JP2009242925A - Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME - Google Patents

Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME Download PDF

Info

Publication number
JP2009242925A
JP2009242925A JP2008093860A JP2008093860A JP2009242925A JP 2009242925 A JP2009242925 A JP 2009242925A JP 2008093860 A JP2008093860 A JP 2008093860A JP 2008093860 A JP2008093860 A JP 2008093860A JP 2009242925 A JP2009242925 A JP 2009242925A
Authority
JP
Japan
Prior art keywords
plating
copper
carbon particles
protrusions
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008093860A
Other languages
Japanese (ja)
Inventor
Koichiro Tanaka
幸一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Eneos Corp
Original Assignee
Nippon Mining and Metals Co Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd, Nippon Mining Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2008093860A priority Critical patent/JP2009242925A/en
Publication of JP2009242925A publication Critical patent/JP2009242925A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Sn-plating material having a Sn-plating film containing carbon particles in which a fitting work can be performed with low inserting force and which causes less powder fall of the carbon particles during press work. <P>SOLUTION: The copper or a copper alloy subjected to the Sn-plating has a plurality of protrusions formed by condensation of the carbon particles on its surface. The average value of an aspect ratio of the protrusions when viewed from the cross section is 0.2-0.6. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子部品、特にコネクタや端子等の導電性ばね材として好適なSnめっき材に関する。また、本発明はそのようなSnめっき材の製造方法に関する。   The present invention relates to an Sn plating material that is suitable as a conductive spring material for electronic components, particularly connectors and terminals. Moreover, this invention relates to the manufacturing method of such Sn plating material.

近年、電子・電気部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでいる。Snめっき材は、導電性、耐食性及び半田付け性に優れており、コネクタ用の部材として重宝されているが、その軟らかさからコネクタの接点においてオスとメスを凝着させるガスタイト(気密)構造が採られるため、金めっき等で構成されるコネクタに比べ、1極当たりのコネクタの挿入力が高い。このためコネクタの多極化によるコネクタ挿入力の増大が問題となっている。現在、コネクタを嵌合させる作業はほとんど人力で行われおり、コネクタの挿入力が大きくなると、組み立てラインで作業者に負担がかかり、作業効率が低下する。このことから、Snめっき材の挿入力の低減が強く望まれている。   In recent years, with the increase in the number of circuits of electronic / electrical components, the number of connectors for supplying electric signals to the circuits has been increasing. Sn plating material is excellent in electrical conductivity, corrosion resistance and solderability, and it is useful as a member for connectors, but because of its softness, it has a gas tight (airtight) structure that adheres males and females at connector contacts. Therefore, the insertion force of the connector per pole is higher than that of a connector constituted by gold plating or the like. For this reason, an increase in connector insertion force due to the increase in the number of connectors is a problem. At present, the work of fitting the connector is almost done manually, and when the insertion force of the connector is increased, a burden is placed on the worker on the assembly line, and the work efficiency is lowered. For this reason, reduction of the insertion force of Sn plating material is strongly desired.

この問題を解決するため、Snめっき層中に炭素を含むことにより挿入力を低下させる技術が知られている。   In order to solve this problem, a technique for reducing the insertion force by including carbon in the Sn plating layer is known.

特許第2971035号公報(特許文献1)には錫又は錫合金めっき皮膜中のC量及びめっき厚さを制御することによって、低摩擦係数で端子の挿入力が小さくて済む錫又は錫合金めっき銅合金を得ることができることが記載されている。めっき皮膜中のCはめっき浴中の光沢剤の種類及び量、電解条件(特に電流密度)等を適宜コントロールすることでコントロール可能であるとされている。   Japanese Patent No. 2997135 (Patent Document 1) discloses a tin or tin alloy-plated copper that requires a low friction coefficient and a small terminal insertion force by controlling the amount of C and the plating thickness in the tin or tin alloy plating film. It is described that alloys can be obtained. C in the plating film is said to be controllable by appropriately controlling the type and amount of brightener in the plating bath, electrolysis conditions (particularly current density), and the like.

特開2006−265642号公報(特許文献2)には、炭素粒子および芳香族カルボニル化合物を添加した錫めっき液を使用して電気めっきを行うことにより、錫層中に炭素粒子を含有する複合材からなる皮膜を素材上に形成し、摩擦係数が極めて低い錫めっき材を製造することができることが記載されている。そして、錫めっき液に芳香族カルボニル化合物を添加することによって、めっき皮膜の表面には、互いに離間した複数の炭素粒子を含有する島状の突起部が形成されるとされている。実施例では、平均粒径3.4μm又は5μmの鱗片状グラファイト粒子20g/Lとベンズアルデヒド30mL/Lを錫めっき液に添加したことが記載されている。   JP 2006-265642 A (Patent Document 2) discloses a composite material containing carbon particles in a tin layer by performing electroplating using a tin plating solution to which carbon particles and an aromatic carbonyl compound are added. It is described that a tin-plated material having a very low friction coefficient can be produced by forming a film made of And it is supposed that by adding an aromatic carbonyl compound to the tin plating solution, island-shaped protrusions containing a plurality of carbon particles spaced apart from each other are formed on the surface of the plating film. In the Examples, it is described that 20 g / L of scaly graphite particles having an average particle diameter of 3.4 μm or 5 μm and benzaldehyde 30 mL / L were added to the tin plating solution.

更に、特開2007−2285号公報(特許文献3)には、炭素粒子および芳香族カルボニル化合物を添加した錫めっき液を使用して電気めっきを行う際、錫めっき液中の炭素粒子の濃度を20g/L未満、好ましくは1〜10g/L、さらに好ましくは5〜10g/Lにすることにより、錫層中に炭素粒子が分散した複合材からなる皮膜を素材上に形成し、インデント加工した場合でも、錫リフロー材などの他の種類の錫めっき材との間の摩擦係数が極めて低い錫めっき材を製造することができることが記載されている。実施例では、平均粒径3.4μmの鱗片状グラファイト粒子20g/L又は10g/Lとベンズアルデヒド30mL/Lを錫めっき液に添加したことが記載されている。
特許第2971035号公報 特開2006−265642号公報 特開2007−2285号公報
Furthermore, JP 2007-2285 A (Patent Document 3) describes the concentration of carbon particles in a tin plating solution when electroplating is performed using a tin plating solution to which carbon particles and an aromatic carbonyl compound are added. A film made of a composite material in which carbon particles are dispersed in a tin layer was formed on the material by indenting by making it less than 20 g / L, preferably 1 to 10 g / L, more preferably 5 to 10 g / L. Even in this case, it is described that a tin plating material having a very low coefficient of friction with other types of tin plating materials such as a tin reflow material can be manufactured. In Examples, it is described that 20 g / L or 10 g / L of flaky graphite particles having an average particle size of 3.4 μm and 30 mL / L of benzaldehyde were added to a tin plating solution.
Japanese Patent No. 2971035 JP 2006-265642 A JP 2007-2285 A

しかしながら、特許文献1のように光沢剤のコントロール等によってC含有量を調節する方法では挿入力の低下が十分にとはいえない。また、特許文献2や3のように錫層中に炭素粒子が分散した複合材からなる皮膜を素材上に形成する手法は有効であるが、Snめっき皮膜上に形成された突起が鋭くなるため、例えば端子に加工され、端子として嵌合される時に突起が崩壊して、炭素粒子の粉落ちが発生しやすいことが分かった。   However, the method of adjusting the C content by controlling the brightener as in Patent Document 1 does not sufficiently reduce the insertion force. Moreover, although the method of forming the film | membrane which consists of a composite material with which the carbon particle was disperse | distributed in a tin layer like patent document 2 and 3 on a raw material is effective, since the protrusion formed on Sn plating film | membrane becomes sharp. For example, it has been found that when processed into a terminal and fitted as a terminal, the protrusion collapses and carbon particles are likely to fall off.

