JP2009284016A - 回路装置の出力値自動調整回路 - Google Patents

回路装置の出力値自動調整回路 Download PDF

Info

Publication number
JP2009284016A
JP2009284016A JP2008131074A JP2008131074A JP2009284016A JP 2009284016 A JP2009284016 A JP 2009284016A JP 2008131074 A JP2008131074 A JP 2008131074A JP 2008131074 A JP2008131074 A JP 2008131074A JP 2009284016 A JP2009284016 A JP 2009284016A
Authority
JP
Japan
Prior art keywords
variable resistor
digital variable
value
output
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008131074A
Other languages
English (en)
Inventor
Tatsunori Sasaki
達徳 佐々木
Masanobu Ito
真信 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Goyo Electronics Co Ltd
Original Assignee
Nikon Corp
Goyo Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Goyo Electronics Co Ltd filed Critical Nikon Corp
Priority to JP2008131074A priority Critical patent/JP2009284016A/ja
Publication of JP2009284016A publication Critical patent/JP2009284016A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】計器を使用することなく、短時間で且つ高精度で増幅装置のゲイン調整等を行うことができる回路装置の出力値自動調整回路を提供する。
【解決手段】入力端子21と増幅器23の(−)端子との間に抵抗器22を接続し、増幅器23の(+)端子を接地する。また、増幅器23の出力端と(−)端子との間に粗調整用デジタル可変抵抗器25及び微調整用デジタル可変抵抗器26を直列に接続すると共に、この微調整用デジタル可変抵抗器26に対して抵抗値の小さい抵抗器27を並列に接続する。CPU28は、予め設定されたソフトウェアに従って増幅器23の出力値を読込み、増幅器23の出力が目標値となるように粗調整用デジタル可変抵抗器25を調整し、その後、更に微調整用デジタル可変抵抗器26の抵抗値を調整する。
【選択図】 図1

