JP2009274445A - 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池 - Google Patents

燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池 Download PDF

Info

Publication number
JP2009274445A
JP2009274445A JP2009131078A JP2009131078A JP2009274445A JP 2009274445 A JP2009274445 A JP 2009274445A JP 2009131078 A JP2009131078 A JP 2009131078A JP 2009131078 A JP2009131078 A JP 2009131078A JP 2009274445 A JP2009274445 A JP 2009274445A
Authority
JP
Japan
Prior art keywords
resist
stamper
fuel cell
flow path
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009131078A
Other languages
English (en)
Other versions
JP4819146B2 (ja
Inventor
Tsutomu Nagayama
励 永山
Yukihiro Yanagawa
幸弘 柳川
Hisashi Yamamoto
寿 山本
Junji Watanabe
淳史 渡辺
Tatsuya Okada
達也 岡田
Masaru Karai
賢 唐井
Yasuya Nishi
泰冶 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2009131078A priority Critical patent/JP4819146B2/ja
Publication of JP2009274445A publication Critical patent/JP2009274445A/ja
Application granted granted Critical
Publication of JP4819146B2 publication Critical patent/JP4819146B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】精度良く形成された多段構成の樹脂成形品、燃料電池用流路部材及びその製造方法並びにそれらの製造に使用されるスタンパの製造方法を提供する。
【解決手段】樹脂成形品用スタンパの製造方法は2段以上の段差を有する多段構成の樹脂成形品用スタンパの製造方法であって、基板1に1層目のレジスト2を形成する。1層目のレジスト2にはネガ型のレジストを用いている。リソグラフィー処理により、1層目のレジストパターン2aで基板1上に凸部を形成する。凸部が形成された基板1に、2層目のレジスト5を塗布する。リソグラフィー処理により、レジストパターン2aの上にレジストパターン5aを形成している。めっき処理により、基板に金属を付着してスタンパ8を形成する。
【選択図】図1