そこで、本発明は炭素粒子を含有するSnめっき皮膜を備えた銅又は銅合金において、嵌合作業を低挿入力で行うことができると共に炭素粒子の粉落ちが少ない銅又は銅合金を提供することを課題の一つとする。また、本発明はそのような銅又は銅合金の製造方法を提供することを別の課題の一つとする。   Therefore, the present invention provides a copper or copper alloy having a Sn plating film containing carbon particles, and capable of performing a fitting operation with a low insertion force and having less powdered carbon particles. Is one of the issues. Another object of the present invention is to provide a method for producing such copper or copper alloy.

本発明者は上記課題を解決するために鋭意検討を重ねたところ、Snめっき皮膜表面に炭素粒子が凝集してできる突起物の形状を適正化することが有効であることを見いだした。具体的には各突起物のアスペクト比、すなわち突起物の幅に対する突起物の高さの比を平均で0.2〜0.6に調節することが有効である。アスペクト比は、特に突起物を形成する炭素粒子の粒径を調節することで制御可能である。更に、突起物の大きさやSnめっき表面における炭素(C)の面積率等を調節することで、挿抜性、半田付け性及び粉落ち特性のバランスに優れたSnめっき材が得られる。   The present inventor conducted extensive studies to solve the above problems, and found that it is effective to optimize the shape of the protrusion formed by the aggregation of carbon particles on the surface of the Sn plating film. Specifically, it is effective to adjust the aspect ratio of each protrusion, that is, the ratio of the height of the protrusion to the width of the protrusion to 0.2 to 0.6 on average. In particular, the aspect ratio can be controlled by adjusting the particle size of the carbon particles forming the protrusions. Furthermore, by adjusting the size of the protrusions, the area ratio of carbon (C) on the surface of the Sn plating, etc., an Sn plating material excellent in the balance of insertion / removability, solderability, and powder falling characteristics can be obtained.

かかる知見を基礎として完成した本発明は一側面において、Snめっきが施された銅又は銅合金であって、該Snめっきはその表面に炭素粒子が凝集してできた突起物を複数有し、該突起物は断面から観察したときのアスペクト比の平均が0.2〜0.6である銅又は銅合金である。   The present invention completed on the basis of such knowledge is, in one aspect, copper or copper alloy plated with Sn, and the Sn plating has a plurality of protrusions formed by agglomerating carbon particles on the surface thereof, The protrusion is copper or a copper alloy having an average aspect ratio of 0.2 to 0.6 when observed from a cross section.

本発明に係る銅又は銅合金の更に別の一実施態様においては、Snめっき断面から観察したとき、前記突起物の平均粒径が1〜10μmである。   In still another embodiment of the copper or copper alloy according to the present invention, the average particle diameter of the protrusions is 1 to 10 μm when observed from the Sn plating cross section.

本発明に係る銅又は銅合金の更に別の一実施態様においては、Snめっき表面から観察したとき、Cの占める面積が10〜50%である。   In still another embodiment of the copper or copper alloy according to the present invention, the area occupied by C is 10 to 50% when observed from the Sn plating surface.

本発明に係る銅又は銅合金の更に別の一実施態様においては、表面粗さが1〜6μmである。   In still another embodiment of the copper or copper alloy according to the present invention, the surface roughness is 1 to 6 μm.

本発明は別の一側面において、請求項1〜8何れか一項に記載の銅又は銅合金を備えた電子部品である。   In another aspect, the present invention is an electronic component comprising the copper or copper alloy according to any one of claims 1 to 8.

本発明は更に別の一側面において、平均粒径が0.05〜1.0μmである炭素粒子を0.1〜5g/Lと、1種又は2種以上のアルデヒド化合物を合計で0.1〜10g/L添加したSnめっき浴を用いて銅又は銅合金に電気めっきすることを含む銅又は銅合金を製造するための方法である。   In still another aspect of the present invention, 0.1 to 5 g / L of carbon particles having an average particle diameter of 0.05 to 1.0 μm and 0.1 or more of one or more aldehyde compounds in total are 0.1. It is the method for manufacturing copper or a copper alloy including electroplating to copper or a copper alloy using Sn plating bath which added 10g / L.

本発明によれば、挿抜性に優れ、粉落ちが少ないSnめっき材を得ることが可能になる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain Sn plating material which is excellent in insertion / extraction property and has few powder fall-off.

1.銅又は銅合金
めっき母材として使用する銅又は銅合金は、コネクタや端子等の電子部品に使われる母材として公知である任意の銅又は銅合金としてよいが、電気・電子機器の接続端子等に用いられることを考慮すれば、電気伝導率の高いもの(例えば、IACS(International Anneild Copper Standerd:国際標準軟銅の導電率を100としたときの値)が15〜80%程度)を用いるのが好ましく、例えばCu−Sn−P系(例えば燐青銅)、Cu−Zn系(例えば黄銅、丹銅)、Cu−Ni−Zn系(例えば洋白)、Cu−Ni−Si系(コルソン合金)、Cu−Fe−P系合金などが挙げられる。また、母材の形状には特に制限はないが、一般には板、条、プレス品などの形態として提供され、前めっき及び後めっきの何れでも構わない。
1. Copper or copper alloy used as a copper or copper alloy plating base material may be any copper or copper alloy known as a base material used for electronic parts such as connectors and terminals, but connection terminals of electrical and electronic equipment, etc. In view of the fact that it is used in the above, a material having a high electrical conductivity (for example, IACS (International Anneal Copper Standard: a value obtained when the conductivity of an international standard annealed copper is set to 100) is about 15 to 80%) is used. Preferably, for example, Cu-Sn-P system (for example, phosphor bronze), Cu-Zn system (for example, brass, brass), Cu-Ni-Zn system (for example, white), Cu-Ni-Si system (Corson alloy), Cu-Fe-P based alloys and the like can be mentioned. The shape of the base material is not particularly limited, but is generally provided in the form of a plate, a strip, a pressed product, and any of pre-plating and post-plating may be used.

