JP2009277856A - パワーモジュール、パワーモジュールの製造方法 - Google Patents

パワーモジュール、パワーモジュールの製造方法 Download PDF

Info

Publication number
JP2009277856A
JP2009277856A JP2008127114A JP2008127114A JP2009277856A JP 2009277856 A JP2009277856 A JP 2009277856A JP 2008127114 A JP2008127114 A JP 2008127114A JP 2008127114 A JP2008127114 A JP 2008127114A JP 2009277856 A JP2009277856 A JP 2009277856A
Authority
JP
Japan
Prior art keywords
power module
conductive porous
manufacturing
porous body
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008127114A
Other languages
English (en)
Inventor
Tadashi Yoshida
忠史 吉田
Yuji Osada
裕司 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008127114A priority Critical patent/JP2009277856A/ja
Publication of JP2009277856A publication Critical patent/JP2009277856A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】線膨張係数が相違する部材間の熱応力を緩和する。
【解決手段】第1の部材22と、第2の部材24との間に、接合部材26を挟み接合させる接合構造を備える。第2の部材24は、第1の部材22よりも線膨張係数が大きく、接合部材26は、第2の部材24側から第1の部材22側に向かって気孔率が大きくなるように形成された導電性多孔体28の空隙部分30にはんだを含浸させてなる。
【選択図】図2

