JP2009267510A - 超音波センサ - Google Patents

超音波センサ Download PDF

Info

Publication number
JP2009267510A
JP2009267510A JP2008111507A JP2008111507A JP2009267510A JP 2009267510 A JP2009267510 A JP 2009267510A JP 2008111507 A JP2008111507 A JP 2008111507A JP 2008111507 A JP2008111507 A JP 2008111507A JP 2009267510 A JP2009267510 A JP 2009267510A
Authority
JP
Japan
Prior art keywords
acoustic matching
piezoelectric element
matching member
frequency
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111507A
Other languages
English (en)
Other versions
JP4494493B2 (ja
Inventor
Makiko Sugiura
杉浦  真紀子
Yasuyuki Okuda
泰行 奥田
Takaaki Kawai
孝明 河合
Takahiko Yoshida
貴彦 吉田
Hisanaga Matsuoka
久永 松岡
Toshiki Isogai
俊樹 磯貝
Mitsuyasu Matsuura
充保 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2008111507A priority Critical patent/JP4494493B2/ja
Priority to DE102009017507A priority patent/DE102009017507B4/de
Priority to DE102009061087A priority patent/DE102009061087B3/de
Priority to US12/385,714 priority patent/US8166824B2/en
Publication of JP2009267510A publication Critical patent/JP2009267510A/ja
Application granted granted Critical
Publication of JP4494493B2 publication Critical patent/JP4494493B2/ja
Priority to US13/425,460 priority patent/US8616061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

【課題】温度変化による送受信感度の低下を抑制し得る超音波センサを提供する。
【解決手段】超音波センサ10は、送信素子11の積層圧電素子16に超音波を発振するための電圧を印加する回路素子20を備えている。この回路素子20は、送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pの共通の共振周波数fcを検出する。そして、回路素子20は、積層圧電素子16に印加する電圧の周波数を、上記共振周波数fcに等しくするように調整する。
【選択図】図2