また、銅又は銅合金としては、各種下地めっきを施したものも使用することができ、例えば、限定的ではないが、Cu下地めっき、Ni下地めっき、Ni−Cu合金下地めっき、Cu−Zn合金下地めっき、Ni及びCuを順に積層した下地めっきを施した銅又は銅合金を使用することができる。これらの下地めっきは耐熱性の確保のほか、母材やめっき成分の拡散を防止して導電率、挿抜性、半田付け性を向上させために適宜施される。下地めっきの方法は当業者に知られた何れの方法を用いてもよい。   Moreover, as copper or copper alloy, what gave various foundation plating can also be used, for example, although it is not limited, Cu foundation plating, Ni foundation plating, Ni-Cu alloy foundation plating, Cu-Zn alloy It is possible to use copper or copper alloy that has been subjected to base plating and base plating in which Ni and Cu are sequentially laminated. In addition to ensuring heat resistance, these base platings are appropriately applied to prevent diffusion of the base material and plating components and improve conductivity, insertion / removability, and solderability. Any method known to those skilled in the art may be used for the base plating method.

2.Snめっき
本発明に係る銅又は銅合金はSnめっきされる。本発明においては、銅又は銅合金に施されるSnめっき皮膜の表面には炭素粒子が凝集してできた突起物が複数存在する。本発明では突起物のアスペクト比を規定する。アスペクト比とは突起物の幅に対する突起物の高さの比であり、突起物の高さは、(頂点から母材までの高さ)−(平均めっき膜厚)として、突起物の幅は突起高さの1/2だけ頂点から下がったところで水平線をひいたときのめっき面との交点間の距離として測定される値である。アスペクト比が低すぎる、すなわち突起が平坦だと挿入力が十分に低下しない。逆に、アスペクト比が高すぎる、すなわち突起が鋭くなると端子嵌合時に突起が崩壊して、炭素粒子の粉落ちが発生しやすい。そこで、本発明では該突起物の断面から観察したときのアスペクト比の平均を0.2〜0.6とした。アスペクト比の平均は好ましくは0.3〜0.5であり、より好ましくは0.4〜0.45である。
2. Sn plating The copper or copper alloy according to the present invention is Sn plated. In the present invention, there are a plurality of protrusions formed by agglomeration of carbon particles on the surface of the Sn plating film applied to copper or a copper alloy. In the present invention, the aspect ratio of the protrusion is defined. The aspect ratio is the ratio of the height of the protrusion to the width of the protrusion. The height of the protrusion is (height from the top to the base material)-(average plating film thickness). It is a value measured as the distance between the intersections with the plating surface when a horizontal line is drawn when it falls from the apex by 1/2 of the protrusion height. If the aspect ratio is too low, that is, if the protrusion is flat, the insertion force is not sufficiently reduced. On the contrary, if the aspect ratio is too high, that is, the protrusion becomes sharp, the protrusion collapses when the terminal is fitted, and carbon particles are likely to fall off. Therefore, in the present invention, the average aspect ratio when observed from the cross section of the protrusion is set to 0.2 to 0.6. The average aspect ratio is preferably 0.3 to 0.5, more preferably 0.4 to 0.45.

突起物を構成する炭素粒子は粒径が大きくなると前記アスペクト比が大きくなり、粒径が小さくなるとアスペクト比が小さくなる傾向にある。そこで、本発明で規定するアスペクト比を達成するには、使用する炭素粒子の平均粒径を0.03〜1.0μmとするのが好ましく、0.03〜0.5μmとするのがより好ましく、0.05〜0.1μmとするのが更により好ましい。   The carbon particles constituting the protrusions tend to have a large aspect ratio when the particle size is large, and the aspect ratio tends to be small when the particle size is small. Therefore, in order to achieve the aspect ratio specified in the present invention, the average particle size of the carbon particles used is preferably 0.03 to 1.0 μm, more preferably 0.03 to 0.5 μm. 0.05 to 0.1 μm is even more preferable.

Snめっき皮膜の表面に存在する突起物はその数が多いほど挿抜性が良好になる。具体的には、Snめっき表面から観察したとき、前記突起物が50μm×50μmの視野中に10個以上分布しているのが好ましい。一方、突起物はその数が多くなると半田付け性が悪影響を受ける傾向にある。そこで、挿抜性と半田付け性の両立を図る上では、前記突起物が50μm×50μmの視野中に10〜100個分布しているのがより好ましく、10〜50個分布しているのが更により好ましい。
ここで、突起物とは表面からSEMにて500倍で観察し、突起と確認できるものの内、AESによる炭素のマッピングで炭素が検出できる突起とした。さらに、Snめっき表面からのSEM観察は、めっき表面が平滑でないことから焦点が合わせづらく、正確にカウントしづらいことが予想される。そこで、同一視野において、突起物が観察できる範囲で任意に5回焦点をずらして観察した結果、1回以上前記突起物が10〜100個の範囲にあれば、本発明の範囲内であると考えることができる。
The greater the number of protrusions present on the surface of the Sn plating film, the better the insertion / extraction properties. Specifically, when observed from the Sn plating surface, it is preferable that 10 or more of the protrusions are distributed in a 50 μm × 50 μm visual field. On the other hand, as the number of protrusions increases, the solderability tends to be adversely affected. Therefore, in order to achieve both insertion / removability and solderability, it is more preferable that 10 to 100 protrusions are distributed in a 50 μm × 50 μm visual field, and that 10 to 50 are further distributed. Is more preferable.
Here, the protrusions were observed from the surface with a SEM at a magnification of 500 times and were protrusions that could be detected by carbon mapping by AES among those that could be confirmed as protrusions. Furthermore, it is expected that the SEM observation from the Sn plating surface is difficult to focus because the plating surface is not smooth, and it is difficult to count accurately. Therefore, in the same visual field, as a result of observing by shifting the focus arbitrarily 5 times within the range where the projection can be observed, if the projection is in the range of 10 to 100 times or more, it is within the scope of the present invention. Can think.