Description

本発明は、例えば増幅装置のゲイン調整や電圧/周波数変換素子における変換係数の調整等に用いられる回路装置の出力値自動調整回路に関する。
従来、増幅装置のゲイン調整や電圧/周波数変換素子における電圧/周波数変換係数を調整するために可変抵抗器(ポテンショメータ)が用いられている。
上記可変抵抗器を用いて増幅装置のゲインを調整する場合、入力に対する出力電圧を電圧計で読取り、目標の出力電圧となるように可変抵抗器を手動で操作して調整している。また、電圧/周波数変換素子の電圧/周波数変換係数を調整する場合は、入力に対する出力周波数を周波数カウンタで読取り、目標の出力周波数となるように可変抵抗器で調整している。
図4は、ゲイン調整をアナログの可変抵抗器により行う場合の従来の反転増幅回路の構成図である。図4において、1は入力信号Vinが入力される入力端子で、この入力端子1は抵抗器2を介して増幅器3の(−)端子に接続される。この増幅器3は、(+)端子が接地され、出力側が出力端子4に接続される。また、増幅器3の出力端と(−)端子との間に負帰還用のアナログ可変抵抗器5が接続される。
上記のように構成された反転増幅回路において、入力をVin、出力をVout、抵抗器2の抵抗値をR1、可変抵抗器5の抵抗値をVR1とすると、出力Voutは、
Vout=Vin *(VR1/R1)
で表される。
上記図4に示した反転増幅回路において、ゲインを調整する場合は、出力端子4に電圧計(図示せず)を接続し、入力端子1に所定レベルの基準信号Vinを入力する。
そして、操作者は、図5に示すフローチャートに従って可変抵抗器5を操作し、反転増幅回路のゲインを調整する。操作者は、ゲイン調整に際して先ず電圧計に示される出力値を目視にて確認し(ステップA1)、その出力値が目標値より大きいかどうかを判断する(ステップA2)。上記出力値が目標値より大きい場合は、可変抵抗器5の抵抗値が小さくなるように調整し(ステップA3)、また、上記出力値が目標値より小さい場合は、可変抵抗器5の抵抗値が大きくなるように調整する(ステップA4)。
上記ステップA3又はステップA4で可変抵抗器5を調整した後、出力値が目標値に最も近いかどうかを判断し(ステップA5)、目標値に最も近い状態になっていなければステップA1に戻って上記の処理を再度実行する。
そして、上記ステップA5で、出力値が目標値に最も近いと判断した場合にゲイン調整処理を終了する。
図6は、従来の電圧/周波数変換回路における電圧/周波数変換係数の調整をアナログの可変抵抗器により行う場合の回路構成図を示している。
図6において、11は入力信号Vinが入力される入力端子で、この入力端子11は抵抗器12及びアナログ可変抵抗器13を直列に介して電圧/周波数変換器(V/F変換器:Voltage-to-Frequency converter)14の一方の入力端に入力される。この電圧/周波数変換器14の他方の入力端はコンデンサ15を介して接地され、出力端は出力端子16に接続される。
上記のように構成された電圧/周波数変換回路において、入力をVin、出力をFout[Hz]、抵抗器12の抵抗値をR1、可変抵抗器13の抵抗値をVR1、コンデンサ15の容量をCとすると、出力Fout[Hz]は、
Fout[Hz]=Vin/{(R1+VR1)*7500*C*10−3
で表される。尚、上式は電圧/周波数変換器14としてテキサスインスツルメンツ社製の「VFC32」を使用した場合を例として示している。
上記図6に示した電圧/周波数変換回路において、出力Fout[Hz]を調整する場合は、出力端子16に周波数カウンタ(図示せず)を接続し、図4に示した反転増幅回路の場合と同様にして行う。
上記のようにアナログ可変抵抗器を用いて反転増幅回路や電圧/周波数変換回路の出力値を調整する方法では、アナログ調整のため比較的高い精度が得られるものの、出力端に接続した電圧計や周波数カウンタ等の計器を目視しながら可変抵抗器を手動で調整するため、計器を必要とすると共に調整に時間が掛かるという問題がある。
また、本発明に関連する公知技術として、アナログ音声信号又はデジタルデータ信号の両方で変調が可能な回路を有した携帯型無線機において、送信搬送波周波数及び受信局部発振周波数の周波数偏差を制御し、基地局の偏差を有した送信周波数に、受信周波数を整合させる発振周波数補正回路を備え、高い周波数精度が要求されるデータ伝送システムでの利用を可能にした技術が知られている(例えば、特許文献1参照。)。
特開2004−229045号公報
従来では、増幅器のゲイン調整や電圧/周波数変換回路の変換係数等を調整する場合、上記したようにアナログ可変抵抗器を使用して電圧計や周波数カウンタ等の計器を目視しながら手動で調整するようにしているので、調整操作が面倒であると共に出力値を計測するための計器が必要であり、且つ調整に時間が掛かるという問題があった。