Description

本発明は、樹脂成形品の製造方法、樹脂成形品用スタンパの製造方法、燃料電池用流路部材の製造方法、流路部材用スタンパの製造方法、燃料電池用流路部材及び燃料電池に関し、さらに詳しくは異なる凹凸深さを有する樹脂成形品の製造方法、樹脂成形品用スタンパの製造方法、燃料電池用流路部材の製造方法、流路部材用スタンパの製造方法、燃料電池用流路部材及び燃料電池に関する。
燃料電池は、酸素と水素原料から水を合成することを基本反応としているが、電荷担体や電解質の違いから、5種類の型式に大別される。従来の電池(1次電池又は2次電池)では、セル内に電極と電解質が存在、密閉系における電解質/電極界面での反応が主であった。しかし、燃料電池では原料を連続的に電極に供給する方式であるため、セル内には原料流路が存在する。
例えば、原料を供給する貫通孔(ポート)と流路(チャネル)を有するセパレーターもしくは電極等の原料供給用の流路部材を複数重ね合わせて配置してセルを形成する。そして、貫通孔から原料ガスを供給して、セル内の電気化学的反応により電流を得て発電している。
流路は、セパレーターもしくは電極等自体に形成する必要があり、耐食性・電気伝導性・薄肉剛性を有した材料選定が必要である。また、流路は型式により微細性は異なるが、家電用に開発中のダイレクトメタノール型(DMFC)は、50〜100μmの溝が妥当と考えられている。材料には、流路部材にはSUS・Niに代表される金属板を用いるものあるいは導電性樹脂等の導電性炭素材を成形したものを用いるものがあるが開発されている。導電性炭素材を用いたものでは微細加工技術が必要となる。
金属板を用いたセパレーターではフォトリソグラフィにより、金属板に溝及び貫通孔を形成している(例えば、非特許文献1)。これにより、精度よく形成されたセパレーターを製造することができる。しかしながら、この方法ではそれぞれの基板毎にレジスト塗布、露光、現像、エッチング及びレジスト剥離工程を行う必要がある。従って、生産性が低く燃料電池のコスト低減が困難であった。
Mu Chiao,Kien B.Lam,and Liwei Lin"MICROMACHINED MICROBIAL FUEL CELLS"IEEE International Micro Electro Mechanical Systems(MEMS)2003,Kyoto Japan,pp383−386
このように従来の方法では精度良く形成された多段構造の燃料電池用セパレーターを生産性良く製造することができないという問題点があった。
本発明は以下の問題点に鑑みてなされたものであり、異なる凹凸深さを有するパターンを有する樹脂成形品の製造方法、樹脂成形品用スタンパの製造方法、燃料電池用流路部材の製造方法、流路部材用スタンパの製造方法並びに異なる凹凸深さを有するパターンが精度よく形成された燃料電池用流路部材及びそれを備える燃料電池を提供することを目的とする。
本発明にかかる樹脂成形品用スタンパの製造方法は複数の凹凸深さを有する樹脂成形品用のスタンパの製造方法であって、基板(例えば、本実施の形態における基板1)上にネガ型レジスト層(例えば、本実施の形態における1層目のレジスト2)を形成するステップと、前記ネガ型レジストを露光するステップと、前記露光ステップの後に、前記ネガ型レジスト層が形成された基板上にレジスト層を形成するステップと、前記ネガ型レジストに凹凸パターン(例えば、本実施の形態における1層目のレジストパターン2a)を形成するステップと、前記レジストの凹凸パターンであって、前記ネガ型レジストの凹凸パターンと異なる凹凸パターン(例えば、本実施の形態における2層目のレジスト5)を、リソグラフィー処理により形成するステップと、前記ネガ型レジストの凹凸パターンと前記レジストの凹凸パターンとが形成された基板に、めっき処理によって金属を付着させるステップと、を備えるものである。これにより、多段構成のパターンが精度よく形成されたスタンパを生産性よく製造することができる。
本発明にかかる樹脂成形品用スタンパの製造方法は上述の製造方法であって、前記ネガ型レジストに凹凸パターンを形成するステップは、前記ネガ型レジストの露光後に、現像処理を行い前記ネガ型レジストのパターンを形成し、前記レジスト層を形成するステップは、前記ネガ型レジストのパターン形成後に前記レジスト層を形成し、前記レジストに凹凸パターン形成するステップは、前記レジスト層形成後に、露光及び現像処理を行い、凹凸パターンを形成するものである。これにより、異なる凹凸深さを有するパターンが精度よく形成されたスタンパを生産性よく製造することができる。
本発明にかかる樹脂成形品の製造方法はさらに、前記レジスト層を形成するステップの後に、前記レジストの露光処理を行うステップを備え、前記ネガ型レジストに凹凸パターンを形成するステップと、前記レジストに凹凸パターンを形成するステップとは、同一の現像処理工程において、前記ネガ型レジストの凹凸パターンと前記レジストの凹凸パターンとを同時に形成することが可能である。これにより、多段構成のパターンが精度よく形成された樹脂成形品を生産性よく製造することができる。
上述の製造方法において、前記レジストにネガ型レジストを用いることが可能である。
上述の製造方法において前記ネガ型レジストの凹凸パターンの凹部の一部と、前記レジストの凹凸パターンの凹部の一部が重なり、前記レジストパターンの重なる凹部の幅を、前記ネガ型レジストの重なる凹部の幅よりも大きくすることも可能である。これにより、2段以上の段差を有する階段状のパターンが精度よく形成されたスタンパを生産性よく製造することができる。
本発明にかかる樹脂成形品の製造方法は、複数の凹凸深さを有する樹脂成形品用の製造方法であって、上述の製造方法によりスタンパを形成するステップと、前記スタンパを使用して樹脂成形品を成形するステップと、を有するものである。
本発明にかかる燃料電池の流路部材用スタンパの製造方法は、幅2μm以上100μm以下でアスペクト比1以上の流路用溝と、前記流路用溝とつながる貫通孔とを有する燃料電池の流路部材用スタンパの製造方法であって、凹凸面を有する第1の構造体を形成するステップと、前記第1の構造体の凹凸面上にレジスト層を形成するステップと、前記レジストをパターニングし、レジストパターンを形成するステップであって、前記第1の構造体の凹凸面の凸部上に前記レジストの凸部を形成するステップと、前記レジストパターンを形成された第1の構造体の凹凸面上に第2の構造体を構成する材料を付着させ、第2の構造体を形成するステップとを備えるものである。これにより燃料電池の流路部材用スタンパを精度よく成型することができる。
本発明にかかる燃料電池の流路部材用スタンパの製造方法は、上述の製造方法において、前記第2の構造体は、前記第1の構造体の凹凸面上にめっきによって金属を付着させることによって形成される燃料電池の流路部材用スタンパであるものである。これにより燃料電池の流路部材用スタンパを精度よく成型することができる。
本発明にかかる燃料電池の流路部材用スタンパの製造方法は、上述の製造方法において、第2の構造体の凹凸面上に、めっきによって金属を付着させ、燃料電池の流路部材用スタンパとしての第3の構造体を形成するステップを備えるものである。これにより燃料電池の流路部材用スタンパを精度よく成型することができる。
本発明にかかる燃料電池の流路部材用スタンパの製造方法は、上述の製造方法において、前記レジストにはドライフィルムレジストを用いることを特徴とするものである。これにより燃料電池の流路部材用スタンパを精度よく成型することができる。
本発明にかかる燃料電池の流路部材用スタンパの製造方法は、上述の製造方法において、前記凹凸面を有する第1の構造体を形成するステップは、基板上にレジスト層を形成するステップと、前記レジストをリソグラフィー処理し、前記レジストの凹凸パターンを形成するステップとを有するものである。これにより燃料電池の流路部材用スタンパを精度よく成型することができる。
本発明にかかる燃料電池用流路部材の製造方法は、上述のスタンパの製造方法により、スタンパを製造するステップと、前記スタンパを使用して燃料電池の流路部材を成型するステップとを有するものである。これにより、精度の高い燃料電池用流路部材を生産性よく製造することができる。
本発明にかかる燃料電池用流路部材は、上述の製造方法により製造されたものである。これにより安価な燃料電池用流路部材を得ることができる。
本発明にかかる燃料電池は上述の燃料電池用流路部材を備えるものである。
本発明によれば、精度良く形成された多段構成の樹脂成形品の製造方法、燃料電池用流路部材用の製造方法およびそれらに使用されるスタンパ並びに燃料電池用流路部材及び燃料電池を提供することができる。
本発明の実施の形態1にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態2にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態3にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態4にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態5にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態6にかかるスタンパの製造方法を示す断面図である。 本発明の実施の形態7にかかるスタンパの製造方法を示す断面図である。 本発明により製造された樹脂成形品又は樹脂成型品用スタンパの1例を示す斜視図である。 本発明にかかるセパレーターの構成を示す斜視図である。
本発明の実施の形態ついて以下に図面を参照して説明する。以下の説明は、本発明の好適な実施の形態を示すものであって、本発明の範囲が以下の実施の形態に限定されるものではない。以下の説明において、同一の符号が付されたものを実質的に同様の内容を示している。
発明の実施の形態1.
