤、水とを混合ミキサーなどと、をかくはん機を用いて十分に混合することによって製造することができる。また、設定pHに予め調整しておいてから混合する方法、あるいは混合後に設定pHに調整する方法を用いることができる。
また、本発明の金属用研磨液を、酸化剤を含有する構成成分(A)と、一般式(1)で表される化合物および有機酸と、必要に応じて使用することができる砥石などの任意成分と、を含有する構成成分(B)とに分けて製造することもできる。
<化学的機械的研磨方法>
本発明の化学的機械的研磨方法は、本発明の金属用研磨液を研磨定盤上の研磨パッドに供給し、該研磨定盤を回転させることで、該研磨パッドを被研磨体の被研磨面と接触させつつ相対運動させて研磨することを特徴とする。
以下、この化学的機械的研磨方法について詳細に説明する。
〔研磨装置〕
まず、本発明の研磨方法を実施できる装置について説明する。
本発明に適用可能な研磨装置としては、被研磨面を有する被研磨体(半導体基板など)を保持するホルダーと、研磨パッドを貼り付けた(回転数が変更可能なモータ等を取り付けてある)研磨定盤と、を備える一般的な研磨装置が使用でき、例えば、FREX300(荏原製作所)を用いることができる。
〔研磨圧力〕
本発明の研磨方法では、研磨圧力、即ち、被研磨面と前記研磨パッドとの接触圧力は、研磨装置や金属用研磨液の組成によって適宜最適な範囲が選択されるが、3000〜25000Paで研磨を行うことが好ましく、6500〜14000Paで研磨を行うことがより好ましい。これらの範囲内であれば、研磨速度を維持したままの状態で、ウエハ面内の均一性およびパターンの平坦性をより向上させることができる。
〔研磨定盤の回転数〕
本発明の研磨方法では研磨定盤の回転数は、研磨装置や金属用研磨液の組成によって適宜最適な範囲が選択されるが、50〜200rpmで研磨を行うことが好ましく、60〜150rpmで研磨を行うことがより好ましい。これらの範囲内であれば、研磨速度を維持したままの状態で、ウエハ面内の均一性およびパターンの平坦性をより向上させることができる。
なお、研磨用パッドを貼り付けた研磨ヘッドも、研磨装置や金属用研磨液の組成を考慮して適宜最適な範囲で回転させることができる。
〔研磨液の供給方法〕
本発明では対象金属を研磨する間、研磨定盤上の研磨パッドに金属用研磨液をポンプなどで連続的に供給する。この供給量に制限はないが、研磨パッドの表面が常に研磨液で覆われていることが好ましい。
本発明の研磨方法には、濃縮された研磨液に水、または水溶液を加え希釈して用いることもできる。希釈方法としては、例えば、濃縮された研磨液を供給する配管と、水または水溶液を供給する配管と、を途中で合流させて混合し、希釈された研磨液を研磨パッドに供給する方法などを挙げることができる。その場合の混合は、圧力を付した状態で狭い通路を通して液同士を衝突混合する方法、配管中にガラス管などの充填物を詰め液体の流れを分流分離、合流させることを繰り返し行う方法、配管中に動力で回転する羽根を設ける方法など、通常に行われている方法を用いることができる。
また、他の希釈方法としては、研磨液を供給する配管と、水または水溶液を供給する配管とをそれぞれ独立に設け、それぞれから所定量の液を研磨パッドに供給し、研磨パッドと被研磨面の相対運動により混合する方法する方法も本発明に用いることができる。
さらに、1つの容器に、所定量の濃縮された研磨液と、水または水溶液を入れて混合し、所定の濃度に希釈した後に、その混合液を研磨パッドに供給する方法も、本発明に適用することができる。
これらの方法以外に、研磨液が含有すべき成分を少なくとも2つの構成成分に分けて、それらを使用する際に、水または水溶液を加え希釈して研磨パッドに供給する方法も、本発明に用いることができる。この場合、酸化剤を含む成分と、本発明における有機酸を含有する成分と、に分割して供給することが好ましい。
具体的には、酸化剤を1つの構成成分(A)とし、有機酸、添加剤、界面活性剤、砥粒、および水を1つの構成成分(B)とすることが好ましく、それらを使用する際に水または水溶液で構成成分(A)と構成成分(B)を希釈して使用する。この場合、構成成分(A)と構成成分(B)と水または水溶液とをそれぞれ供給する3つの配管が必要であり、3つの配管を研磨パッドに供給する1つの配管に結合し、その配管内で混合してもよく、2つの配管を結合してから他の1つの配管を結合して混合してもよい。例えば、溶解しにくい添加剤を含む構成成分と他の構成成分を混合し、混合経路を長くして溶解時間を確保してから、さらに水または水溶液の配管を結合することで研磨液を供給することも可能である。