Description

本発明は、音響整合部材を圧電素子に接合した送信素子および受信素子を備えた超音波センサに関するものである。
従来より、超音波センサの構造としては、下記特許文献1に示すように、超音波を発信および受信する検出素子と超音波伝搬媒体(空気や液体)等との音響マッチングをよくするために音響整合部材が採用されている。この音響整合部材には、周囲の温度変化による素子の特性変化を抑制するために、ガラス製のマイクロバルーンが内有されている。
特開昭63−103993号公報
ところで、圧電素子等の送信素子は、音響整合部材の共振周波数に等しい周波数の超音波を発振することにより、音響整合部材を伝達する超音波の振動を増幅して送受信感度を向上させている。
しかしながら、周囲の温度変化に応じて音響整合部材のヤング率が変化すると、音響整合部材の共振周波数が変化してしまう。このため、送信素子から発振される超音波の周波数と音響整合部材の共振周波数とがずれてしまい、送受信感度が低下してしまう。また、送信用の音響整合部材と受信用の音響整合部材とで温度変化に応じてヤング率が異なるように変化する場合には送信感度および受信感度のいずれかが低下してしまう。
特に、音響整合部材に受信した超音波による定在波が発生するように、音響整合部材のヤング率に応じて当該音響整合部材の超音波が伝達する方向の長さを設定する必要があり、また、耐環境性を高める必要もあり、上記特許文献1のようにマイクロバルーンを内有させることが困難であるという問題がある。
本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、温度変化による送受信感度の低下を抑制し得る超音波センサを提供することにある。
上記目的を達成するため、特許請求の範囲に記載の請求項1の超音波センサでは、超音波を発振可能な第1の圧電素子(16)とこの第1の圧電素子により発振された超音波を伝達可能な第1の音響整合部材(13)とを有し被検出体に対して前記超音波の送信を行う送信素子(11)と、前記被検出体にて反射された前記超音波を検出可能な第2の圧電素子(14p)とこの第2の圧電素子に前記被検出体にて反射された前記超音波を伝達可能な第2の音響整合部材(13p)とを有し前記被検出体にて反射された前記超音波の受信を行う受信素子(12p〜12r)と、前記第1の圧電素子に前記超音波を発振するための電圧を印加する回路素子(20)と、前記第1の音響整合部材および前記第2の音響整合部材のいずれか一方の共振周波数(f)を検出する共振周波数検出手段(20)と、を備える超音波センサ(10)であって、前記回路素子は、前記第1の圧電素子に印加する電圧の周波数を前記共振周波数検出手段により検出される前記共振周波数に等しくするように調整することを技術的特徴とする。
請求項1の発明では、共振周波数検出手段は、第1の音響整合部材および第2の音響整合部材のいずれか一方の共振周波数を検出する。そして、回路素子は、第1の圧電素子に印加する電圧の周波数を、共振周波数検出手段により検出される共振周波数に等しくするように調整する。
これにより、第1の圧電素子から発振される超音波の周波数は、当該第1の圧電素子に印加される電圧の周波数に等しくなるので、この超音波の周波数が、第1の音響整合部材の共振周波数に等しくなるように調整された場合には、温度変化による送信感度の低下を抑制することができる。また、第1の圧電素子から発振される超音波の周波数が、第2の音響整合部材の共振周波数に等しくなるように調整された場合には、温度変化による受信感度の低下を抑制することができる。
したがって、温度変化による送受信感度の低下を抑制することができる。
請求項2の発明では、第1の音響整合部材および第2の音響整合部材は、例えば、同一の材料を使用して、両音響整合部材におけるヤング率の温度特性の変化が等しくなるように構成される。これにより、周囲の温度が変化した場合であっても第1の音響整合部材および第2の音響整合部材のヤング率が等しくなるので、温度変化に関わらず両音響整合部材の共振周波数を等しくすることができる。その結果、第1の圧電素子に印加する電圧の周波数を、共振周波数検出手段により検出された共振周波数に等しくするように調整することにより、温度変化による送信感度および受信感度の双方の低下を抑制することができる。
請求項3の発明では、共振周波数検出手段は、送信素子から送信された短時間の超音波が被検出体にて反射され第2の圧電素子に伝達完了後に、当該第2の圧電素子から出力される信号の周波数である残響周波数を上記共振周波数として検出する。
所定の周波数の電圧を第1の圧電素子に印加して送信素子から短時間の超音波を送信すると、この超音波が被検出体にて反射され第2の圧電素子に伝達される。このような超音波の第2の圧電素子への伝達中では、当該第2の圧電素子から出力される信号の周波数は、印加電圧の周波数に一致する。そして、第2の圧電素子への上記超音波の伝達完了後には、当該第2の圧電素子から出力される信号の周波数である残響周波数は、印加電圧の周波数から第2の音響整合部材の共振周波数に等しい周波数に変化する。そこで、第1の圧電素子に印加する電圧の周波数を、超音波の伝達完了後に検出された残響周波数に等しくなるように調整することにより、温度変化による受信感度の低下を確実に抑制することができる。
請求項4の発明では、第1の圧電素子における電圧の周波数が変化するときの当該第1の圧電素子のインピーダンスと、第2の圧電素子における電圧の周波数が変化するときの当該第2の圧電素子のインピーダンスとのいずれか一方をインピーダンス測定手段により測定する。共振周波数検出手段は、上記インピーダンス測定手段により測定されるインピーダンスの極小値に対応する周波数を上記共振周波数として検出する。
音響整合部材を接合した圧電素子に電圧を印加するとともにその印加電圧の周波数を変化させるとき、当該圧電素子のインピーダンスは、印加電圧の周波数に応じて変化する。特に、音響整合部材の共振周波数に等しい周波数の電圧が圧電素子に印加される場合、この圧電素子に流れる電流値が大きくなるとともに当該圧電素子のインピーダンスが小さくなる。
そこで、第1の圧電素子に印加する電圧の周波数を、第1の圧電素子のインピーダンスの極小値に対応する周波数に等しくするように調整した場合には、温度変化による送信感度の低下を確実に抑制することができる。また、第1の圧電素子に印加する電圧の周波数を、第2の圧電素子のインピーダンスの極小値に対応する周波数に等しくするように調整した場合には、温度変化による受信感度の低下を確実に抑制することができる。
請求項5の発明では、第1の温度測定手段により第1の音響整合部材の温度を測定する。共振周波数検出手段は、共振周波数(f)を、第1の温度測定手段により測定される第1の音響整合部材の温度から求められる当該第1の音響整合部材のヤング率をE、第1の音響整合部材の密度およびポアソン比をρおよびν、第1の音響整合部材における超音波の伝達方向の長さ(厚さ)をLとしたとき、以下の式(1)に基づいて検出する。
=[E/{3×ρ(1−ν)}]1/2/4L ・・・(1)
第1の音響整合部材の長さLは、当該第1の音響整合部材に受信した超音波による定在波が発生するように設定されることから、第1の音響整合部材内の音の波長をλとすると、L=λ/4の関係が成立する。また、第1の音響整合部材内の音速をcとすると、λ=c/fの関係が成立するため、以下の式(2)が導き出される。
=c/4L ・・・(2)
また、上述した音速cと、ヤング率E、密度ρおよびポアソン比νとでは、以下の式(3)の関係が成立する。
c=[E/{3×ρ(1−ν)}]1/2 ・・・(3)
これにより、上記式(2)および式(3)の関係から上述した式(1)の関係が成立することが判る。
そこで、第1の音響整合部材の温度から当該第1の音響整合部材のヤング率Eを求め、このヤング率Eを上記式(1)に代入することにより第1の音響整合部材の共振周波数fを検出することができる。
請求項6の発明では、第1の音響整合部材を外力の負荷から保護するゲル状の緩衝材が設けられている。第1の温度測定手段は、上記緩衝材の誘電率に基づいて第1の音響整合部材の温度を測定する。
ゲル状の緩衝材、例えば、ポッティング材の誘電率は、周囲温度が上昇するとこの温度上昇に応じて上昇する。このため、緩衝材の誘電率に基づいて第1の音響整合部材の温度を測定することができる。特に、温度センサ等の特別な部材を設けることなく緩衝材の誘電率を測定するために、例えば、当該緩衝材に互いに離間した状態で埋設させた一対の電極を設けるだけで、周囲温度を検出することができる。これにより、第1の温度測定手段の採用したことによる製造コストの増大を抑制することができる。
請求項7の発明では、表面弾性波素子が第1の圧電素子の表面に設けられている。第1の温度測定手段は、上記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて第1の音響整合部材の温度を測定する。
例えば、温度が上昇すると、表面弾性波素子に設けられた一対の電極における電極間の間隔が大きくなる。このため、一方の電極から送信された表面弾性波の波長に対して他方の電極にて受信された表面弾性波の波長が長くなり、送信時の表面弾性波に対して受信時の表面弾性波の周波数が低下する。すなわち、表面弾性波素子における送信時の表面弾性波の周波数と受信時の表面弾性波の周波数との差から温度を測定することができる。このようにして、第1の音響整合部材の温度を測定してもよい。
また、請求項8〜10に記載の発明のように、共振周波数検出手段は、請求項5〜7の発明のごとく、第1の温度測定手段により検出される第1の音響整合部材の温度に基づいて共振周波数を検出することに代えて、第2の温度測定手段により検出される第2の音響整合部材の温度に基づいて共振周波数を検出してもよい。
すなわち、第1の圧電素子に印加する電圧の周波数を、第1の音響整合部材の共振周波数に等しくなるように調整して送信感度の低下を抑制してもよいし(請求項5〜7)、第2の音響整合部材の共振周波数に等しくなるように調整して受信感度の低下を抑制してもよい(請求項8〜10)。特に、請求項2に記載の発明のように、第1の音響整合部材および第2の音響整合部材におけるヤング率の温度特性の変化を等しくすることにより第1の音響整合部材の共振周波数と第2の音響整合部材の共振周波数とが等しくなる場合には、第1の音響整合部材および第2の音響整合部材のどちらの共振周波数に基づいても送信感度および受信感度の双方の低下を抑制することができる。
請求項11の発明では、第1の圧電素子は複数の圧電素子が積層されて形成される。これにより、第1の圧電素子は、高い音圧の超音波を発振することができる。
請求項12の発明では、第2の圧電素子は、チタン酸ジルコン酸鉛(PZT)系材料により形成されている。これにより、音圧が低い超音波の受信をすることができ、受信感度を向上させることができる。
請求項13の発明では、第1の圧電素子および第2の圧電素子は、ポリフッ化ビニリデン(PVDF)系材料により形成されている。これにより、音響整合部材との音響インピーダンスの差が小さくなるので、超音波振動の減衰を小さくすることができる。また、ポリフッ化ビニリデン(PVDF)系材料は樹脂材料であるため、音響整合部材のインサート成形が容易であり、好適に用いることができる。
請求項14の発明では、受信素子を複数備え、これら複数の受信素子がアレイ状に配置される。これにより、各受信素子にて受信される超音波に基づいて被検出体までの距離や方位角が検出できるので、被検出体の位置の3次元検知を行うことができる。
[第1実施形態]
この発明に係る超音波センサの第1実施形態について、図を参照して説明する。ここでは、車両に搭載して障害物センサとして使用する超音波センサを例に説明する。図1は、第1実施形態の超音波センサの説明図である。図1(A)は、超音波センサを音響整合部材側から見た平面説明図であり、図1(B)は、図1(A)のA−A矢視断面図である。ここで、図1において、図1(A)の手前方向および、図1(B)の上方向が車両の外部を示す。また、図1(A)の下方向に地面が存在する。なお、各図では、説明のために一部を拡大し、一部を省略して示している。
図1(A)および(B)に示すように、超音波センサ10は、超音波を送信する送信素子11と、送信素子11から車両前方に送信され、車両前方に存在する被検出体(障害物)で反射された超音波を検出する受信素子12p、12q、12rと、超音波の伝達を防止する振動減衰部材18と、送信素子11および受信素子12p、12q、12rを外力の負荷や衝撃から保護する第1緩衝材19と、送信素子11を受信素子12p〜12rから区画し、超音波の伝達を遮蔽する振動分離部材90と、超音波の送受信に関する電圧信号の入出力を行う回路素子20と、受信素子12p、12q、12r、送信素子11、第1緩衝材19および振動分離部材90を収容する一端が開口した箱状の筐体31と、を備えている。
各受信素子12p〜12rの構造は同じであるので、ここでは、受信素子12pについて説明する。
受信素子12pは、送信素子11から発振され、障害物で反射された超音波を受信し、圧電素子14pに振動としての超音波を伝達する音響整合部材13pと、超音波を検出する圧電素子14pとが接合されて形成されている。
圧電素子14pは、例えば、チタン酸ジルコン酸鉛(PZT)からなり、横断面の外形が音響整合部材13pの横断面の外形と等しい四角柱状に形成された圧電体を、対向する面において、PtやCuやAgのスパッタ、めっき、導電ペーストの焼き付けなどにより形成された1組の電極15pにより挟んで形成されている。
音響整合部材13pは、空気より音響インピーダンスが大きく、圧電素子14pより音響インピーダンスが小さいポリカーボネート系樹脂などの耐久性に優れた樹脂材料を用いて形成されている。
音響整合部材13pは、厚さ(超音波の伝達方向の長さ)Lが超音波の音響整合部材13p中における波長λの約1/4となるように形成されている。音響整合部材13pの厚さLを超音波の波長λの約1/4となるように形成することにより、音響整合部材13p内で定在波を発生させることができる。これにより、音響整合部材13p内に入射した超音波と、音響整合部材13pと圧電素子14pとの界面において反射された超音波とが干渉して互いに打ち消し合うことを低減することができるので、圧電素子14pに効率よく超音波を伝達することができる。また、音響整合部材13pの幅を、超音波の空気中における波長の半分以下とすることが望ましい。
送信素子11は、受信素子12pの音響整合部材13pと同一材料を用いて同様に構成された音響整合部材13と、超音波を発振する積層圧電素子16とが接合されて形成されている。
積層圧電素子16は、例えば、チタン酸ジルコン酸鉛(PZT)からなり、横断面の外形が音響整合部材13の横断面の外形と等しい四角柱状に形成された圧電体に、1組の電極17が互い違いに櫛歯状に積層形成されて構成されている。これにより、積層圧電素子16は、複数層の圧電素子が積層形成された形状と等価となり、本実施形態では、5層の圧電素子が積層形成された形状となっている。ここで、圧電素子の積層数は、要求する音圧に合わせて可変である。
各圧電素子14pの電極15pおよび積層圧電素子16の電極17は、ワイヤ14a、17aを介して、それぞれ回路素子20に電気的に接続されている。この回路素子20は、車両に設けられたECU(Electronic Control Unit:図示せず)に電気的に接続されている。
当該回路素子20は、超音波を送信する時には、ECUから出力された、発信する超音波の音圧、位相を制御するための制御信号に基づいて、積層圧電素子16に対して後述する周波数調整処理により調整された周波数の電圧信号を出力する(電圧を印加する)。また、回路素子20は、超音波を受信する時には、各圧電素子14pにより受信した超音波の音圧、位相に応じて、各圧電素子14pから入力された電圧信号に基づいて演算処理を行い、ECUに対して振動信号として出力する。
送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pは、超音波の伝達を防止する振動減衰部材18を介在して、互いに隣り合った各音響整合部材13、13pの中心部の間隔dが、超音波の半波長にほぼ等しくなるようにアレイ状に配置されている。ただし、中心部の間隔は検知エリアの角度に依存するものであり、間隔dが半波長より大きい場合でも、角度を検知することはできる。
振動減衰部材18は、各音響整合部材13pの受信面13jと、音響整合部材13の送信面13sとを覆って、筐体31の開口部に固定されている。この構成を用いると、各音響整合部材13、13pと振動減衰部材18との界面が外部に露出しないため、接合面を介して水などが侵入することを防止することができるので、超音波センサ10の信頼性を向上させることができる。筐体31は、車両の所定の位置、例えば、バンパ100に各音響整合部材13、13pが外方に面するように取り付けられている。
振動減衰部材18は、各音響整合部材13、13pより音響インピーダンスが小さく、減衰定数が高い材料、例えば、シリコンゴムにより形成されている。更に、振動減衰部材18には、弾性率が低い材料および密度が小さい材料が好適に用いられる。例えば、ゴム系材料、発泡樹脂などの気孔を含む樹脂、スポンジなどを用いることができる。
このような材料により形成された振動減衰部材18が、各音響整合部材13、13pの間に介在することにより、超音波が各音響整合部材13、13pの間で伝達されてノイズの原因となることを防止することができる。ここで、振動減衰部材18のうち受信面13jおよび送信面13sを覆う部分は、超音波の伝達を大きく阻害しないように、例えば、厚さ1mm以下の厚さに形成されている。
第1緩衝材19は、積層圧電素子16および各圧電素子14pより弾性率の低い材料、例えば、ポッティング材により構成されている。この第1緩衝材19は、送信素子11の積層圧電素子16および音響整合部材13の一部と、各受信素子12p〜12rの圧電素子14pおよび音響整合部材13pの一部とを囲んで、筐体31との間に介在して設けられている。なお、第1緩衝材19は、ウレタンや、ゴム、シリコーンなどの高分子材料により構成されてもよい。
このような第1緩衝材19を設けることにより、各音響整合部材13、13pに小石などの飛来物の衝突などにより衝撃が加えられたような場合でも、第1緩衝材19が送信素子11および各受信素子12p〜12rに伝達された衝撃を吸収するとともに、送信素子11および各受信素子12p〜12rが筐体31の底面31a側に向かって変位するのを拘束するため、送信素子11および受信素子12p〜12rを保護し、破壊を防ぐことができる。また、積層圧電素子16および各圧電素子14pを劣化させる水分など環境因子を遮断することができるので、信頼性を向上させることができる。
振動分離部材90は、第1緩衝材19より弾性率および音響インピーダンスが高い材料により板状に形成されている。当該振動分離部材90は、送信素子11と隣接する受信素子12p、12rとの間に設けられ、筺体31の底面31aから立設されており、一端が振動減衰部材18により固定されて、送信素子11を囲むように筐体31の内部を区画している。ここで、振動分離部材90の厚さは、積層圧電素子16から各音響整合部材13pへの超音波の振動の伝達を低減するとともに、振動減衰部材18において、各音響整合部材13pの振動を阻害しない厚さに設定されている。
次に、本第1実施形態に係る超音波センサ10の回路素子20により実行される周波数調整処理の流れについて、図2および図3を用いて詳細に説明する。図2は、回路素子20における周波数調整処理の流れを示すフローチャートである。図3は、積層圧電素子16に印加される電圧の周波数と残響周波数との関係を示す説明図である。
まず、ステップS101において、ECUから入力される車速信号により、当該超音波センサ10を搭載する車両の車速Vが超音波センサ10の検出可能速度Vo以下であるか否かについて判定され、車速Vが検出可能速度Vo以下になるまでNoとの判定が繰り返される。ここで、本第1実施形態においては、検出可能速度Voは、例えば、10km/hに設定されている。なお、本ステップS101において、車両のエンジンの始動を検出した場合にYesと判定して、ステップS103以降の処理を実施するようにしてもよい。
車速Vが検出可能速度Vo以下になると(S101でYes)、ステップS103において、検出用電圧印加処理がなされる。この処理では、所定の周波数(以下、検出用周波数foともいう)の電圧が送信素子11の積層圧電素子16に短い時間の間だけ印加される。この電圧印加に応じて積層圧電素子16が振動することにより、検出用周波数foの超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。
次に、ステップS105において、共振周波数解析処理がなされる。この処理では、ステップS103にて送信された後に被検出体にて反射され各音響整合部材13pを介して圧電素子14pに伝達された超音波の周波数に基づいて、送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pの共通の共振周波数(以下、共振周波数fともいう)が検出される。このようにして回路素子20は、共振周波数検出手段として機能し得る。なお、音響整合部材13および各音響整合部材13pは、同じ材料で構成されているので、各音響整合部材の共振周波数fは周囲温度の変化に関わらず一致することとなる。
具体的には、図3に示すように、検出用周波数foの入力信号が積層圧電素子16に入力されたことにより、検出用周波数foの超音波が各受信素子12p〜12rに受信され、検出用周波数foの受信信号が圧電素子14pから出力される。そして、超音波の伝達が完了すると、圧電素子14pから出力される受信信号の周波数が検出用周波数foから残響周波数に変化する。この残響周波数は、音響整合部材13pの共振周波数fに等しいことが判っている。そこで、この残響周波数を周波数解析することにより、共振周波数fを検出することができる。なお、1つの圧電素子14pから出力される受信信号の周波数に基づいて共振周波数fを検出してもよいし、複数の圧電素子14pから出力される受信信号の周波数に基づいて共振周波数fを検出してもよい。
このように共振周波数fが検出されると、ステップS107において、計時処理がなされ、ステップS105にて共振周波数fが検出されてからの経過時間tが計時される。
そして、ステップS109において、周波数設定処理がなされる。この処理では、送信素子11の積層圧電素子16に印加される電圧の周波数が、ステップS105にて検出された共振周波数fに等しくなるように設定される。
この状態では、ECUから入力される制御信号に基づいて、共振周波数fに等しくなるように調整された周波数の電圧が、送信素子11の積層圧電素子16に印加される。この電圧印加に応じて積層圧電素子16が振動することにより、共振周波数fに等しい周波数の超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。
このとき、音響整合部材13に伝達される超音波の周波数は、当該音響整合部材13の共振周波数(f)に等しくなるので、超音波の周波数が共振周波数(f)と異なる場合と比較して、超音波の振動が増幅されて送信感度が向上する。
また、送信素子11の積層圧電素子16は5層に積層形成されているので、例えば、1層だけの圧電素子に比べて、同じ電圧を印加した場合に、5倍の変位、即ち5倍の音圧を得ることができる。つまり、積層圧電素子16は、高い音圧の超音波を発振することができる。
また、送信素子11を区画する振動分離部材90は第1緩衝材19より弾性率および音響インピーダンスが高い材料により形成されているので、積層圧電素子16から第1緩衝材19を介して伝達される超音波を、振動分離部材90と第1緩衝材19との界面において反射することができる。これにより、送信素子11から高い音圧の超音波を発振しても、送信素子11から各受信素子12p〜12rに超音波が伝達して発生する振動ノイズを低減することができる。
上述のように送信素子11から送信された超音波は、被検出体で反射された後、各受信素子12p〜12rの音響整合部材13pの受信面13jにおいて受信される。例えば、受信素子12pの音響整合部材13pの受信面13jにおいて受信された超音波は、当該音響整合部材13pを介して、圧電素子14pに伝達される。各圧電素子14pに伝達された超音波は、当該各圧電素子14pにより検出され、電圧信号に変換されて回路素子20にそれぞれ入力される。回路素子20は、この入力された電圧信号に基づいて演算処理を行い、ECUに対して振動信号を出力する。
このとき、各受信素子12p〜12rの音響整合部材13pを伝達する超音波の周波数は、当該音響整合部材13pの共振周波数(f)に等しくなっているので、超音波の周波数が共振周波数(f)と異なる場合と比較して、超音波の振動が増幅されて受信感度が向上する。
また、各受信素子12p〜12rはアレイ状に配置されているため、送受信間の時間差および受信した超音波の各受信素子12p〜12r間での時間差、または位相差を求めることによって、その各差に基づいて、障害物等の被検出体の位置の3次元検知を行うことができる。
また、各受信素子12p〜12r間には、振動減衰部材18が介在しているため、受信素子13p〜13sごとに超音波を分離して伝達し、検出することができるので、良好なクロストーク特性を得ることができ、超音波の検出精度を向上させることができる。
上述のように、積層圧電素子16に印加される電圧の周波数を、ステップS105にて検出された共振周波数fに等しくなるように調整させる処理は、経過時間tが所定時間toを越えるまで継続される。
そして、上述のように調整された周波数の電圧が、送信素子11の積層圧電素子16に印加されている間に、経過時間tが所定時間toを越えると、ステップS111にてYesと判定されて、車両のイグニッションスイッチ(IGSW)がON状態であり車両が始動状態であれば(S113でNo)、上述したステップS101からの処理がなされ、再度、共振周波数fが設定される。このように、所定時間to経過後に音響整合部材13および音響整合部材13pの共振周波数fを再度検出することにより、温度変化に応じて変化する共振周波数fに等しい周波数の電圧を積層圧電素子16に印加することができる。その結果、常に超音波の周波数が各音響整合部材13、13pの共振周波数に等しくなるので、送受信感度の低下を抑制することができる。そして、IGSWがOFF状態になると、ステップS113にてYesと判定されて周波数調整処理を終了する。
以上説明したように、本第1実施形態に係る超音波センサ10では、回路素子20は、送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pの共通の共振周波数fを検出する。そして、回路素子20は、送信素子11の積層圧電素子16に印加する電圧の周波数を、上記共振周波数fに等しくするように調整する。
これにより、積層圧電素子16から発振される超音波の周波数が、音響整合部材13および各音響整合部材13pの共振周波数fに等しくなるように調整されるので、温度変化に関係なく送信感度および受信感度の低下を抑制することができる。
したがって、温度変化による送受信感度の低下を抑制することができる。
特に、音響整合部材13と各音響整合部材13pとは同一材料を用いて同様に構成されているので、各音響整合部材13、13pにおけるヤング率の温度特性の変化が等しくなり、温度変化に関わらず各音響整合部材13、13pの共振周波数を等しくすることができる。
なお、音響整合部材13と各音響整合部材13pとは同一材料を用いて構成されることに限らず、ヤング率の温度特性の変化が等しい材料を用いて構成することにより、各音響整合部材13、13pの共振周波数を温度変化に関係することなく等しくしてもよい。また、各音響整合部材13、13pにおけるヤング率の温度特性の変化が異なる場合には、いずれかの音響整合部材の共振周波数に等しい周波数の超音波を送信素子11から発振することにより、当該音響整合部材を有する素子の温度変化に関する感度の低下を抑制することができる。
また、本第1実施形態に係る超音波センサ10では、回路素子20は、送信素子11の積層圧電素子16から発振された短時間の超音波が被検出体にて反射され圧電素子14pに伝達完了後に、当該圧電素子14pから出力される信号の周波数である残響周波数を各音響整合部材13、13pの共振周波数fとして検出する。
このように、送信素子11の積層圧電素子16に印加する電圧の周波数を、超音波の伝達完了後に検出された残響周波数に等しくなるように調整することにより、送受信感度の低下を確実に抑制することができる。
また、本第1実施形態に係る超音波センサ10では、積層圧電素子16は複数の圧電素子が積層されて形成される。これにより、積層圧電素子16は、高い音圧の超音波を発振することができる。
また、本第1実施形態に係る超音波センサ10では、圧電素子14pは、チタン酸ジルコン酸鉛(PZT)系材料により形成されている。これにより、音圧が低い超音波の受信をすることができ、受信感度を向上させることができる。
また、本第1実施形態に係る超音波センサ10は、複数の受信素子12p〜12rを備え、各受信素子12p〜12rがアレイ状に配置される。これにより、各受信素子12p〜12rにて受信される超音波に基づいて被検出体までの距離や方位角が検出できるので、被検出体の位置の3次元検知を行うことができる。
[第2実施形態]
次に、本発明の第2実施形態に係る超音波センサについて図4および図5を参照して説明する。図4は、第2実施形態における回路素子20による周波数調整処理の流れを示すフローチャートである。図5は、圧電素子14pに伝達される超音波の周波数と当該圧電素子14pのインピーダンスZとの関係を示すグラフである。
本第2実施形態に係る超音波センサ10では、回路素子20における周波数調整処理を図2に示すフローチャートに代えて、図4に示すフローチャートに基づいて行う点が、上記第1実施形態に係る超音波センサと異なる。したがって、第1実施形態の超音波センサと実質的に同一の構成部分には、同一符号を付し、その説明を省略する。
以下、本第2実施形態における回路素子20における周波数調整処理を図4に示すフローチャートを用いて説明する。
まず、図4のステップS101にて、車速Vが検出可能速度Vo以下になりYesと判定されると、ステップS103aにて検出用電圧漸増印加処理がなされる。この処理では、検出用周波数foを漸増させるように調整された電圧が送信素子11の積層圧電素子16に印加される。この電圧印加に応じて積層圧電素子16が振動することにより、検出用周波数foが漸増する超音波が音響整合部材13を介して送信面13sから車両外部へ送信される。なお、この印加処理では、検出用周波数foを漸増させるように調整された電圧を積層圧電素子16に印加することに限らず、検出用周波数foを漸減させるように調整された電圧を積層圧電素子16に印加するようにしてもよい。
次に、ステップS105aにて、共振周波数探索処理がなされる。この処理では、ステップS103aにて送信された後に被検出体にて反射され音響整合部材13pを介して圧電素子14pに伝達された超音波の周波数と、この周波数に応じた圧電素子14pのインピーダンスZとに基づいて、送信素子11の音響整合部材13および各受信素子12p〜12rの音響整合部材13pの共振周波数fが探索される。
具体的には、図5に示すように、漸増する検出用周波数foの超音波が各受信素子12p〜12rに受信され、検出用周波数foの受信信号が圧電素子14pから出力される。このとき、検出用周波数foの変動に応じて電流値が変化することにより、圧電素子14pのインピーダンスZが変化する。音響整合部材13pの共振周波数fに等しい周波数の超音波が圧電素子14pに伝達されるとき、圧電素子14pの電流値が極大値となり、インピーダンスZが極小値となることが判っている。そこで、検出用周波数foを漸増させて、インピーダンスZが極小値を取るときの検出用周波数foを探索することにより、共振周波数fを検出することができる。このようにして回路素子20は、インピーダンス測定手段として機能し得る。なお、1つの圧電素子14pにおけるインピーダンスZの極小値に応じて共振周波数fを検出してもよいし、複数の圧電素子14pにおけるそれぞれのインピーダンスZの極小値に応じて共振周波数fを検出してもよい。
このように共振周波数fが検出されると、上記第1実施形態と同様にステップS107以降の処理がなされ、温度変化に応じて変化する共振周波数fに等しい周波数の電圧を積層圧電素子16に印加することにより、温度変化に関係なく送受信感度の低下を抑制することができる。
以上説明したように、本第2実施形態に係る超音波センサ10では、回路素子20により、送信素子11の積層圧電素子16に印加される電圧の検出用周波数foを変化させたとき、送信素子11から発振されて被検出体にて反射された超音波が伝達される圧電素子14pのインピーダンスZを測定する。そして、このインピーダンスZの極小値に対応する検出用周波数foを共振周波数fとして検出する。このように共振周波数fを検出して送信素子11から送信される超音波の周波数を共振周波数fに等しくすることにより、温度変化に関係なく送受信感度の低下を抑制することができる。
なお、積層圧電素子16に印加される電圧の周波数が変化するときの当該積層圧電素子16のインピーダンスを測定して、このインピーダンスの極小値に対応する周波数を共振周波数fとして検出してもよい。また、圧電素子14pに直接印加される電圧の周波数が変化するときの当該圧電素子14pのインピーダンスを測定して、このインピーダンスの極小値に対応する周波数を共振周波数fとして検出してもよい。
[第3実施形態]
次に、本発明の第3実施形態に係る超音波センサについて図6および図7を参照して説明する。図6は、第3実施形態における超音波センサ10の断面図である。図7は、第3実施形態における回路素子20による周波数調整処理の流れを示すフローチャートである。
本第3実施形態に係る超音波センサ10では、第1緩衝材19の誘電率を検出するための一対の電極41が新たに設けられるとともに、回路素子20における周波数調整処理を図2に示すフローチャートに代えて、図7に示すフローチャートに基づいて行う点が、上記第1実施形態に係る超音波センサと異なる。したがって、第1実施形態の超音波センサと実質的に同一の構成部分には、同一符号を付し、その説明を省略する。
図6に示すように、第1緩衝材19内には一対の電極41の一部が互いに離間した状態で埋設されている。両電極41は、ワイヤ41aを介して、回路素子20にそれぞれ電気的に接続されており、当該回路素子20は、両電極41間の静電容量から第1緩衝材19の誘電率を検出する機能を有する。
以下、本第3実施形態における回路素子20における周波数調整処理を図7に示すフローチャートを用いて説明する。
まず、図7のステップS101にて、車速Vが検出可能速度Vo以下になりYesと判定されると、ステップS103bにて周囲温度測定処理がなされる。この処理では、第1緩衝材19に埋設された両電極41間の静電容量から第1緩衝材19の誘電率を検出する。ポッティング材により構成される第1緩衝材19の誘電率は、周囲温度の上昇にともない所定の傾きで上昇するので、上記誘電率から周囲温度が求められる。なお、この周囲温度と、音響整合部材13および各音響整合部材13pの温度とは等しくなるものとする。
次に、ステップS105bにて、共振周波数演算処理がなされる。この処理では、周囲温度、すなわち、音響整合部材13pの温度から一義的に求められる音響整合部材13pのヤング率Eから、当該音響整合部材13pの共振周波数fを以下の式(4)に基づいて検出する。
=[E/{3×ρ(1−ν)}]1/2/4L ・・・(4)
ここで、ρおよびνは、音響整合部材13pの密度およびポアソン比である。
上記式(4)の根拠について説明すると、音響整合部材13pの厚さLと音響整合部材13p内の音の波長λとの間には、上述したようにL=λ/4の関係が成立する。また、音響整合部材13p内の音速をcとすると、λ=c/fの関係が成立するため、以下の式(5)が導き出される。
=c/4L ・・・(5)
また、上述した音速cと、ヤング率E、密度ρおよびポアソン比νとでは、以下の式(6)の関係が成立する。
c=[E/{3×ρ(1−ν)}]1/2 ・・・(6)
上記式(5)および式(6)の関係から上述した式(4)の関係が成立することが判る。
このように共振周波数fが検出されると、上記第1実施形態と同様にステップS107以降の処理がなされ、温度変化に応じて変化する共振周波数fに等しい周波数の電圧を積層圧電素子16に印加することにより、温度変化に関係なく送受信感度の低下を抑制することができる。
以上説明したように、本第3実施形態に係る超音波センサ10では、周囲温度から求められるヤング率Eから上記式(4)に基づいて共振周波数fを演算することができる。
特に、第1緩衝材19に埋設された両電極41間の誘電率に基づいて周囲温度を求めている。このように、温度センサ等の特別な部材を設けることなく当該第1緩衝材19に互いに離間した状態で埋設させた一対の電極を設けるだけよく、温度測定に関する製造コストの増大を抑制することができる。
なお、上述したように、第1緩衝材19の誘電率に基づいて周囲温度を測定することに限らず、例えば、温度センサを筐体31内に設けて周囲温度を測定するようにしてもよい。
[第4実施形態]
次に、本発明の第4実施形態に係る超音波センサについて図8を参照して説明する。図8は、第4実施形態における超音波センサ10の一部断面図である。なお、説明の便宜上、SAW素子50が設けられる圧電素子14pの部位のみ断面でない状態を示している。
本第4実施形態に係る超音波センサ10では、上述した一対の電極41に代えて、表面弾性波素子(以下、SAW素子50ともいう)を採用している点が、上記第3実施形態に係る超音波センサと異なる。したがって、第3実施形態の超音波センサと実質的に同一の構成部分には、同一符号を付し、その説明を省略する。
図8に示すように、SAW素子50は、櫛歯状の一対の電極である電極51および電極52を備え、両電極51、52が所定の距離離間するように圧電素子14pの表面に設けられている。両電極51、52は、図略のワイヤを介して、回路素子20にそれぞれ電気的に接続されている。
SAW素子50は、回路素子20からの制御信号に応じて、電極51から所定の周波数の表面弾性波を発生させ、圧電素子14pの表面を伝わる表面弾性波を電極52にて受信して所定の電気信号を出力する機能を有する。
以下、本第4実施形態における回路素子20における周波数調整処理を図7に示すフローチャートを用いて説明する。
まず、図7のステップS101にて、車速Vが検出可能速度Vo以下になりYesと判定されると、ステップS103bにて周囲温度測定処理がなされる。この処理では、上記第3実施形態と異なり、回路素子20からの制御信号に応じてSAW素子50における両電極51、52間にて送受信される表面弾性波の周波数変化に基づいて、周囲温度を測定する。
具体的には、周囲温度が上昇すると、圧電素子14pが伸張してSAW素子50の電極51と電極52との間隔が大きくなる。このため、電極51から送信された表面弾性波の波長に対して電極52にて受信された表面弾性波の波長が長くなり、送信時の表面弾性波に対して受信時の表面弾性波の周波数が低下する。すなわち、送信時の表面弾性波の周波数と受信時の表面弾性波の周波数との差から周囲温度を測定することができる。
このように周囲温度が測定されると、上記第3実施形態と同様にステップS105b以降の処理がなされ、温度変化に応じて変化する共振周波数fに等しい周波数の電圧を積層圧電素子16に印加することにより、温度変化に関係なく送受信感度の低下を抑制することができる。
以上説明したように、本第4実施形態に係る超音波センサ10では、SAW素子50が圧電素子14pの表面に設けられている。SAW素子50の両電極51、52間において送受信される表面弾性波の周波数変化に基づいて周囲温度が測定される。このように周囲温度を測定してもよい。
なお、SAW素子50を圧電素子14p以外の素子等の表面に設けて、SAW素子50において送受信される表面弾性波の周波数変化に基づいて周囲温度を測定してもよい。
なお、本発明は上記各実施形態に限定されるものではなく、以下のように具体化してもよく、その場合でも、上記各実施形態と同等の作用・効果が得られる。
(1)積層圧電素子16および各圧電素子14pは、チタン酸ジルコン酸鉛(PZT)により形成されることに限らず、例えば、ポリフッ化ビニリデン(PVDF)系材料により形成されてもよい。これにより、各音響整合部材13、13pとの音響インピーダンスの差が小さくなるので、超音波振動の減衰を小さくすることができる。また、ポリフッ化ビニリデン(PVDF)系材料は樹脂材料であるため、各音響整合部材13、13pのインサート成形が容易であり、好適に用いることができる。
(2)上記各実施形態では、振動減衰部材18により受信面13jおよび送信面13sが覆われているが、これに限定されるものではない。例えば、振動減衰部材18は、受信面13jおよび送信面13s近傍の側面において、各音響整合部材13、13pを固定し、受信面13jおよび送信面13sを外部に露出させる構成を採用することもできる。また、この構成において露出した受信面13jおよび送信面13sを塗料などの別部材により被覆してもよい。
(3)振動分離部材90は、筐体31と一体的に形成することもできる。これによれば、部品点数を低減することができるとともに、振動分離部材90の位置精度を向上させることができる。
(4)各音響整合部材13、13pの形状は、横断面が略正方形の四角柱状に限らず、例えば、円柱でもよい。これによれば、各音響整合部材13、13pの不要振動を抑制することができる。
(5)送信素子および受信素子の数および配置は、用途に応じて任意である。例えば、距離検知を行うなら、送信素子と受信素子を1個ずつ配置すればよい。また、角度検知を行うなら、送信素子1個と受信素子2個を配置すればよい。これにより、受信素子を配置した方向の角度検知を行うことができる。
第1実施形態の超音波センサの説明図である。図1(A)は、超音波センサを音響整合部材側から見た平面説明図であり、図1(B)は、図1(A)のA−A矢視断面図である。 第1実施形態における回路素子による周波数調整処理の流れを示すフローチャートである。 積層圧電素子に印加される電圧の周波数と残響周波数との関係を示す説明図である。 第2実施形態における回路素子による周波数調整処理の流れを示すフローチャートである。 圧電素子に伝達される超音波の周波数と当該圧電素子のインピーダンスとの関係を示すグラフである。 第3実施形態における超音波センサの断面図である。 第3実施形態における回路素子による周波数調整処理の流れを示すフローチャートである。 第4実施形態における超音波センサの一部断面図である。
符号の説明
10…超音波センサ
11…送信素子
12p、12q、12r…受信素子
13…音響整合部材(第1の音響整合部材)
13p…音響整合部材(第2の音響整合部材)
14p…圧電素子(第2の圧電素子)
16…積層圧電素子(第1の圧電素子)
20…回路素子(共振周波数検出手段、インピーダンス測定手段)
41…電極(第1の温度測定手段、第2の温度測定手段)
50…SAW素子(表面弾性波素子)
…共振周波数
E…ヤング率

Claims (14)

  1. 超音波を発振可能な第1の圧電素子とこの第1の圧電素子により発振された超音波を伝達可能な第1の音響整合部材とを有し被検出体に対して前記超音波の送信を行う送信素子と、
    前記被検出体にて反射された前記超音波を検出可能な第2の圧電素子とこの第2の圧電素子に前記被検出体にて反射された前記超音波を伝達可能な第2の音響整合部材とを有し前記被検出体にて反射された前記超音波の受信を行う受信素子と、
    前記第1の圧電素子に前記超音波を発振するための電圧を印加する回路素子と、
    前記第1の音響整合部材および前記第2の音響整合部材のいずれか一方の共振周波数を検出する共振周波数検出手段と、
    を備える超音波センサであって、
    前記回路素子は、前記第1の圧電素子に印加する電圧の周波数を前記共振周波数検出手段により検出される前記共振周波数に等しくするように調整することを特徴とする超音波センサ。
  2. 前記第1の音響整合部材および前記第2の音響整合部材は、両音響整合部材におけるヤング率の温度特性の変化が等しくなるように構成されることを特徴とする請求項1に記載の超音波センサ。
  3. 前記共振周波数検出手段は、前記送信素子から送信された短時間の超音波が前記被検出体にて反射され前記第2の圧電素子に伝達完了後に当該第2の圧電素子から出力される信号の周波数である残響周波数を前記共振周波数として検出することを特徴とする請求項1または2に記載の超音波センサ。
  4. 前記第1の圧電素子における電圧の周波数が変化するときの当該第1の圧電素子のインピーダンスと、前記第2の圧電素子における電圧の周波数が変化するときの当該第2の圧電素子のインピーダンスとのいずれか一方を測定するインピーダンス測定手段を備え、
    前記共振周波数検出手段は、前記インピーダンス測定手段により測定される前記インピーダンスの極小値に対応する前記周波数を前記共振周波数として検出することを特徴とする請求項1または2に記載の超音波センサ。
  5. 前記第1の音響整合部材の温度を測定する第1の温度測定手段を備え、
    前記共振周波数検出手段は、前記共振周波数(f)を、前記第1の温度測定手段により測定される前記第1の音響整合部材の温度から求められる当該第1の音響整合部材のヤング率をE、前記第1の音響整合部材の密度およびポアソン比をρおよびν、前記第1の音響整合部材における前記超音波の伝達方向の長さをLとしたとき、以下の式に基づいて検出することを特徴とする請求項1または2に記載の超音波センサ。
    =[E/{3×ρ(1−ν)}]1/2/4L
  6. 前記第1の音響整合部材を外力の負荷から保護するゲル状の緩衝材を備え、
    前記第1の温度測定手段は、前記緩衝材の誘電率に基づいて前記第1の音響整合部材の温度を測定することを特徴とする請求項5に記載の超音波センサ。
  7. 前記第1の圧電素子の表面に表面弾性波素子を設け、
    前記第1の温度測定手段は、前記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて前記第1の音響整合部材の温度を測定することを特徴とする請求項5に記載の超音波センサ。
  8. 前記第2の音響整合部材の温度を測定する第2の温度測定手段を備え、
    前記共振周波数検出手段は、前記共振周波数(f)を、前記第2の温度測定手段により測定される前記第2の音響整合部材の温度から求められる当該第2の音響整合部材のヤング率をE、前記第2の音響整合部材の密度およびポアソン比をρおよびν、前記第2の音響整合部材における前記超音波の伝達方向の長さをLとしたとき、以下の式に基づいて検出することを特徴とする請求項1または2に記載の超音波センサ。
    =[E/{3×ρ(1−ν)}]1/2/4L
  9. 前記第2の音響整合部材を外力の負荷から保護するゲル状の緩衝材を備え、
    前記第2の温度測定手段は、前記緩衝材の誘電率に基づいて前記第2の音響整合部材の温度を測定することを特徴とする請求項8に記載の超音波センサ。
  10. 前記第2の圧電素子の表面に表面弾性波素子を設け、
    前記第2の温度測定手段は、前記表面弾性波素子において送受信される表面弾性波の周波数変化に基づいて前記第2の音響整合部材の温度を測定することを特徴とする請求項8に記載の超音波センサ。
  11. 前記第1の圧電素子は複数の圧電素子が積層されて形成されることを特徴とする請求項1〜10のいずれか一項に記載の超音波センサ。
  12. 前記第2の圧電素子は、チタン酸ジルコン酸鉛(PZT)系材料により形成されていることを特徴とする請求項1〜11のいずれか一項に記載の超音波センサ。
  13. 前記第1の圧電素子および前記第2の圧電素子は、ポリフッ化ビニリデン(PVDF)系材料により形成されていることを特徴とする請求項1〜11のいずれか一項に記載の超音波センサ。
  14. 前記受信素子を複数備え、これら複数の前記受信素子がアレイ状に配置されることを特徴とする請求項1〜13のいずれか一項に記載の超音波センサ。
JP2008111507A 2008-04-18 2008-04-22 超音波センサ Active JP4494493B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008111507A JP4494493B2 (ja) 2008-04-22 2008-04-22 超音波センサ
DE102009017507A DE102009017507B4 (de) 2008-04-18 2009-04-15 Ultraschallsensor
DE102009061087A DE102009061087B3 (de) 2008-04-18 2009-04-15 Ultraschallsensor
US12/385,714 US8166824B2 (en) 2008-04-18 2009-04-16 Ultrasonic sensor
US13/425,460 US8616061B2 (en) 2008-04-18 2012-03-21 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111507A JP4494493B2 (ja) 2008-04-22 2008-04-22 超音波センサ

Publications (2)

Publication Number Publication Date
JP2009267510A true JP2009267510A (ja) 2009-11-12
JP4494493B2 JP4494493B2 (ja) 2010-06-30

Family

ID=41392853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111507A Active JP4494493B2 (ja) 2008-04-18 2008-04-22 超音波センサ

Country Status (1)

Country Link
JP (1) JP4494493B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018579A1 (ja) * 2011-08-03 2013-02-07 株式会社村田製作所 超音波トランスデューサ
GB2505570B (en) * 2012-08-31 2018-07-18 Bosch Gmbh Robert Increasing the robustness of ultrasound systems
US10172591B2 (en) 2013-10-11 2019-01-08 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, ultrasonic diagnostic apparatus, and method of manufacturing ultrasonic device
US10852404B2 (en) 2015-01-08 2020-12-01 Rohm Co., Ltd. Ultrasonic sensor, and method for controlling a burst signal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110194B2 (ja) * 1979-07-06 1986-03-28 Taga Denki Kk
JPS6215476A (ja) * 1985-07-15 1987-01-23 Matsushita Electric Ind Co Ltd 超音波センサ
JPS63304185A (ja) * 1987-06-04 1988-12-12 Olympus Optical Co Ltd 超音波発振回路
JPH02202799A (ja) * 1989-02-01 1990-08-10 Alpine Electron Inc 超音波発生装置
JPH03172096A (ja) * 1989-11-30 1991-07-25 Nippon Dempa Kogyo Co Ltd 超音波探触子の製造方法
JPH0454800A (ja) * 1990-06-22 1992-02-21 Omron Corp 超音波センサ
JP2007183185A (ja) * 2006-01-06 2007-07-19 Denso Corp 超音波センサ
JP2008092444A (ja) * 2006-10-04 2008-04-17 Denso Corp 超音波センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111110A (ja) * 1983-11-21 1985-06-17 Matsushita Electric Ind Co Ltd 角速度センサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110194B2 (ja) * 1979-07-06 1986-03-28 Taga Denki Kk
JPS6215476A (ja) * 1985-07-15 1987-01-23 Matsushita Electric Ind Co Ltd 超音波センサ
JPS63304185A (ja) * 1987-06-04 1988-12-12 Olympus Optical Co Ltd 超音波発振回路
JPH02202799A (ja) * 1989-02-01 1990-08-10 Alpine Electron Inc 超音波発生装置
JPH03172096A (ja) * 1989-11-30 1991-07-25 Nippon Dempa Kogyo Co Ltd 超音波探触子の製造方法
JPH0454800A (ja) * 1990-06-22 1992-02-21 Omron Corp 超音波センサ
JP2007183185A (ja) * 2006-01-06 2007-07-19 Denso Corp 超音波センサ
JP2008092444A (ja) * 2006-10-04 2008-04-17 Denso Corp 超音波センサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018579A1 (ja) * 2011-08-03 2013-02-07 株式会社村田製作所 超音波トランスデューサ
US9662680B2 (en) 2011-08-03 2017-05-30 Murata Manufacturing Co., Ltd. Ultrasonic transducer
GB2505570B (en) * 2012-08-31 2018-07-18 Bosch Gmbh Robert Increasing the robustness of ultrasound systems
US10172591B2 (en) 2013-10-11 2019-01-08 Seiko Epson Corporation Ultrasonic device, ultrasonic probe, ultrasonic diagnostic apparatus, and method of manufacturing ultrasonic device
US10852404B2 (en) 2015-01-08 2020-12-01 Rohm Co., Ltd. Ultrasonic sensor, and method for controlling a burst signal

Also Published As

Publication number Publication date
JP4494493B2 (ja) 2010-06-30

Similar Documents

Publication Publication Date Title
US8164982B2 (en) Ultrasonic sensor with piezoelectric elements and acoustic matching members
US8616061B2 (en) Ultrasonic sensor
US8098000B2 (en) Ultrasonic sensor
US8760971B2 (en) Method for controlling an ultrasonic sensor and ultrasonic sensor
JP4468262B2 (ja) 障害物検知装置
JP4301298B2 (ja) 超音波センサ及び超音波センサの製造方法
US9440258B2 (en) Thin film ultrasound transducer
US20070144261A1 (en) Ultrasonic sensor
JP4618165B2 (ja) 超音波センサ
JP5573455B2 (ja) 超音波装置
JP2008096113A (ja) 障害物検出装置
JP4544285B2 (ja) 超音波センサ
JP2009058362A (ja) 超音波送信方法及び超音波送信装置
JP4494493B2 (ja) 超音波センサ
US11506772B2 (en) Ultrasonic device and ultrasonic measuring apparatus
JP4557040B2 (ja) 超音波センサ
JP5411072B2 (ja) 超音波センサ
JP5273097B2 (ja) 超音波センサ
US20220191623A1 (en) Ultrasonic sensor
JP5201087B2 (ja) 送受信装置およびこれを用いた超音波センサ
US20190129018A1 (en) Ultrasonic Device And Ultrasonic Measuring Apparatus
JP6162451B2 (ja) 超音波センサ
JP2023065084A (ja) 超音波センサー
JP2006229649A (ja) 空中マイクロホン圧電振動子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250