本実施の形態にかかる樹脂成形品及びスタンパの製造方法について図1を用いて説明する。図1は本実施の形態にかかるスタンパの製造工程を示す断面図である。1は基板、2は1層目のレジスト、3は1層目のマスク、5は2層目のレジスト、6は2層目のマスク、7は第2の中間構造体、8はスタンパである。
本実施の形態では基板上1に1層目のレジスト2を塗布する。1層目のレジスト2にはネガ型の感光性レジストが用いられている。マスク3を用いて露光すると、図1(a)に示す構成となる。そして、現像液により現像する。本実施の形態ではネガ型レジスト(例えば、東京応化工業株式会社製CA3000)を用いているため、光が照射されない領域のレジストが現像液に溶け出す。よって、光が照射されていない領域すなわち露光されていない領域のレジストが除去されるよう、レジストパターンが形成される。基板上に残存するレジストパターンは既に変質されているため、2層目以降の露光工程の影響を受けることがない。よって、所望の造形深さの溝を有するパターンを形成することができる。
1層目のレジストパターン2aを有する基板上に2層目のレジスト5を塗布する。2層目のレジスト5にはポジ型の感光性レジストを用いている。1層目のレジストパターン2aの凹部にもレジスト5が形成される。2層目のマスク3を用いて露光すると図1(b)に示す構成となる。現像することにより、光が照射された領域の2層目のレジスト5が除去される。ここでは1層目のレジストパターン2aが設けられている領域の一部に光を照射しないようなパターンを有するマスク6により露光している。そのため、基板上には1層目のレジスト2で形成された凸部の上にさらに2層目のレジスト5により2段目の凸部が形成される。これにより、基板1は2段の階段状のパターンを有する多段構成となる。導電化、電鋳処理を行い、この多段構成となった基板と逆パターンのスタンパ8を形成する。このようにしてスタンパ8を形成することが出来る。このスタンパ8を用いて射出成形等することにより、樹脂成形品を製造することができる。
1層目のレジストにポジ型のものを用いた場合、光が照射されていない領域のレジストパターン2aが残存する。そのため、2層目以降の露光工程で2層目のレジストの上から1層目のレジストパターン2aが設けられている領域に光が照射された場合、1層目のレジストパターン2aが変質し、2層目以降の現像工程で溶け出す恐れがある。本実施の形態では1層目のレジストをネガ型としているため、2層目の露光工程で1層目のレジストパターン2aに対応する領域に光が照射された場合でも、溶け出す恐れがない。2層目の露光工程において1層目のレジストパターン2aの面まで現像することができ、レジストパターンを精度よく形成することができる。このように、1層目のレジスト2にネガ型の感光性レジストを用いることにより、第1の中間構造体を形成しなくても、精度よく形成された2段以上の段差を有する多段構成のスタンパを生産性よく形成することができる。
このスタンパ8により、樹脂成形品に所望の造形深さを有する溝を精度良く形成することが出来る。これにより、生産性を向上することができる。特に、凹部にレジストが残存することがなくなるため、樹脂成形品に精度よく角型の溝を形成することが可能になる。上述の製造方法では1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成型品を精度よく形成することができる。
また、上述のスタンパ8を用いて導電性樹脂等の導電性炭素材を例えば、射出成型又はプレス成型により成型することにより、図9に示す燃料電池用原料を供給するための流路が形成された流路部材を製造することができる。図9は流路部材の一つであるセパレーター100の構成を示す斜視図である。セパレーターにはポート101となる2つの貫通孔が設けられている。一方のポート101から酸素や水素等の原料ガスが流入され、他方のポート101から原料が排出される。セパレーターの中央には複数の溝が形成され、この溝が2つのポートの間を接続するチャネル103(流路)となる。
本実施の形態にかかるスタンパの製造方法により形成したスタンパを用いることにより、溝の幅が2μm〜100μmでアスペクト比が1以上のパターンを有する導電性炭素材を精度よく成型することができる。従って、電気化学反応を促進するための流路及び流路に原料を供給するための貫通孔を精度よく形成することができる。さらに1対のセパレーター100の間に電極及び電解質を設けることによって燃料電池を形成することができる。これにより、燃料電池の発電効率を向上することができる。
図1(d)に示すようなスタンパ8を流路部材の製造に用いる場合、凸部の1段目は浅い溝が形成される。そのため、凸部の1段目に対応する箇所は、流路部材において、電気化学的反応を促進するための流路(チャネル)の形成に適している。凸部の2段目は深い溝が形成されるため、流路部材における原料供給用の貫通孔(ポート)の形成に適している。このように形成する場合、1層目のマスク3は貫通孔の反転パターンとすればよく、2層目のマスク6は流路と同じパターンとすればよい。このような流路と同じパターンのマスク及び貫通孔と同じパターンのマスクで露光すれば、プリント燃料電池の流路部材の流路と貫通孔を形成するためのスタンパ8を製造することができる。このスタンパ8を用いて導電性炭素材を成形することにより燃料電池の原料を供給するための流路が形成されたセパレーター等の流路部材が製造される。流路部材としては、原料の流路が形成されていればよく、原料流路が形成された電極も含まれる。
発明の実施の形態2.
本実施の形態にかかる流路部材及びスタンパの製造方法について図2を用いて説明する。図2は本実施の形態にかかるスタンパの製造工程を示す断面図である。図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。また、実施の形態1と同様の工程については、実施の形態1で説明した内容と同様であるため説明を省略する。
本実施の形態では基板上1に1層目のレジスト2を塗布する。1層目のレジスト2にはネガ型の感光性レジストが用いられている。1層目のマスク3を用いて露光すると、図2(a)に示す構成となる。
本実施の形態では1層目のレジスト2を現像しないまま、その上から2層目のレジスト5を塗布する。なお、2層目のレジスト5にもネガ型の感光性レジストを用いている。1層目のレジスト2の潜像の上に2層目のレジスト5が形成されることになる。ここで1層目のレジスト2において、光が照射され現像液に溶け出さない部分をレジストパターン2aとし、光が照射されず現像液に溶け出す部分を潜像部分2bとする。2層目のマスク6を用いて露光すると図2(b)に示す構成となる。そして、1層目のレジスト2と2層目のレジスト5を同時に現像する。1層目のレジスト2と2層目のレジスト5は同じレジスト又は同種のレジストを用いているため、同じ現像液で現像することが出来る。1層目のレジスト2の潜像部分2bが2層目のレジスト5の光が照射されていない部分と同時に除去され、1層目のレジストパターン2aと2層目のレジストパターン5aが形成される。ここで、図2(c)に示すように基板に多段構成のレジストパターンを形成することが出来る。これにより、現像工程を1回省略することができ、生産性を向上することができる。この多段構成の基板に導電化、電鋳処理を施すことにより、スタンパ8が形成される。このスタンパ8を用いて、射出成形等をすることにより樹脂成形品が製造される。
本実施の形態では1層目及び2層目のレジストをネガ型としているため、光が照射しない領域のレジストの潜像部分2bが現像液に溶け出す。2層目の露光工程において、潜像部分2bを露光しないようなパターンを有するマスク3を用いることにより、1層目のレジストパターン2aを変質させることなく、2層目のレジストを露光することができる。すなわち、1層目のレジスト2の光が照射されてない領域(潜像部分2b)の上に設けられた2層目のレジスト6には、2層目の露光工程で光が照射されないようにしている。このようなパターンを有するマスク6を用いて露光することにより、1層目のレジストパターン2aを精度よく形成することができる。1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成型品を精度よく形成することができる。
また、上述のスタンパ8を用いて導電性炭素材を成型することにより、実施の形態1と同様に燃料電池用の原料を供給するための流路が形成された流路部材を製造することができる。特に導電性炭素材に幅2μm〜100μmでアスペクト比1以上の溝パターンを形成することに好適である。図2(d)に示すようなスタンパ8を流路部材の製造に用いる場合、凸部の1段目は浅い溝が形成される。そのため、凸部の1段目に対応する箇所は流路部材の流路(チャネル)の形成に適している。凸部の2段目は深い溝が形成されるため、基板を貫通する貫通孔(ポート)の形成に適している。このように形成する場合、1層目のマスク3は貫通孔の反転パターンとすればよく、2層目のマスク6は流路の反転パターンとすればよい。このような流路と同じパターンのマスク及び貫通孔と同じパターンのマスクで露光すれば、流路部材の流路と貫通孔を形成するためのスタンパ8を製造することができる。このスタンパ8を用いて導電性炭素材を成形することにより燃料電池の原料を供給するための流路が形成されたセパレーター等の流路部材が製造される。
発明の実施の形態3.
本実施の形態にかかる流路部材及びスタンパの製造方法について図3を用いて説明する。図3は本実施の形態にかかるスタンパの製造工程を示す断面図である。図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。9は3層目のレジストである。また、実施の形態1又は2と同様の工程については、実施の形態1又は2で説明した内容と同様であるため説明を省略する。本実施の形態では、3層目のレジストを形成して、3段構成のスタンパを形成している。