また、上記の3つの配管をそれぞれ研磨パッドに導き研磨パッドと被研磨面の相対運動により混合して供給してもよいし、1つの容器に3つの構成成分を混合した後に、その混合液を研磨パッドに供給してもよい。さらに、金属用研磨液を濃縮液とし、希釈水を別にして研磨面に供給してもよい。
〔研磨液の供給量〕
本発明の研磨方法において、研磨液の研磨定盤上への供給量は50ml/min〜500ml/minとすることが好ましく、100ml/min〜300ml/minであることがより好ましい。
〔研磨パッド〕
本発明の研磨方法において用いられる研磨パッドは、特に制限はなく、無発泡構造パッドでも発泡構造パッドでもよい。前者はプラスチック板のように硬質の合成樹脂バルク材をパッドに用いるものである。また、後者はさらに独立発泡体(乾式発泡系)、連続発泡体(湿式発泡系)、2層複合体(積層系)の3つがあり、特には2層複合体(積層系)が好ましい。発泡は、均一でも不均一でもよい。
本発明における研磨パッドは、さらに研磨に用いる砥粒(例えば、セリア、シリカ、アルミナ、樹脂など)を含有したものでもよい。また、それぞれに硬さは軟質のものと硬質のものがあり、どちらでもよく、積層系ではそれぞれの層に異なる硬さのものを用いることが好ましい。材質としては不織布、人工皮革、ポリアミド、ポリウレタン、ポリエステル、ポリカーボネートなどが好ましい。また、研磨面と接触する面には、格子溝/穴/同心溝/らせん状溝などの加工を施してもよい。
〔被研磨体〕
次に、本発明の研磨方法において研磨が施される被研磨体(基板、ウエハ)について説明する。
(配線金属材料)
本発明における被研磨体は、銅または銅合金からなる配線を持つ基板(ウエハ)であることが好ましい。配線金属材料としては、銅合金の中でも銀を含有する銅合金が適している。銅合金に含有される銀含量は、10質量%以下、さらには1質量%以下で優れた効果を発揮し、0.00001〜0.1質量%の範囲である銅合金において最も優れた効果を発揮する。
(配線の太さ)
本発明における被研磨体は、例えば、DRAMデバイス系では、ハーフピッチで、好ましくは0.15μm以下、より好ましくは0.10μm以下、さらに好ましくは0.08μm以下の配線を有することが好ましい。
一方、MPUデバイス系では、好ましくは0.12μm以下、より好ましくは0.09μm以下、さらに好ましくは0.07μm以下の配線を有することが好ましい。
このような配線を有する被研磨体に対して、本発明に使用される研磨液は特に優れた効果を発揮する。
(バリア金属材料)
本発明における被研磨体において、銅配線と絶縁膜(層間絶縁膜を含む)との間には、銅の拡散を防ぐためのバリア層が設けられる。このバリア層を構成するバリア金属材料としては、低抵抗のメタル材料、例えば、TiN、TiW、Ta、TaN、W、WNが好ましく、中でもTa、TaNが特に好ましい。
上述したように、本発明の金属用研磨液は、迅速な研磨速度を有し、本発明の金属用研磨液を用いて研磨を行った場合、ディッシングが少なく、基板の平坦性を向上させることできるので、LSIにおける、コロージョン、スクラッチ、シニング、エロージョンなどの研磨の伴う欠陥の発生を低レベルに維持することが可能となる。
以下に、合成例と実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<合成例1:例示化合物(A−2)の合成>
以下に示すスキームで例示化合物(A−2)を合成した。
Figure 2009289887
シアヌル酸クロリド(1.84g、東京化成工業社製)、および炭酸水素ナトリウム(1.68g、和光純薬社製)を、アセトン(10mL)と水(10mL)との混合液に溶解し、5℃から10℃に冷やしながら、2−エタノールアミン(1.22g、東京化成工業社製)を滴下した。室温に戻した後、アセトンを飛ばし、水(10mL)を加えて2時間加熱還流した。さらに、水酸化カリウム(0.56g、和光純薬社製)、3−アミノ−1,2,4−トリアゾール(0.84g、東京化成工業社製)を加えて8時間加熱還流した。室温まで放冷し、析出した固体を吸引ろ過し、無色固体を0.27g得た。
これをH−NMRとIRを用いて同定した。
<合成例2:例示化合物(A−10)の合成>
以下に示すスキームで例示化合物(A−10)を合成した。
Figure 2009289887
シアヌル酸クロリド(1.84g、東京化成工業社製)、および炭酸水素ナトリウム(1.68g、和光純薬社製)を、アセトン(10mL)と水(10mL)との混合液に溶解し、5℃から10℃に冷やしながら、イミノジエタノール(2.10g、東京化成工業社製)を滴下した。室温に戻した後、アセトンを飛ばし、水(10mL)を加えて2時間加熱還流した。さらに、水酸化カリウム(0.56g、和光純薬社製)、5−アミノーテトラゾール(0.85g、東京化成工業社製)を加えて9時間加熱還流した。室温まで放冷し、析出した固体を吸引ろ過し、無色固体を0.3g得た。