Description

本発明は、パワーモジュール、パワーモジュールの製造方法に関し、特に、線膨張係数の異なる部材を接合させてなるパワーモジュール、パワーモジュールの製造方法に関する。
従来のパワーモジュールについて説明する。図6に例示するように、表面に回路が形成され、DBA(ダイレクト・ボンディング・アルミニウム)法またはDBC(ダイレクト・ボンディング・カッパー)法などにより作製された絶縁基板14の一方面側に半導体素子12が、他方面側に放熱板18がそれぞれ接合されている。放熱板18はさらに、冷却器20と接合されており、放熱板18を介して伝達された、半導体素子12に由来する熱を、冷却器20から放散させることができる構成を有している。
このようなパワーモジュールにおいては、一般に絶縁基板14と放熱板18との間で線膨張係数が大きく異なるため、例えば特許文献1〜3に示すように、この接合部分に多孔体構造を有する金属材料を含む接合部材16を挟持して、線膨張係数の異なる接合部分の熱応力を緩和する手法が知られている。
特許文献1には、金属材料により三次元網状多孔質に形成した発泡金属材と、この発泡金属材に含浸するとともに発泡金属材表面を被覆するはんだ材とを備えるはんだ接合材により、はんだ接合材の両面に接合部材をそれぞれ接合することについて記載されている。
特許文献2には、セラミック基板と回路を形成した基板との間にシリコーングリース、シリコーンオイル又はエポキシ樹脂を充填した可塑性多孔質金属層を積層させて接合したパワーモジュール用基板について記載されている。
特許文献3には、セラミック基板に可塑性多孔質金属層からなる回路を形成した基板を形成したパワーモジュールについて記載されている。
特開2004−298962号公報 特許第3230181号公報 特開平9−51151号公報
しかしながら、各部材の線膨張係数の差がさらに大きくなると、従来の均質な多孔体構造では応力緩和が十分でない場合があり、応力緩和部材との接合界面付近でクラックが発生し得る。
一方、多孔体構造を有する応力緩和部材において、応力緩和部材自身の変形量を大きくするために気孔率を大きくすると、その空隙のために見かけ上の熱伝導率が著しく低下し、熱抵抗が増加することで半導体素子の温度の上昇に繋がり得る。
本発明は、線膨張係数が著しく相違する部材を接合する場合であっても、この部材間に生じ得る熱応力を緩和することを目的とする。
本発明の構成は以下のとおりである。
(1)第1の部材と、前記第1の部材よりも線膨張係数の大きい第2の部材との間に、接合部材を挟み接合させる接合構造を備え、前記接合部材は、第2の部材側から第1の部材側に向かって気孔率が大きくなるように形成された導電性多孔体の空隙部分にはんだを含浸させてなる、パワーモジュール。
(2)上記(1)に記載のパワーモジュールにおいて、前記導電性多孔体は、気孔率の異なる複数の導電性多孔体材料を積層させてなる、パワーモジュール。
(3)上記(2)に記載のパワーモジュールにおいて、前記導電性多孔体は、気孔径の異なる複数の導電性多孔体材料を積層させてなる、パワーモジュール。
(4)上記(2)に記載のパワーモジュールにおいて、前記導電性多孔体は、孔形状の異なる複数の導電性多孔体材料を積層させてなる、パワーモジュール。
(5)上記(2)から(4)のいずれか1つに記載のパワーモジュールにおいて、前記導電性多孔体材料が、多孔体金属材料または多孔体炭素材料である、パワーモジュール。
(6)第1の部材と、前記第1の部材よりも線膨張係数の大きい第2の部材との間に、第2の部材側から第1の部材側に向かって気孔率が大きくなる気孔率分布を有する導電性多孔体を積層させる工程と、前記導電性多孔体にはんだを含浸させる工程と、を有する、パワーモジュールの製造方法。
(7)上記(6)に記載のパワーモジュールの製造方法において、気孔率の異なる複数の導電性多孔体材料を積層させて前記導電性多孔体を作製する工程をさらに有する、パワーモジュールの製造方法。
(8)上記(6)に記載のパワーモジュールの製造方法において、導電性多孔体材料の少なくとも一部を積層方向に加圧して前記導電性多孔体を作製する工程をさらに有する、パワーモジュールの製造方法。
(9)上記(7)または(8)に記載のパワーモジュールの製造方法において、前記導電性多孔体材料が、多孔体金属材料または多孔体炭素材料である、パワーモジュールの製造方法。
(10)上記(6)から(9)のいずれか1つに記載のパワーモジュールの製造方法を用いて作製されたパワーモジュール。
本発明によれば、線膨張係数が相違する部材間の熱応力を緩和することが可能となる。
以下、本発明の実施の形態について、図面を用いて説明する。なお、各図面において同じ構成については同じ符号を付し、その説明を省略する。
図1は、本発明の実施の形態におけるパワーモジュールの構成の概略を示す断面図である。図1に示すパワーモジュール100は、接合部材16に代えて接合部材26を備えることを除き、図6に示すパワーモジュール500と同様の構成を有している。
図1において、接合部材26は、導電性多孔体にはんだを含浸させた構成を有している。接合部材26は、高い熱伝導性を有する導電性多孔体の空隙部分にはんだが含浸された構造を有しているため、各部材間の高い熱伝導性を維持することができ、半導体素子12の速やかな冷却に寄与し得る。
図2は、図1に示す接合部材26の構成の概略を例示する断面拡大図である。図2において、接合部材26は、図1に示す半導体素子12、絶縁基板14側に相当する、線膨張係数の比較的小さい第1の部材22と、図1に示す放熱板18、冷却器20側に相当する、第1の部材よりも線膨張係数の大きい第2の部材24との間に挟まれ、接合されている。接合部材26は、第2の部材24側から第1の部材22側に向かって気孔率が大きくなるように形成された導電性多孔体28の空隙部分30に、はんだを含浸させた構成を有している。
図3は、本発明の実施の形態におけるパワーモジュール100による、接合部材26を介して接合させた場合の応力緩和の様子について、従来の接合部材を使用した場合と比較して説明するための図である。図3(a)は、図5に示すパワーモジュール500における、接合部材16を使用した場合、図3(b)は、図1に示すパワーモジュール100における、接合部材26を使用した場合に対応する。
図3(a)に示すように、線膨張係数aを有する第1の部材22と、第1の部材22よりも線膨張係数の大きい、cの値を有する第2の部材24との間に、一様な多孔体構造を有する導電性材料を使用した接合部材16が挟持され、接合されている。このとき、接合部材16は、第1の部材22と第2の部材24との間の線膨張係数である、ほぼ一定の値bを有する。ここで、ある一定の熱応力緩和性能を有する接合部材16では、第1の部材22と第2の部材24との間の線膨張係数の差異が大きいと、図3(a)の楕円で囲んだ接合部分の応力緩和が十分でない場合があり得る。これに対し、図3(b)に示すように、第2の部材24側から第1の部材22側に向かって気孔率が大きくなるように形成された導電性多孔体を有する接合部材26では、第1の部材22側から第2の部材24側に向かって線膨張係数が連続的に大きくなる、あたかも線膨張係数がある所定の広がりを有しているような挙動を示す。このため、第1の部材22と第2の部材24との間の線膨張係数の差異が大きい場合であっても、十分に応力緩和することが可能であると考えられる。なお、図3で示した線膨張係数の値a,b,cは概念的なものであって、必ずしも各部材の線膨張係数がある一定値として測定可能なものであるとは限らない。
図4は、図2に示す接合部材26の作製方法の一例について説明するための図である。図4において、接合部材26を構成する導電性多孔体28は、気孔率のそれぞれ異なる、空隙部分38を有する第1の導電性多孔体材料32と、空隙部分40を有する第2の導電性多孔体材料34と、空隙部分42を有する第3の導電性多孔体材料36とから構成された層構造をなしている。本実施の形態において、導電性多孔体28は、第2の導電性多孔体材料34の気孔率が、第3の導電性多孔体材料36の気孔率よりも大きく、第1の導電性多孔体材料32の気孔率よりも小さくなるように形成されており、図2に示すパワーモジュールにおいては第2の部材24側から第1の部材22側に向かって気孔率が順に大きくなるよう、つまり、第1の導電性多孔体材料32が第1の部材22側、第3の導電性多孔体材料36が第2の部材24側となるように備えることができる。
本実施の形態において、導電性多孔体28の材料(導電性多孔体材料)としては、多孔体構造を形成可能な金属材料または炭素材料であればいかなるものを用いることも可能であるが、金属材料としては例えばアルミニウム、銅、ニッケルなどを、炭素材料としては、例えば高熱伝導性の配向性グラファイトやカーボンナノチューブなどを適用することができる。また、選択された導電性多孔体材料により形成される導電性多孔体の形状は、例えば発泡体、メッシュ、不織布等とすることが可能であるが、これに限らず、導電性多孔体材料の種類に応じた適当な形状のものを用いることができる。
また、導電性多孔体28を構成する各導電性多孔体材料の厚みはそれぞれ、例えば50〜500μmの範囲で適宜設定することが可能であるが、各導電性多孔体材料間の厚みの比率には特に制限はない。一方、各導電性多孔体材料の気孔率はそれぞれ、例えば50〜95%の範囲で適宜設定することが可能である。また、このとき、各空隙部分の気孔径はそれぞれ、設定した気孔率に応じて、例えば約10〜250μmの範囲内で調整することが可能である。気孔径が10μm未満であれば、はんだ含浸性不良などの不具合が生じる場合がある一方、気孔径が250μmを超えると、接合部材内での線膨張係数の傾斜機能を発現しにくいなどの不具合が生じる場合がある。なお、気孔率、気孔径の測定は、JIS K3832に準拠して実施することが好適であり、例えばポロシメータによる水銀圧入法やバブルポイント法などを用いて測定することが可能である。
また、複数の導電性多孔体材料の積層により形成される導電性多孔体28において、例えばろう付け法、拡散接合法などにより各導電性多孔体材料を予め接合させることが可能であるが、これに限らない。また、導電性多孔体材料の積層数は、図4に示すような3層構造に限定されるものではなく、例えば必要とする導電性多孔体28の厚み、部材間の熱応力係数の相違、作製コストなどの諸条件に応じて適宜設定することが可能である。
本発明の実施の形態において、図2,4に示す接合部材26の厚みは、例えば100〜300μm程度に設定することが可能である。接合部材26の厚みが100μm未満であれば、応力緩和機能が十分に発揮されない場合がある一方、接合部材26の厚みが300μmを超えると、パワーモジュール全体としての体格や重量および熱抵抗の増大に繋がる場合がある。
本実施の形態において、導電性多孔体28と部材22,24とはそれぞれ、例えばろう付け、拡散接合などにより接合することができる。なお、導電性多孔体28と部材22,24との接合は、空隙部分30へのはんだの含浸に先立って行っても良いし、導電性多孔体28にはんだを含浸させた後に行っても良い。また、部材22または24のいずれか一方に導電性多孔体28を接合させた後、はんだの含浸を行い、さらに他方の部材24または22を接合させることも可能である。
図5は、図2,4に示す接合部材26の代替として好適に適用し得る本発明の実施の形態における接合部材の変形例である。図5に示す接合部材46は、第2の部材22側(図5では上側に相当)から第2の部材24側(図5では下側に相当)に向かって次第に気孔率が小さくなるように気孔率分布に偏りが生じさせることにより形成された、導電性多孔体48を含み構成されている。このような導電性多孔体48は、例えば所定の気孔径(直径)を有する空隙部分44を有し、ほぼ一様の気孔率を有するように形成された導電性多孔体材料の一部またはその全体に対し、少なくとも図5の上下方向への加重等により圧力が加えられて扁平化し、楕円形状に変形させることにより、作製することが可能である。
このように、本発明の実施の形態によれば、線膨張係数が大きい基板間でも、多孔体−はんだ複合材(接合部材)の気孔率を線形的に変化させることで、接合部材内の線膨張係数、ヤング率等も線形的に変化する(つまり、傾斜特性を持つ)ため、部材22,24との接合界面および/または接合部材26内の線膨張係数のほか、ヤング率等の値も線形的に変化することにより、応力集中に起因するクラック等の発生を防止または抑制することが可能となる。また、仮に接合部材で小規模のクラックが発生した場合であっても、接合部材を構成する多孔体金属およびはんだの相乗作用により応力・クラックを分散することにより、クラックの伸展を抑制することが可能となる。さらに、高い熱伝導度を有する導電性多孔体材料からなる導電性多孔体の空隙部分にはんだが含浸されていることにより、熱応力緩和作用だけでなく、高い熱伝導度を維持することができる。
本発明は、HVインバータなど、各種のパワーモジュールに対し利用することが可能である。
本発明の実施の形態におけるパワーモジュールの構成の概略を示す断面図である。 本発明の実施の形態における接合部材の構成の概略を例示する断面拡大図である。 接合部材を介して接合させた場合の応力緩和の様子について比較して説明するための図である。 接合部材の作製方法を例示する断面拡大図である。 接合部材の他の作製方法を例示する断面拡大図である。 従来のパワーモジュールの構成の概略を例示する断面図である。
符号の説明
12 半導体素子、14 絶縁基板、16,26,46 接合部材、18 放熱板、20 冷却器、22 第1の部材、24 第2の部材、28,48 導電性多孔体、30,38,40,42,44 空隙部分、32,34,36 導電性多孔体材料、100,500 パワーモジュール。

Claims (10)

  1. 第1の部材と、前記第1の部材よりも線膨張係数の大きい第2の部材との間に、接合部材を挟み接合させる接合構造を備え、
    前記接合部材は、第2の部材側から第1の部材側に向かって気孔率が大きくなるように形成された導電性多孔体の空隙部分にはんだを含浸させてなることを特徴とするパワーモジュール。
  2. 請求項1に記載のパワーモジュールにおいて、
    前記導電性多孔体は、気孔率の異なる複数の導電性多孔体材料を積層させてなることを特徴とするパワーモジュール。
  3. 請求項2に記載のパワーモジュールにおいて、
    前記導電性多孔体は、気孔径の異なる複数の導電性多孔体材料を積層させてなることを特徴とするパワーモジュール。
  4. 請求項2に記載のパワーモジュールにおいて、
    前記導電性多孔体は、孔形状の異なる複数の導電性多孔体材料を積層させてなることを特徴とするパワーモジュール。
  5. 請求項2から4のいずれか1項に記載のパワーモジュールにおいて、
    前記導電性多孔体材料が、多孔体金属材料または多孔体炭素材料であることを特徴とするパワーモジュール。
  6. 第1の部材と、前記第1の部材よりも線膨張係数の大きい第2の部材との間に、第2の部材側から第1の部材側に向かって気孔率が大きくなる気孔率分布を有する導電性多孔体を積層させる工程と、
    前記導電性多孔体にはんだを含浸させる工程と、
    を有することを特徴とするパワーモジュールの製造方法。
  7. 請求項6に記載のパワーモジュールの製造方法において、
    気孔率の異なる複数の導電性多孔体材料を積層させて前記導電性多孔体を作製する工程をさらに有することを特徴とするパワーモジュールの製造方法。
  8. 請求項6に記載のパワーモジュールの製造方法において、
    導電性多孔体材料の少なくとも一部を積層方向に加圧して前記導電性多孔体を作製する工程をさらに有することを特徴とするパワーモジュールの製造方法。
  9. 請求項7または8に記載のパワーモジュールの製造方法において、
    前記導電性多孔体材料が、多孔体金属材料または多孔体炭素材料であることを特徴とするパワーモジュールの製造方法。
  10. 請求項6から9のいずれか1項に記載のパワーモジュールの製造方法を用いて作製されたパワーモジュール。
JP2008127114A 2008-05-14 2008-05-14 パワーモジュール、パワーモジュールの製造方法 Pending JP2009277856A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127114A JP2009277856A (ja) 2008-05-14 2008-05-14 パワーモジュール、パワーモジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127114A JP2009277856A (ja) 2008-05-14 2008-05-14 パワーモジュール、パワーモジュールの製造方法

Publications (1)

Publication Number Publication Date
JP2009277856A true JP2009277856A (ja) 2009-11-26

Family

ID=41443017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127114A Pending JP2009277856A (ja) 2008-05-14 2008-05-14 パワーモジュール、パワーモジュールの製造方法

Country Status (1)

Country Link
JP (1) JP2009277856A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388810A2 (en) 2010-05-21 2011-11-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device with a connecting portion comprising two or more layers of diffusion-joined metal nanoparticles and corresponding manufacturing method
KR20160067119A (ko) * 2013-10-07 2016-06-13 후루카와 덴키 고교 가부시키가이샤 접합 구조 및 전자부재 접합 구조체
JP2018182198A (ja) * 2017-04-19 2018-11-15 株式会社東芝 半導体装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388810A2 (en) 2010-05-21 2011-11-23 Toyota Jidosha Kabushiki Kaisha Semiconductor device with a connecting portion comprising two or more layers of diffusion-joined metal nanoparticles and corresponding manufacturing method
JP2011249361A (ja) * 2010-05-21 2011-12-08 Toyota Motor Corp 半導体装置とその製造方法
KR20160067119A (ko) * 2013-10-07 2016-06-13 후루카와 덴키 고교 가부시키가이샤 접합 구조 및 전자부재 접합 구조체
KR101887290B1 (ko) 2013-10-07 2018-08-09 후루카와 덴키 고교 가부시키가이샤 접합 구조 및 전자부재 접합 구조체
JP2018182198A (ja) * 2017-04-19 2018-11-15 株式会社東芝 半導体装置

Similar Documents

Publication Publication Date Title
JP5012239B2 (ja) 接合方法及び接合体
JP5376086B1 (ja) 熱電変換装置の製造方法、熱電変換装置を備える電子部品の製造方法
KR101716559B1 (ko) 열전 변환 장치의 제조 방법, 열전 변환 장치를 구비한 전자 장치의 제조 방법, 열전 변환 장치
JP6064861B2 (ja) 熱電変換装置の製造方法
JP6580385B2 (ja) アルミニウムと炭素粒子との複合体及びその製造方法
TWI303972B (ja)
US20100282459A1 (en) Heat sink and method for manufacturing a heat sink
JP2007149870A (ja) 回路基板及び回路基板の製造方法。
EP2654079A2 (en) Heat dissipation device and method for manufacturing the same
WO2017038399A1 (ja) 多層基板およびその製造方法
JP2012119597A (ja) 半導体装置及びその製造方法
WO2014115803A1 (ja) 熱電変換装置の製造方法
JP2011003800A (ja) 低熱膨張複合放熱板及びその製造方法
JP2014212182A (ja) 熱伝導性接合材及び熱伝導性接合材を用いた半導体装置
JP2009277856A (ja) パワーモジュール、パワーモジュールの製造方法
JP2009094157A (ja) ヒートスプレッダ、半導体装置、電子機器、ヒートスプレッダの製造方法、及び半導体装置の製造方法
JP2013070011A (ja) 半導体装置
CN214774434U (zh) 一种石墨烯复合散热膜
TWI546994B (zh) 熱電轉換裝置之製造方法
JP2016536780A (ja) 回路装置及び該回路装置の製造方法
TWI559582B (zh) Method for manufacturing thermoelectric conversion device, manufacturing method of electronic device with thermoelectric conversion device
TW202038688A (zh) 導熱件內埋式電路板的製造方法及依其所製造的導熱件內埋式電路板
WO2019106874A1 (ja) 絶縁基板及び放熱装置
JP6708498B2 (ja) 冷却器及びその製造方法
CN107667419B (zh) 用于制造电路载体的方法