本実施の形態では基板上1に1層目のレジスト2を塗布する。1層目のレジスト2にはネガ型の感光性レジストが用いられている。マスク3を用いて露光すると、図3(a)に示す構成となる。そして現像処理を行い、1層目のレジスト2をパターニングする。その上から2層目のレジスト5を塗布する。2層目のレジスト5にはポジ型の感光性レジストを用いている。2層目のマスク6を用いて露光すると図3(b)に示す構成となる。2層目のレジスト5を現像すると露光された領域が現像液に溶け出し、1層目のレジストパターン2aの上に2層目のレジストパターン5aが形成される。これにより、1段目の凸部の上にさらに2段目の凸部が形成された2段構成となる。さらに3層目のレジスト9を塗布する。3層目のレジスト9にはネガ型のレジストを用いている。この3層目のレジストを現像すると2層目のレジストパターン5aの上にさらに3層目のレジストパターンが形成され、図3(d)に示すような3段構成となる。この3段構成の基板に導電化、電鋳処理を施すことにより、図3(e)に示す基板と逆パターンのスタンパ8が形成される。これにより、中間構造体を設けることなく、3段構成のスタンパを精度よく形成することができ、生産性を向上することができる。
このスタンパ8を用いて、射出成形等をすることにより樹脂成形品が製造される。また、上述の製造方法では1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成形品を精度よく形成することができる。さらに、上述のスタンパ8を用いて導電性炭素材を成型することにより、実施の形態1と同様に燃料電池用の原料を供給するための流路部材を製造することができる。この場合、貫通孔及び異なる深さを有する流路を形成することができる。本実施の形態にかかるスタンパの製造方法により形成したスタンパを用いることにより、溝の幅が2μm〜100μmでアスペクト比が1以上のパターンを有する導電性炭素材を精度よく成型することができる。従って、電気化学反応を促進するための流路及び流路に原料を供給するための貫通孔を精度よく形成することができる。さらにセパレーターの生産性を向上することができ、燃料電池のコスト低減を図ることができる。
発明の実施の形態4.
本実施の形態にかかる樹脂成形品及びスタンパの製造方法について図4を用いて説明する。図4は本実施の形態にかかるスタンパの製造工程を示す断面図である。図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。また、実施の形態1乃至3と同様の工程については、実施の形態1乃至3で説明した内容と同様であるため説明を省略する。
まず、基板1上に1層目のレジスト2を塗布する。1層目のレジスト2にはネガ型の感光性レジストが用いられている。マスク3を用いて露光すると、図4(a)に示す構成となる。そして現像処理を行い、1層目のレジスト2をパターニングすると1層目のレジストパターン2aが形成される。その上から2層目のレジスト5を塗布する。ここで2層目のレジスト5にはポジ型の感光性レジストを用いている。2層目のレジスト5は1層目のレジスト2より厚く塗布している。2層目のマスク6を用いて2層目のレジスト5を露光すると図4(b)に示す構成となる。2層目のレジスト5を現像すると2層目のレジストパターン5aが形成される。図4(c)に示す様に、凸部の中に凹部が形成され、異なる高さの凸部のレジストパターンを基板上に形成することができる。
本実施の形態では1層目のレジスト2にネガ型のレジストを用いているため、2層目の露光工程で光が照射されても1層目のレジストが現像液に溶け出すことがない。さらに1層目のレジストと2層目のレジストで厚さを変えて塗布しているので高さの異なる凸部を有するパターンを形成できる。もちろん、異なる部分に異なる高さの凸部が形成された多段構成のパターンを形成しても良い。導電化、電鋳処理を行うことにより、図4(d)に示すスタンパ8が形成される。このスタンパ8を用いて射出成形等を行うことにより、1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成型品を精度よく形成することができる。
さらに、上述のスタンパ8を用いて導電性炭素材を成型することにより、実施の形態1と同様に燃料電池用の原料を供給するための流路が形成された流路部材を製造することができる。本実施の形態にかかる製造方法により形成したスタンパを用いることにより、幅2μm〜100μm、アスペクト比1以上の溝パターンを有する導電性炭素材を精度よく成型することができる。従って、電気化学反応を促進するための流路及び流路に原料を供給するための貫通孔を精度よく形成することができる。
発明の実施の形態5.
本実施の形態にかかるスタンパ及び樹脂成形品の製造方法について図5を用いて説明する。図5は本実施の形態にかかるスタンパの製造工程を示す断面図である。図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。また、4は第1の中間構造体、7は第2の中間構造体である。実施の形態1乃至4と同様の工程については、実施の形態1乃至4で説明した内容と同様であるため説明を省略する。
レジスト塗布工程について説明する。まず基板1上に、有機材料(例えば、クラリアントジャパン製「AZP4400」)をベースとする1層目のレジストを塗布する。レジスト2はポジ型の感光性レジストであり、光が照射された領域すなわち露光された領域が現像液に溶解する。基板1は、例えば、ガラス基板を利用することができる。樹脂成形品の平面度は、基板上へレジスト層を形成する工程に大きく影響される。すなわち、基板上にレジスト層を形成した時点の平面度がスタンパ、ひいては樹脂成形品の平面度に反映される。
平面度を保つ方法として、基板面が露出するまで現像を行うことも考えられる。基板にガラスを使用した場合、その平面度は表面研磨によって1μm以内に抑える技術が工業的に確立されている。基板面が露出するまで現像を行うことでその平面度を再現でき、平面度を高めることが期待できる。
基板上にレジスト2を形成する方法の一つとして、スピンコート方式があげられる。スピンコート方式とは、回転している基板上にレジストを塗布する方法であり、直径300mmを超える基板にレジストを塗布する場合にも高い平面度が得られる利点がある。スピンコート方式で所定のレジストの厚さを得る場合、レジスト粘度を高める方法も効果的である。しかし、塗布面積が大きくなると平面度が低下することが懸念されるため、実際使用上で要求される平面度に応じてレジスト粘度を調整することが望ましい。
1層目のレジスト塗布で可能なレジスト厚さは、高い平面度を保持すること、及び、露光装置による露光深度を考慮し、10〜100μm、好ましくは20〜50μmの範囲内であることが望ましい。このレジストの厚さが後に形成されるスタンパ、樹脂成形品の段差となる。スピンコート法以外のレジスト層形成の方法としては、ディッピング方式、ロール方式、ドライフィルムレジストの貼り合わせ等があげられる。しかし、高い平面度を実現できる観点から、スピンコート法が好ましい。なお、レジスト層は1回のレジスト塗布工程に限らず、2回以上のレジスト塗布工程により形成しても良い。
次にレジスト2の露光工程について説明する。レジスト2を塗布した後、図5(a)に示すように所望のマスクパターンに加工したマスク3を用いて、UV露光装置により、レジスト2をUV光により露光を行う。マスク3の白い部分は光を透過し、黒い部分は光を遮るものとする。UV露光装置は、例えば、光源としてUVランプを有し、波長365nm、照度20mW/cmの露光装置を利用することができる。上記レジストの露光について説明する。露光条件により、レジストへの焦点深度が変わるため、例えばUV露光装置を使用した場合、露光時間、UV出力値をレジストの厚さ、感度に応じて種類を選択するのが望ましい。露光装置は、UVレーザーを利用したものを使用することもできる。UVレーザーはUVランプよりも深い深度を達成する。
リソグラフィー法を用いてレジスト2にパターンを形成する工程では、使用するマスク及び露光条件によってパターンの幅、深さおよびそれらの精度が左右される。そして、その寸法、および精度は、樹脂成形品にも反映される。したがって、プラスチックを成形した樹脂成形品の各寸法、および精度を所定のものとするためには、マスクの寸法および精度を規定する必要がある。使用するマスクはなんら限定されないが、エマルジョンマスク、クロムマスク等を挙げることができる。微細なパターン精度を確保するためにクロムマスクが好適に用いられる。レジストにパターンを形成するために使用するマスクの精度を高めるには、例えば、マスクのパターン形成に使用するレーザ光源をより波長の短いものに変えることが考えられるが、設備費用が高額であり、マスク製作費が高額となるため、要求される精度に応じて適宜選択するのが望ましい。さらに露光条件によりレジストへの焦点深度が変わるため、例えばUV露光装置を使用した場合、露光時間、UV出力値をレジストの厚さ、感度に応じて選択するのが望ましい。
次に1層目のレジスト2の現像工程について説明する。図5(b)に示すように、前記レジスト2を有する基板1を基板面が露出するまで現像し、基板1上にレジストパターン2aを形成する。このレジストパターン2aにより、平滑な基板上に凸部が形成される。現像液は、例えば、クラリアントジャパン製の「AZ400Kデベロッパー」を使用することができる。リソグラフィー法を用いてレジストパターンを形成する際には、アルカリ液である現像液の濃度、現像時間も考慮することが必要な場合がある。特に基板1の表面まで現像しようとする際には、レジスト底部の幅(または直径)よりも表面の幅(または直径)が広くなることが懸念されるため、例えば、現像液の希釈倍率をあげることにより現像速度を低下させ、現像時間を最適化することによって、現像を制御することができる。