これをH−NMRとIRを用いて同定した。
H−NMR(ジメチルスルホキシド−d、内部標準物質テトラメチルシラン):δ(ppm)3.60(dd、8H);3.67(dd、8H);4.71(s、1H);10.90(s、1H)
<実施例1〜26、比較例1〜3>
下記表1に示す研磨液101〜126(実施例1〜26)、201〜203(比較例1〜3)を調製し、研磨試験および評価を行った。なお、特定含窒素化合物としては、前述した一般式(1)で表される化合物の具体例として挙げた例示化合物を用いた。
<金属用研磨液の調製>
下記組成を混合し、各金属用研磨液を調製した。
・特定含窒素化合物または比較化合物:表1〜3に記載の化合物 0.15mmol/L
・有機酸:表1〜3に記載の化合物 0.26mol/L
・砥粒:表1〜3に記載の砥粒 3.2g/L
・界面活性剤:表1〜3に記載の化合物 0.01g/L
・酸化剤:過酸化水素 12.5g/L
純水を加えて全量を1000mLとし、また、アンモニア水で調整してpH7.5とした。
なお、表1〜3に記載の砥粒であるコロイダルシリカは、表面のケイ素原子の少なくとも一部がアルミニウム原子で修飾されているコロイダルシリカであって、全て市販品(扶桑化学社製)である。また、使用したコロイダルシリカの一次粒子径(表中では単に粒子径と表記)及び会合度は表1〜3に記載の通りである。
なお、表3において、比較化合物1〜3として使用された化合物は下記のものである。
Figure 2009289887
<研磨試験>
以下の条件で研磨を行い、研磨速度およびディッシングの評価を行った。
・研磨装置:FREX300(荏原製作所)
・被研磨体(ウエハ):
(1)研磨速度算出用 :シリコン基板上に厚み1.5μmのCu膜を形成した
直径300mmのブランケットウエハ
(2)ディッシング評価用:直径300mmの銅配線ウエハ(パターンウエハ)
(マスクパターン754CMP(ATDF社))
・研磨パッド:IC1400−K Groove(ロデール社製)
・研磨条件:
研磨圧力(被研磨面と前記研磨パッドとの接触圧力):14000Pa
研磨液供給速度:200ml/min
研磨定盤回転数:104rpm
研磨ヘッド回転数:85rpm
<評価方法>
(研磨速度の算出)
前記(1)のブランケットウエハを60秒間研磨し、ウエハ面上の均等間隔の49箇所に対し、研磨前後での金属膜厚を電気抵抗値から換算して求め、それらを研磨時間で割って求めた値の平均値を研磨速度とした。
(ディッシングの評価)
前記(2)のパターンウエハに対し、非配線部の銅が完全に研磨されるまでの時間に加え、さらにその時間の25%分だけ余分に研磨を行い、ラインアンドスペース部(ライン10μm、スペース10μm)の段差を、接触式段差計DektakV3201(Veeco社製)で測定した。
(ディフェクトの評価)
上記ディッシング評価後の銅膜について、ウェハ欠陥検査装置(アプライド・マテリアルズ社製、形式ComPLUS)を用いて、被研磨面全面あたりの欠陥数を計測した。次いで、ウェハ欠陥検査装置が欠陥としてカウントしたもののうち、ランダムに200個選び出し、そのうちのスクラッチであるものの個数を計測し、下記式により、ウェハ全面あたりのスクラッチ数を計算した。
スクラッチ数(個/面)=ウェハ欠陥検査装置がカウントした全欠陥数(個/面)×200個のうちのスクラッチであるものの数(個)/200(個)を求めた。
上記のようにして得られた結果を下記表1〜3にまとめて示す。
Figure 2009289887
Figure 2009289887
Figure 2009289887
表1〜3から明らかなように、実施例1〜26の金属用研磨液を用いた化学的機械的研磨方法によれば、比較化合物1〜3を含む金属用研磨液を用いた比較例1〜3と比べ、高い研磨速度と低ディッシングとが両立できることが分かり、また、スクラッチ数も低く、低ディフェクトを達成していることも分かる。

Claims (17)

  1. 半導体デバイス製造工程における化学的機械的研磨に用いられ、下記一般式(1)で表される化合物、酸化剤、および有機酸を含有することを特徴とする金属用研磨液。
    Figure 2009289887
    (一般式(1)中、R、R、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとR、RとR、またはRとRは、互いに連結して環を形成してもよい。但し、R、R、R、R、R、およびRの全てが水素原子となることはない。)
  2. 前記一般式(1)中、R、R、R、R、R、およびRのうち少なくとも一つがヘテロ環基であることを特徴とする請求項1に記載の金属用研磨液。