突起物の平均粒径も、Snめっき皮膜の特性に影響を与える。突起物の平均粒径が小さくなると、挿抜性が低下する傾向にある。一方、粗大な突起となると、半田付け性に悪影響を与えやすい。そこで、挿抜性と半田付け性との両立を図る観点からは、Snめっき断面から観察したとき、前記突起物の平均粒径を1〜10μmとするのが好ましく、2〜8μmとするのがより好ましく、3〜6μmとするのが更により好ましい。また、前記突起物の高さは、5μm以下であることが好ましい。平均高さは1.0μmとするのが好ましく、1.5μmとするのがより好ましい、2.0μmとするのが更により好ましい。
突起物の粒径は、突起高さの1/2だけ頂点から下がったところで水平線をひいたときのめっき面との交点間の距離とし、その平均値を平均粒径とする。
突起物の平均粒径及び高さは断面観察像から実測することができる。
The average particle size of the protrusions also affects the properties of the Sn plating film. When the average particle size of the protrusions becomes small, the insertion / extraction property tends to decrease. On the other hand, if it becomes a coarse protrusion, it tends to adversely affect solderability. Therefore, from the viewpoint of achieving both insertability and solderability, the average particle diameter of the protrusions is preferably 1 to 10 μm, more preferably 2 to 8 μm when observed from the Sn plating cross section. Preferably, it is still more preferable to set it as 3-6 micrometers. The height of the protrusion is preferably 5 μm or less. The average height is preferably 1.0 μm, more preferably 1.5 μm, and even more preferably 2.0 μm.
The particle diameter of the protrusions is the distance between the intersection points with the plating surface when a horizontal line is drawn when it falls from the apex by 1/2 of the protrusion height, and the average value is the average particle diameter.
The average particle diameter and height of the protrusions can be actually measured from the cross-sectional observation image.

挿抜性をより効果的に向上させるには炭素粒子の凝集度合いも重要であり、突起物中のC凝集体の大きさを一定程度の大きさとする必要がある。ただし、突起物中のC凝集体の大きすぎるとSnめっきとの一体性が失われ、粉落ちの原因となったり半田付け性及び導電性を悪化させたりする場合がある。そこで、突起物を断面から観察したときに、突起物の幅に対するC凝集体の幅の割合を20〜120%以上とするのが好ましく、30〜100%とするのがより好ましく、50〜80%とするのが更により好ましい。
突起物中のC凝集体の幅はFIB加工により突起物断面を露出させ,EPMAにより断面をマッピングすることにより観察することができる。
The degree of aggregation of the carbon particles is also important for improving the insertion / extraction more effectively, and the size of the C aggregates in the protrusions needs to be a certain size. However, if the C aggregates in the protrusions are too large, the integrity with the Sn plating is lost, which may cause powder falling or deteriorate solderability and conductivity. Therefore, when the projection is observed from the cross section, the ratio of the width of the C aggregate to the width of the projection is preferably 20 to 120% or more, more preferably 30 to 100%, and more preferably 50 to 80%. % Is even more preferable.
The width of the C aggregates in the protrusion can be observed by exposing the cross section of the protrusion by FIB processing and mapping the cross section by EPMA.

Snめっき表面に占めるCの量も挿抜性や半田付け性に影響を与える。Snめっき表面上に存在するCの量が多くなると、挿抜性は向上するが、半田付け性には悪影響を与えやすい。本発明においては、抜性と半田付け性との両立を図る観点からは、Snめっき表面から観察したとき、Cの占める面積を10〜50%とするのが好ましく、20〜40%とするのがより好ましく、25〜35%とするのが更により好ましい。但し、本発明では突起物のアスペクト比を適正化しているため、Cの量が少なくても優れた挿抜性を得ることができ、半田付け性との両立を図ることが可能となる。   The amount of C occupying the Sn plating surface also affects the insertability and solderability. When the amount of C present on the Sn plating surface is increased, the insertion / extraction property is improved, but the solderability is liable to be adversely affected. In the present invention, from the viewpoint of achieving both removability and solderability, the area occupied by C, when observed from the Sn plating surface, is preferably 10 to 50%, and 20 to 40%. Is more preferably 25 to 35%. However, since the aspect ratio of the protrusions is optimized in the present invention, excellent insertion / removability can be obtained even if the amount of C is small, and compatibility with solderability can be achieved.

上記のような突起物を表面に有する本発明に係る銅又は銅合金の表面粗さRzを測定すると、一般に1〜6μm、典型的には2〜5μm、より典型的には3〜4μmである。   When the surface roughness Rz of the copper or copper alloy according to the present invention having protrusions as described above is measured, it is generally 1 to 6 μm, typically 2 to 5 μm, more typically 3 to 4 μm. .

コネクタの挿入力はSnめっき厚さにも依存し、めっきが薄いほど挿入力は低くなる。一方、Snめっきが薄くなると半田付け性等が悪くなる。従って、Snめっき厚さは目標とする特性に合わせて調節すればよいが、一般にはSnめっきの平均厚みは0.3〜3.0μmであり、挿抜性を重視するならば0.3〜1.5μmとすればよく、半田付け性を重視するならば1.5〜3.0μmとすればよい。Snめっき厚みは、突起物の形成されていない箇所の断面をSEM観察することにより実測することができる。   The insertion force of the connector also depends on the Sn plating thickness, and the thinner the plating, the lower the insertion force. On the other hand, when Sn plating becomes thin, solderability etc. will worsen. Therefore, the Sn plating thickness may be adjusted in accordance with the target characteristics. However, in general, the average thickness of the Sn plating is 0.3 to 3.0 μm. If it is important to solderability, it may be 1.5 to 3.0 μm. The Sn plating thickness can be measured by observing a cross section of a portion where no protrusion is formed by SEM.

本発明において、Snめっきとは、Snめっきのみならず、添加元素としてAg、Bi、In、Pb、Cuなどを微量添加したSn合金めっき、例えばこれらの1種又は2種以上を合計で5〜1000ppm程度添加したSn合金めっきも含まれる。Sn合金めっきとすることでウィスカーの発生を抑制することができる。   In the present invention, Sn plating is not only Sn plating but also Sn alloy plating in which a small amount of Ag, Bi, In, Pb, Cu or the like is added as an additive element, for example, one or two or more of these in total 5 to 5 Sn alloy plating added about 1000 ppm is also included. By using Sn alloy plating, the generation of whiskers can be suppressed.

本発明に係る銅又は銅合金は各種の電子部品の材料として利用することができ、特に端子、コネクタといった挿抜性の要求される導電性ばね材として好適に利用することができる。   The copper or copper alloy according to the present invention can be used as a material for various electronic components, and can be suitably used particularly as a conductive spring material that requires insertion / extraction such as terminals and connectors.

3.製造方法
本発明に係る銅又は銅合金を製造するための基本的な方法は、炭素粒子を添加したSnめっき浴を用いて銅又は銅合金に電気めっきすることである。
3. Production Method A basic method for producing copper or a copper alloy according to the present invention is to electroplate copper or a copper alloy using a Sn plating bath to which carbon particles are added.

Snめっき浴は、それ自体公知のものを使用することができるが、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴及びアルカノールスルホン酸浴)、硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等の酸性浴、或いはカリウム浴やナトリウム浴等のアルカリ浴を用いて電気めっきすることができる。めっきの厚みは電流密度、電着時間、浴組成等を調節することで変化させることができる。   As the Sn plating bath, those known per se can be used. For example, an organic acid bath (for example, a phenol sulfonic acid bath, an alkane sulfonic acid bath and an alkanol sulfonic acid bath), a borofluoric acid bath, a halogen bath, a sulfuric acid bath. Electroplating can be performed using an acidic bath such as a pyrophosphoric acid bath or an alkaline bath such as a potassium bath or a sodium bath. The plating thickness can be changed by adjusting the current density, electrodeposition time, bath composition, and the like.