また、造形深さ方向の矩形パターンが台形状、または垂直形状を選択することも可能である。要求される形状、精度、射出成形でプラスチックを成形する際の離型性を考慮して適宜選択するのが望ましい。
次に第1の中間構造体4を形成するための導電化、電鋳(電気鋳造)工程について説明する。第1の中間構造体4の形成するための金属の付着にはめっき処理を利用することができる。金属を付着するめっき方法は特に限定されないが、電解めっき、無電解めっきなどを利用することができる。導電化工程ではレジストパターン2aが形成された基板1の表面に蒸着、またはスパッタリングを行い、レジストパターン2a及び基板1の表面に導電膜であるめっき種層としてNiを堆積させる。この工程において、他にPt、Au、Ag、Cu、Alなどを堆積させることができる。
電鋳工程では前記レジストパターン2aを有する基板1をめっき液に浸け、電気めっきを行い、レジストパターン上と基板上に、Niを堆積させ第1の中間構造体を形成する。この工程において、他にCu、Auなどを堆積させることができる。アセトン、硝酸水溶液等の溶媒を使用してレジストを溶解させて剥離し、中間構造体4を基板1から分離する。得られた第1の中間構造体4のパターンは図5(c)に示す様に基板のパターンが転写された逆パターンとなる。
めっき処理による金属層の付着は、上記の電気めっきに代えて、無電解めっきを利用することができる。無電解めっき処理においては、まず、対象物表面に、めっき種層として、無電解めっきの核となる触媒金属(例えば、Pd−Sn錯体)が吸着される。次に、対象物表面のスズ塩を溶解させ、酸化還元反応によって金属パラジウムを生成する。対象物がNiめっき液に挿入されると、対象物上にNi層が形成される。この点は、以下のめっき処理において同様である。
上記の説明では第1の中間構造体を金属により形成したが、樹脂等の転写体を密着、またはプレス成形させることで樹脂により形成することができる。転写体を密着、またはプレス成形するのに用いる樹脂は、例えば、熱硬化性樹脂、光硬化性樹脂を用い、転写後に硬化させることもできる。
次に第1の中間構造体4上へのレジストパターン形成工程について説明する。ここでもリソグラフィー処理により、パターニングが行われる。第1の中間構造体4の転写面上に、有機材料をベースとする2層目のレジスト5を塗布する。ここでは1層目のレジスト2と同様のレジストを同様の条件により塗布している。その後、マスク位置が1回目の露光におけるマスクパターンと同じ位置になるよう位置合わせを実施し、2層目のマスク6を用いて、UV露光装置により、前記レジスト5をUV光により2回目の露光を行う。これにより、1層目のパターンと2層目のパターンを精度よく形成することができる。
マスクの位置合わせについて説明する。マスクの位置合わせは、1層目のレジスト2に露光したマスクパターンと、2層目のレジスト5に露光するマスクパターン位置を同じ位置とするために行う。マスクの位置合わせにおいて、1層目のレジスト2に露光したマスクパターンと、2層目のレジスト5に露光するマスクパターン位置に位置ずれが生じると、スタンパ及び樹脂成形品の造形精度に大きく影響するため、位置合わせは誤差範囲±2μmの範囲内であることが好ましく、±1μmの範囲であることがより好ましい。
マスクの位置あわせ精度を高める方法はなんら限定されないが、例えば、露光、未露光部分の光の回折差を利用したオフセット調節などがある。マスクの位置合わせ精度を高める他の方法として、例えば、基板上、及びマスクの指定位置にレーザ光により記号を描画しておき、光学顕微鏡等を用いてお互いの位置決めを行うことで精度を高める方法があげられる。また、ガラスマスクにはマスクアライナー等を使用することを考慮して、1層目のマスク3と2層目のマスク6の同じ位置に同一のアライメントマークを入れておくことが望ましい。
2層目の露光では1層目の露光と同様の露光条件により露光する。なお、レジストへの焦点深度が変わるため、例えばUV露光装置を使用した場合、露光時間、UV出力値はレジストの厚さ、感度に応じて変更してもよい。
第1の中間構造体4の上に設けられた2層目のレジスト5を第1の中間構造体4が露出するまで現像し、図5(e)に示すような2層目のレジストパターン5aを形成する。これにより、2段の凹凸パターンが形成される。本形態においては、第1の中間構造体4の凸部の一部以外を露光している。現像処理によって、第1の中間構造体4に設けられた凸部の一部以外のレジスト5を取り除いている。これにより、図5(e)に示すように1段目の凸部の上にさらに2段目の凸部が形成され、第1の中間構造体4は2段の凹凸を有する多段構成となる。
次に第1の中間構造体4の凹凸面上への導電化、電鋳工程について説明する。レジストパターン5aを有する第1の中間構造体4の表面にスパッタリング、または蒸着を行い、2層目のレジストパターン5aの表面にめっき種層としてNiを堆積させる。この工程において、他にPt、Au、Ag、Cu、Alなどを堆積させることができる。
次に2層目のレジストパターン5aを有する第1の中間構造体4をメッキ液に浸け、電気メッキを行い、2層目のレジストパターン5aを形成された第1の中間構造体4上にNiを堆積させ、第2の中間構造体を形成する。第2の中間構造体にはレジストパターン5aを有する第1の中間構造体のパターンが転写される。この工程において、他にCu、Auなどを堆積させることができる。続いて、図5(f)に示すように第1の中間構造体4とレジストパターン5aを除いて第2の中間構造体7を得る。さらに同様の工程により、第2の中間構造体7に電鋳処理を施してスタンパ8を形成する。この時、第2の中間構造体7の表面には酸化処理を施す。これにより、図5(g)に示すように第2の中間構造体のパターンが転写され、複数の凹凸深さを有する多段構成のNi製のスタンパ8を形成することができる。
次にスタンパ8を用いた樹脂の成形工程について説明する。樹脂成形品の形成方法は、射出成形、プレス成形、モノマーキャスト成形、溶剤キャスト成形、押出成形によるロール転写法などを利用することができる。生産性、型転写性の観点から射出成形が好ましく用いられる。所定の寸法を選択した金属構造体を型として射出成形で樹脂成形品を形成する場合、金属構造体の形状を高い転写率で樹脂成形品に再現することができる。得られたスタンパ8を金型として、射出成形でプラスチック材をスタンパ8に充填し、樹脂成形品を得る。射出成形で樹脂成形品を形成するのに使用するプラスチック材料としては、例えば、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂(MS樹脂)、ポリカーボネート系樹脂、ポリエチレンテレフタレートなどのポリエステル系樹脂、エチレン・ビニルアルコール系共重合樹脂、塩化ビニル系樹脂等を挙げることができる。これらの樹脂は必要に応じて、滑剤、光安定剤、熱安定剤、防曇剤、顔料、難燃剤、帯電防止剤、離型剤、ブロッキング防止剤、紫外線吸収剤、酸化防止剤などの、1種もしくは2種以上を含有することができる。
レジストの厚みが増してくると、例えばUV露光装置を使用する場合、1回の露光では十分な焦点深度が得られないことが懸念される。そこで、本実施の形態における方法は、凹凸面を有する中間構造体を形成した後に、その凸部上にレジストを塗布する。これにより、2回分のリソグラフィー工程に相当する溝を形成することができ、造形深さを増すことができる。この処理を必要に応じて繰り返すことによって、所望の造形深さを有する樹脂成形品を精度よく製造することが可能となる。すなわち、本実施の形態では1層分の厚さのレジストにのみ光を照射しているため、焦点深度によらず精度よく製造することができる。
所望のレジスト厚さを有し、かつ微細なレジストパターンを形成しようとする際、複数回の露光、レジストパターンの形成を行うことによってレジストが収縮し、平面度やパターンの深さが均一な基板が得られない場合が考えられる。このレジスト表面形状が中間構造体、スタンパひいては最終工程で形成した樹脂成形品に反映される。本実施の形態では、基板上に1回目のレジスト塗布、前記レジスト層の露光、及びレジストパターンを形成した後、第1の中間構造体4を形成、その上に2回目のレジスト塗布を実施することによって、平面度やパターンの深さを均一にするものである。各レジスト層の露光処理と現像処理は1回行われ、レジスト層が複数回の露光もしくは現像処理を施される必要がない。そのため、レジスト層の劣化、もしくはそれに伴う樹脂成形品の誤差を抑制することができる。
本実施の形態における樹脂成形品の製造方法では、以上のように1層目のレジストとしてポジ型のレジストを用いている。そのため、1層目のレジストパターン2aの上に直接2層目のレジストを形成した場合、2層目の露光工程で1層目のレジストパターン2aが露光に曝され、1層目のレジストパターン2aが変質する恐れがある。1層目のレジストパターン2aが変質した場合、その後の現像工程で1層目のレジストが溶け出し、パターンが変形してしまう。基板上に1層目のレジストパターンを形成した後に第1の中間構造体を形成することにより、2段以上の段差を有するパターンを精度よく形成することができ、第1の中間構造体の凹凸深さよりも深いパターンを有するスタンパを精度良く形成することができる。そのため、このスタンパを用いて樹脂成形品を生産性良く製造することができる。上述の樹脂成形品の製造方法では、1層の深さが10〜100μm程度で幅が10〜100μm程度のパターンを有する樹脂成形品を精度よく形成することができる。
さらに、上述のスタンパ8を用いて導電性炭素材を成型することにより、実施の形態1と同様に燃料電池用の原料を供給するための流路が形成された流路部材を製造することができる。特に幅2μm〜100μmでアスペクト比1以上の溝パターンを有する導電性炭素材の成型に好適である。図5(g)に示すようなスタンパ8を流路部材の製造に用いる場合、第2の中間構造体7のパターンが転写されるため凸部の1段目は浅い溝が形成される。そのため、凸部の1段目に対応する箇所は流路部材の流路に対応付けられた箇所の形成に適している。凸部の2段目は深い溝が形成されるため、貫通孔により構成されるポートに対応付けられた箇所の形成に適している。このように形成する場合、1層目のマスク3は流路と同じパターンとすればよく、2層目のマスク6は貫通孔と同じパターンとすればよい。このような流路に対応するパターンのマスク及び貫通孔に対応するパターンの2枚のマスクで露光すれば、流路の流路と貫通孔を形成するためのスタンパ8を製造することができる。