  3. 前記ヘテロ環基が、イミダゾール、1,2,4−トリアゾール、テトラゾール、またはベンズイミダゾールから一個の水素原子を取り除いた一価の基であることを特徴とする請求項1または請求項2に記載の金属用研磨液。
  4. 前記一般式(1)中のR、R、R、R、R、およびRのうち一つがヘテロ環基であり、かつ、それ以外が、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする請求項2または請求項3に記載の金属用研磨液。
  5. 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基であることを特徴とする請求項4に記載の金属用研磨液。
  6. 前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることを特徴とする請求項1に記載の金属用研磨液。
    Figure 2009289887
    (一般式(2)中、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとRまたはRとRは、互いに連結して環を形成してもよい。)
  7. 前記一般式(2)中、R、R、R、およびRが、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする請求項6に記載の金属用研磨液。
  8. 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基である請求項7に記載の金属用研磨液。
  9. 下記一般式(3)で表される界面活性剤をさらに含有することを特徴とする請求項1〜請求項8のいずれか1項に記載の金属用研磨液。
    R−Ar−O−Ar−SO 一般式(3)
    (一般式(3)中、Rは、炭素数8〜20の直鎖または分岐のアルキル基を表す。Arは、アリール基を表す。Mは、水素イオン、アルカリ金属イオン、またはアンモニウムを表す。)
  10. 砥粒をさらに含有することを特徴とする請求項1〜請求項9のいずれか1項に記載の金属用研磨液。
  11. 前記砥粒が、一次粒子径が20nm〜40nmであり、かつ、会合度が2以下のコロイダルシリカであること特徴とする請求項10に記載の金属用研磨液。
  12. 前記コロイダルシリカが、表面のケイ素原子の少なくとも一部がアルミニウム原子で修飾されているコロイダルシリカであること特徴とする請求項11に記載の金属用研磨液。
  13. 前記有機酸が、アミノ酸であることを特徴とする請求項1〜請求項12のいずれか1項に記載の金属用研磨液。
  14. 請求項1〜請求項13のいずれか1項に記載の金属用研磨液を、研磨定盤上の研磨パッドに供給し、該研磨定盤を回転させることで、該研磨パッドを被研磨体の被研磨面と接触させつつ相対運動させて研磨することを特徴とする化学的機械的研磨方法。
  15. 下記一般式(2)で表される化合物。
    Figure 2009289887
    (一般式(2)中、R、R、R、およびRは、それぞれ独立に、水素原子、脂肪族炭化水素基、アリール基、またはヘテロ環基を表す。また、RとRまたはRとRは、互いに連結して環を形成してもよい。)
  16. 前記一般式(2)中、R、R、R、およびRが、それぞれ独立に、水素原子、または親水性基を有する脂肪族炭化水素基であることを特徴とする請求項15に記載の化合物。
  17. 前記親水性基を有する脂肪族炭化水素基が、水酸基を有する脂肪族炭化水素基である請求項16に記載の化合物。
JP2008139397A 2008-05-28 2008-05-28 金属用研磨液、化学的機械的研磨方法、および新規化合物 Pending JP2009289887A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139397A JP2009289887A (ja) 2008-05-28 2008-05-28 金属用研磨液、化学的機械的研磨方法、および新規化合物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139397A JP2009289887A (ja) 2008-05-28 2008-05-28 金属用研磨液、化学的機械的研磨方法、および新規化合物

Publications (1)

Publication Number Publication Date
JP2009289887A true JP2009289887A (ja) 2009-12-10

Family