アスペクト比は主としてSnめっき浴に添加する炭素粒子の粒径によって調節することができ、炭素粒子の粒径を小さくすればアスペクト比が小さくなり、大きくすればアスペクト比が大きくなる傾向にある。本発明で規定するアスペクト比をもつ突起物を得るには炭素粒子の平均粒径を0.03〜1.0μm、好ましくは0.05〜0.1μmとするのが有利である。炭素粒子の形態は球形でも鱗片状でもよいが、コストの観点から鱗片状とするのが好ましい。また、添加する炭素粒子の粒径が比較的小さいことから、めっき浴中で沈殿しにくく、排液管の詰まりを防止する効果もある。   The aspect ratio can be adjusted mainly by the particle size of the carbon particles added to the Sn plating bath, and the aspect ratio tends to decrease if the particle size of the carbon particles is reduced, and the aspect ratio tends to increase if the particle size is increased. In order to obtain a projection having an aspect ratio defined in the present invention, it is advantageous that the average particle diameter of carbon particles is 0.03 to 1.0 μm, preferably 0.05 to 0.1 μm. The form of the carbon particles may be spherical or scaly, but is preferably scaly from the viewpoint of cost. Moreover, since the particle diameter of the carbon particles to be added is relatively small, it is difficult to precipitate in the plating bath, and there is an effect of preventing clogging of the drain pipe.

また、アスペクト比は炭素粒子の凝集度合いにも影響を受けることから炭素粒子の凝集度合いを制御することが望ましい。凝集度合いが高くなると、突起物が粗大となってアスペクト比が高くなる傾向にある。逆に、凝集度合いが低くなりすぎると、突起物が微細となってアスペクト比が低くなる傾向にある。また、凝集度合いは突起物の平均粒径にも影響を与える。炭素粒子の凝集度合いは、めっき浴中に添加する凝集剤の種類及び添加量や、電流密度によって制御可能である。   Further, since the aspect ratio is also affected by the degree of aggregation of the carbon particles, it is desirable to control the degree of aggregation of the carbon particles. When the degree of aggregation increases, the protrusions become coarse and the aspect ratio tends to increase. Conversely, if the degree of aggregation is too low, the protrusions become fine and the aspect ratio tends to be low. The degree of aggregation also affects the average particle size of the protrusions. The degree of aggregation of the carbon particles can be controlled by the type and amount of the aggregating agent added to the plating bath and the current density.

本発明で規定するようなアスペクト比や突起物の平均粒径を得る上では、凝集剤としてパラアルデヒド、ナフトアルデヒド、ホルムアルデヒド、アセトアルデヒドのようなアルデヒド化合物から、1種または複数種選択し、Snめっき浴中の濃度が0.1〜10g/L、好ましくは1〜5g/L、より好ましくは2〜4g/Lとなるように添加するのが有利である。添加量が少なくなると凝集効果が不十分となる一方、添加量が多くなると過剰に凝集する。また、選択するアルデヒド化合物としては芳香族アルデヒドが好ましく、特にパラアルデヒドが好ましい。
また、Snめっき時の電流密度は2〜6A/dm2、好ましくは3〜5A/dm2、より好ましくは3.5〜4.5A/dm2とする。電流密度が低すぎると炭素粒子は取り込まれにくくなる上に、めっき効率が低下、生産性が悪化する。逆に電流密度が高すぎると粗大な突起物が形成されめっきやけを生じ、はんだ付け等の性能及び外観を損なう。
In obtaining the aspect ratio and the average particle size of the protrusions as defined in the present invention, one or more kinds are selected as an aggregating agent from aldehyde compounds such as paraaldehyde, naphthaldehyde, formaldehyde, and acetaldehyde, and Sn plating is performed. It is advantageous to add so that the concentration in the bath is 0.1 to 10 g / L, preferably 1 to 5 g / L, more preferably 2 to 4 g / L. When the addition amount decreases, the aggregation effect becomes insufficient, while when the addition amount increases, the aggregation is excessive. The aldehyde compound to be selected is preferably an aromatic aldehyde, particularly preferably paraaldehyde.
The current density during Sn plating is 2 to 6 A / dm 2 , preferably 3 to 5 A / dm 2 , more preferably 3.5 to 4.5 A / dm 2 . If the current density is too low, the carbon particles are difficult to be taken in, and the plating efficiency is lowered and the productivity is deteriorated. On the other hand, if the current density is too high, coarse protrusions are formed, resulting in plating burns, and the performance and appearance such as soldering are impaired.

Snめっき表面に占めるCの量はSnめっき浴に添加する炭素粒子の添加量によって調節することができ、添加量を少なくすれば突起物の数が少なくなり、Snめっき表面に占めるCの量も少なくなる。添加量を多くすれば突起物の数は多くなり、Snめっき表面に占めるCの量も多くなる。Snめっき表面に占めるCの量を上述した範囲にするためには、炭素粒子を0.1〜5g/L、好ましくは0.5〜3g/L、より好ましくは1〜3g/L添加するのが有利である。
また、使用する炭素粒子の粒径が大きくなるとSnめっき皮膜中に取り込まれにくくなるため、十分な量の突起物を形成するために必要な炭素粒子の添加量が増大する。添加量が増大すると、めっき浴中で炭素粒子が沈殿しやすくなり、排液管を詰まらせる原因となるが、本発明では比較的小さな粒径の炭素粒子を使用していることから、Snめっき皮膜に取り込まれやすく、少量の炭素粒子を添加することで十分な量の突起物を形成することが可能である。
The amount of C occupying the Sn plating surface can be adjusted by the amount of carbon particles added to the Sn plating bath. If the amount is reduced, the number of protrusions is reduced, and the amount of C occupying the Sn plating surface is also reduced. . If the amount added is increased, the number of protrusions increases, and the amount of C in the Sn plating surface also increases. In order to make the amount of C occupying the Sn plating surface within the above-mentioned range, 0.1 to 5 g / L, preferably 0.5 to 3 g / L, more preferably 1 to 3 g / L of carbon particles are added. Is advantageous.
Moreover, since it becomes difficult to take in in Sn plating film when the particle size of the carbon particle to be used becomes large, the addition amount of the carbon particle required in order to form a sufficient amount of protrusions increases. If the amount added is increased, carbon particles are liable to precipitate in the plating bath and clog the drainage pipe. However, in the present invention, since the carbon particles having a relatively small particle size are used, Sn plating is used. A sufficient amount of protrusions can be formed by adding a small amount of carbon particles.

以下に本発明の実施例を記載するが、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the examples.