このように製造されたスタンパ8を用いることにより、燃料電池用のセパレーターを精度よく形成することができた。さらにセパレーターの生産性を向上することができ、燃料電池のコスト低減を図ることができる。このように製造された2枚のセパレーターを対抗配置して、その間に電極及び電解質を配置する。これにより燃料電池のセルが形成される。このセパレーターを有するセルを積層することにより、燃料電池が形成される。
発明の実施の形態6.
本実施の形態にかかるスタンパ及び樹脂成形品の製造方法について図6を用いて説明する。図6は本実施の形態にかかるスタンパの製造工程を示す断面図である。本実施の形態は実施の形態5で示した製造工程を変形したものであり、図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。また、実施の形態1乃至5と同様の工程については、実施の形態1乃至5で説明した内容と同様であるため説明を省略する。
まず、基板1上に1層目のレジスト2を塗布する。1層目のレジスト2には、ポジ型レジストを用いている。そして、1層目のマスク3により露光する。これにより、図6(a)に示す構成となる。さらに現像処理を施すと、露光された領域のレジスト2が除去され、1層目のレジストパターン2aが形成される。これにより、基板上に凸部が形成され、図6(b)に示す構成となる。
図6(c)に示すように導電化、電鋳工程により、第1の中間構造体4を形成する。第1の中間構造体4の上から2層目のレジスト5を塗布する。本実施の形態では、2層目のレジスト5にはポジ型の感光性レジストを用いている。2層目のマスク6を用いて露光することにより、図6(d)に示す構成となる。現像を行うと図6(e)に示す様に第1の中間構造体4の上にレジストパターン5aが形成され、凸部上面の内側にさらに凸部を有する多段構成となる。2回のリソグラフィー工程によりパターニングされているため、パターンを精度よく形成することができる。そして、導電化、電鋳工程により、図6(f)に示す様にスタンパ8を形成する。このような工程により作製されたスタンパ8はパターンが転写され図6(f)に示すように凸部の上にさらに凸部が形成された多段構成となる。このスタンパ8を用いて射出成形等により、樹脂成形品を形成する。
本実施の形態における樹脂成形品の製造方法では、実施の形態5と同様に第1の中間構造体4を形成することにより、この第1の中間構造体4の凹凸深さよりも深いパターンを有するスタンパを精度良く形成することができる。そのため、このスタンパを用いて樹脂成形品を生産性良く製造することができる。さらに、本実施の形態では第1の中間構造体4から直接スタンパ8を形成しているため、第2の中間構造体7を形成する必要がなく生産性を向上することができる。上述の製造方法では1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成形品を精度よく形成することができる。
さらに、上述のスタンパ8を用いて導電性炭素材を成型することにより、実施の形態1と同様に燃料電池用の原料を供給するための流路が形成された流路部材を製造することができる。例えば、スタンパ8の凸部を流路部材の流路(チャネル)とし、凸部の上にさらに形成された2段目の凸部を貫通孔(ポート)とすることが可能である。この場合、1層目のマスク3のパターンを貫通孔のパターンが反転されたパターンとし、貫通孔を設ける部分以外に光を照射する。そして、2層目のマスク6のパターンは回路のパターンと同じパターンとし、流路を設ける部分に光を照射する。このようなパターンを有するマスクを用いることにより電鋳工程が2回で済み、第2の中間構造体を設けることなく流路部材用スタンパを製造することができる。これにより、スタンパの生産性を向上することができる。
このスタンパ8を用いて導電性炭素材を成型することにより、幅が2μm〜100μmでアスペクト比が1以上のパターンを有する導電性炭素材を精度よく成型することができる。従って、電気化学反応を促進するための流路及び流路に原料を供給するための貫通孔を精度よく形成することができる。
もちろん2層目のレジストはネガ型の感光性レジストを用いても同様の効果を得ることができる。さらに2層目のリソグラフィー工程において第1の中間構造体4の凹部に設けられた2層目のレジスト5を露光せずに2段以上の段差を有するパターンを形成できる。そのため、焦点深度によらずスタンパを精度よく形成することができる。
発明の実施の形態7.
本実施の形態にかかるスタンパ及び樹脂成形品の製造方法について図7を用いて説明する。図7は本実施の形態にかかるスタンパの製造工程を示す断面図である。本実施の形態は実施の形態5で示した製造工程を変形したものであり、図1で付した符号と同一の符号は同一の構成を示すため説明を省略する。また、実施の形態1乃至6と同様の工程については、実施の形態1乃至6で説明した内容と同様であるため説明を省略する。
まず、基板1上に1層目のレジスト2を塗布する。1層目のレジスト2には、ポジ型レジストを用いている。そして、1層目のマスク3により露光する。これにより、図7(a)に示す構成となる。さらに現像処理を施すと、露光された領域のレジスト2が除去され、1層目のレジストパターン2aが形成される。これにより、基板に凹凸が形成され図7(b)に示す構成となる。導電化、電鋳工程により、図7(c)に示すように第1の中間構造体4を形成する。
本実施の形態では2層目のレジスト5にポジ型のドライフィルムレジスト(DFR)を用いている。第1の中間構造体4の凸部にDFRを貼り合わせる。DFRを用いることにより、第1の中間構造体4の凹部にレジスト液が残存することが無くなり、所望の造形深さを有するパターンをより精度よく形成することができる。そして、2層目のマスク6の位置合わせを行い、露光すると図7(d)に示す構成となる。現像を行うと図7(e)に示す様に第1の中間構造体4の凸部の上に2層目のレジストパターン5aが形成される。
そして、実施の形態5と同様に図7(f)に示すような多段構成の第2の中間構造体7を導電化、電鋳処理により形成する。さらに導電化、電鋳処理を行うことにより、図7(g)に示すスタンパ8を製造することができる。さらにこのスタンパ8を用いて、樹脂成形品を製造することができる。上述の製造方法では1層の深さが数十μm程度で幅が数十μmのパターンを有する樹脂成形品を精度よく形成することができる。このようにDFRを用いても、実施の形態5と同様の効果を得ることができ、さらに第1の中間構造体4の凹部にレジスト液が残存することが無くなり、より精度よくパターンを形成することができる。もちろん、DFRは実施の形態6に示した製造工程にも利用することができる。
上述の製造方法では特に、幅2μm〜100μmでアスペクト比1以上のパターンを有する導電性炭素材を精度よく成型することができる。従って、電気化学反応を促進するための流路及び流路に原料を供給するための貫通孔を精度よく形成することができる。例えば、スタンパ8の1段目の凸部を流路部材の流路(チャネル)とし、1段目の凸部の上にさらに形成された2段目の凸部を貫通孔(ポート)とすることが可能である。この場合、1層目のマスク3のパターンを流路のパターンと同じパターンとし、流路を設ける部分以外に光を照射する。そして、2層目のマスク6のパターンは貫通孔のパターンが反転されたパターンとし、貫通孔を設ける部分に光を照射する。このようなパターンを有するマスクを用いることにより電鋳工程が2回で済み、第2の中間構造体を設けることなく、燃料電池用の流路部材を成型するためのスタンパを製造することができる。これにより、生産性を向上することができ、大量生産によりコスト低減を図ることができる。もちろん2層目のレジスト5はネガ型の感光性レジストを用いても同様の効果を得ることができる。
その他の実施の形態.
上述の実施の形態を用いることにより、面内に精度良くライン&スペース、楕円を含む円柱状、及び四角柱などの多角柱のパターンが混在して形成されたスタンパを生産性よく製造することができる。例えば、図8に示すような多段構成の樹脂成形品用スタンパ及び流路部材用スタンパを製造することができる。もちろん、図8(a)、図8(b)に形成されたスタンパを一例であり、図示した形状に限られるものではない。なお、本発明は2段構成又は3段構成のスタンパに限らず、4段以上の多段構成をなすスタンパに用いることができる。この場合、流路部材には深さの異なる流路を形成することができる。
また、それぞれの実施の形態を組み合わせて用いることも可能であり、実施の形態5で詳細に説明した製造工程についてはいずれの実施の形態でも利用可能である。また、本発明の樹脂成形品用スタンパを用いて血液粘度測定用チップ等のマイクロデバイスあるいはプリント配線基板を作成することもできる。さらに、実施の形態で説明した場合を除き、ネガ型のレジストをポジ型のレジストにすることができ、ポジ型のレジストをネガ型のレジストにすることも可能である。特に2層目以降のレジストはポジ型、ネガ型にいずれを用いることが可能である。
本発明にかかる流路部材はDMFC型の燃料電池に限ることなく、例えば、固体高分子型(PEFC)の燃料電池に対して利用することが可能である。さらには燃料電池のリアクターを成型するためのスタンパとしても利用可能である。
1 基板、2 1層目のレジスト、3 1層目のマスク、4 第1の中間構造体、5 2層目のレジスト、6 2層目のマスク、7 第2の中間構造体、
8 スタンパ、9 3層目のレジスト、100 セパレーター、101 チャネル、
103 ポート

