JP2009283795A - アライメント検出系、露光装置およびデバイス製造方法 - Google Patents

アライメント検出系、露光装置およびデバイス製造方法 Download PDF

Info

Publication number
JP2009283795A
JP2009283795A JP2008136098A JP2008136098A JP2009283795A JP 2009283795 A JP2009283795 A JP 2009283795A JP 2008136098 A JP2008136098 A JP 2008136098A JP 2008136098 A JP2008136098 A JP 2008136098A JP 2009283795 A JP2009283795 A JP 2009283795A
Authority
JP
Japan
Prior art keywords
alignment
measurement
detection system
wafer
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008136098A
Other languages
English (en)
Inventor
Hironori Maeda
普教 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008136098A priority Critical patent/JP2009283795A/ja
Publication of JP2009283795A publication Critical patent/JP2009283795A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】
原版または基板のファインアライメントでの先行確認計測が不要で高スループットなアライメント検出系およびそのアライメント検出系を有する露光装置を提供する。
【解決手段】
被検物体への照明光を照射する照明光学系と、前記被検物体から反射される前記反射光を集光して、前記被検物体の第1の結像倍率の像を形成する第1の光学系、前記第1の結像倍率よりも高い前記被検物体の第2の結像倍率の像を形成する第2の光学系、前記第1の光学系と前記第2の光学系とを切替える切替え手段、前記第1の結像倍率の像を光電変換する第1の像検出手段および前記第2の結像倍率の像を光電変換する第2の像検出手段から成る結像光学系と、を有し、前記第1の結像倍率の像の視野での第1の計測の情報を基に前記第2の結像倍率の像の視野での第2の計測を行うことを特徴とする。
【選択図】図3

Description

本発明は、レチクル上に描画されたレチクルパターンを投影光学系を介してウェハに露光する露光装置に搭載されるアライメント検出系、および、そのアライメント検出系を有する露光装置に関する。
フォトリソグラフィー技術を用いて半導体素子等のデバイスを製造する際には、レチクル等の原版に描画されたパターンを投影光学系によってウェハ等の基板に投影してパターンを転写する投影露光装置が従来から使用されている。この際、ウェハ上に既に形成されたパターンに対して、投影光学系を介して形成されるマスクパターンの投影像を、投影露光装置に搭載されたアライメント検出系によって位置合わせを行った後に、露光を行う。
投影露光装置においては、集積回路の微細化及び高密度化に伴い、より高い解像力でレチクルのパターンをウェハに投影露光することが要求されている。投影露光装置で転写できる最少の線幅(解像度)は、露光に用いる光の波長に比例し、投影光学系の開口数(N.A.)に反比例する。従って、波長を短くすればするほど解像度はよくなる。このため、近年の光源は、超高圧水銀ランプg線(波長約436nm)、i線(波長約365nm)から波長の短いKrFエキシマレーザ(波長約248nm)やArFエキシマレーザ(波長約193nm)から成る。さらにF2レーザ(波長約157nm)の実用化も進んでおり、将来的には波長が数nm〜百nmの極端紫外光(Extreme Ultra Violet:EUV光)の採用も見込まれている。
また、露光装置の解像度のさらなる向上の為に、投影光学系とウェハとの間の少なくとも一部に屈折率が1よりも大きい液体を浸してN.A.の増大を図ることにより解像度の向上を図る液浸露光装置も登場している。この液浸露光装置においては、ウェハと投影光学系のウェハに最も近い最終光学素子との間の空間に、フォトレジスト層の屈折率に近い屈折率を有する液体が充填されている。これにより、ウェハ側から見た投影光学系の有効開口数が増加し、解像度を向上させることができる。
近年の半導体素子の生産は少品種大量生産型から多品種少量生産型へとシフトしており、あらゆるウェハプロセス(材質・膜厚・線幅など、以下プロセス)に対して精度良くアライメントできる露光装置が求められている。その為に各プロセス毎に最もコントラストの高いアライメント条件(照明光の波長域、照明光のNA、検出光のNA、アライメントマークの種類など)を調べ、プロセスごとにアライメント条件を変更する必要がある。
従来例のウェハアライメントのシーケンスでは、アライメントマークの位置を高倍率で計測する精密なファインアライメントの前に、比較的に精度の低いアライメントであるプリアライメントを行っていた。プリアライメントは、ファインアライメントに使うファインアライメント用マークよりも大きなプリアライメント用マークを低倍率で計測し、アライメントマークをファインアライメントが可能となる計測範囲に追い込む計測である。このプリアライメントにより、ファインアライメントの前にウェハの大まかな位置合わせを行う。ファインアライメント用センサは高倍率であるために視野を広く取ることが難しく、ウェハ搬送後すぐに小さなファインアライメント用マークをファインアライメントすることは、ファインアライメント用センサの視野が狭いために難しい。そこでウェハ搬送後には、比較的低倍率で広い視野を有するプリアライメントによりウェハの大まかな位置合わせを行う。その後、より小さなファインアライメント用マークを正確かつ精密な計測ができるファインアライメントすることにより、ウェハの位置合わせを精度的・速度的に有利に行うことができる。
つまり、ウェハのアライメントシーケンスでは低倍率でのプリアライメントを行い、ウェハのおおまかな位置合わせを行った後にファインアライメントを行う。しかし、このファインアライメントには精度が要求されるため、最もコントラストが得られるアライメント条件で計測することが要求される。そこで特許文献1の従来例においては、アライメント条件を変えてウェハのファインアライメントを行い、ファインアライメントの最もコントラストの高いアライメント条件を調べるシーケンスが必要であった。このシーケンスは、ウェハのファインアライメントを行う前にファインアライメントでのアライメント条件を決定するために必要であった。
また、特許文献1にては、レチクルを短時間で精度よくアライメントできるEUV露光方法及びEUV露光装置が提案されている。
特開2005−32889号公報
しかし、従来例におけるコントラストの高いアライメント条件を調べるために全てのアライメント条件でファインアライメントを行う先行確認計測のシーケンスの時間が露光装置の高スループット化の妨げとなっていた。特に近年の多品種少量生産型の半導体素子の製造では先行確認計測を行うプロセスの種類が増えているため、この先行確認計測の時間の短縮が露光装置の高スループット化において重要な課題となっていた。
また、従来例のコントラストのみに着目したアライメント条件決定の手法では、ファインアライメントの検出信号のコントラストは高いものの検出信号の傾きが大きく、ウェハ間での計測精度が安定しないという課題があった。
また、本発明を利用すると、ウェハのファインアライメントを行う前に行うプリアライメントの情報から、ファインアライメント計測での検出信号の傾きが小さく、ウェハ間でより安定した信号を選択することが可能となる。
そこで、本発明は、原版または基板のファインアライメントでの先行確認計測が不要で高スループットなアライメント検出系およびそのアライメント検出系を有する露光装置を提供することを目的とする。
上記課題を解決するための本発明のアライメント検出系は、被検物体への照明光を照射する照明光学系と、前記被検物体から反射される反射光を集光して、前記被検物体の第1の結像倍率の像を形成する第1の光学系、前記第1の結像倍率よりも高い前記被検物体の第2の結像倍率の像を形成する第2の光学系、前記第1の光学系と前記第2の光学系とを切替える切替え手段、前記第1の結像倍率の像を光電変換する第1の像検出手段および前記第2の結像倍率の像を光電変換する第2の像検出手段から成る結像光学系と、を有し、前記第1の結像倍率の像の視野での第1の計測の情報を基に前記第2の結像倍率の像の視野での第2の計測を行うことを特徴とする。
本発明によれば、原版または基板のファインアライメントでの先行確認計測が不要で高スループットである。
以下、添付図面を参照して、本発明の実施例を説明する。
まず、図1を参照して、本実施例の露光装置を説明する。
ウェハステージ4は基板であるウェハ3を支持するステージである。レチクルステージ2は原版であるレチクル1を支持するステージである。照明光学系5は、レチクルステージ2に支持されているレチクル1を露光光で照明する光学系である。投影光学系6は、露光光で照明されたレチクル1のレチクルパターン像をウェハステージ4に支持されたウェハ3に投影露光する光学系である。制御装置(不図示)は、露光装置全体の動作を統括制御する装置である。入力器60は、プロセスの構成と情報を入力し、測定器61は、ウェハ3のプロセス情報を測定し、計算機62は、プロセスの構成や情報を基にアライメントシミュレーションを行う。
本実施例の露光装置として、レチクル1とウェハ3とを走査方向に互いに同期移動しつつレチクル1に形成されたレチクルパターンをウェハ3に露光する走査型露光装置(スキャニングステッパ)を説明する。
本実施例は、レチクル1を固定しレチクルパターンをウェハ3に露光するタイプの露光装置(ステッパー)にも適用することができる。
以下の説明において、投影光学系6の光軸と一致する方向をZ軸方向、Z軸方向に垂直な平面内でレチクル1とウェハ3との同期移動方向(走査方向)をY軸方向、Z軸方向及びY軸方向に垂直な方向(非走査方向)をX軸方向とする。また、X軸、Y軸、及びZ軸まわり方向をそれぞれ、θX、θY、及びθZ方向とする。
レチクル1上の所定の照明領域は照明光学系5により均一な照度分布の露光光で照明される。照明光学系5から射出される露光光としては、これまで主流だった水銀ランプに代わって、KrFエキシマレーザが用いられるようになり、さらに短波長のArFエキシマレーザやF2レーザの実用化が進められている。今後は、より微細な半導体素子等を製造するために、露光光として波長が数nm〜百nmの極端紫外光(Extreme Ultra Violet:EUV光)を使用した露光装置の開発も行われつつある。
レチクルステージ2は、レチクル1を支持するステージで、投影光学系6の光軸に垂直な平面内、すなわちXY平面内で2次元移動可能及びθZ方向に微小回転可能である。レチクルステージ2は、最低1軸駆動であるが、6軸駆動でもよく、リニアモータ等のレチクルステージ駆動装置(不図示)により駆動され、レチクルステージ駆動装置(不図示)は制御装置(不図示)により制御される。レチクルステージ2上にはレチクルステージ上ミラー7が設けられ、ミラー7に対向する位置にはレチクルステージ上ミラー計測用XY方向用レーザ干渉計9が設けられている。レチクルステージ2上のレチクル1の2次元方向の位置、及び回転角はレーザ干渉計9によりリアルタイムで計測され、計測結果は制御装置(不図示)に出力される。制御装置(不図示)はレーザ干渉計9の計測結果に基づいてレチクルステージ駆動装置(不図示)を駆動することでレチクルステージ2に支持されているレチクル1の位置決めを行う。
投影光学系6は、レチクル1のレチクルパターンを所定の投影倍率βでウェハ3に投影露光する光学系で、複数の光学素子により構成される。本実施例において投影光学系6は、投影倍率βが、例えば1/4あるいは1/5の縮小投影光学系である。
ウェハステージ4は、ウェハ3を支持するステージで、ウェハ3をウェハチャックを通して保持するZステージと、Zステージを支持するXYステージと、XYステージを支持するベースとを備えている。ウェハステージ4は、リニアモータ等のウェハステージ駆動装置(不図示)により駆動され、ウェハステージ駆動装置(不図示)は制御装置(不図示)により制御される。
ウェハステージ4上には、ウェハステージ4と共に移動するウェハステージ上ミラー8が設けられ、ミラー8に対向する位置にはウェハステージ上ミラー計測用XY方向用レーザ干渉計10とウェハステージ上ミラー計測用Z方向用レーザ干渉計12が設けられる。ウェハステージ4のXY方向の位置、及びθZはレーザ干渉計10によりリアルタイムで計測され、計測結果は制御装置(不図示)に出力される。ウェハステージ4のZ方向の位置、及びθX、θYについてはレーザ干渉計12によりリアルタイムで計測され、計測結果は制御装置(不図示)に出力される。レーザ干渉計10、12の計測結果に基づいてウェハステージ駆動装置(不図示)によりXYZステージであるウェハステージ4を駆動してウェハ3のXYZ方向における位置を調整し、ウェハステージ4に支持されているウェハ3の位置決めを行う。
レチクルステージ2の近傍には、レチクルアライメント検出系13が設けられている。レチクルアライメント検出系13は、レチクルステージ2上に配置されるレチクル1上のレチクル基準マーク(不図示)と投影光学系6とを通して、ウェハステージ4上のステージ基準プレート11にある図2に示されるレチクルアライメント検出系用基準マーク17を検出する。ウェハ3のショット領域3dを露光する光源と同一の光源を用い、投影光学系6を通してレチクル1上のレチクル基準マーク(不図示)と図2に示されるレチクルアライメント検出系用基準マーク17を照射し、レチクルアライメント検出系13は、その反射光を検出するCCDカメラなどの光電変換素子を搭載する。この光電変換素子の信号を基にレチクル1とウェハ3の位置合わせを行う。この時、レチクル1上のレチクル基準マーク(不図示)とステージ基準プレート11上のレチクルアライメント検出系用基準マーク17の位置およびフォーカスを合わせて、レチクル1とウェハ3の相対位置関係(X,Y,Z)を合わせる。
レチクルアライメント検出系13により検出するレチクルアライメント検出系用基準マーク17は反射型のマークでもよく、透過型レチクルアライメント検出系14を用いて透過型のレチクルアライメント検出系用基準マーク17を検出することもできる。
ウェハ3のショット領域3dを露光する光源と同一の光源と照明光学系5を用い、レチクル1上のレチクル基準マーク(不図示)と投影光学系6を通してレチクルアライメント検出系用基準マーク17を照射し、透過型レチクルアライメント検出系14に搭載された光量センサで、その透過光を検出する。この時、ウェハステージ4をX方向(もしくはY方向)およびZ方向に駆動させながら透過光の光量を測定し、レチクル1上のレチクル基準マーク(不図示)とレチクルアライメント検出系用基準マーク17の位置およびフォーカスを合わせることができる。
以上のようにレチクルアライメント検出系13あるいは透過型レチクルアライメント検出系14のどちらを用いても、レチクル1とウェハ3の相対位置関係(X,Y,Z)を合わせることができる。
図2に示されるウェハステージ4の1つのコーナーにあるステージ基準プレート11は、ウェハ3の表面とほぼ同じ高さに設置される。ステージ基準プレート11は、ウェハアライメント検出系16が検出するウェハアライメント検出形用基準マーク18と、レチクルアライメント検出系13または透過型レチクルアライメント検出系14が検出するレチクルアライメント検出系用基準マーク17とを備える。ステージ基準プレート11は、ウェハステージ4の複数のコーナーに配置されていてもよく、1つのステージ基準プレート11が複数のレチクルアライメント検出系用基準マーク17、ウェハアライメント検出系用基準マーク18を含んでもよい。レチクルアライメント検出系用基準マーク17とウェハアライメント検出系用基準マーク18との位置関係(XY方向)は既知であるとする。なお、ウェハアライメント検出系用基準マーク18とレチクルアライメント検出系用基準マーク17は共通のマークであってもよい。
フォーカス検出系15は、検出光15aをウェハ3表面に投射する投射系15b、そのウェハ3からの反射光15cを受光する受光系15dを備え、フォーカス検出系15の検出結果は制御装置(不図示)に出力される。制御装置(不図示)は、フォーカス検出系15の検出結果に基づいてZステージであるウェハステージ4を駆動し、ウェハステージ4に保持されているウェハ3のZ軸方向における位置(フォーカス位置)及び傾斜角を調整する。
図1、図3に示される本実施例1のウェハアライメント検出系16は、検出光20aをウェハ3上のウェハアライメントマーク19あるいは図2に示されるステージ基準プレート11上のウェハアライメント検出系用基準マーク18に投射する投射系である照明光学系120を有する。照明光学系120は、被検物体であるウェハ3への照明光20cを照射する光学系である。
ウェハアライメント検出系16は、さらに、結像光学系を有する。この結像光学系は、被検物体であるウェハ3から反射される反射光19aを集光して、ウェハ3の第1の結像倍率の像を形成する第1の光学系である低倍用光学系36および前記第1の結像倍率よりも高いウェハ3の第2の結像倍率の像を形成する第2の光学系である高倍用光学系37を有する。結像光学系は、さらに、
、低倍用光学系36と高倍用光学系37とを切替える切替え手段である切換えミラー28,35、前記第1の結像倍率の像を光電変換する第1の像検出手段であるCCDカメラ等の低倍用光電変換素子31および前記第2の結像倍率の像を光電変換する第2の像検出手段であるCCDカメラ等の高倍用光電変換素子34を有する。ウェハアライメント検出系16は、第1の結像倍率の像の視野での第1の計測の情報を基に第2の結像倍率の像の視野での第2の計測を行う。
低倍用光学系36、高倍用光学系37は、ウェハアライメント検出系用基準マーク18、ウェハアライメントマーク19からの反射光19aを受光する受光系で、ウェハアライメント検出系16の検出結果は制御装置(不図示)に出力される。制御装置(不図示)は、ウェハアライメント検出系16の検出結果に基づいてウェハステージ4をXY方向に駆動することで、ウェハステージ4に保持されるウェハ3のXY方向における位置を調整する。
本実施例1は、半導体露光装置あるいは液晶露光装置内に搭載されるウェハアライメント検出系16のみならず、レチクルアライメント検出系13に対しても適用することができる。
次に、図3を参照して、本実施例1において、プリアライメント時の画像データを用いてファインアライメントでの高コントラストなアライメント条件、あるいは、ファインアライメント計測で傾きの小さい検出信号を選択するアライメント計測手法について説明する。
ウェハアライメント検出系16としては、大きく2つの構成が提案、使用され、1つは投影光学系6を介さず個別に構成され、ウェハ3上のアライメントマークを光学的に検出するオフアクシスアライメント検出系(Off-axis AA、以下OA検出系)である。
もう1つは特にi線露光装置でのアライメント方式としてTTL-AA(Through the Lens アライメント)方式と呼ばれる投影光学系6を介して非露光光のアライメント波長を用いてウェハ3上のアライメントマークを検出する方法がある。
本実施例1では、OA検出系のウェハアライメント検出系16を用いて説明するが、OA検出系のウェハアライメント検出系に限定されるものではない。
ファイバ等のウェハアライメント検出系用照明光源20から導光された光は第一リレー光学系38、波長フィルタ板39、第二リレー光学系40を通り、ウェハアライメント検出系16の瞳面(物体面に対する光学的なフーリエ変換面)に当たる位置の開口絞り41に到達する。このとき開口絞り41でのビーム径はウェハアライメント検出系用照明光源20でのビーム径よりも十分に小さいものとなる。波長フィルタ板39には透過波長帯の異なるフィルタが複数種挿入されており、制御装置(不図示)からの命令でフィルタの切換を行う。開口絞り41は、照明σの異なる絞りを複数種有し、制御装置(不図示)からの命令で絞りの切換を行い、照明σを変更することで照明NAを切り替えることができる。
開口絞り41まで到達した光20cは、第一照明光学系21、第二照明光学系23を通って偏光ビームスプリッター24に導かれる。
波長切換手段である波長フィルタ板39は、照明光学系120から照射される照明光20cの波長域を切り替え、第1の計測の情報を基に第2の計測の照明光20cの波長域を決定する。
照明NA切換手段である開口絞り41は、照明σの異なる絞りを切り替えることで照明光学系120から照射される照明光20cのNAを切り替え、第1の計測の情報を基に第2の計測の照明光20cのNAを決定する。
検出NA切換手段であるNA絞り22は、被検物体であるウェハ3に照射される検出光20aのNAを切り替え、第1の計測の情報を基に第2の計測の検出光20aのNAを決定する。NA絞り22は絞り量を変えることでNAを変え、NA絞り22の絞り量は制御装置(不図示)からの命令で変更する。
偏光ビームスプリッター24により反射された紙面に垂直なS偏光光は、NA絞り22を通りλ/4板25を透過して円偏光に変換され、対物レンズ26を通って検出光20aとして、ウェハ3上に形成されたウェハアライメントマーク19をケーラー照明する。
ウェハアライメントマーク19から発生した反射光19a、回折光、散乱光は、再度、対物レンズ26を通りλ/4板25を通ってP偏光に変換され、NA切換22、偏光ビームスプリッター24を透過し、リレーレンズ27を透過する。ここでウェハアライメント検出系16が低倍率でウェハ3を計測するとき、すなわち、プリアライメント時に、反射光19aは切換ミラー28で反射され低倍用光学系36に導かれる。切換ミラー28で反射された光線は、低倍用第一結像光学系29、低倍用第二結像光学系30によって、ウェハアライメントマーク19の像をCCDカメラ等の低倍用光電変換素子31上に形成する。
ウェハアライメント検出系16が、ウェハ3を高倍率で計測するとき、すなわち、ファインアライメント時には、切換ミラー28を切換ミラー35のように光路から外れた位置に動かすことで、リレーレンズ27を透過した光線が高倍用光学系37に導かれるようにする。リレーレンズ27を透過した光線は、高倍用第一結像光学系32、高倍用第二結像光学系33によって、ウェハアライメントマーク19の像をCCDカメラ等の高倍用光電変換素子34上に形成する。
通常、上記の本実施例1のウェハアライメント検出系16により、ウェハ3上のウェハアライメントマーク19を観察、位置検出する場合、ウェハアライメントマーク19上部に塗布または形成された透明層のため、単色光では干渉縞が発生する。そのため、アライメント信号に干渉縞の信号が加算された状態で検出され、高精度に検出できなくなる。従って、ウェハアライメント検出系16の照明光源20としては、広帯域の波長を持つものが使用され、干渉縞の少ない信号として検出する。
ウェハ3上のウェハアライメントマーク19を精度良く検出するためには、ウェハアライメントマーク19の像が明確に検出されなければならない。すなわち、ウェハアライメント検出系16のピントがウェハアライメントマーク19に合っていなければならない。そのため、不図示のAF検出系が構成されており、その検出結果に基づいて、ウェハアライメントマーク19をウェハアライメント検出系16のベストフォーカス面に駆動して、ウェハアライメントマーク19の検出を行う。
なお、TTL−AA方式のウェハアライメント検出系の場合には、OA方式の検出系を投影光学系6を介して、ウェハ3上を観察する構成をしている点が異なる。
従来例のアライメントシーケンスでは、図4に示されるプリアライメント用マークTを低倍用光学系36で観察し、おおまかな位置合わせを行った後に、ファインアライメントのための先行確認計測を行っていた。さらに、ファインアライメントにとって最もコントラストの高いアライメント条件を決めた後に、ファインアライメントを行いウェハの精密な位置合わせを行っていた。このプリアライメントでは照明光の波長域、照明光のNA、検出光のNAなどの照明条件を切り替えてプリアライメント用マークTを計測し、最もコントラストの高いアライメント条件でプリアライメントを行っていた。ファインアライメントのアライメント条件を決める先行確認計測では、図4に示されるmark1、mark2、mark3、mark4に示される各々のファインアライメントマークを照明光の波長域、照明光のNA、検出光のNAなどの照明条件を切り替えてファインアライメントし、最もコントラストの高いアライメント条件(マークも含む)を決めていた。例えば、図4に示されるファインアライメント計測用アライメントマークmark1、mark2、mark3、mark4の先行確認計測の結果が、図5に示されるようになったとすると、最もコントラストの高いアライメント条件としてマーク種mark2と照明条件2の組み合わせが選ばれる。次に行われるウェハのファインアライメントでは、先行確認計測で最もコントラストが高かった上記のアライメント条件であるマーク種mark2および照明条件2で行われる。
上記の従来例のアライメント計測シーケンスが図6のフローチャートに示される。
まず、ウェハのおおまかな位置合わせを行うために、プリアライメント用マークでウェハ3のプリアライメントを本実施例1のウェハアライメント検出系16を構成する低倍用光学系36で行う。プリアライメントマークをプリアライメントし(ステップ101)、コントラストを計算し(ステップ102)、このシーケンスをアライメント条件(照明光の波長域、照明光のNA、検出光のNA)分繰り返す。ステップ101とステップ102をアライメント条件分繰り返すことで、プリアライメントにとって最もコントラストの高いプリアライメント条件を求める(ステップ103)。プリアライメントにとって最もコントラストの高いプリアライメント条件を求め、この条件を使ってプリアライメント計測をし、ウェハのおおまかな位置合わせを行う(ステップ104)。プリアライメントでウェハのおおまかな位置合わせを行った後、精密なファインアライメントを本実施例1のウェハアライメント検出系16を構成する高倍用光学系37で行うためのアライメント条件決定のため、ウェハの先行確認計測を行う(ステップ105)。先行確認計測はまず、あるアライメントマークをある照明条件(照明光の波長域、照明光のNA、検出光のNA)で計測し、その計測データからコントラスト計算を行う(ステップ106)。次に、アライメントマーク若しくは照明条件(照明光の波長域、照明光のNA、検出光のNA)を変えて、再度ファインアライメントでの先行確認計測を行い、コントラストを求める(ステップ105、ステップ106)。これをアライメントマークや照明条件といった全アライメント条件で行い、図5に示される全てのアライメント条件でのコントラスト表を作る。全アライメント条件の中で最もコントラストの高いアライメント条件を求め(ステップ107)、このアライメント条件でウェハのファインアライメント計測を行う(ステップ108)。
上述の実施例では、アライメントマーク種を4種、アライメント条件を5つとしたが、より良いアライメント条件を求めるためには、アライメントマークの種類およびアライメント条件ともに多い方が良い。しかし、従来例ではアライメント条件が増えれば増えるほど、ファインアライメント前の先行確認計測の時間が増えるので、露光装置のスループットが劣化した。
本実施例1では、第1の計測において第1計測用マークであるプリアライメント用マークTを計測する視野内である図7に示される低倍画像領域100内に第2の計測の照明光20cの波長域、照明光20cのNAおよび検出光20aのNAの1つ以上を決定するための第2計測条件決定用マークであるファインアライメント用マークmark1、mark2、mark3、mark4を入れる。さらに、第1の計測において第2計測条件決定用マークであるファインアライメント用マークmark1、mark2、mark3、mark4を計測し、計測結果から第2の計測の照明光20cの波長域、照明光20cのNAおよび検出光20aのNAの1つ以上を決定する。ここで、第1計測用マークであるプリアライメント用マークTと、第2計測条件決定マークであるファインアライメント用マークmark1、mark2、mark3、mark4とは異なる。
すなわち、図7に示される低倍画像領域100内に構成されたプリアライメント用マークTとファインアライメント用マークmark1、mark2、mark3、mark4を同時に、プリアライメント検出系で測定することで、プリアライメント計測時にファインアライメント計測において最もコントラストが高い照明条件を決定することができる。
本実施例1でのアライメントシーケンスでは、低倍用光学系36で図7に示すようなプリアライメント用マークTを計測し、おおまかな位置合わせをすると同時に、低倍画像領域100内に存在するファインアライメント用マークmark1、mark2、mark3、mark4のコントラスト計測ができる。従来例は図4に示したようにプリアライメント用マークTを測定した後に、ファインアライメント用マーク mark1、mark2、mark3、mark4を順に測定していたシーケンスであった。しかし、本実施例1においてはプリアライメント用マークTとファインアライメント用マークmark1、mark2、mark3、mark4を同時に計測する。OA検出系の照明光の波長域、照明光のNA、検出光のNAなどの照明条件を変えて、低倍画像領域100内の全てのアライメントマークを計測し、これらの条件の中で最もコントラストの高いアライメント条件を決定する。すなわち、第1の計測は、複数の照明光20cの波長域、複数の照明光20cのNAおよび複数の検出光20aのNAのいずれか1以上で計測する。
図7に示されるファインアライメント用マークmark1、mark2、mark3、mark4をプリアライメント計測した結果が、図8に示されるが、最もコントラストの高いアライメント条件としてマーク種mark2および照明条件2の組み合わせが選ばれる。このアライメント条件でウェハ3のファインアライメントが行われる。
上述の本実施例1におけるアライメント計測シーケンスのフローチャートを図9に示す。
まずウェハ3のおおまかな位置合わせを行うために、プリアライメント用マークでウェハのプリアライメントを行う。プリアライメントマークをプリアライメント計測し(ステップ201)コントラストを求め(ステップ202)、このシーケンスをアライメント条件(照明光の波長域、照明光のNA、検出光のNA)分繰り返す。ステップ201とステップ202をアライメント条件分繰り返すことで、プリアライメントにとって最もコントラストの高いプリアライメント条件を求める(ステップ203)。ステップ201のプリアライメントマーク計測時に、図7に示される低倍画像領域の視野内にファインアライメント用マークmark1、mark2、mark3、mark4を入れておくことで、同時にファインアライメントにとって最もコントラストの高いファインアライメント条件を求めることもできる(ステップ203)。ステップ203でプリアライメントにとって最もコントラストの高いプリアライメント条件が求められるので、この条件を使ってプリアライメント計測をし、ウェハ3のおおまかな位置合わせを行う(ステップ204)。ステップ204でウェハ3のおおまかな位置合わせが終わったら、ステップ203で求めたファインアライメントにとって最もコントラストの高いファインアライメント条件でウェハ3のファインアライメントを行う(ステップ205)。
図9に示したような本実施例1によるアライメント計測シーケンスによると、図6に示される従来例の計測シーケンスと比べて、ファインアライメント用マークmark1、mark2、mark3、mark4をアライメント条件分だけ先行確認計測する必要がなくなる。このため、より短時間でファインアライメント計測の条件を決定することができ、露光装置のスループットが向上する。
また上述の説明ではプリアライメント計測時に測定したファインアライメント用マークmark1、mark2、mark3、mark4のコントラスト評価によって、ファインアライメント計測の条件の決定を行ったが、プリアライメント計測時に測定したファインアライメント用マークmark1、mark2、mark3、mark4の画像の評価によって、ファインアライメント計測の条件の決定を行っても良い。通常のプロセスウェハではウェハには様々なプロセスが積まれ、多層膜構造となっている。アライメントマークは多層のプロセスの下にある時もあり、アライメント検出信号はマーク上層のプロセスの影響を受ける場合もある。アライメントマーク上層のプロセスが均一に分布していれば問題はないが、マークの付近でプロセスが傾斜を持つと、アライメント検出信号もプロセスの傾斜の影響で傾いてしまう。
図20は、プロセスの傾斜の影響を受けたアライメントマークmark1と、マーク上層のプロセスが均一なアライメントマークmark2でのプリアライメント計測時の画像と、それぞれのマークでのファインアライメント波形を示した図である。
プロセスの傾斜の影響を受けたアライメントマークmark1ではファインアライメント波形も傾いており、プロセスが均一なアライメントマークmark2ではファインアライメント波形に傾きは見られない。
この場合、mark1の方がmark2よりもプロセスの傾斜の影響を受け易いマークであり、ファインアライメント計測ではmark2を使う方が好適である。
本実施例1のプリアライメント時の画像データを利用してファインアライメント計測のアライメント条件を求める手法では、プリアライメント画像からプロセスの傾斜の影響が最も少ないアライメントマークを求め、前記マークでファインアライメント計測を行うことができる。
図21は、図20に示したファインアライメント用マークmark1、mark2のプリアライメント画像でのマーク近傍のプリアライメントでの検出強度を示したものである。
図21に示される各々のグラフはプリアライメント画像を線63部分で見たときの検出強度を示したもので、同じサンプル領域に対してmark1ではmark2よりも検出強度の傾斜の割合:(max−min)/(max+min)が大きい。この場合、mark1はmark2に比べてファインアライメント波形の傾きも大きいため、ファインアライメント計測ではmark2を使うことが好適である。
上述の説明では、プロセスの傾斜の影響を受け難いアライメントマークについて説明したが、本実施例はアライメントマークの選択のみに限らない。照明光の波長域、照明光のNA、検出光のNAに対しても同様の処理は可能であり、本実施例によれば、プロセスの傾斜の影響を受け難いアライメント条件を求めることができる。
上記のように本実施例1によれば、プリアライメントの後に行っていたファインアライメントでの先行確認計測を行う必要がない。さらに、プリアライメントの情報を基に、ファインアライメントで最もコントラストが得られるアライメント条件を決定することが出来、露光装置のスループットが向上する。
さらに、プリアライメント時の画像データから最もプロセスの傾斜の影響を受けないアライメント条件を決定することもできる。プリアライメントでの計測データを基に、ファインアライメントで傾きの小さい検出信号を選択できるため、ウェハ間でより安定した信号を選択し、より高精度なアライメントを達成できる。
次に、本発明の実施例2であるプリアライメント時に取得したプロセス情報を利用したシミュレーションにより、ファインアライメントでの高コントラストなアライメント条件を求めるアライメント計測手法について説明する。
図10に示されるウェハ3上にアライメントマークと複数種のレジスト3aが構成されているプロセスをアライメントする場合を説明する。
従来例は図10のようなレジスト3aが塗布されたウェハ3をアライメントする前に照明光の波長域、照明光のNA、検出光のNAなどのアライメント条件を変えてウェハ3の先行確認計測を行うことで、このプロセスにとって最も高コントラストなアライメント条件を求めてからアライメントを開始していた。
本実施例2では、図10に示される複雑なプロセスをアライメントする際には、露光装置に備え付けられている入力器60に前記プロセス構成を入力する。
測定手段である測定器61は、被検物体であるウェハ3の膜厚および屈折率を測定する。計算手段である計算機62は、測定されたウェハ3の膜厚および屈折率および入力されたウェハ3の構成情報を基に反射率および検出信号の計算を行う。さらに、本実施例2では、計算機62で計算された反射率および検出信号に基づいて照明光20cの波長域、照明光20cのNAおよび検出光20aのNAの1つ以上を決定する。フォーカス検出系15は、ウェハ3の高さ情報を測定し、フォーカス検出系15で測定された高さ情報を、さらに加えて前記計算を行い、アライメント検出系16での第1の計測および第2の計測の前記照明光20cの波長域、照明光20cのNAおよび検出光20aのNAの1つ以上を決定する。
露光装置に備え付けられた計算機62は入力器60に入力された前記プロセス構成と測定器61で測定された前記プロセスのプロセス情報とフォーカス検出系15で測定されたプロセスの表面形状情報に基づいて、前記プロセスの反射率計算を行う。
反射率計算とは図10に示されるウェハ3のマーク3bの反射率Aとマーク3bが無い部分の反射率Bをシミュレーションにより求めることで、この反射率Aと反射率Bの差分が前記プロセスのコントラストとなる。
フォーカス検出系15は、ウェハ3の搬送時若しくはウェハ3のプリアライメント時にウェハ表面層42の凹凸情報を測定することで、プロセスの表面形状についての詳細な情報を得る。図10に示したようなプロセスウェハのウェハ表面層42は図10に示される完全に平坦ではなく、実際には凹凸形状を持っている。このようなウェハ3を図10に示したようにウェハ表面層42が平坦なものとしてシミュレーションすると、ウェハ表面層42に存在する凹凸が原因でシミュレーションの正確性を欠く。そこで、フォーカス検出系15で計測されるプロセスの表面形状を用いてシミュレーションを行うことで、前記プロセスのシミュレーションの精度を高める。
図11は、図10のプロセスの反射率計算を行うことで求めた照明光の波長域に対するコントラストCのグラフである。
まず、簡単に説明するために単波長とする。図11のグラフのコントラストCが0%以上の波長であれば波形は、図12に示される凸型波形43となり、コントラストCが0%以下の波長であれば波形は図12に示される凹型波形44となる。また同じコントラストCが0%以上の波長でも図11に示される波長Dと波長Fとで得られる波形は、図12に示される波形43、45のようにコントラストが異なったものとなる。つまりコントラストの高い波形を得るには図11に示されるコントラストCの絶対値が大きい波長であれば良い。
上述のコントラストCと波形の説明では簡単に説明するために単波長で説明したが、以下、本実施例2における広い波長域を持つ光源の光から最適な波長域を選択する手法について説明する。ここでは広い波長域を持つ光源20からの光を、波長フィルタ板39で光源20が持つ波長域よりも狭い波長域の光に分割して照射する場合を説明する。波長フィルタ板39が持つ波長フィルタとしては、λ(G)〜λ(H)までの波長域Gとλ(H)〜λ(I)までの波長域Hとλ(I)〜λ(J)までの波長域Iの3つの波長域を持つフィルタの場合を説明する。これらの3つの波長域から、図10に示されるプロセスにとってコントラストが高くプロセスのロット間バラツキの影響を受け難い波長域を選択する手順について以下に説明する。
図13は、上述と同様のプロセスのコントラストCと波長域G・H・Iの関係を示したものであり、ここでは波長に対するコントラストCの変化を関数C(λ)で表す。図13の斜線部分3cに示した波長域GにおけるコントラストCの積分値の波長平均をI(G)とするとI(G)は
Figure 2009283795
と表され、波長域Gの全波長域においてコントラストCが0%以上であることからI(G)は0以上となり、波長域Gで計測される波形は図12に示される波形43のような凸型波形となる。
それに対して図13の点部分に示した波長域IにおけるコントラストCの積分値の波長平均I(I)は
Figure 2009283795
と表され、波長域Iの全波長域においてコントラストCが0%以下であることからI(I)は0以下となり、波長域Iで計測される波形は図12の波形44のような凹型波形となる。
また図13の横線部分に示した波長域HでのコントラストCの積分値の波長平均I(H)は
Figure 2009283795
で表され、波長域HにはコントラストCが0%以上の領域と0%以下の領域が混在しているが、コントラストCが0%以上の領域の積分値の方が多いため、積分値I(H)は0以上となる。I(H)>0より波長域Hで計測される波形は凸型波形となるが、波長域Gの積分値I(G)と比べるとI(G)>I(H)であるため、波長域Gの凸型波形と比べると波長域Hの波形のコントラストは低くなる。従って波長域Hで計測される波形は図12の波形45のように波長域Gで計測される波形と比べるとコントラストの低い波形となる。つまりコントラストの高い波形を得るには、ある波長域でのコントラストCの積分値の絶対値がより大きくなるような波長域を持つフィルタを波長フィルタ板39から選択すればよい。上記プロセスの場合だと反射率計算よりコントラストCの積分値の波長平均の絶対値の大きい、波長域Gと波長域Iが選択する波長域の候補にまずは選ばれる。
上記説明では反射率計算により高コントラストな波長域を選択する手法について説明したが、本実施例2ではさらにロット間バラツキの影響を受け難い波長域を求めることが可能である。例えば図10に示したプロセスのレジスト部分がロット間バラツキを持つ場合を考える。図14は図10に示したプロセスのレジスト部分がロット間バラツキによって厚くなっている場合と薄くなっている場合と標準膜厚の場合での波長に対するコントラストCを示したグラフである。図14の実線47は図10のレジスト3aが標準膜厚の時、点線48はレジスト3aが標準よりも厚くなっている時、波線49はレジスト3aが標準よりも薄くなっている時の波長に対するコントラストCを示している。図14のようにレジスト3aの膜厚によって、前記プロセスの波長に対するコントラストCは変化する。
図15はレジスト3aが標準よりも厚くなっている場合での波長に対するコントラストCと波長域G・H・Iの関係を示している。図15の波長に対するコントラストCを関数C48(λ)と表すと、波長域Gで得られるコントラストCの積分値の波長平均I48(G)は
Figure 2009283795
と表される。波長域GでC48(λ)は全て0%以上で、I48(G)はレジスト3aが標準である図13のI(G)とほぼ同等の値を取り、波長域Gはレジスト3aの膜厚が厚くなってもコントラスト変化が少ない。
次に、図10のレジスト3aの膜厚が厚くなっている時に、図15に示される波長域Iで得られるコントラストCの積分値の波長平均I48(I)は
Figure 2009283795
と表される。波長域IでC48(λ)は全て0%以下で、I48(I)はレジスト3aが標準である図13のI(I)よりやや小さいもののほぼ同等の値であり、波長域Iはレジスト3aの膜厚が厚くなってもコントラスト変化が比較的少ない。つまりロット間バラツキによりレジスト3aの膜厚が標準よりも厚くなったとしても、波長域Gと波長域Iで計測される波形のコントラストは大きく変化しない。
図16は、図10のレジスト3aが標準よりも薄くなっている場合での波長に対するコントラストCと波長域G・H・Iの関係を示している。図16の波長に対するコントラストCを関数C49(λ)と表すと、波長域Gで得られるコントラストCの積分値の波長平均I49(G)は
Figure 2009283795
と表される。波長域GでC49(λ)は全て0%以上で、I49(G)はレジスト3aが標準である図13のI(G)やレジスト3aの膜厚が標準よりも厚くなっている図15に示されるI48(G)とほぼ同等の値であり、波長域Gはレジスト3aの膜厚が薄くなってもコントラスト変化が少ない。波長域Gではレジスト3aの膜厚が標準膜厚でも標準から厚くなっても薄くなっても全て同程度のコントラストが得られ、波長域Gはレジスト3aの膜厚変化の影響を受け難い波長域である。
次に、図10のレジスト3aの膜厚が薄くなっている時に、図16に示される波長域Iで得られるコントラストCの積分値の波長平均I49(I)は
Figure 2009283795
と表される。波長域IでC49(λ)は全て0%以下であるものの、I49(I)はレジスト3aが標準である図13のI(I)より小さい値となっており(I(I)>I49(I))、波長域Iはレジスト3aの膜厚が薄くなることで標準膜厚の時と比べてコントラストの低下が起こることになる。波長域Iでは前記レジストの膜厚が標準膜厚でも標準から厚くなってもコントラストは同程度であったが、標準膜厚よりも薄い膜厚の時にはコントラストの低下が起こることが分かった。このことより、波長域Iは波長域Gと比べると前記プロセスの膜厚変化の影響を受ける波長域であると言える。
前記レジスト部の膜厚が変化した際のコントラストの積分値の波長平均を、各波長域ごとにグラフにしたものが図17である。50は波長域Gでのコントラストの積分値の波長平均で52は波長域Hでのコントラストの積分値の波長平均Iで51は波長域Iでのコントラストの積分値の波長平均である。図17より前記レジスト部の膜厚が変化しても波長域Gではコントラストはほとんど変化しないことが分かる。この結果より、標準膜厚では波長域Gと波長域Iのコントラストは同程度であったが、前記レジスト部の膜厚変化の影響を受け難い波長域Gの方が前記プロセスをアライメントする際の波長域としては良いと判断できる。よって前記プロセスをアライメントする際には波長域G・H・Iの3つの波長域の内、波長域Gが最も良いと判断され、制御装置は波長フィルタ板39の内、波長域Gを持つフィルタを選択してアライメントを開始する。
図18に本実施例2の流れをフローチャートで示す。
まず、これから流すプロセスの構成を入力器60に入力する(ステップ301)。次にウェハの搬送時にプロセスの情報が測定器61によって測定される(ステップ302)。次に、ウェハ3がウェハステージ4に搭載されプリアライメント中にウェハ3表面の凹凸情報をフォーカス検出系15が検出する(ステップ303)。このステップ301・302・303の順序は不問であり、順序が逆転していても良い。ステップ301・302・303を全て済ますと、次はステップ301、302、303で得たプロセスの構成やプロセスの情報を基に露光装置に備え付けられた計算機62がコントラストが高く、プロセスのロット間バラツキの影響を最も受け難い波長域を計算で求める(ステップ304)。計算機62が前記波長域の選定を行ったら、制御装置(不図示)はステップ304で選定された波長域に相当する波長フィルタに変更を行う(ステップ305)。最後にステップ305で変更された前記波長フィルタでアライメントを開始する(ステップ306)。
上述のフローチャートに示したように、入力されたプロセス構成と測定されたプロセス情報を基に高コントラストな波長域を計算で求めることで、従来行っていた波長域を選択する為の先行確認計測時間を省略することが可能となる。結果、装置のスループットアップに貢献できる。さらに本実施例2で求められる波長域は高コントラストであるだけでなく、プロセスのロット間バラツキの影響を受け難い波長域でもあるため、本実施例2を有する露光装置はロット間バラツキの影響を受け難い。
上述の本実施例2の説明では、複数の波長域の中から高コントラストかつロット間バラツキの影響を受け難い波長域を計算で求めることで、露光装置のスループットを向上させる手法について説明したが、本実施例2は波長域の選択のみに限定するものではない。アライメント照明条件としては波長域の他に照明光のNA、検出光のNAなどがあるが、本実施例は照明光の波長域の選択のみならず高コントラストな照明光のNA、検出光のNAを計算で求めることも可能である。これら計算によって求められた照明光の波長域、照明光のNA、検出光のNAなどのアライメント照明条件を基に照明光の波長域、照明光のNA、検出光のNAを選択しアライメントを開始することによって、従来例においてはアライメント照明条件の決定のために行っていた先行確認計測を省略することが可能となる。
上述までの説明では、OA検出系での画像処理方式のアライメントシステムを用いて本実施例2について説明したが、本実施例2はもちろん画像処理方式に限定するものではなく、レーザグレーティング方式にも適用可能である。レーザグレーティング方式のアライメント検出系は通常、波長の異なる複数個のレーザを備えており、プロセスによってレーザの切換を行う手法が一般的である。従来のレーザグレーティング方式のアライメントのシーケンスでは、プロセスに対して波長の異なる複数個のレーザ全てを用いて先行確認計測を行い、最も高いコントラストが得られる波長のレーザを調べた後に前記レーザで本計測を行う、といったシーケンスが一般的であった。本実施例2によると、レーザグレーティング方式のアライメント検出系でも先行確認計測を行わずに、高コントラストかつロット間バラツキの影響を受け難いレーザでアライメントを開始することが可能である。
本実施例2によるレーザグレーティング方式のアライメント検出系について図19のフローチャートを用いて以下に説明する。
まず、これから流すプロセスの構成を入力器60に入力する(ステップ401)。次にウェハ3の搬送時にプロセスの情報は測定器61によって測定される(ステップ402)。次にはウェハ3がウェハステージ4に搭載されプリアライメント中にウェハ表面の凹凸情報をフォーカス検出系が検出する(ステップ403)。なおこのステップ401、402、403の順序は不問であり、順序が逆転していても良い。ステップ401、402、403を全て済ますと、次はステップ401、402、403で得たプロセスの構成やプロセスの情報を基に露光装置に備え付けられた計算機62がコントラストが高く、プロセスのロット間バラツキの影響を最も受け難い波長を計算で求める(ステップ404)。計算機62が波長の選定を行うと、制御装置(不図示)はステップ404で選定された波長に相当する光源(レーザ)に切換を行う(ステップ405)。最後にステップ405で切換られた光源(レーザ)でアライメントを開始する(406)。
上述のフローチャートに示したように、入力されたプロセス構成と測定されたプロセス情報を基に高コントラストな波長を計算で求めることで、従来例において行っていたレーザを選択するための先行確認計測を省略することが可能となる。このため、露光装置のスループットが向上する。
また上述までの説明ではロット間バラツキとして、プロセスの膜厚のみを可変パラメーターとしてコントラスト変化の説明を行ったが、ロット間バラツキの可変パラメーターとしてマーク部の段差やプロセスの物性値を利用することも可能である。
(デバイス製造方法の実施例)
デバイス(半導体集積回路素子、液晶表示素子等)は、前述のいずれかの実施例の露光装置を使用して、感光剤を塗布した基板(ウェハ、ガラスプレート等)を露光する工程と、その基板を現像する工程と、他の周知の工程と、を経ることにより形成、製造される。他の周知の工程には、エッチング、レジスト剥離、ダイシング、ボンディング、パッケージング等を含む。
本発明の実施例の露光装置の概略構成図である。 本発明の実施例の露光装置におけるウェハとウェハアライメントマークなどの説明図である。 本発明の実施例1のウェハアライメント検出系の構成図である。 従来例の低倍と高倍のアライメントマークを示す図である。 図4のアライメントマークを高倍で観測した結果を示した図である。 従来例のアライメント条件決定のシーケンスを示す図である。 本発明の実施例1の低倍視野内に高倍のアライメントマークも含まれている説明図である。 本発明の実施例1において図7のアライメントマークを低倍で観測した結果を示した図である。 本発明の実施例1におけるアライメント計測シーケンスのフローチャートである。 本発明の実施例2におけるプロセス構成を示した断面図である。 本発明の実施例2における波長に対するコントラストCの変化を示したグラフである。 本発明の実施例2における各種条件での波形を示した図である。 本発明の実施例2における波長に対するコントラストCの変化と波長域の関係を示したグラフである。 本発明の実施例2におけるプロセスのレジストの膜厚が変化した時の波長に対するコントラストCの変化を示したグラフである。 本発明の実施例2におけるプロセスのレジストの膜厚が標準よりも厚い時の、波長に対するコントラストCの変化を示したグラフである。 本発明の実施例2におけるプロセスのレジストの膜厚が標準よりも薄い時の、波長に対するコントラストCの変化を示したグラフである。 本発明の実施例2における各波長域でのレジスト膜厚に対するコントラストの積分値の波長平均を示したグラフである。 本発明の実施例2における画像処理方式のフローチャートである。 本発明の実施例2におけるレーザグレーティング方式のフローチャートである。 本発明の実施例2におけるプロセスの傾斜の影響を受けたアライメントマークmark1と、マーク上層のプロセスが均一なアライメントマークmark2でのプリアライメント計測時の画像と、それぞれのマークでのファインアライメント波形を示した図である。 図20に示したアライメントマークmark1・mark2のプリアライメント画像でのマーク近傍のプリアライメントでの検出強度を示した図である。
符号の説明
1 レチクル 2 レチクルステージ 3 ウェハ
4 ウェハステージ 5 照明光学系 6 投影光学系
7 レチクルステージ上ミラー 8 ウェハステージ上ミラー
9 レチクルステージ上ミラー計測用XY方向用レーザ干渉計
10 ウェハステージ上ミラー計測用XY方向用レーザ干渉計
11 ステージ基準プレート
12 ウェハステージ上ミラー計測用Z方向用レーザ干渉計
13 レチクルアライメント検出系
14 透過型レチクルアライメント検出系
15 フォーカス検出系 16 ウェハアライメント検出系
17 レチクルアライメント検出形用基準マーク
18 ウェハアライメント検出系用基準マーク
19 ウェハアライメントマーク
20 ウェハアライメント検出系用照明光源
21 第一照明光学系 22 NA絞り 23 第二照明光学系
24 偏光ビームスプリッター 25 λ/4板
26 対物レンズ 27 リレーレンズ
28 切換ミラー 29 低倍用第一結像光学系
30 低倍用第二結像光学系 31 低倍用光電変換素子
32 高倍用第一結像光学系 33 高倍用第二結像光学系
34 高倍用光電変換素子 35 切換ミラー
36 低倍用光学系 37 高倍用光学系
38 第一リレー光学系 39 波長フィルタ板
40 第二リレー光学系 41 開口絞り
42 プロセスの表面層 43〜46 波形
47 レジスト膜厚が標準時の波長に対するコントラストCの変化
48 レジスト膜厚が標準時よりも厚い場合の波長に対するコントラストCの変化
49 レジスト膜厚が標準時よりも薄い場合の波長に対するコントラストCの変化
50 波長域Gでのレジスト膜厚に対するコントラストの積分値の波長平均の変化
51 波長域Iでのレジスト膜厚に対するコントラストの積分値の波長平均の変化
52 波長域Hでのレジスト膜厚に対するコントラストの積分値の波長平均の変化
60 入力器 61 測定器 62 計算機
63 サンプル部分
64 プロセスに傾斜があるときの強度変化
65 プロセスに傾斜がないときの強度変化



Claims (12)

  1. 被検物体への照明光を照射する照明光学系と、
    前記被検物体から反射される反射光を集光して、前記被検物体の第1の結像倍率の像を形成する第1の光学系、前記第1の結像倍率よりも高い前記被検物体の第2の結像倍率の像を形成する第2の光学系、前記第1の光学系と前記第2の光学系とを切替える切替え手段、前記第1の結像倍率の像を光電変換する第1の像検出手段および前記第2の結像倍率の像を光電変換する第2の像検出手段から成る結像光学系と、を有し、
    前記第1の結像倍率の像の視野での第1の計測の情報を基に前記第2の結像倍率の像の視野での第2の計測を行うことを特徴とするアライメント検出系。
  2. 前記照明光学系から照射される前記照明光の波長域を切り替える波長切換手段を有し、
    前記第1の計測の情報を基に前記第2の計測の前記照明光の波長域を決定することを特徴とする請求項1記載のアライメント検出系。
  3. 前記照明光学系から照射される前記照明光のNAを切り替える照明NA切換手段を有し、
    前記第1の計測の情報を基に前記第2の計測の前記照明光のNAを決定することを特徴とする請求項1記載のアライメント検出系。
  4. 前記被検物体に照射される検出光のNAを切り替える検出NA切換手段を有し、
    前記第1の計測の情報を基に前記第2の計測の前記検出光のNAを決定することを特徴とする請求項1記載のアライメント検出系。
  5. 前記第1の計測において第1計測用マークを計測する視野内に第2の計測の前記照明光の波長域、前記照明光のNAおよび前記検出光のNAの1つ以上を決定するための第2計測条件決定用マークを入れ、
    前記第1の計測において前記第2計測条件決定用マークを計測し、前記計測結果から第2の計測の前記照明光の波長域、前記照明光のNAおよび前記検出光のNAの1つ以上を決定することを特徴とする請求項1から4のいずれかに記載のアライメント検出系。
  6. 前記第1計測用マークと、前記第2計測条件決定マークとは異なることを特徴とする請求項5記載のアライメント検出系。
  7. 前記第1の計測は、複数の前記照明光の波長域、複数の前記照明光のNAおよび複数の前記検出光のNAのいずれか1以上で計測することを特徴とする請求項5または6に記載のアライメント検出系。
  8. 前記被検物体の膜厚および屈折率を測定する測定手段と、
    前記被検物体の構成情報を入力する入力手段と、
    測定された前記被検物体の前記膜厚および屈折率および入力された前記被検物体の構成情報を基に反射率および検出信号の計算を行う計算手段と、を有し、
    前記計算手段で計算された前記反射率および検出信号に基づいて前記照明光の波長域、前記照明光のNAおよび前記検出光のNAの1つ以上を決定することを特徴とする請求項1から4のいずれかに記載のアライメント検出系。
  9. 前記被検物体の高さ情報を測定するフォーカス検出系を有し、
    前記フォーカス検出系で測定された前記高さ情報を、さらに加えて前記計算を行い、
    前記アライメント検出系での第1の計測および第2の計測の前記波長域、前記照明光のNAおよび前記検出光のNAの1つ以上を決定することを特徴とする請求項8に記載のアライメント検出系。
  10. 請求項1から9のいずれかに記載のアライメント検出系を有することを特徴とする露光装置。
  11. 前記アライメント検出系は、ウェハアライメント検出系またはレチクルアライメント検出系であることを特徴とする請求項10露光装置。
  12. 請求項10または11記載の露光装置を用いて基板を露光する工程と、
    前記基板を現像する工程と、
    前記現像された基板を用いて、デバイスを形成する工程と、を備えることを特徴とするデバイス製造方法。
JP2008136098A 2008-05-23 2008-05-23 アライメント検出系、露光装置およびデバイス製造方法 Pending JP2009283795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008136098A JP2009283795A (ja) 2008-05-23 2008-05-23 アライメント検出系、露光装置およびデバイス製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008136098A JP2009283795A (ja) 2008-05-23 2008-05-23 アライメント検出系、露光装置およびデバイス製造方法

Publications (1)

Publication Number Publication Date
JP2009283795A true JP2009283795A (ja) 2009-12-03

Family

ID=41453919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008136098A Pending JP2009283795A (ja) 2008-05-23 2008-05-23 アライメント検出系、露光装置およびデバイス製造方法

Country Status (1)

Country Link
JP (1) JP2009283795A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023726A (ja) * 2009-07-16 2011-02-03 Asml Netherlands Bv 物体アライメント測定方法及び装置
CN106680991A (zh) * 2016-07-26 2017-05-17 京东方科技集团股份有限公司 识别装置及对位设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023726A (ja) * 2009-07-16 2011-02-03 Asml Netherlands Bv 物体アライメント測定方法及び装置
CN106680991A (zh) * 2016-07-26 2017-05-17 京东方科技集团股份有限公司 识别装置及对位设备

Similar Documents

Publication Publication Date Title
TWI405046B (zh) 評估模型之方法,檢查裝置及微影裝置
TWI428705B (zh) 檢驗裝置、微影裝置、微影製程單元及檢驗方法
JP4719817B2 (ja) 基板の性質を測定する方法、スキャトロメータ、及び、リソグラフィ装置
JP5277348B2 (ja) オーバーレイエラーを決定する方法
US20130230798A1 (en) Detection apparatus, exposure apparatus, and method of manufacturing device
JP4944690B2 (ja) 位置検出装置の調整方法、位置検出装置、露光装置及びデバイス製造方法
TWI448658B (zh) 量測疊對誤差的方法及器件製造方法
TWI435182B (zh) 角度分辨散射計及檢查方法
US6975384B2 (en) Exposure apparatus and method
JP5091597B2 (ja) 検査装置、像投影装置、および基板特性測定方法
JP2008083032A (ja) 検査方法および装置、リソグラフィ装置、リソグラフィ処理セルおよびデバイス製造方法
JP2009016762A (ja) 露光装置及びデバイス製造方法
JP2000138164A (ja) 位置検出装置及びそれを用いた露光装置
JP2013024747A (ja) 計測装置、露光装置およびデバイス製造方法
JP2013500597A (ja) リソグラフィ用の検査方法
TWI662375B (zh) 可撓式照明器
JP2009224523A (ja) 露光方法、露光装置及びデバイス製造方法
KR101599577B1 (ko) 노광 장치, 노광 장치의 제어 방법 및 디바이스 제조 방법
JP2006269669A (ja) 計測装置及び計測方法、露光装置並びにデバイス製造方法
JP2004356193A (ja) 露光装置及び露光方法
JP2005294404A (ja) 測定装置、測定方法及びそれを有する露光装置及び露光方法、それを利用したデバイス製造方法
JP2009283795A (ja) アライメント検出系、露光装置およびデバイス製造方法
KR20190034624A (ko) 간섭성을 갖는 방사선 빔 처리 장치 및 방법
JP2005311198A (ja) 露光装置、合焦位置検出装置及びそれらの方法、並びにデバイス製造方法
JP2004279166A (ja) 位置検出装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630