本発明は上記の課題を解決するためになされたもので、計器を使用することなく、短時間で且つ高精度で増幅装置等の出力値を自動的に調整することができる回路装置の出力値自動調整回路を提供することを目的とする。
本発明に係る回路装置の出力値自動調整回路は、入力信号に応じて所定の信号を出力する回路装置の出力値を自動調整する出力値自動調整回路において、
前記回路装置の出力値を調整する粗調整用デジタル可変抵抗器と、前記粗調整用デジタル可変抵抗器に直列に接続される微調整用デジタル可変抵抗器と、前記微調整用デジタル可変抵抗器に並列に接続される低抵抗器と、前記回路装置の出力調整時に前記粗調整用デジタル可変抵抗器及び微調整用デジタル可変抵抗器を自動調整する制御部とを具備し、前記制御部は、前記回路装置の出力調整時に基準入力に対して該回路装置の出力値が目標値に近付くように前記粗調整用デジタル可変抵抗器を粗調整し、その後、前記微調整用デジタル可変抵抗器を微調整することを特徴とする。
本発明によれば、粗調整用デジタル可変抵抗器及び微調整用デジタル可変抵抗器を2段構成とし、回路装置の出力値を粗調整用デジタル可変抵抗器で粗調整した後、微調整用デジタル可変抵抗器で微調整することにより、計器を使用することなく、短時間で且つ高精度で自動的に調整することができる。
以下、図面を参照して本発明の実施形態を説明する。
(第1実施形態)
図1は本発明を回路装置である増幅装置例えば反転増幅回路に実施した場合の回路構成図である。
図1において、21は入力信号Vinが入力される入力端子で、この入力端子21は抵抗器22を介して増幅器(オペアンプ)23の(−)端子に接続される。この増幅器23は、(+)端子が接地され、出力側が出力端子24に接続される。また、増幅器23の出力端と(−)端子との間に粗調整用デジタル可変抵抗器(デジタルポテンショメータ)25及び微調整用デジタル可変抵抗器(デジタルポテンショメータ)26が直列に接続されると共に、この微調整用デジタル可変抵抗器26に対して抵抗器27が並列に接続される。上記デジタル可変抵抗器25、26及び抵抗器27によって負帰還回路を構成している。この場合、上記抵抗器27の抵抗値を例えば1kΩ程度の低い値に設定し、抵抗器27とデジタル可変抵抗器26との合成抵抗値を低くしてデジタル可変抵抗器26による微調整を可能としている。
そして、上記粗調整用デジタル可変抵抗器25及び微調整用デジタル可変抵抗器26は、CPU28によって抵抗値が自動的に制御される。CPU28は、予め設定されたソフトウェアに従って増幅器23の出力値を読込んで粗調整用デジタル可変抵抗器25及び微調整用デジタル可変抵抗器26の抵抗値を自動的に調整する。
上記のように構成された反転増幅回路において、入力をVin、出力をVout、抵抗器22の抵抗値をR1、抵抗器27の抵抗値をR2、粗調整用デジタル可変抵抗器25の抵抗値をVR1、微調整用デジタル可変抵抗器26の抵抗値をVR2とすると、出力Voutは、
Vout=Vin *[{VR1+(VR2//R2)}/R1]
VR2//R2=(VR2*R2)/(VR2+R2)
で表される。尚、VR2//R2は、VR2とR2の並列合成抵抗値を示している。
上記各回路素子の抵抗値R1、R2、VR1、VR2の値は、例えば次のように設定される。
R1:18kΩ
R2:1kΩ
VR1、VR2:最大値:10kΩ(10035Ω)、最小値:0Ω(74Ω)、可変ステップ数:128bit(1bit:78Ω)
次に上記のように構成された反転増幅回路において、CPU28によるゲイン調整を図2のフローチャートに従って説明する。
CPU28は、反転増幅回路の初期設定時あるいは外部からのゲイン調整指示が与えられると、予め設定されているゲイン調整用ソフトウェアに従って図2に示すゲイン調整処理を実行する。
CPU28は、ゲイン調整処理を開始すると、最初に増幅器23の出力値を読込み(ステップB1)、この出力値から目標出力の理論値を決定する(ステップB2)。次いで、この目標出力の理論値に対応する抵抗値を算出して粗調整用デジタル可変抵抗器25の初期設定値とすると共に、微調整用デジタル可変抵抗器26を最大値に設定する(ステップB3、B4)。
この状態でCPU28は、増幅器23の出力値を読込み(ステップB5)、負帰還合成抵抗値が目標値より大きいか否かを判断し(ステップB6)、大きければデジタル可変抵抗器25の抵抗値を1ステップ下げ(ステップB7)、小さければデジタル可変抵抗器25の抵抗値を1ステップ上げる(ステップB8)。
CPU28は、上記ステップB7あるいはステップB8によりデジタル可変抵抗器25の抵抗値を調整した後、負帰還合成抵抗値が目標値に最も近いかどうかを判断し(ステップB9)、最も近い値になっていなければステップB5に戻り、ステップB5〜B9の処理を繰り返して実行する。そして、ステップB9で負帰還合成抵抗値が目標値に最も近くなったと判断されると、デジタル可変抵抗器25の抵抗値を1ステップ上げる(ステップB10)。
以上で粗調整用デジタル可変抵抗器25の調整を終了し、次に微調整用デジタル可変抵抗器26の調整に移行する。上記粗調整用デジタル可変抵抗器25の調整を終了した段階では、ステップB10の処理により負帰還合成抵抗値が目標値より少し大きい値に設定されている。
また、微調整用デジタル可変抵抗器26の抵抗値は最大値に初期設定されているので、微調整の段階では、先ずデジタル可変抵抗器26の抵抗値を1ステップ下げ(ステップB11)、負帰還合成抵抗値が目標値より小さくなったかどうかを判断し(ステップB12)、目標値より小さい値になっていなければステップB11に戻り、デジタル可変抵抗器26の抵抗値を更に1ステップ下げる。
そして、ステップB12において、負帰還合成抵抗値が目標値より小さくなったと判断されると、現在の負帰還合成抵抗値とデジタル可変抵抗器26の値が1ステップ大きいときの合成抵抗値とを比較し、どちらが目標値に近いかを判断する(ステップB13)。この判断結果に従って微調整用デジタル可変抵抗器26の値を目標値により近い方に設定する(ステップB14)。
以上で増幅装置のゲイン調整処理を終了する。
上記実施形態で示したように増幅装置のゲイン調整回路に粗調整用デジタル可変抵抗器25と微調整用デジタル可変抵抗器26を2段に設け、増幅器23の出力値が目標値となるようにCPU28によりデジタル可変抵抗器25、26の抵抗値を調整することにより、電圧計等の計器を使用することなく短時間で且つ高精度で自動的にゲイン調整を行うことができる。
例えばデジタル可変抵抗器25、26の具体的な仕様が
最大抵抗値:10035Ω
最小抵抗値:74Ω
可変ステップ数:128bit
である場合、1bit当りの抵抗値は、約78Ω((10035−74)/128≒78)となる。従って、微調整用デジタル可変抵抗器26を設けず、デジタル可変抵抗器25のみの場合の最小調整幅は78Ωとなる。
また、微調整用デジタル可変抵抗器26の値(VR2)と抵抗器27の値(R2)の並列合成抵抗値(VR2//R2)は、
VR2//R2=(VR2*R2)/(VR2+R2)
により求められるので、デジタル可変抵抗器26の値が大きいほど変化の幅が少なくなる。
すなわち、デジタル可変抵抗器26が最大値(10035Ω)の場合の抵抗器27との並列合成抵抗値(VR2//R2)は、
(VR2//R2)=(10035*1000)/(10035+1000)
≒909.37(Ω)
である。
また、デジタル可変抵抗器26の値(VR2)が最大値より1ステップ小さい場合の値は、「10035−78=9957(Ω)」であり、この場合のVR2とR2の並列合成抵抗値(VR2//R2)は、
(VR2//R2)=(9957*1000)/(9957+1000)
≒908.73(Ω)
である。従って、デジタル可変抵抗器26の最大値「10035Ω」と1ステップ小さい「9957Ω」での1bitによる並列合成抵抗値の差は、0.64Ω(909.37−908.73=0.64(Ω))となる。
また、デジタル可変抵抗器26が最小値(74Ω)の場合の抵抗器27との並列合成抵抗値(VR2//R2)は、
(VR2//R2)=(74*1000)/(74+1000)
≒68(Ω)
である。
デジタル可変抵抗器26が最小値より1ステップ大きい場合の値は、「74+78=152(Ω)」であり、この場合のVR2とR2の並列合成抵抗値(VR2//R2)は、
(VR2//R2)=(152*1000)/(152+1000)
≒131(Ω)
となる。従って、デジタル可変抵抗器26の最小値「74Ω」と1ステップ大きい「152Ω」での1bitによる並列合成抵抗値の差は、63Ω(131−68=63(Ω))となる。
上記のようにデジタル可変抵抗器26と抵抗器27との並列合成抵抗値(VR2//R2)は、デジタル可変抵抗器26の値が大きいほど変化の幅が少なくなる。このため本実施形態では、より細かい調整から開始できるように微調整用デジタル可変抵抗器26の初期値を最大値に設定している。
上記第1実施形態で示したように微調整用デジタル可変抵抗器26の最大抵抗値が10035Ω、最小抵抗値が74Ωである場合において、抵抗器27の抵抗値を1kΩに設定した場合、最小調整幅は0.64Ωとなり、微調整用デジタル可変抵抗器26を設けず、デジタル可変抵抗器25のみの場合の最小調整幅である78Ωに比べて高精度とすることができる。
なお、上記実施形態では、抵抗器27の値を1kΩに設定した場合について説明したが、抵抗器27の値を変えることによってデジタル可変抵抗器26による調整幅を変更することができる。
また、上記デジタル可変抵抗器25、26及び抵抗器22、27の値は、上記実施形態で設定した値に限定されるものではなく、用途に応じて任意に設定し得るものである。
(第2実施形態)
次に本発明の第2実施形態に係る回路装置の出力値自動調整回路について説明する。
図3は本発明を電圧/周波数変換回路に実施した場合の回路構成図である。
図3において、31は入力信号Vinが入力される入力端子で、この入力端子31は抵抗器32及び粗調整用デジタル可変抵抗器33、微調整用デジタル可変抵抗器34を直列に介して電圧/周波数変換器(V/F変換器:Voltage-to-Frequency converter)36の一方の入力端に接続されると共に、上記微調整用デジタル可変抵抗器34に対して低抵抗値の抵抗器35が並列に接続される。上記電圧/周波数変換器36の他方の入力端はコンデンサ37を介して接地され、出力端は出力端子38に接続される。
上記粗調整用デジタル可変抵抗器33及び微調整用デジタル可変抵抗器34は、CPU28によって抵抗値が自動的に制御される。CPU28は、予め設定されたソフトウェアに従って電圧/周波数変換器36の出力値を読込んで粗調整用デジタル可変抵抗器33及び微調整用デジタル可変抵抗器26の抵抗値を自動的に調整する。
上記のように構成された電圧/周波数変換回路において、入力をVin、出力をFout[Hz]、抵抗器32の抵抗値をR1、抵抗器35の抵抗値をR2、粗調整用デジタル可変抵抗器33の抵抗値をVR1、微調整用デジタル可変抵抗器34の抵抗値をVR2、コンデンサ37の容量をCとすると、出力Fout[Hz]は、
Fout[Hz]=
Vin/{(R1+VR1+(VR2//R2))*7500*C*10−3
VR2//R2=(VR2*R2)/(VR2+R2)
で表される。尚、上式は電圧/周波数変換器36としてテキサスインスツルメンツ社製の「VFC32」を使用した場合を例として示している。
上記各回路素子の抵抗値R1、R2、VR1、VR2及びコンデンサCの値は、例えば次のように設定される。
R1:18kΩ
R2:1kΩ
C:3300pF
VR1、VR2:最大値:10kΩ(10035Ω)、最小値:0Ω(74Ω)、可変ステップ数:128bit(1bit:78Ω)
上記図3に示した電圧/周波数変換回路において、出力Fout[Hz]を調整する場合、CPU28は、図1に示した反転増幅回路の場合と同様に電圧/周波数変換器36の出力周波数を読込み、その出力周波数が目標値に最も近付くように最初に粗調整用デジタル可変抵抗器33を調整し、その後、更に電圧/周波数変換器36の出力周波数が目標値に近付くように微調整用デジタル可変抵抗器34を微調整する。上記CPU28によるデジタル可変抵抗器33、34の調整は、第1実施形態で示した増幅装置の場合と同様であるので、詳細な説明は省略する。
上記実施形態で示したように電圧/周波数変換器36に粗調整用デジタル可変抵抗器33と微調整用デジタル可変抵抗器34を2段に設け、電圧/周波数変換器36の出力周波数が目標の周波数となるようにCPU28によりデジタル可変抵抗器33、34を調整することにより、周波数カウンタ等の計器を使用することなく短時間で且つ高精度で電圧/周波数変換係数を自動的に調整することができる。
尚、上記デジタル可変抵抗器33、34、抵抗器32、35、コンデンサ37の値は、上記実施形態で設定した値に限定されるものではなく、用途に応じて任意に設定し得るものである。
また、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるものである。
本発明の第1実施形態に係る反転増幅回路の構成図である。 同実施形態における反転増幅回路のゲイン調整方法を示すフローチャートである。 本発明の第2実施形態に係る電圧/周波数変換回路の構成図である。 従来の反転増幅回路の構成図である。 従来の反転増幅回路のゲイン調整方法を示すフローチャートである。 従来の電圧/周波数変換回路の構成図である。
符号の説明
21…入力端子、22…抵抗器、23…増幅器、24…出力端子、25…粗調整用デジタル可変抵抗器、26…微調整用デジタル可変抵抗器、27…抵抗器、28…CPU、31…入力端子、32…抵抗器、33…粗調整用デジタル可変抵抗器、34…微調整用デジタル可変抵抗器、35…抵抗器、36…電圧/周波数変換器(V/F変換器)、37…コンデンサ、38…出力端子。

Claims (1)

  1. 入力信号に応じて所定の信号を出力する回路装置の出力値を自動調整する出力値自動調整回路において、
    前記回路装置の出力値を調整する粗調整用デジタル可変抵抗器と、前記粗調整用デジタル可変抵抗器に直列に接続される微調整用デジタル可変抵抗器と、前記微調整用デジタル可変抵抗器に並列に接続される低抵抗器と、前記回路装置の出力調整時に前記粗調整用デジタル可変抵抗器及び微調整用デジタル可変抵抗器を自動調整する制御部とを具備し、
    前記制御部は、前記回路装置の出力調整時に基準入力に対して該回路装置の出力値が目標値に近付くように前記粗調整用デジタル可変抵抗器を粗調整し、その後、前記微調整用デジタル可変抵抗器を微調整することを特徴とする回路装置の出力値自動調整回路。
JP2008131074A 2008-05-19 2008-05-19 回路装置の出力値自動調整回路 Pending JP2009284016A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131074A JP2009284016A (ja) 2008-05-19 2008-05-19 回路装置の出力値自動調整回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131074A JP2009284016A (ja) 2008-05-19 2008-05-19 回路装置の出力値自動調整回路

Publications (1)

Publication Number Publication Date
JP2009284016A true JP2009284016A (ja) 2009-12-03

Family

ID=41454050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131074A Pending JP2009284016A (ja) 2008-05-19 2008-05-19 回路装置の出力値自動調整回路

Country Status (1)

Country Link
JP (1) JP2009284016A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123911A (ja) * 2011-12-16 2013-06-24 Ricoh Co Ltd 記録装置及び制御方法
JP2013148372A (ja) * 2012-01-17 2013-08-01 Nippon Instrument Kk 水銀原子吸光分析装置および水銀分析システム
WO2016157785A1 (ja) * 2015-03-27 2016-10-06 セイコーエプソン株式会社 画像表示装置、及び調整用デバイス
JP2020016578A (ja) * 2018-07-26 2020-01-30 エイブリック株式会社 電圧検出回路、半導体装置及び製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110370A (ja) * 1991-10-16 1993-04-30 Fujitsu Ltd 電圧減衰量の調節回路
JPH0983279A (ja) * 1995-09-14 1997-03-28 Toshiba Corp Agc回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110370A (ja) * 1991-10-16 1993-04-30 Fujitsu Ltd 電圧減衰量の調節回路
JPH0983279A (ja) * 1995-09-14 1997-03-28 Toshiba Corp Agc回路

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123911A (ja) * 2011-12-16 2013-06-24 Ricoh Co Ltd 記録装置及び制御方法
JP2013148372A (ja) * 2012-01-17 2013-08-01 Nippon Instrument Kk 水銀原子吸光分析装置および水銀分析システム
US10769973B2 (en) 2015-03-27 2020-09-08 Seiko Epson Corporation Image display device and adjusting device
JP2016186557A (ja) * 2015-03-27 2016-10-27 セイコーエプソン株式会社 画像表示装置、及び調整用デバイス
CN107430322A (zh) * 2015-03-27 2017-12-01 精工爱普生株式会社 图像显示装置和调整用器件
US20180047321A1 (en) * 2015-03-27 2018-02-15 Seiko Epson Corporation Image display device and adjusting device
CN107430322B (zh) * 2015-03-27 2020-02-14 精工爱普生株式会社 图像显示装置和调整用器件
WO2016157785A1 (ja) * 2015-03-27 2016-10-06 セイコーエプソン株式会社 画像表示装置、及び調整用デバイス
JP2020016578A (ja) * 2018-07-26 2020-01-30 エイブリック株式会社 電圧検出回路、半導体装置及び製造方法
CN110850312A (zh) * 2018-07-26 2020-02-28 艾普凌科有限公司 电压检测电路、半导体装置以及半导体装置的制造方法
JP7242124B2 (ja) 2018-07-26 2023-03-20 エイブリック株式会社 電圧検出回路、半導体装置及び製造方法
TWI801623B (zh) * 2018-07-26 2023-05-11 日商艾普凌科有限公司 電壓檢測電路、半導體裝置以及半導體裝置的製造方法
CN110850312B (zh) * 2018-07-26 2023-10-20 艾普凌科有限公司 电压检测电路、半导体装置以及半导体装置的制造方法

Similar Documents

Publication Publication Date Title
US7890132B2 (en) Systems and methods for calibrating power regulated communication circuitry
CN100587646C (zh) 电压供应电路、电源电路、扩音器单元及灵敏度调节方法
JP6629562B2 (ja) オーディオ回路、それを用いた電子機器
CN101093678A (zh) 偏置调整装置
JP2009284016A (ja) 回路装置の出力値自動調整回路
JP2018137755A (ja) 温度補償された水晶発振器
JPWO2015173878A1 (ja) モータ制御定数計算装置
JP4768426B2 (ja) フィルタの自動調整装置
JP2008228029A (ja) 半導体集積回路
JP2016072876A (ja) 電力増幅装置および電力増幅方法
JP2016072877A (ja) 電力増幅装置および電力増幅方法
US11125579B2 (en) Calibration system, and sensor system including the same
CN109618270B (zh) 麦克风输入偏置校准方法及麦克风偏置装置
TW202215772A (zh) 應用在訊號處理電路中的偏壓補償電路及相關的偏壓補償方法
JP2013207534A (ja) マルチチャンネルアンプ、マルチチャンネルアンプの制御方法およびプログラム
JP2003315388A (ja) 位相調整装置及び位相調整装置を用いた電力計測装置
JP2009224865A (ja) 電圧制御型弾性表面波発振器
JP4871003B2 (ja) 発振回路
JP4645083B2 (ja) 校正システム
EP3754851A1 (en) Current trimming system, method, and apparatus
CN114513191A (zh) 校正装置与方法
JP2023108294A (ja) オーディオアンプおよび音声出力制御方法
JP2016082472A (ja) 発振器及びそのキャリブレーション方法
JP2009033674A (ja) 3次温度特性補償電圧発生回路、水晶発振器モジュールおよび電子機器
JPH1065934A (ja) ガンマ補正回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911