作製方法
Zn:30質量%−残部Cu及び不可避的不純物の組成を有する銅合金条(板厚0.64mm×幅50mm×長さ100mm)を13枚用意し、それぞれに対して以下の手順でめっきを施した。
・電解脱脂:アルカリ水溶液中で試料をカソードとして、電解脱脂を行った。
・酸洗:10質量%硫酸水溶液を用いて酸洗した。
・めっき:酸化第一錫40g/L、フェノールスルホン酸270g/L、界面活性剤5g/L、パラアルデヒドおよびナフトアルデヒド(種類及び添加量は表1に記載)、鱗片状炭素粒子(平均粒径0.05μmのものは電気化学工業株式会社製で、その他はSECカーボン株式会社製)(平均粒径及び添加量は表1に記載)を含有するSnめっき浴を用いて、温度45℃、電流密度4.0A/dm2の条件でSnめっきを施した。Snめっき層の厚みは、電着時間により調整した。めっき厚みはいずれも1.0±0.1μmであった。
Preparation method : Zn: 30% by mass—13 copper alloy strips having a composition of the balance Cu and inevitable impurities (plate thickness 0.64 mm × width 50 mm × length 100 mm) are prepared, and plating is performed for each of the following steps. Was given.
Electrolytic degreasing: Electrolytic degreasing was performed in alkaline aqueous solution using the sample as a cathode.
-Pickling: Pickling was performed using a 10% by mass sulfuric acid aqueous solution.
Plating: stannous oxide 40 g / L, phenol sulfonic acid 270 g / L, surfactant 5 g / L, paraaldehyde and naphthaldehyde (type and amount added are listed in Table 1), scaly carbon particles (average particle size 0.05 μm is manufactured by Denki Kagaku Kogyo Co., Ltd., and others are manufactured by SEC Carbon Co., Ltd.) (Sn plating bath containing average particle diameter and addition amount are listed in Table 1), temperature 45 ° C., current Sn plating was performed under conditions of a density of 4.0 A / dm 2 . The thickness of the Sn plating layer was adjusted by the electrodeposition time. The plating thickness was 1.0 ± 0.1 μm.

評価方法
Snめっき材の形態及び特性は以下の方法で評価した。結果は表2に示した。
(1)アスペクト比及び凝集体の幅
各試料について、表面に形成された突起物のうち任意の10ヶ所を株式会社日立ハイテクノロジーズ製集束イオンビーム加工観察装置(FIB)FB−2100により加工し、断面を露出させ、SEM観察した。それぞれについてアスペクト比(突起物の高さ/突起物の幅)を算出し、10ヶ所の平均値をその試料の平均アスペクト比とした。ここで、
突起物の高さ:(頂点から母材までの高さ)−(平均めっき膜厚)
突起物の幅:突起高さの1/2だけ頂点から下がったところで水平線をひいたとき、めっき面との交点間の距離である。参考用に、実施例3及び比較例4の突起物の断面を観察したときのSEM像(倍率14000倍)を図1及び図2に示す。
上記観察に合わせて、突起物断面をEPMAによりマッピングし、炭素の検出される幅を測定し、上記突起物の幅より、凝集体の幅(%)=凝集体の幅(μm)/突起物の幅(μm)×100と算出した。
(2)炭素粒子の平均粒径
各炭素粒子についてレーザー光拡散方式粒度分布測定機(大塚電子株式会社製LPA3100)により粒径分布を測定し、累積分布50%の粒径を平均粒径とした。
(3)突起物の平均粒径
アスペクト比の評価方法における突起物の幅を粒径とした。10ヶ所の平均を平均粒径とした。
(4)突起物の平均高さ
アスペクト比の評価方法における突起物の高さと同様の方法で測定した。10ヶ所の平均を平均高さとした。
(5)Snめっき表面に占めるCの量
各試料について、EPMAによる表面の元素マッピングを行なった。元素マッピングの結果から炭素が検出された部分の面積を測定し、炭素が占める面積の割合を算出した。3箇所の平均値を測定結果とした。
(6)Snめっき厚み(平均めっき膜厚)
各試料について、突起物の形成されていない任意の10ヶ所を株式会社日立ハイテクノロジーズ製集束イオンビーム加工観察装置FB−2100により加工し、断面を露出させ、SEM観察した。それぞれの断面のSEM像においてSnめっき厚みを実測し、その平均値をSnめっき厚みとした。
(7)挿入力
各試料を090型オス端子(幅:2.3mm,厚さ:0.64mm)の形状にプレス加工した後に、アイコーエンジニアリング製の卓上荷重測定器1310NRを使用して、メス端子と嵌合させたときの荷重を測定した。メス端子:住友電装製090型SMTS端子、挿入速度:50mm/min、挿入距離:5mm
(8)半田付け性
レスカ社製ソルダーチェッカーSAT−5000を使用し、各試料の半田濡れ時間を測定した。試料サイズ:幅10mm×長さ20mm、フラックス:25%ロジン−メタノール溶液、半田温度:250℃、半田組成:Sn−3.0Ag−0.5Cu(千住金属製705M)、浸漬速さ:20mm/sec、浸漬時間:10秒間、浸漬深さ:2mm。
(9)粉落ち
各試料に24mm幅のセロハン粘着テープを貼り付け、めっき面に対して垂直方向に引き剥がした。引き剥がしたテープを観察し、炭素の付着有無により判定した。光学顕微鏡(倍率50倍,400倍)による観察でテープ表面にカーボンの付着が確認できた場合を×、確認できない場合を○とした。
(10)表面粗さRz
三鷹光器株式会社製非接触式3次元形状測定装置NH−3(He−Neレーザー,波長:633nm,出力:1.8mW)により、表面形状を測定し算出した。
Evaluation Method The form and characteristics of the Sn plating material were evaluated by the following methods. The results are shown in Table 2.
(1) Aspect ratio and agglomerate width For each sample, any 10 of the protrusions formed on the surface were processed with a focused ion beam processing observation apparatus (FIB) FB-2100 manufactured by Hitachi High-Technologies Corporation, The cross section was exposed and observed by SEM. The aspect ratio (height of protrusions / width of protrusions) was calculated for each, and the average value of 10 locations was taken as the average aspect ratio of the sample. here,
Projection height: (height from top to base metal)-(average plating film thickness)
Width of protrusion: The distance between the intersections with the plating surface when a horizontal line is drawn at a point lowered from the apex by 1/2 of the protrusion height. For reference, FIGS. 1 and 2 show SEM images (magnification: 14000 times) when the cross sections of the protrusions of Example 3 and Comparative Example 4 are observed.
In accordance with the above observation, the projection cross section is mapped by EPMA, and the width of carbon detected is measured. From the width of the projection, the aggregate width (%) = the aggregate width (μm) / projection. Width (μm) × 100.
(2) Average particle size of carbon particles For each carbon particle, the particle size distribution was measured with a laser light diffusion type particle size distribution analyzer (LPA3100 manufactured by Otsuka Electronics Co., Ltd.), and the particle size of 50% cumulative distribution was taken as the average particle size. .
(3) Average particle diameter of protrusions The width of the protrusions in the aspect ratio evaluation method was defined as the particle diameter. The average of 10 locations was defined as the average particle size.
(4) Average height of protrusions It was measured by the same method as the height of protrusions in the aspect ratio evaluation method. The average of 10 locations was the average height.
(5) Amount of C in the Sn plating surface Elemental mapping of the surface by EPMA was performed for each sample. The area of the portion where carbon was detected was measured from the result of element mapping, and the proportion of the area occupied by carbon was calculated. The average value at three locations was taken as the measurement result.
(6) Sn plating thickness (average plating film thickness)
About each sample, arbitrary 10 places in which the protrusion was not formed were processed with the focused ion beam processing observation apparatus FB-2100 by Hitachi High-Technologies Corporation, the cross section was exposed, and SEM observation was carried out. Sn plating thickness was measured in the SEM image of each cross section, and the average value was made into Sn plating thickness.
(7) Insertion force After pressing each sample into the shape of a 090 type male terminal (width: 2.3 mm, thickness: 0.64 mm), using a desktop load measuring instrument 1310NR made by Aiko Engineering, a female terminal The load when fitted was measured. Female terminal: 090 type SMTS terminal manufactured by Sumitomo Wiring Systems, insertion speed: 50 mm / min, insertion distance: 5 mm
(8) Solderability The solder wetting time of each sample was measured using a Solder Checker SAT-5000 manufactured by Reska. Sample size: width 10 mm × length 20 mm, flux: 25% rosin-methanol solution, solder temperature: 250 ° C., solder composition: Sn-3.0Ag-0.5Cu (705M manufactured by Senju Metal), immersion speed: 20 mm / sec, immersion time: 10 seconds, immersion depth: 2 mm.
(9) Powder fall A cellophane adhesive tape having a width of 24 mm was attached to each sample and peeled off in a direction perpendicular to the plating surface. The peeled tape was observed and judged by the presence or absence of carbon adhesion. The case where the adhesion of carbon was confirmed on the tape surface by observation with an optical microscope (magnification 50 times, 400 times) was marked with x, and the case where it was not confirmed was marked with ◯.
(10) Surface roughness Rz
The surface shape was measured and calculated by a non-contact type three-dimensional shape measuring device NH-3 (He-Ne laser, wavelength: 633 nm, output: 1.8 mW) manufactured by Mitaka Kogyo Co., Ltd.

実施例1〜3
粒径0.05μmの炭素粒子を0.5〜1.5g/L添加したSnめっき浴でめっきしたものであり、挿入力は炭素粒子を添加しなかった比較例4に比べて顕著に低く、半田付け性は良好であり、粉落ちも見られなかった。
Examples 1-3
It is plated with an Sn plating bath containing 0.5 to 1.5 g / L of carbon particles having a particle size of 0.05 μm, and the insertion force is significantly lower than that of Comparative Example 4 in which no carbon particles were added, Solderability was good, and no powder fall was observed.

実施例4、5
粒径0.5μmの炭素粒子を1.5〜2.0g/L添加したSnめっき浴でめっきしたものであり、挿入力は炭素粒子を添加しなかった比較例4に比べて顕著に低く、半田付け性は良好であり、粉落ちも見られなかった。
Examples 4 and 5
The carbon particles having a particle diameter of 0.5 μm are plated with an Sn plating bath to which 1.5 to 2.0 g / L is added, and the insertion force is significantly lower than that of Comparative Example 4 in which no carbon particles are added, Solderability was good, and no powder fall was observed.

実施例6
粒径1.0μmの炭素粒子を3.0g/L添加したSnめっき浴でめっきしたものであり、挿入力は炭素粒子を添加しなかった比較例4に比べて顕著に低く、半田付け性は良好であり、粉落ちも見られなかった。
Example 6
It is plated with an Sn plating bath containing 3.0 g / L of carbon particles having a particle size of 1.0 μm, and the insertion force is significantly lower than that of Comparative Example 4 in which no carbon particles are added, and the solderability is It was good and no powder fall was observed.

実施例7
実施例1〜3と同様、粒径0.05μmの炭素粒子を添加したSnめっき浴でめっきしたものである。アスペクト比0.3の突起物が形成されており、挿入力の低下及び粉落ち防止の効果が得られた。しかしながら、添加量が0.1g/Lと少なかったために突起の分布が少なく、挿入力低下に寄与する高さ2μm以上の突起が形成されなかったため、挿入力の低下が実施例1〜6に比べて小さかった。
Example 7
In the same manner as in Examples 1 to 3, plating was performed using a Sn plating bath to which carbon particles having a particle diameter of 0.05 μm were added. Projections having an aspect ratio of 0.3 were formed, and the effect of reducing the insertion force and preventing powder falling was obtained. However, since the addition amount was as small as 0.1 g / L, the distribution of the projections was small, and no projections with a height of 2 μm or more that contributed to the reduction in insertion force were formed. It was small.

実施例8、9
実施例4、5と同様、粒径0.5μmの炭素粒子を添加したSnめっき浴でめっきしたものである。アスペクト比0.4の突起物が形成されており、挿入力の低下及び粉落ち防止の効果が得られた。しかしながら、実施例8では添加量が0.5g/Lと少なかったために、挿入力低下に寄与する高さ2μm以上の突起の形成量が少なかったため、挿入力の低下が実施例1〜6に比べて小さかった。また、実施例9では添加量が10g/Lと多かったため、炭素の占める面積が多くなったため、半田付け性が実施例1〜6に比べて劣っていた。
Examples 8 and 9
Like Example 4 and 5, it plated by the Sn plating bath which added the carbon particle with a particle size of 0.5 micrometer. Protrusions having an aspect ratio of 0.4 were formed, and the effect of reducing the insertion force and preventing powder falling was obtained. However, in Example 8, since the addition amount was as small as 0.5 g / L, the amount of protrusions having a height of 2 μm or more that contributed to the reduction in insertion force was small, so the reduction in insertion force was lower than in Examples 1-6. It was small. Moreover, in Example 9, since the addition amount was as large as 10 g / L, the area occupied by carbon increased, so that the solderability was inferior to Examples 1-6.

比較例1
炭素粒子の添加量は実施例2と同様であるが、粒径が0.02μmと小さいため、形成される突起物のアスペクト比が小さく、挿入力低下の効果が得られない。
Comparative Example 1
The amount of carbon particles added is the same as in Example 2. However, since the particle diameter is as small as 0.02 μm, the aspect ratio of the projections formed is small, and the effect of reducing the insertion force cannot be obtained.

比較例2
炭素粒子の添加量は実施例1と同様であるが、粒径が5.0μmと大きいため、炭素粒子が効率的にSnめっき皮膜中に取り込まれないため突起の分布が少なく、挿入力低下に寄与する高さ2μm以上の突起が形成されなかったため、挿入力が低下しなかった。
Comparative Example 2
The amount of carbon particles added is the same as in Example 1, but the particle size is as large as 5.0 μm, so the carbon particles are not efficiently taken into the Sn plating film, so the projection distribution is small and the insertion force is reduced. The insertion force did not decrease because no contributing protrusion with a height of 2 μm or more was formed.

比較例3、4
添加量を調整したが、添加する炭素粒子の粒径が大きいため、突起のアスペクト比が大きくなり、粉落ちが発生した。
Comparative Examples 3 and 4
Although the addition amount was adjusted, since the particle diameter of the carbon particles to be added was large, the aspect ratio of the protrusions was increased, and powder falling occurred.

比較例5
凝集剤の添加量が多いため、炭素の占める面積が多くなり、はんだ付け性が悪く、アスペクト比が大きくなり、粉落ちが発生した。
Comparative Example 5
Since the amount of the flocculant added was large, the area occupied by carbon increased, the solderability was poor, the aspect ratio increased, and powder falling occurred.

比較例6
実施例1〜3と同様、粒径0.05μmの炭素粒子を添加したSnめっき浴でめっきしたものである。凝集剤の添加量が多く、炭素の占める面積が多くなったため、半田付け性が実施例1〜6に比べて劣っていた。
Comparative Example 6
In the same manner as in Examples 1 to 3, plating was performed using a Sn plating bath to which carbon particles having a particle diameter of 0.05 μm were added. Since the amount of the flocculant added was large and the area occupied by carbon increased, the solderability was inferior to those of Examples 1-6.

比較例7
炭素粒子を添加しなかった例であり、挿入力及び半田付け性の基準となる例である。
Comparative Example 7
This is an example in which carbon particles are not added, and is an example that serves as a reference for insertion force and solderability.

比較例8
炭素粒子、添加剤を添加しなかった例であり、挿入力及び半田付け性の基準となる例である。
Comparative Example 8
This is an example in which carbon particles and additives are not added, and is an example serving as a reference for insertion force and solderability.

実施例3の突起物の断面を観察したときのSEM像(倍率14000倍)である。It is a SEM image (magnification 14000 times) when the cross section of the protrusion of Example 3 is observed. 比較例4の突起物の断面を観察したときのSEM像(倍率14000倍)である。It is a SEM image (magnification 14000 times) when the cross section of the protrusion of the comparative example 4 is observed.

Claims (6)

Snめっきが施された銅又は銅合金であって、該Snめっきはその表面に炭素粒子が凝集してできた突起物を複数有し、該突起物は断面から観察したときのアスペクト比の平均が0.2〜0.6である銅又は銅合金。   Copper or copper alloy plated with Sn, wherein the Sn plating has a plurality of protrusions formed by agglomeration of carbon particles on the surface, and the protrusions are average aspect ratios when observed from a cross section. Or a copper alloy in which is 0.2 to 0.6. Snめっき断面から観察したとき、前記突起物の平均粒径が1〜10μmである請求項1記載の銅又は銅合金。   The copper or copper alloy according to claim 1, wherein the average particle diameter of the protrusions is 1 to 10 μm when observed from the Sn plating cross section. Snめっき表面から観察したとき、Cの占める面積が10〜50%である請求項1又は2記載の銅又は銅合金。   The copper or copper alloy according to claim 1 or 2, wherein the area occupied by C is 10 to 50% when observed from the Sn plating surface. 表面粗さが1〜6μmである請求項1〜3何れか一項に記載の銅又は銅合金。   The copper or copper alloy according to any one of claims 1 to 3, wherein the surface roughness is 1 to 6 µm. 請求項1〜4何れか一項に記載の銅又は銅合金を備えた電子部品。   The electronic component provided with the copper or copper alloy as described in any one of Claims 1-4. 平均粒径が0.03〜1.0μmである炭素粒子を0.1〜5g/Lと、1種又は2種以上のアルデヒド化合物を合計で0.1〜10mL/L添加したSnめっき浴を用いて銅又は銅合金に電気めっきすることを含む請求項1〜3何れか一項記載の銅又は銅合金を製造するための方法。   Sn plating bath in which 0.1 to 5 g / L of carbon particles having an average particle size of 0.03 to 1.0 μm and 0.1 to 10 mL / L of one or more aldehyde compounds are added in total. The method for manufacturing the copper or copper alloy as described in any one of Claims 1-3 including using and electroplating to copper or a copper alloy.
JP2008093860A 2008-03-31 2008-03-31 Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME Withdrawn JP2009242925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093860A JP2009242925A (en) 2008-03-31 2008-03-31 Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093860A JP2009242925A (en) 2008-03-31 2008-03-31 Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME

Publications (1)

Publication Number Publication Date
JP2009242925A true JP2009242925A (en) 2009-10-22

Family

ID=41305150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093860A Withdrawn JP2009242925A (en) 2008-03-31 2008-03-31 Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME

Country Status (1)

Country Link
JP (1) JP2009242925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140676A (en) * 2010-01-05 2011-07-21 Kobe Steel Ltd Tinned copper alloy sheet material for fit type terminal and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140676A (en) * 2010-01-05 2011-07-21 Kobe Steel Ltd Tinned copper alloy sheet material for fit type terminal and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6160582B2 (en) Tin-plated copper alloy terminal material and manufacturing method thereof
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
KR101162849B1 (en) Sn-plated copper or sn-plated copper alloy having excellent heat resistance and manufacturing method thereof
JP5319101B2 (en) Sn plating material for electronic parts
CN103227369A (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP5522300B1 (en) Tin-plated copper alloy terminal material excellent in insertion / extraction and manufacturing method thereof
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP4368931B2 (en) Male terminal and manufacturing method thereof
JP2009084616A (en) REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME
TW201832643A (en) Terminal material for connectors and method for producing same
JP5479789B2 (en) Metal materials for connectors
JP2009230930A (en) Metallic material for connector, and method of manufacturing the same
JP2008088477A (en) Reflow-sn-plated copper alloy material having excellent whisker resistance
JP4611419B2 (en) Copper alloy tin plating strip with excellent solder wettability and insertability
JP2005344188A (en) Method for producing plating material and electrical/electronic component using the plating material
JP6553333B2 (en) Metal material for electronic parts, connector terminal using the same, connector and electronic parts
JP2009242925A (en) Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME
JP2009263785A (en) Connecting component metal material and method of manufacturing the same
JPWO2017038825A1 (en) Plating material excellent in heat resistance and method for producing the same
KR101175092B1 (en) Cu ALLOY Sn-PLATED STRIP HAVING EXCELLENT SOLDER WETTABILITY AND INSERTABILITY/EXTRABILITY
JP2015120966A (en) Plated wire rod, method for producing the plated wire rod, and metal square wire connector terminal
JP5748019B1 (en) Pin terminals and terminal materials
WO2024154375A1 (en) Composite material, terminal, and terminal production method
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP2009228033A (en) Metallic material for connector and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100830

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607