Claims (8)

  1. 幅2μm以上100μm以下でアスペクト比1以上の流路用溝と、前記流路用溝とつながる貫通孔とを有する燃料電池の流路部材用スタンパの製造方法であって、
    凹凸面を有する第1の構造体を形成するステップと、
    前記第1の構造体の凹凸面上にレジスト層を形成するステップと、
    前記レジストをパターニングし、レジストパターンを形成するステップであって、前記第1の構造体の凹凸面の凸部上に前記レジストの凸部を形成するステップと、
    前記レジストパターンを形成された第1の構造体の凹凸面上に第2の構造体を構成する材料を付着させ、第2の構造体を形成するステップとを備える、燃料電池の流路部材用スタンパの製造方法。
  2. 前記第2の構造体は、前記第1の構造体の凹凸面上にめっきによって金属を付着させることによって形成される燃料電池の流路部材用スタンパである、請求項1に記載の燃料電池の流路部材用スタンパの製造方法。
  3. 第2の構造体の凹凸面上に、めっきによって金属を付着させ、燃料電池の流路部材用スタンパとしての第3の構造体を形成するステップを備える、請求項1に記載の燃料電池の流路部材用スタンパの製造方法。
  4. 前記レジストにはドライフィルムレジストを用いることを特徴とする請求項1載に記載の燃料電池の流路部材用スタンパの製造方法。
  5. 前記凹凸面を有する第1の構造体を形成するステップは、
    基板上にレジスト層を形成するステップと、
    前記レジストをリソグラフィー処理し、前記レジストの凹凸パターンを形成するステップとを有する、請求項1に記載の燃料電池の流路部材用スタンパの製造方法。
  6. 請求項1に記載の燃料電池の流路部材用スタンパの製造方法により、スタンパを製造するステップと、
    前記スタンパを使用して燃料電池の流路部材を成型するステップとを有する、燃料電池用流路部材の製造方法。
  7. 請求項6記載の製造方法により製造された燃料電池用流路部材。
  8. 請求項7記載の燃料電池用流路部材を備える燃料電池。
JP2009131078A 2003-07-11 2009-05-29 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池 Expired - Fee Related JP4819146B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131078A JP4819146B2 (ja) 2003-07-11 2009-05-29 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003195563 2003-07-11
JP2003195563 2003-07-11
JP2009131078A JP4819146B2 (ja) 2003-07-11 2009-05-29 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004010016A Division JP4383182B2 (ja) 2003-07-11 2004-01-19 樹脂成形品用のスタンパの製造方法及び樹脂成形品用の製造方法