ID=41458836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139397A Pending JP2009289887A (ja) 2008-05-28 2008-05-28 金属用研磨液、化学的機械的研磨方法、および新規化合物

Country Status (1)

Country Link
JP (1) JP2009289887A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181884A (ja) * 2010-02-05 2011-09-15 Hitachi Chem Co Ltd Cmp研磨液及びこのcmp研磨液を用いた研磨方法
WO2017200297A1 (ko) * 2016-05-19 2017-11-23 주식회사 동진쎄미켐 화학-기계적 연마용 슬러리 조성물
CN109081831A (zh) * 2018-08-21 2018-12-25 中国热带农业科学院橡胶研究所 一种多功能木材改性剂及其制备方法和应用
CN109676729A (zh) * 2018-12-27 2019-04-26 中北大学 一种具有表面活性的木材改性剂及其制备方法和应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181884A (ja) * 2010-02-05 2011-09-15 Hitachi Chem Co Ltd Cmp研磨液及びこのcmp研磨液を用いた研磨方法
WO2017200297A1 (ko) * 2016-05-19 2017-11-23 주식회사 동진쎄미켐 화학-기계적 연마용 슬러리 조성물
CN109153889A (zh) * 2016-05-19 2019-01-04 东进世美肯株式会社 用于化学机械抛光的浆料组合物
US11001732B2 (en) 2016-05-19 2021-05-11 Dongjin Semichem Co., Ltd. Polishing slurry composition
CN109153889B (zh) * 2016-05-19 2021-10-29 东进世美肯株式会社 用于化学机械抛光的浆料组合物
CN109081831A (zh) * 2018-08-21 2018-12-25 中国热带农业科学院橡胶研究所 一种多功能木材改性剂及其制备方法和应用
CN109676729A (zh) * 2018-12-27 2019-04-26 中北大学 一种具有表面活性的木材改性剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
JP5140469B2 (ja) 金属用研磨液、及び化学的機械的研磨方法
JP5121273B2 (ja) 金属用研磨液及び研磨方法
JP5403924B2 (ja) 金属用研磨液、および化学的機械的研磨方法
US20070287362A1 (en) Polishing composition and method of polishing with the same
KR20070078988A (ko) 금속 연마액 및 이것을 사용한 화학 기계적 연마방법
JP2006049790A (ja) 金属用研磨液及び研磨方法
JP2009212473A (ja) 金属用研磨液、及び化学的機械的研磨方法
JP2007258606A (ja) 化学的機械的研磨用研磨液
JP2007180451A (ja) 化学的機械的平坦化方法
JP2009289887A (ja) 金属用研磨液、化学的機械的研磨方法、および新規化合物
JP2009087968A (ja) 金属用研磨液、及び化学的機械的研磨方法
JP2004231748A (ja) 金属用研磨液及び研磨方法
JP2008244316A (ja) 金属用研磨液及び研磨方法
JP2007194261A (ja) 研磨方法
JP2008235714A (ja) 金属用研磨液、及び化学的機械的研磨方法
JP2009238930A (ja) 金属用研磨液、及び化学的機械的研磨方法
JP2007088284A (ja) 水系研磨液及び化学機械的研磨方法
JP4954558B2 (ja) 金属用研磨液、及びそれを用いた化学的機械的研磨方法
JP2007266076A (ja) 金属用研磨液
JP2007207909A (ja) 金属用研磨液、及びそれを用いた化学的機械的研磨方法
JP2006093580A (ja) 化学的機械的研磨方法
JP2006100570A (ja) 研磨用組成物及びそれを用いた研磨方法
JP2006086353A (ja) 銅用研磨液及び研磨方法
JP2008300858A (ja) 金属用研磨液及び研磨方法
JP2007149786A (ja) 金属用研磨液