Publications (2)

Publication Number Publication Date
JP2009274445A true JP2009274445A (ja) 2009-11-26
JP4819146B2 JP4819146B2 (ja) 2011-11-24

Family

ID=41440286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131078A Expired - Fee Related JP4819146B2 (ja) 2003-07-11 2009-05-29 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池

Country Status (1)

Country Link
JP (1) JP4819146B2 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655950A (en) * 1979-10-15 1981-05-16 Toshiba Corp Photographic etching method
JPH06150396A (ja) * 1992-11-12 1994-05-31 Matsushita Electric Ind Co Ltd 光ディスク原盤の作製方法
JPH06162576A (ja) * 1992-11-26 1994-06-10 Matsushita Electric Ind Co Ltd 光ディスク原盤の製造方法
JPH09222514A (ja) * 1995-06-16 1997-08-26 Kuraray Co Ltd 導光体の製造方法
JPH11110833A (ja) * 1997-09-30 1999-04-23 Samsung Electron Co Ltd 光ディスク用マスタディスク及びその製造方法
JPH11144332A (ja) * 1997-11-10 1999-05-28 Canon Inc スタンパー及びそのスタンパー作製のためのレジスト原盤の製造方法
JP2000011865A (ja) * 1998-06-24 2000-01-14 Fujitsu Ltd 隔壁転写凹版用の元型及びそれを用いたプラズマディスプレイパネルの隔壁形成方法
JP2001338444A (ja) * 2000-05-25 2001-12-07 Mitsubishi Chemicals Corp 原盤、スタンパ及び情報記録媒体の製造方法
JP2002052542A (ja) * 2000-08-01 2002-02-19 Taiwan Naipuukoanteienkoochii Kofun Yugenkoshi 微細構造を有する物品を製造するためのプロセス
JP2003059121A (ja) * 2001-08-20 2003-02-28 Sony Corp 光記録媒体製造用原盤の製造方法、露光装置、並びに光記録媒体製造用原盤および光記録媒体
WO2003028970A1 (fr) * 2001-09-28 2003-04-10 Kuraray Co., Ltd. Procede de production d'un produit moule en resine
JP2003257087A (ja) * 2002-03-05 2003-09-12 Sony Corp 光ディスクの製造方法
JP2003282087A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 燃料電池用セパレータとその製造方法
JP2004079456A (ja) * 2002-08-22 2004-03-11 Toyota Motor Corp 燃料電池用セパレータの製造方法
JP2004284225A (ja) * 2003-03-24 2004-10-14 Kuraray Co Ltd 樹脂成形品の製造方法、金属構造体の製造方法、チップ

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5655950A (en) * 1979-10-15 1981-05-16 Toshiba Corp Photographic etching method
JPH06150396A (ja) * 1992-11-12 1994-05-31 Matsushita Electric Ind Co Ltd 光ディスク原盤の作製方法
JPH06162576A (ja) * 1992-11-26 1994-06-10 Matsushita Electric Ind Co Ltd 光ディスク原盤の製造方法
JPH09222514A (ja) * 1995-06-16 1997-08-26 Kuraray Co Ltd 導光体の製造方法
JPH11110833A (ja) * 1997-09-30 1999-04-23 Samsung Electron Co Ltd 光ディスク用マスタディスク及びその製造方法
JPH11144332A (ja) * 1997-11-10 1999-05-28 Canon Inc スタンパー及びそのスタンパー作製のためのレジスト原盤の製造方法
JP2000011865A (ja) * 1998-06-24 2000-01-14 Fujitsu Ltd 隔壁転写凹版用の元型及びそれを用いたプラズマディスプレイパネルの隔壁形成方法
JP2001338444A (ja) * 2000-05-25 2001-12-07 Mitsubishi Chemicals Corp 原盤、スタンパ及び情報記録媒体の製造方法
JP2002052542A (ja) * 2000-08-01 2002-02-19 Taiwan Naipuukoanteienkoochii Kofun Yugenkoshi 微細構造を有する物品を製造するためのプロセス
JP2003059121A (ja) * 2001-08-20 2003-02-28 Sony Corp 光記録媒体製造用原盤の製造方法、露光装置、並びに光記録媒体製造用原盤および光記録媒体
WO2003028970A1 (fr) * 2001-09-28 2003-04-10 Kuraray Co., Ltd. Procede de production d'un produit moule en resine
JP2003257087A (ja) * 2002-03-05 2003-09-12 Sony Corp 光ディスクの製造方法
JP2003282087A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 燃料電池用セパレータとその製造方法
JP2004079456A (ja) * 2002-08-22 2004-03-11 Toyota Motor Corp 燃料電池用セパレータの製造方法
JP2004284225A (ja) * 2003-03-24 2004-10-14 Kuraray Co Ltd 樹脂成形品の製造方法、金属構造体の製造方法、チップ

Also Published As

Publication number Publication date
JP4819146B2 (ja) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5239056B2 (ja) 電鋳型の製造方法、電鋳型及び電鋳部品の製造方法
EP1462859A2 (en) Resin molded product production process, metal structure production process, and resin molded product
JP3554228B2 (ja) マイクロレンズ金型又は金型マスター、及びそれらの作製方法
US9452571B2 (en) Optical element molding die and method for molding optical element
KR100431676B1 (ko) 마이크로 구조체 어레이와, 마이크로 구조체 어레이 및마이크로 구조체 어레이 성형용 금형 그리고 마이크로렌즈 어레이의 제조 방법
US20110240476A1 (en) Fabrication of conductive nanostructures on a flexible substrate
JP4520166B2 (ja) 樹脂製マイクロチャネル基板及びその製造方法
US9405192B2 (en) Layered radiation-sensitive materials with varying sensitivity
KR100803749B1 (ko) 대면적 스템퍼 제조방법
JP2005047250A (ja) 樹脂成形品の製造方法、燃料電池用流路部材の製造方法及びそれらに用いるスタンパの製造方法並びに燃料電池用流路部材及び燃料電池
JP4819146B2 (ja) 燃料電池の流路部材用スタンパの製造方法、燃料電池用流路部材の製造方法、燃料電池用流路部材及び燃料電池
US8545969B2 (en) Pattern-formed substrate, pattern-forming method, and die
KR101049220B1 (ko) 임프린트 리소그래피용 스탬프의 제조 방법
JP5030618B2 (ja) 電鋳型とその製造方法
JP2008265244A (ja) 微細金型とその製造方法、及び微細金型の作成用めっき母型
JP5070563B2 (ja) 微細成型用金型の製造方法及び微細金型
TW594225B (en) Manufacturing method of light guiding micro structure
KR100249317B1 (ko) 미세 구조물 형성을 위한 리가 공정
JP5050192B2 (ja) 成型用微細金型及び微細金型の製造方法
JP3548511B2 (ja) 回折光学素子用金型、回折光学素子、及びその作製方法
JP2005181699A (ja) 微細突起アレイの製造方法、微細突起アレイ、微細凹面アレイ及び微細凹面アレイの製造方法
JP2006159579A (ja) 印刷用メタルマスク版の製造方法と印刷用メタルマスク版
JPH0627302A (ja) 光学素子の母型およびその製造方法
JP5798763B2 (ja) 櫛型構造を有する構造体の製造方法および樹脂構造体成形用金型の製造方法
JP4785481B2 (ja) 電鋳型とその製造方法及び電鋳部品の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4819146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees