JP2011140676A - Tinned copper alloy sheet material for fit type terminal and method for manufacturing the same - Google Patents

Tinned copper alloy sheet material for fit type terminal and method for manufacturing the same Download PDF

Info

Publication number
JP2011140676A
JP2011140676A JP2010000504A JP2010000504A JP2011140676A JP 2011140676 A JP2011140676 A JP 2011140676A JP 2010000504 A JP2010000504 A JP 2010000504A JP 2010000504 A JP2010000504 A JP 2010000504A JP 2011140676 A JP2011140676 A JP 2011140676A
Authority
JP
Japan
Prior art keywords
plating
coating layer
copper
graphite particles
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010000504A
Other languages
Japanese (ja)
Other versions
JP5409401B2 (en
Inventor
Koichi Taira
浩一 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010000504A priority Critical patent/JP5409401B2/en
Publication of JP2011140676A publication Critical patent/JP2011140676A/en
Application granted granted Critical
Publication of JP5409401B2 publication Critical patent/JP5409401B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tinned copper alloy sheet for fit type terminals that has a small coefficient of friction and a small change of contact resistance with the lapse of time. <P>SOLUTION: An optional Ni covering layer, a Cu-Sn alloy covering layer and a surface plating layer comprising an Sn covering layer are formed in this order on a copper or copper alloy sheet and graphite particles are dispersedly attached onto the Sn covering layer. The Ni covering layer has an average thickness of 0.1-1.0 μm, the Cu-Sn alloy covering layer has an average thickness of 0.1-1.0 μm and the Sn covering layer has an average thickness of 0.1-2.5 μm. The graphite particles cover the surface of the Sn covering layer in an area ratio of 3-30%, and among the graphite particles, graphite particles whose particle diameter is ≥2 μm have an average particle diameter of 3-30 μm and graphite particles whose particle diameter is ≥10 μm occupy ≥3% by number. Optional Ni plating, Cu plating and Sn plating are carried out on a copper or copper alloy sheet, graphite particles are attached to the surface and reflow treatment is carried out to manufacture the objective tinned copper alloy sheet material. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低摩擦係数で嵌合型接続端子用として適する錫めっき付き銅合金板材、及びその製造方法に関する。   The present invention relates to a tin-plated copper alloy sheet suitable for fitting type connection terminals with a low friction coefficient, and a method for producing the same.

従来より、雄端子と雌端子の嵌合によって電気的接触を得る車載用等の嵌合型端子として、錫めっき付き銅合金板材を打抜き加工して端子に成形したものが汎用的に用いられている。
端子の嵌合作業において、雄端子は雌端子のインデント部に接触しながら挿入される。錫めっき付き銅合金板材を用いた端子では、錫めっきが非常に軟らかいことから、摺動部において、錫同士の凝着が起こり、それをせん断する力が摩擦力となり、挿入に要する力が大きくなる。
Conventionally, as a fitting type terminal for in-vehicle use or the like that obtains electrical contact by fitting a male terminal and a female terminal, a copper alloy plate material with tin plating is punched and formed into a terminal, which is generally used. Yes.
In the terminal fitting operation, the male terminal is inserted in contact with the indent portion of the female terminal. In the terminal using tin-plated copper alloy plate material, tin plating is very soft, so that tin adheres to each other in the sliding part, and the shearing force becomes a frictional force, and the force required for insertion is large. Become.

近年、車載部品の軽量化・小型化に伴い、これら嵌合型端子も小型多極化の傾向にある。嵌合型端子の嵌合は作業者が手作業で行っており、前記の錫めっき付き銅合金板材を用いた端子では嵌合時の挿入力が高いことから、特に多極化した場合の作業者の肉体的負荷が大きくなり、端子嵌合時の挿入力低減が強く求められている。
そのため、接続端子を小型多極化しても、挿入力低減が可能で、かつ電気的特性を確保できる嵌合型端子用の錫めっき付き銅合金板材の要求が高くなっている。
In recent years, with the reduction in weight and size of in-vehicle components, these fitting type terminals are also in the trend of miniaturization and miniaturization. The mating type terminal is manually fitted by the operator, and the terminal using the tin-plated copper alloy plate has a high insertion force at the time of mating. There is a strong demand for a reduction in insertion force at the time of terminal fitting due to an increased physical load.
For this reason, there is an increasing demand for a tin-plated copper alloy sheet for a fitting-type terminal that can reduce the insertion force and ensure electrical characteristics even if the connection terminal is reduced in size and multipolarity.

このような要求に対して、銅合金板材の表面に、Niめっき層(必要に応じて)、Cu−Sn合金層、さらにSnめっき層からなる表面めっき層を形成することにより、嵌合型端子の挿入力低減、及び接触抵抗の経時変化低減が可能な錫めっき付き銅合金板材が提案されている。
例えば特許文献1には、銅合金板材の表面にCuめっき及びSnめっきを行った後、リフロー処理を施して、CuめっきとSnめっきからCu−Sn合金層を形成し、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成することが記載されている。
In response to such a requirement, a mating type terminal is formed by forming a surface plating layer comprising a Ni plating layer (if necessary), a Cu-Sn alloy layer, and a Sn plating layer on the surface of the copper alloy sheet. There has been proposed a tin-plated copper alloy sheet material capable of reducing the insertion force and the temporal change of the contact resistance.
For example, in Patent Document 1, after Cu plating and Sn plating are performed on the surface of a copper alloy plate material, a reflow process is performed to form a Cu-Sn alloy layer from the Cu plating and Sn plating, and a Cu-Sn alloy coating layer And forming a surface plating layer comprising a Sn coating layer.

特許文献2〜4には、銅合金板材の表面にNiめっき、Cuめっき及びSnめっきを行った後、リフロー処理を施して、CuめっきとSnめっきからCu−Sn合金層を形成し、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成することが記載され、このうち特許文献3,4には、Ni被覆層とCu−Sn合金被覆層の間にCu被覆層を残留させて、4層からなる表面めっき層を形成することも記載されている。
しかし、この技術において嵌合型端子の挿入力の一層の低減を図ろうとすると、最表面のSn被覆層を薄くして錫同士の凝着を極力少なくする必要があり、接触抵抗の経時変化の低減との両立が困難となる。
In Patent Documents 2 to 4, Ni plating, Cu plating, and Sn plating are performed on the surface of a copper alloy sheet, and then reflow treatment is performed to form a Cu-Sn alloy layer from Cu plating and Sn plating. Forming a surface plating layer comprising a layer, a Cu—Sn alloy coating layer, and a Sn coating layer, among which, Patent Documents 3 and 4 describe a Cu coating between a Ni coating layer and a Cu—Sn alloy coating layer. It is also described that a surface plating layer consisting of four layers is formed by leaving the layer.
However, to further reduce the insertion force of the mating type terminal in this technique, it is necessary to make the outermost Sn coating layer thin to reduce the adhesion between tins as much as possible. It becomes difficult to achieve both reduction.

特許文献5,6は、特許文献1〜4と同様に、銅合金板材の表面にCuめっき及びSnめっきを行った後、又はNiめっき、Cuめっき及びSnめっきを行った後、リフロー処理を施して、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層、又はNi被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層を形成するのであるが、意図的に表面を粗面化した銅合金板材を用い、部分的に(粗さ曲線の山頂部で)Cu−Sn合金被覆層が表面に露出するか、Sn被覆層の厚さが極めて薄くなるようにし、これにより嵌合型端子の挿入力低減を可能とした錫めっき付き銅合金板材が提案されている。また、特許文献5,6には、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層の場合、銅合金板材とCu−Sn合金層の間に、Ni被覆層、Cu−Sn合金被覆層及びSn被覆層からなる表面めっき層の場合、Ni被覆層とCu−Sn合金被覆層の間に、それぞれCu被覆層を残留させてもよいことが記載されている。   In Patent Documents 5 and 6, as in Patent Documents 1 to 4, after performing Cu plating and Sn plating on the surface of the copper alloy plate material, or after performing Ni plating, Cu plating and Sn plating, reflow treatment is performed. Then, a surface plating layer composed of a Cu-Sn alloy coating layer and a Sn coating layer or a surface plating layer composed of a Ni coating layer, a Cu-Sn alloy coating layer and a Sn coating layer is formed. Using a roughened copper alloy sheet, the Cu-Sn alloy coating layer is partially exposed (at the peak of the roughness curve) on the surface, or the thickness of the Sn coating layer is made extremely thin. A tin-plated copper alloy sheet material capable of reducing the insertion force of the fitting type terminal has been proposed. In Patent Documents 5 and 6, in the case of a surface plating layer comprising a Cu—Sn alloy coating layer and a Sn coating layer, a Ni coating layer and a Cu—Sn alloy coating are provided between the copper alloy plate material and the Cu—Sn alloy layer. In the case of a surface plating layer comprising a layer and a Sn coating layer, it is described that the Cu coating layer may be left between the Ni coating layer and the Cu—Sn alloy coating layer.

一方、銅合金板材の表面に炭素粒子が分散したSnめっき層を形成することにより、嵌合型端子の挿入力低減、及び接触抵抗の経時変化低減を可能とした錫めっき付き銅合金板材が提案されている(特許文献7参照)。しかし、この板材を製造するには、黒鉛粒子を分散させた特殊なSnめっき浴が必要であり、黒鉛粒子が均一かつ所定量分散したSnめっき層を形成するための浴管理が困難で、また、これがコストアップにつながる。加えて、炭素粒子はSnめっき層中に存在し、表面に露出する炭素粒子は一部に過ぎないので、挿入力の低減効果として不充分である。   On the other hand, a tin-plated copper alloy sheet that can reduce the insertion force of the mating type terminal and change the contact resistance with time by forming an Sn plating layer in which carbon particles are dispersed on the surface of the copper alloy sheet is proposed. (See Patent Document 7). However, in order to produce this plate material, a special Sn plating bath in which graphite particles are dispersed is necessary, and it is difficult to manage the bath to form a Sn plating layer in which graphite particles are uniformly dispersed in a predetermined amount. This leads to cost increase. In addition, the carbon particles are present in the Sn plating layer, and only a part of the carbon particles exposed on the surface is insufficient as an effect of reducing the insertion force.

また、錫めっき浴中の光沢剤濃度を調製し、銅合金板材の表面にCを含有させたSn又はSn合金めっき層を形成することにより、摩擦係数を低減させた多極端子用錫又は錫合金めっき銅合金板材が提案されている(特許文献8参照)。しかし、この板材でも挿入力の低減効果は不充分であり、また、リフロー処理を施していないためウィスカによる短絡が懸念される。   Also, tin or tin for multipolar terminals with a reduced friction coefficient by adjusting the brightener concentration in the tin plating bath and forming a Sn or Sn alloy plating layer containing C on the surface of the copper alloy sheet. An alloy-plated copper alloy sheet has been proposed (see Patent Document 8). However, even with this plate material, the effect of reducing the insertion force is insufficient, and there is a concern that a short circuit due to whiskers occurs because no reflow treatment is performed.

特開平10−60666号公報Japanese Patent Laid-Open No. 10-60666 特開2004−68026号公報JP 2004-68026 A 特開2002−226982号公報JP 2002-226882 A 特開平11−135226号公報JP-A-11-135226 特開2007−258156号公報JP 2007-258156 A 特開2006−77307号公報JP 2006-77307 A 特開2006−97062号公報JP 2006-97062 A 特許第2971035号公報Japanese Patent No. 2971035

本発明は、摩擦係数が一層小さく挿入力を低減でき、電気的信頼性が高く(接触抵抗の経時変化が少なく)、かつ安価な嵌合型端子用錫めっき付き銅合金板材を提供することを目的とする。   It is an object of the present invention to provide a tin-plated copper alloy sheet for a mating type terminal that has a smaller friction coefficient, can reduce insertion force, has high electrical reliability (less change in contact resistance with time), and is inexpensive. Objective.

本発明に係る嵌合型端子用錫めっき付き銅又は銅合金板材は、銅又は銅合金板材の表面に、平均厚さ0.1〜1.0μmのCu−Sn合金被覆層と、平均厚さ0.1〜2.5μmのSn被覆層からなる表面めっき層がこの順に形成され、前記Sn被覆層はリフロー処理されたもので、表面に黒鉛粒子が分散して付着し、前記黒鉛粒子が前記表面めっき層表面を面積比率30%以下で被い、かつ前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上で被い、そのうち粒径10μm以上の粒子の個数の割合が3%以上であることを特徴とする。上記表面めっき層が形成された領域は、板材の片面又は両面全体に及んでいてもよいし、片面又は両面の一部のみを占めているのでもよい。   The copper or copper alloy sheet with tin plating for mating type terminals according to the present invention has a Cu-Sn alloy coating layer with an average thickness of 0.1 to 1.0 μm and an average thickness on the surface of the copper or copper alloy sheet. A surface plating layer made of 0.1 to 2.5 μm of Sn coating layer is formed in this order, and the Sn coating layer is reflow-treated, and the graphite particles are dispersed and adhered to the surface, and the graphite particles are The surface plating layer surface is covered at an area ratio of 30% or less, and among the graphite particles, the average particle diameter of graphite particles having a particle diameter of 2 μm or more is 3 to 30 μm, and the surface plating layer surface is covered at an area ratio of 3% or more. Among them, the ratio of the number of particles having a particle diameter of 10 μm or more is 3% or more. The region where the surface plating layer is formed may extend over one side or both sides of the plate material, or may occupy only part of one side or both sides.

上記錫めっき付き銅又は銅合金板材において、めっき基材である銅又は銅合金板材の表面とCu−Sn合金被覆層の間に、さらに平均厚さ0.5μm以下のCu被覆層が形成されていてもよい。
また、表面めっき層の一部として、めっき基材である銅又は銅合金板材の表面とCu−Sn合金被覆層の間に、平均厚さ0.1〜1.0μmのNi被覆層が形成されていてもよい。この場合、Ni被覆層とCu−Sn合金被覆層の間に、さらに平均厚さ0.5μm以下のCu被覆層が形成されていてもよい。
さらに、表面めっき層の表面(Sn被覆層)にCu−Sn合金被覆層が一部露出している場合(特許文献6参照)も本発明に含まれる。
本発明において、Ni被覆層、Cu被覆層及びSn被覆層は、それぞれNi、Cu、Sn金属のほか、Ni合金、Cu合金及びSn合金を含む。
In the copper or copper alloy plate with tin plating, a Cu coating layer having an average thickness of 0.5 μm or less is further formed between the surface of the copper or copper alloy plate material that is the plating base and the Cu—Sn alloy coating layer. May be.
Further, as a part of the surface plating layer, a Ni coating layer having an average thickness of 0.1 to 1.0 μm is formed between the surface of the copper or copper alloy plate material which is the plating base and the Cu—Sn alloy coating layer. It may be. In this case, a Cu coating layer having an average thickness of 0.5 μm or less may be further formed between the Ni coating layer and the Cu—Sn alloy coating layer.
Furthermore, the present invention includes a case where the Cu—Sn alloy coating layer is partially exposed on the surface of the surface plating layer (Sn coating layer) (see Patent Document 6).
In the present invention, the Ni coating layer, the Cu coating layer, and the Sn coating layer include Ni alloy, Cu alloy, and Sn alloy in addition to Ni, Cu, and Sn metal, respectively.

前記嵌合型端子用錫めっき付き銅又は銅合金板材は、銅又は銅合金板材の表面に、Niめっき層(必要に応じて)、Cuめっき層、及びSnめっき層をこの順に形成し、Snめっき層の表面に黒鉛粒子を付着させ、次いでリフロー処理を行うことにより製造される。前記Cu−Sn合金被覆層は、リフロー処理により、Cuめっき層とSnめっき層のCuとSnが相互拡散して形成されるが、その際に当初のCuめっき層が全て消滅する場合と、一部が残留する場合(この場合に前記Cu被覆層が形成される)がある。
本発明において、Niめっき層、Cuめっき層及びSnめっき層は、それぞれNi、Cu、Sn金属のほか、Ni合金、Cu合金及びSn合金を含む。
なお、本発明において、リフロー処理後の表面めっき層を構成する各層について「被覆層」と表現し、リフロー処理前の表面めっき層を構成する各層について「めっき層」と表現している。
The tin-plated copper or copper alloy plate material for mating type terminals is formed by forming a Ni plating layer (if necessary), a Cu plating layer, and a Sn plating layer in this order on the surface of the copper or copper alloy plate material. It is manufactured by attaching graphite particles to the surface of the plating layer and then performing a reflow treatment. The Cu—Sn alloy coating layer is formed by mutual diffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by reflow treatment. In this case, all of the initial Cu plating layer disappears. May remain (in this case, the Cu coating layer is formed).
In the present invention, the Ni plating layer, the Cu plating layer, and the Sn plating layer include Ni alloy, Cu alloy, and Sn alloy in addition to Ni, Cu, and Sn metal, respectively.
In the present invention, each layer constituting the surface plating layer after the reflow treatment is expressed as “coating layer”, and each layer constituting the surface plating layer before the reflow treatment is expressed as “plating layer”.

本発明によれば、錫めっき付き銅合金板の摩擦係数を大きく低下させ、嵌合型端子の挿入力を大きく低減することができ、しかもそれを黒鉛粒子をSn被覆表面に付着させるという簡単で安価な手段で実現できる。また、Sn被覆層表面に付着した黒鉛粒子により、錫めっき付き銅合金板材の電気的信頼性が低下することはない。    According to the present invention, the friction coefficient of the tin-plated copper alloy plate can be greatly reduced, the insertion force of the fitting type terminal can be greatly reduced, and the graphite particles can be adhered to the Sn-coated surface. It can be realized by inexpensive means. Moreover, the electrical reliability of the tin-plated copper alloy sheet is not lowered by the graphite particles adhering to the surface of the Sn coating layer.

黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材の表面の実体顕微鏡組織写真である。It is a stereomicroscope structure | tissue photograph of the surface of the copper alloy sheet | seat with a tin plating which made the reflow process after making a graphite particle adhere. リフロー処理した後黒鉛粒子を付着させた錫めっき付き銅合金板材(上段)及び黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材(下段)の表面をを比較して示す組織写真である。It is the structure photograph which compares the surface of the tin-plated copper alloy sheet material (top) to which graphite particles were adhered after reflow treatment and the surface of the tin-plated copper alloy sheet material (bottom) to which graphite particles were adhered and reflow-treated is there. リフロー処理した後黒鉛粒子を付着させた錫めっき付き銅合金板材(上段)及び黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅合金板材(下段)の表面を比較して示す実体顕微鏡写真である。A stereomicrograph showing a comparison of the surface of a tin-plated copper alloy sheet (upper) with graphite particles adhered after reflow treatment and a tin-plated copper alloy sheet (lower) with graphite particles deposited and reflowed is there.

以下、本発明に係る錫めっき付き銅合金板材及びその製造方法についてより具体的に説明する。なお、銅又は銅合金板材(めっき基材)及び表面めっき層(Ni被覆層、Cu−Sn合金被覆層、Sn被覆層、Cu被覆層)については、それ自体、公知の技術(特許文献1〜6参照)に属する。
(銅又は銅合金板材)
銅又は銅合金板材(めっき基材)は、端子に成形して使用することができるものであれば、どのような組成、特性のものを用いても良い。例えば、黄銅、りん青銅、Cu−Ni−Si系合金、Cu−Fe−P系合金、Cu−Ni−Sn−P系合金等を用いることができる。板厚は端子の用途、板材の導電率、機械的性質などに合わせて決めれば良いが、0.1〜2.0mm程度が一般に適当である。
Hereinafter, the tin-plated copper alloy sheet according to the present invention and the manufacturing method thereof will be described more specifically. In addition, about copper or a copper alloy board | plate material (plating base material) and a surface plating layer (Ni coating layer, Cu-Sn alloy coating layer, Sn coating layer, Cu coating layer) itself, it is well-known technique (patent documents 1-1). 6).
(Copper or copper alloy sheet)
The copper or copper alloy plate material (plating base material) may have any composition and characteristics as long as it can be used after being molded into a terminal. For example, brass, phosphor bronze, Cu—Ni—Si alloy, Cu—Fe—P alloy, Cu—Ni—Sn—P alloy, or the like can be used. The plate thickness may be determined in accordance with the use of the terminal, the conductivity of the plate material, the mechanical properties, etc., but about 0.1 to 2.0 mm is generally appropriate.

(Cu−Sn合金被覆層)
表面めっき層のうちCu−Sn合金被覆層は、めっき基材である銅又は銅合金板材とSn被覆層の中間層として形成されている場合は、Sn被覆層への銅又は銅合金板材からのCuの拡散を防止する。Cu−Sn合金被覆層の平均厚さが0.1μm未満では拡散防止効果が不充分であり、CuがSn被覆層の表層まで拡散して酸化物を形成し、変色と共に接触抵抗が高くなり電気信頼性が低下する。一方、平均厚さが1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Cu−Sn合金被覆層の平均厚さは0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。
(Cu-Sn alloy coating layer)
When the Cu-Sn alloy coating layer is formed as an intermediate layer between the copper or copper alloy plate material which is the plating base and the Sn coating layer among the surface plating layers, from the copper or copper alloy plate material to the Sn coating layer Prevent diffusion of Cu. When the average thickness of the Cu—Sn alloy coating layer is less than 0.1 μm, the diffusion preventing effect is insufficient, Cu diffuses to the surface layer of the Sn coating layer to form an oxide, and the contact resistance increases with discoloration. Reliability decreases. On the other hand, when the average thickness exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, the average thickness of the Cu—Sn alloy coating layer is 0.1 to 1.0 μm. Preferably it is 0.1-0.5 micrometer.

また、Cu−Sn合金被覆層は、Ni被覆層、Cu−Sn合金被覆層、Sn被覆層がこの順に形成されている場合は、Sn被覆層へのNiの拡散を防止する。Cu−Sn合金被覆層の平均厚さが0.1μm未満では拡散防止効果が不充分であり、NiがSn被覆層の表層まで拡散して酸化物を形成し、変色と共に接触抵抗が高くなり電気信頼性が低下する。一方、平均厚さが1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。好ましくは0.1〜0.5μmである。   Further, the Cu—Sn alloy coating layer prevents the diffusion of Ni into the Sn coating layer when the Ni coating layer, the Cu—Sn alloy coating layer, and the Sn coating layer are formed in this order. When the average thickness of the Cu—Sn alloy coating layer is less than 0.1 μm, the effect of preventing diffusion is insufficient, Ni diffuses to the surface layer of the Sn coating layer to form an oxide, and the contact resistance increases with discoloration. Reliability decreases. On the other hand, when the average thickness exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Preferably it is 0.1-0.5 micrometer.

Cu−Sn合金被覆層において、CuSn相が一部含まれていてもよく、めっき基材である銅合金板材及びSn被覆層中の成分元素が含まれていてもよい。しかし、Cu−Sn合金被覆層のCu含有量が20at%未満では、銅又は銅合金板材からのCu若しくはNi被覆層からのNiの拡散防止効果が不充分であり、Cu含有量が70at%を超えるとそのCuが表層に拡散し、酸化物を形成し、接触抵抗が高くなり電気信頼性が低下すると共に、曲げ加工性が低下する。従って、Cu−Sn合金被覆層のCu含有量は20〜70at%とする。好ましくは45〜65at%である。
このCu−Sn合金被覆層は、一般的にはリフロー処理によりCuめっき層とSnめっき層のCuとSnが相互拡散して形成される。しかし、直接上記組成のCu−Sn合金めっきを行うことで形成することもできる。
In the Cu—Sn alloy coating layer, a part of the Cu 3 Sn phase may be included, and the copper alloy plate material that is the plating substrate and the component elements in the Sn coating layer may be included. However, if the Cu content of the Cu—Sn alloy coating layer is less than 20 at%, the effect of preventing diffusion of Cu from the copper or copper alloy sheet or Ni from the Ni coating layer is insufficient, and the Cu content is 70 at%. If it exceeds, the Cu diffuses to the surface layer to form an oxide, the contact resistance increases, the electrical reliability decreases, and the bending workability decreases. Therefore, the Cu content of the Cu—Sn alloy coating layer is 20 to 70 at%. Preferably it is 45-65 at%.
This Cu—Sn alloy coating layer is generally formed by interdiffusion of Cu and Sn in the Cu plating layer and the Sn plating layer by a reflow process. However, it can also be formed by directly performing Cu—Sn alloy plating with the above composition.

(Sn被覆層)
表面めっき層のうちSn被覆層は、耐食性と電気接点としての信頼性を確保するために施される。Sn被覆層の平均厚さが0.1μm未満では耐食性及び電気接点としての信頼性が不充分であり、2.5μmを超えるとコストアップと同時に外観上ムラが多くなる。従って、Sn被覆層の平均厚さは0.1〜2.5μmとする。好ましくは0.2〜2.0μm、さらに好ましくは0.5〜1.5μmである。Sn被覆層は、純Snのみでなく、Cu、Ag、Ni、Co、Bi、P、Zn等の群より選んだ1種以上の元素を1〜10質量%程度含むSn合金を含む。このSn被覆層は、Cu−Sn合金被覆層がリフロー処理によりCuめっき層とSnめっき層のCuとSnが相互拡散して形成される場合に、Cu−Sn合金被覆層の形成後も表面めっき層の最上層として残留する層である。Cu−Sn合金被覆層が直接Cu−Sn合金めっきを行うことにより形成される場合も、Snめっき層にはリフロー処理が施される。
(Sn coating layer)
Of the surface plating layer, the Sn coating layer is applied to ensure corrosion resistance and reliability as an electrical contact. If the average thickness of the Sn coating layer is less than 0.1 μm, the corrosion resistance and the reliability as an electrical contact are insufficient, and if it exceeds 2.5 μm, the cost increases and unevenness in appearance increases. Therefore, the average thickness of the Sn coating layer is 0.1 to 2.5 μm. Preferably it is 0.2-2.0 micrometers, More preferably, it is 0.5-1.5 micrometers. The Sn coating layer includes not only pure Sn but also an Sn alloy containing about 1 to 10% by mass of one or more elements selected from the group of Cu, Ag, Ni, Co, Bi, P, Zn and the like. This Sn coating layer is formed by surface plating even when the Cu-Sn alloy coating layer is formed when the Cu-Sn alloy coating layer is formed by mutual diffusion of Cu and Sn of the Cu plating layer and the Sn plating layer by reflow treatment. It is the layer that remains as the top layer of the layer. Even when the Cu—Sn alloy coating layer is formed by directly performing Cu—Sn alloy plating, the Sn plating layer is subjected to reflow treatment.

(Ni被覆層)
表面めっき層のうちNi被覆層は、めっき基材である銅又は銅合金板材とCu−Sn合金被覆層の中間層として形成されている場合に、Cu−Sn合金被覆層及びSn被覆層への銅又は銅合金板材からのCuの拡散を防止するために施される。Cu−Sn合金被覆層とNi被覆層の拡散防止効果の相違については、Cu−Sn合金被覆層と比較してNi被覆層はより高温環境下を想定した場合でも、拡散防止効果を発揮する。このNi被覆層の平均厚さが0.1μm未満では、拡散防止効果が不充分であり、CuがSn被覆層の表層まで拡散して酸化物を形成し、変色と共に接触抵抗が高くなり、電気的信頼性がかえって低下する。一方、1.0μmを超えると曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Ni被覆層を形成する場合、その平均厚さは0.1〜1.0μmとする。好ましくは0.1〜0.5μmである。Ni被覆層は純Niのみでなく、Cu、Ag、Sn、Co、P、B等の群より選んだ1種以上の元素を1〜10質量%程度含むNi合金を含む。
(Ni coating layer)
Of the surface plating layers, the Ni coating layer is formed as an intermediate layer between the copper or copper alloy plate material that is the plating base and the Cu-Sn alloy coating layer, and is applied to the Cu-Sn alloy coating layer and the Sn coating layer. It is applied to prevent the diffusion of Cu from the copper or copper alloy sheet. Regarding the difference in the diffusion prevention effect between the Cu—Sn alloy coating layer and the Ni coating layer, the Ni coating layer exhibits the diffusion prevention effect even when a higher temperature environment is assumed compared to the Cu—Sn alloy coating layer. When the average thickness of the Ni coating layer is less than 0.1 μm, the diffusion preventing effect is insufficient, Cu diffuses to the surface of the Sn coating layer to form an oxide, and the contact resistance increases with discoloration. The reliability of the machine is reduced. On the other hand, if it exceeds 1.0 μm, the formability to the terminal is deteriorated, for example, cracking occurs in bending. Therefore, when forming a Ni coating layer, the average thickness shall be 0.1-1.0 micrometer. Preferably it is 0.1-0.5 micrometer. The Ni coating layer contains not only pure Ni but also a Ni alloy containing about 1 to 10% by mass of one or more elements selected from the group of Cu, Ag, Sn, Co, P, B and the like.

(Cu被覆層)
Cu被覆層は、リフロー処理によってCuめっき層のCuとSnめっき層のSnからCu−Sn合金が形成される際に、Cuめっき層が全て消滅せず、一部が残留する場合に形成される。残留するCu被覆層は、平均厚さ0.1μm以上存在することでめっき基材である銅合金板材中の合金元素やNi被覆層中のNiの拡散防止層の役割を有するが、表面へCuが拡散することによる耐食性の低下やめっき剥離の可能性があるため、平均厚さは0.5μm以下に制限される。Cu被覆層は純Cuのみでなく、Sn、Zn等の他の元素を含んでいてもよい。Snの場合は50質量%以下、他の元素については5質量%以下であることが望ましい。また、銅合金板材に含まれる成分が少量混入していてもよい。
(Cu coating layer)
When the Cu-Sn alloy is formed from Cu of the Cu plating layer and Sn of the Sn plating layer by the reflow process, the Cu coating layer is formed when the Cu plating layer does not completely disappear and a part remains. . The remaining Cu coating layer has an average thickness of 0.1 μm or more, so that it has a role of an anti-diffusion layer of alloy elements in the copper alloy plate material that is the plating base and Ni in the Ni coating layer. The average thickness is limited to 0.5 μm or less because there is a possibility that the corrosion resistance is reduced and the plating is peeled off due to diffusion. The Cu coating layer may contain not only pure Cu but also other elements such as Sn and Zn. In the case of Sn, it is desirable that it is 50 mass% or less, and about 5 mass% or less about another element. Further, a small amount of components contained in the copper alloy sheet may be mixed.

(黒鉛粒子)
Sn被覆層の表面に付着・分散している黒鉛粒子は、せん断力が非常に低く、潤滑性を有しているため、嵌合型端子の摺動部における摩擦係数を低減し、これにより挿入力の大幅な低減が可能となる。
小径(粒径が2μm未満)の黒鉛粒子は摩擦係数の低減に対して効果が小さい。そして潤滑効果の大きい粒径2μm以上の黒鉛粒子について、その平均粒径が3μm未満では、摺動時に接触面に噛み込まれない確率が高くなり、また、噛み込まれたとしても黒鉛粒子が小さいため、へき開を起こしても潤滑効果が少ない。一方、その平均粒径が30μmを超えると、摺動時に大きな黒鉛が噛み込まれへき開するため、十分な潤滑効果は得られるが、逆に、錫同士の接点における接触面積が確保しづらくなり、電気信頼性が損なわれる可能性がある。
(Graphite particles)
Graphite particles adhering to and dispersing on the surface of the Sn coating layer have a very low shearing force and lubricity, so that the friction coefficient at the sliding part of the mating type terminal is reduced, thereby inserting the graphite particles. The power can be greatly reduced.
Graphite particles having a small diameter (particle diameter of less than 2 μm) are less effective for reducing the friction coefficient. For graphite particles having a particle size of 2 μm or more with a large lubricating effect, if the average particle size is less than 3 μm, there is a high probability that the particles will not be caught in the contact surface during sliding, and even if they are caught, the graphite particles are small. Therefore, even if cleavage occurs, the lubricating effect is small. On the other hand, when the average particle size exceeds 30 μm, large graphite is bitten and cleaved during sliding, so that a sufficient lubricating effect is obtained, but conversely, it is difficult to secure a contact area at the contact point between tins, Electrical reliability may be impaired.

黒鉛粒子が前記表面めっき層表面を被う面積比率は、表面めっき層表面に占める黒鉛粒子の面積割合を意味し、これが30%を超えると錫同士の接点における接触面積が確保しづらくなり、電気的信頼性が損なわれる可能性がある。一方、黒鉛粒子のうち潤滑効果の大きい粒径2μm以上の黒鉛粒子の面積比率が3%未満では嵌合型端子の摺動部において潤滑効果が得られない。
また、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の個数の割合が3%未満では、挿入力を低減するのに必要な黒鉛粒子が嵌合型端子の摺動部にかみ込まず、十分な潤滑効果が得られない。
The area ratio of the graphite particles covering the surface plating layer surface means the area ratio of the graphite particles occupying the surface plating layer surface. If this exceeds 30%, it becomes difficult to ensure the contact area at the contact point between the tins. Reliability may be compromised. On the other hand, if the area ratio of graphite particles having a large particle size of 2 μm or more among the graphite particles is less than 3%, the lubricating effect cannot be obtained at the sliding portion of the fitting type terminal.
Further, if the ratio of the number of particles having a particle size of 10 μm or more among the graphite particles having a particle size of 2 μm or more is less than 3%, the graphite particles necessary for reducing the insertion force do not bite into the sliding portion of the fitting type terminal, A sufficient lubricating effect cannot be obtained.

従って、本発明では、黒鉛粒子は表面めっき層表面を面積比率30%以下で被い、かつ黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上(30%以下)で被い、そのうち粒径10μm以上の粒子の個数の割合が3%以上とする。好ましくは、粒径2μm以上の黒鉛粒子について、平均粒径が5〜25μm、面積比率が5〜28%、粒径10μm以上の占める個数の割合が5〜40%、さらに好ましくは、平均粒径が10〜15μm、面積比率が10〜20%、粒径10μm以上の占める個数の割合が20〜35%である。図1に黒鉛粒子が付着した表面めっき層表面の実体顕微鏡写真を示す。
使用する黒鉛粒子の形状・性質については、形状は燐片状、土状、塊状のうち、燐片状のものが望ましく、純度が高く、不純物が少ないものが望ましい。
Therefore, in the present invention, the graphite particles cover the surface plating layer surface with an area ratio of 30% or less, and among the graphite particles, the average particle size of graphite particles having a particle size of 2 μm or more is 3 to 30 μm, and the surface plating layer surface Is covered with an area ratio of 3% or more (30% or less), of which the ratio of the number of particles having a particle diameter of 10 μm or more is 3% or more. Preferably, for graphite particles having a particle diameter of 2 μm or more, the average particle diameter is 5 to 25 μm, the area ratio is 5 to 28%, the ratio of the number of particles having a particle diameter of 10 μm or more is 5 to 40%, more preferably the average particle diameter Is 10 to 15 μm, the area ratio is 10 to 20%, and the ratio of the number of particles having a particle diameter of 10 μm or more is 20 to 35%. FIG. 1 shows a stereoscopic microscope photograph of the surface plating layer surface to which the graphite particles are attached.
Regarding the shape and properties of the graphite particles to be used, the shape is preferably a flake shape, a flake shape, a soil shape, or a lump shape, and preferably has a high purity and few impurities.

(特性)
本発明に係る嵌合型端子用銅又は銅合金板材は、上記表面めっき層構成においてSn被覆層表面に黒鉛粒子を付着させることにより、実施例に示すように、動摩擦係数0.30以下、接触抵抗値2.0mΩ以下、及び優れた曲げ性を実現することができる。
(Characteristic)
The copper or copper alloy plate material for mating type terminals according to the present invention has a dynamic friction coefficient of 0.30 or less, contact, as shown in the examples, by adhering graphite particles to the Sn coating layer surface in the above surface plating layer configuration. A resistance value of 2.0 mΩ or less and excellent bendability can be realized.

(製造方法)
上記嵌合型端子用銅又は銅合金板材は、めっき基材である銅又は銅合金板上に、Niめっき層(必要に応じて)、Cuめっき層、及びSnめっき層をこの順に形成し、Snめっき層の表面に、燐片状黒鉛を付着させ、続いてリフロー処理を行って製造することができる。リフロー処理は230℃〜600℃の温度で3〜30秒間加熱する熱処理が望ましい。
なお、Niめっき層、Cuめっき層及びSnめっき層が、それぞれNi合金、Cu合金及びSn合金からなる場合、先にNi被覆層、Cu被覆層及びSn被覆層に関して説明した各合金を用いることができる。
(Production method)
The copper or copper alloy plate material for fitting type terminals is formed with a Ni plating layer (if necessary), a Cu plating layer, and a Sn plating layer in this order on a copper or copper alloy plate which is a plating substrate. It can be produced by attaching flake graphite to the surface of the Sn plating layer and subsequently performing a reflow treatment. The reflow treatment is preferably a heat treatment in which heating is performed at a temperature of 230 ° C. to 600 ° C. for 3 to 30 seconds.
In addition, when the Ni plating layer, the Cu plating layer, and the Sn plating layer are respectively made of a Ni alloy, a Cu alloy, and a Sn alloy, it is possible to use the respective alloys described above regarding the Ni coating layer, the Cu coating layer, and the Sn coating layer. it can.

錫めっき付き銅又は銅合金板材(リフロー処理前)の表面に黒鉛粒子を付着させるには、Snめっき後、板材の表面(片面又は両面)に、エアー等により黒鉛粒子を吹き付ける、黒鉛粒子を懸濁させたアルコールを吹き付ける、黒鉛粒子を充填した容器中を板材を通過させ、あるいは板材を通板しながらその表面に黒鉛粒子を落下させ、その後エアブローして余分な黒鉛粒子を除去する、等の方法が可能である。
黒鉛粒子がSnめっき層表面に不均一に(一部が凝集した状態で)付着していても、続いてSnめっき層をリフロー処理して溶融させることで、比重の軽い黒鉛粒子はSnめっき表層に均一に分散し、Sn被覆層表面に付着する。Sn被覆層表面に単に物理的に付着させた黒鉛粒子は結合が微弱であり、脱脂工程や拭き取りによって脱離しやすいのに対して、上記工程で製造することによってSn被覆層表面への付着が強固となり、脱脂工程や拭き取りによる脱離を最小限に抑え、低摩擦効果を維持することができる。従って、リフロー処理後に黒鉛粒子を付着させるより、リフロー処理前に付着させておくことが望ましい。
To attach graphite particles to the surface of a tin-plated copper or copper alloy sheet (before reflow treatment), after Sn plating, the graphite particles are blown onto the surface (one or both sides) of the sheet by air or the like. Spraying turbid alcohol, passing a plate material through a container filled with graphite particles, or dropping graphite particles on the surface while passing the plate material, then air blowing to remove excess graphite particles, etc. A method is possible.
Even if the graphite particles adhere non-uniformly (partially in an aggregated state) to the Sn plating layer surface, the Sn plating layer can be melted by reflowing the Sn plating layer. Are uniformly dispersed and adhere to the surface of the Sn coating layer. Graphite particles that are simply physically attached to the surface of the Sn coating layer are weakly bonded and easily detached by the degreasing process or wiping, whereas the adhesion to the surface of the Sn coating layer is strong by manufacturing in the above process. Thus, desorption due to a degreasing process or wiping can be minimized, and a low friction effect can be maintained. Therefore, it is desirable to adhere the graphite particles before the reflow treatment, rather than the graphite particles after the reflow treatment.

リフロー処理後に表面めっき層の表面に黒鉛粒子を付着させた錫めっき付き銅又は銅合金板材と、表面めっき層の表面に黒鉛粒子を付着させた後リフロー処理した錫めっき付き銅又は銅合金板材とは明確に区別できる。目視観察すると、前者(図2上段)は表面めっき層の表面を黒鉛粒子が黒々と被い、鏡面光沢が見られない状態となっているのに対し、後者(図2下段)はある程度の鏡面光沢を有し、表面に薄く黒鉛の被膜が付いたような状態で外観がほとんど一般的なリフロー錫めっきと変わらない。また、実体顕微鏡写真を見ると、前者(図3上段)は黒鉛粒子の一部が凝集した状態であるが、後者(図3下段)はほぼ均一に分散した状態となっている。さらに、例えばアセトン超音波脱脂及び拭き取りを行ったとき、前者は脱離する黒鉛粒子が多いが、後者は少なく相違は顕著である。   A tin-plated copper or copper alloy plate material with graphite particles attached to the surface of the surface plating layer after the reflow treatment, and a tin-plated copper or copper alloy plate material with graphite particles attached to the surface of the surface plating layer and then reflow treatment; Are clearly distinguishable. When visually observed, the former (the upper part of FIG. 2) covers the surface of the surface plating layer with black graphite particles, and the mirror gloss is not seen, whereas the latter (the lower part of FIG. 2) has a certain mirror surface. The appearance is almost the same as a general reflow tin plating in the state that it has a gloss and has a thin graphite film on its surface. Further, from a stereoscopic micrograph, the former (the upper part in FIG. 3) is in a state where some of the graphite particles are aggregated, while the latter (the lower part in FIG. 3) is in a substantially uniformly dispersed state. Further, for example, when acetone ultrasonic degreasing and wiping are performed, the former has many graphite particles to be detached, but the latter is small and the difference is remarkable.

上記製造方法において、めっき基材である銅又は銅合金板上に形成するNiめっき層、Cuめっき層、Snめっき層は、いずれも電気めっきで形成するのが望ましい。無電解めっきで行う方法もあるが、還元剤がめっき皮膜中に取り込まれ、高温放置後にボイドを発生する。
電気めっきの望ましい条件として、Niめっきのめっき浴としては、ワット浴やスルファミン酸浴を用いる。めっき条件は、温度45℃〜60℃、電流密度3〜20A/dmで行う。Niめっきで重要なのは電流密度であり、3A/dm未満では均一電着性が悪く、20A/dmを超えるとNiめっき粒が荒れてくる。
In the above manufacturing method, it is desirable that the Ni plating layer, the Cu plating layer, and the Sn plating layer formed on the copper or copper alloy plate as the plating base material are all formed by electroplating. Although there is a method of performing electroless plating, the reducing agent is taken into the plating film, and voids are generated after being left at a high temperature.
As a desirable condition for electroplating, a watt bath or a sulfamic acid bath is used as a plating bath for Ni plating. The plating conditions are a temperature of 45 ° C. to 60 ° C. and a current density of 3 to 20 A / dm 2 . What is important in the Ni plating is the current density. If it is less than 3 A / dm 2 , the throwing power is poor, and if it exceeds 20 A / dm 2 , the Ni plating grains become rough.

Cuめっきのめっき浴としては、通常はシアン浴を用いるが、Snめっき液へのシアン混入による液劣化や排水処理の問題があるため、硫酸浴が望ましい。めっき条件は、温度30℃〜40℃、電流密度2.5〜10A/dmである。温度が40℃を超えるとCuめっき粒が荒れ、均一な厚みのCuめっき層ができなくなる。一方、温度が30℃未満になると、Cuめっき粒は荒れないが、均一電着性が悪くなる。
Snめっきのめっき浴としては、硫酸浴を用いる。めっき条件は、温度25℃以下、電流密度2〜10A/dmで行う。
As a plating bath for Cu plating, a cyan bath is usually used, but a sulfuric acid bath is desirable because there is a problem of liquid deterioration and wastewater treatment due to cyan mixing in the Sn plating solution. The plating conditions are a temperature of 30 ° C. to 40 ° C. and a current density of 2.5 to 10 A / dm 2 . When the temperature exceeds 40 ° C., Cu plating grains are rough, and a Cu plating layer having a uniform thickness cannot be formed. On the other hand, when the temperature is less than 30 ° C., the Cu plating grains are not roughened, but the throwing power is deteriorated.
A sulfuric acid bath is used as a plating bath for Sn plating. The plating conditions are a temperature of 25 ° C. or less and a current density of 2 to 10 A / dm 2 .

リフロー処理の加熱条件については、230℃未満ではSnが溶融せず、600℃を超えるとめっき基材である銅又は銅合金板が軟化し、歪が発生する。加熱時間が3秒未満では熱伝達が不均一となりリフロー後の外観ムラが発生し、30秒を超えると表面のSnめっき層の酸化が進行し、接触抵抗が高くなる。このリフロー処理を行うことによって、Cuめっき層とSnめっき層からCuとSnが相互拡散してCu−Sn合金被覆層が形成され、めっきの残留応力が緩和され、ウィスカが発生しなくなる。また、リフロー処理を行うことで、前記のとおり表面に均一な割合で黒鉛粒子を付着・分散させることができる。いずれにしても、Cu−Sn合金層を均一に成長させるためには、リフロー処理はSnが溶融する温度で、300℃以下のできるだけ少ない熱量で行うのが望ましい。
リフロー処理によってCuめっき層が全て消滅せず、一部が残留する場合、残留するCuめっき層の平均厚さは0.5μm以下に制限される。
As for the heating conditions for the reflow treatment, Sn does not melt at temperatures below 230 ° C., and when it exceeds 600 ° C., the copper or copper alloy plate as the plating base material is softened and distortion occurs. If the heating time is less than 3 seconds, the heat transfer is non-uniform and uneven appearance after reflow occurs, and if it exceeds 30 seconds, the oxidation of the Sn plating layer on the surface proceeds and the contact resistance increases. By performing this reflow treatment, Cu and Sn are mutually diffused from the Cu plating layer and the Sn plating layer to form a Cu—Sn alloy coating layer, the residual stress of plating is relaxed, and whiskers are not generated. Further, by performing the reflow treatment, the graphite particles can be adhered and dispersed on the surface at a uniform rate as described above. In any case, in order to uniformly grow the Cu—Sn alloy layer, it is desirable that the reflow process is performed at a temperature at which Sn melts and with a heat quantity as low as possible of 300 ° C. or less.
When the Cu plating layer is not completely disappeared by the reflow process and a part thereof remains, the average thickness of the remaining Cu plating layer is limited to 0.5 μm or less.

これまで、本発明に係る表面めっき層の製造方法に関しては、銅又は銅合金板材にNiめっき層(必要に応じて)、Cuめっき層及びSnめっき層をこの順に形成してリフロー処理し、Cuめっき層とSnめっき層からCuとSnを相互拡散させてCu−Sn合金被覆層を形成する方法を説明したが、Niめっき層の上に(Niめっき層を形成しない場合は銅又は銅合金板材表面に)Cu−Sn合金めっき層を施し、その上にSnめっき層を形成することでも得ることができる。この場合も、Snめっき層の表面に前記燐片状黒鉛を付着させ、続いてSnめっき層のリフロー処理を行うことが望ましい。   Up to now, regarding the method for producing a surface plating layer according to the present invention, a Ni plating layer (if necessary), a Cu plating layer, and a Sn plating layer are formed in this order on a copper or copper alloy sheet, and a reflow treatment is performed. The method of forming a Cu-Sn alloy coating layer by interdiffusing Cu and Sn from the plating layer and the Sn plating layer has been described. On the Ni plating layer (if the Ni plating layer is not formed, copper or a copper alloy plate material) It can also be obtained by applying a Cu—Sn alloy plating layer on the surface and forming a Sn plating layer thereon. Also in this case, it is desirable to adhere the flake graphite to the surface of the Sn plating layer, and subsequently to perform a reflow treatment of the Sn plating layer.

厚さ0.25mm、幅50mm、長さ100mmのCu−Ni−Si系銅合金板上に、Niめっき(一部のみ)、Cuめっき、Snめっきをそれぞれ所定の厚さで施し、錫めっき付き銅合金板材(No.1〜26)を作製した。Niめっき、Cuめっき及びSnめっきのめっき浴及びめっき条件を表1〜表3に、各めっき層の平均厚さを表4,5の初期表面めっき層の欄に示す。   Ni plating (only a part), Cu plating, and Sn plating are applied at a predetermined thickness on a Cu-Ni-Si-based copper alloy plate having a thickness of 0.25 mm, a width of 50 mm, and a length of 100 mm. Copper alloy sheet materials (No. 1 to 26) were produced. The plating baths and plating conditions for Ni plating, Cu plating and Sn plating are shown in Tables 1 to 3, and the average thickness of each plating layer is shown in the column of initial surface plating layer in Tables 4 and 5.

なお、初期表面めっき層(リフロー処理前)を構成する各めっき層の平均厚さは下記要領で測定した。
[Niめっき層及びSnめっき層の厚さ測定]
蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いて平均厚さを測定した。
[Cuめっき層の厚さ測定]
ミクロトーム法にて加工した板材の断面をSEM観察し、画像解析処理により平均厚さを算出した。
In addition, the average thickness of each plating layer which comprises an initial stage surface plating layer (before reflow process) was measured in the following way.
[Measurement of thickness of Ni plating layer and Sn plating layer]
The average thickness was measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT156A).
[Cu plating layer thickness measurement]
The cross section of the plate material processed by the microtome method was observed with an SEM, and the average thickness was calculated by image analysis processing.

続いて、この錫めっき付き銅合金板材の表面に燐片状の黒鉛粒子を付着させ(No.11,25は付着させず)、リフロー処理を行い、これを供試材とした。リフロー処理後の表面めっき層を構成する各被覆層の平均厚さを表4,5のリフロー後の表面めっき層の欄に示し、表面に付着した黒鉛粒子の面積比率、粒径2μm以上の黒鉛粒子の平均粒径、そのうち粒径10μm以上の粒子の個数の割合を、同じく表4,5に示す。なお、粒径2μm未満の黒鉛粒子の面積比率はいずれも1%以下であった。表4,5には粒径2μm以上の黒鉛粒子の面積比率のみを示す。   Subsequently, scaly graphite particles were adhered to the surface of the tin-plated copper alloy sheet (No. 11 and 25 were not adhered), and a reflow treatment was performed, which was used as a test material. The average thickness of each coating layer constituting the surface plating layer after the reflow treatment is shown in the column of the surface plating layer after reflow in Tables 4 and 5, and the area ratio of the graphite particles adhering to the surface, graphite having a particle size of 2 μm or more Tables 4 and 5 show the average particle diameter of the particles, and the ratio of the number of particles having a particle diameter of 10 μm or more. The area ratio of graphite particles having a particle diameter of less than 2 μm was 1% or less. Tables 4 and 5 show only the area ratio of graphite particles having a particle diameter of 2 μm or more.

各被覆層(リフロー処理後)の平均厚さは下記要領で測定し、Cu−Sn合金被覆層中のCu含有量について下記要領で確認した。また、黒鉛粒子の面積比率、黒鉛粒子の平均粒径、及び粒径10μm以上の粒子の個数の割合について、下記要領で測定した。
[Sn被覆層の厚さ測定]
まず、蛍光X線膜厚計(セイコー電子工業株式会社;型式SFT156A)を用いてSnめっき厚さを測定する。その後、p−ニトロフェノール及び苛性ソーダを成分とする剥離液に10分間浸漬し、Sn層を剥離後、再度、蛍光X線膜厚計で、Cu−Sn合金層中のSn量を測定する。このようにして求めたSnめっき厚さからCu−Sn合金層中のSn量を差引くことにより、Sn層厚さを算出した。
The average thickness of each coating layer (after reflow treatment) was measured in the following manner, and the Cu content in the Cu-Sn alloy coating layer was confirmed in the following manner. Further, the area ratio of the graphite particles, the average particle diameter of the graphite particles, and the ratio of the number of particles having a particle diameter of 10 μm or more were measured in the following manner.
[Sn coating layer thickness measurement]
First, the Sn plating thickness is measured using a fluorescent X-ray film thickness meter (Seiko Electronics Co., Ltd .; model SFT156A). Then, after dipping in a stripping solution containing p-nitrophenol and caustic soda as components for 10 minutes and stripping the Sn layer, the amount of Sn in the Cu-Sn alloy layer is again measured with a fluorescent X-ray film thickness meter. The Sn layer thickness was calculated by subtracting the Sn amount in the Cu—Sn alloy layer from the Sn plating thickness thus determined.

[Cu−Sn合金被覆層の厚さ測定]
Cu−Sn合金層の厚さは、上記の剥離液に供試材を浸漬しSn層を剥離した後、蛍光X線膜厚計を用いて測定した。
[Cu被覆層の厚さ測定]
Cu被覆層の厚さは、ミクロトーム法にて加工した板材の断面をSEM観察し、画像解析処理により平均厚さとして算出した。
[Ni被覆層の厚さ測定]
Ni被覆層の厚さは、蛍光X線膜厚計を用いて測定した。
[Measurement of thickness of Cu-Sn alloy coating layer]
The thickness of the Cu—Sn alloy layer was measured using a fluorescent X-ray film thickness meter after immersing the test material in the above stripping solution and stripping the Sn layer.
[Cu coating layer thickness measurement]
The thickness of the Cu coating layer was calculated as an average thickness by SEM observation of the cross section of the plate material processed by the microtome method, and image analysis processing.
[Measurement of Ni coating layer thickness]
The thickness of the Ni coating layer was measured using a fluorescent X-ray film thickness meter.

[Cu−Sn合金中のCu含有量(at%)測定]
まず、p−ニトロフェノール及び苛性ソーダを成分とする剥離液に10分間浸漬し、最表面のSn層を除去する。その後、試料表面の酸化及び汚れ等の付着物の影響をなくすため深さ300Åの地点までアルゴンエッチングし、Cu−Sn合金層中のCu含有量をESCA−LAB210D(VG社製)で測定した。No.1〜25のCu含有量はいずれも55at%(CuSnの組成)であった。
[Measurement of Cu content (at%) in Cu-Sn alloy]
First, the outermost Sn layer is removed by immersing in a stripping solution containing p-nitrophenol and caustic soda as components for 10 minutes. Thereafter, the surface of the sample was subjected to argon etching to a depth of 300 mm in order to eliminate the influence of oxidation and contamination on the sample surface, and the Cu content in the Cu—Sn alloy layer was measured with ESCA-LAB210D (manufactured by VG). No. The Cu contents of 1 to 25 were all 55 at% (composition of Cu 6 Sn 5 ).

[黒鉛粒子の面積比率]
黒鉛粒子が付着した供試材の表面を、実体顕微鏡により観察して表面の画像(倍率×500,面積500μm×670μm)を取得し、その画像を元に、粒径2μm以上の全ての黒鉛粒子の面積を画像解析ソフトによって算出し、その面積の総和を画像中に占める粒径2μm以上の黒鉛粒子の総面積とし、これを画像全体の面積で除した値を粒径2μm以上の黒鉛粒子の面積比率とした。実体顕微鏡の画像の一例を図1に示す。一方、粒径2μm未満の黒鉛粒子の面積比率は、より拡大した(倍率の高い)画像を取得し、前記と同様の画像解析の手法で求めた。その結果、本実施例において粒径2μm未満の黒鉛粒子の面積比率は極めて小さく、いずれも1%以下と算出された。なお、この結果は、前記500倍の画像を用いて事前に目視判定した結果(1%以下と判定)と一致した。
[Area ratio of graphite particles]
The surface of the test material to which the graphite particles are adhered is observed with a stereomicroscope to obtain a surface image (magnification × 500, area 500 μm × 670 μm). Based on the image, all the graphite particles having a particle size of 2 μm or more are obtained. Is calculated by image analysis software, and the sum of the areas is defined as the total area of graphite particles having a particle size of 2 μm or more in the image, and the value obtained by dividing this by the area of the entire image is calculated for the graphite particles having a particle size of 2 μm or more. The area ratio was used. An example of a stereoscopic microscope image is shown in FIG. On the other hand, the area ratio of the graphite particles having a particle diameter of less than 2 μm was obtained by obtaining a larger image (higher magnification) and using the same image analysis technique as described above. As a result, in this example, the area ratio of graphite particles having a particle diameter of less than 2 μm was extremely small, and both were calculated to be 1% or less. This result coincided with the result of visual judgment in advance using the 500 times image (determined to be 1% or less).

[平均粒径]
粒径2μm以上の黒鉛粒子の粒径は円相当直径(各粒子と同一面積の円の直径)とした。前記画像を元に、粒径2μm以上の全黒鉛粒子について粒径を求め、粒径の和を粒径2μm以上の全黒鉛粒子の数で除した値をその平均粒径とした。
[粒径10μm以上の割合]
前記画像を元に、粒径2μm以上の黒鉛粒子のうち粒径10μm以上の黒鉛粒子の割合を、粒径10μm以上の黒鉛粒子の数を粒径2μm以上の黒鉛粒子の全粒子数で除して求めた。
[Average particle size]
The particle diameter of graphite particles having a particle diameter of 2 μm or more was set to the equivalent circle diameter (the diameter of a circle having the same area as each particle). Based on the image, the particle size was obtained for all graphite particles having a particle size of 2 μm or more, and the average particle size was obtained by dividing the sum of the particle sizes by the number of all graphite particles having a particle size of 2 μm or more.
[Ratio of particle size of 10 μm or more]
Based on the image, the ratio of graphite particles having a particle size of 10 μm or more out of graphite particles having a particle size of 2 μm or more is divided by the total number of graphite particles having a particle size of 2 μm or more. Asked.

続いて、No.1〜26の供試材を用いて、動摩擦係数、接触抵抗値及び曲げ加工性について,下記要領で評価した。その結果を同じく表4,5に示す。
[動摩擦係数の測定方法]
端子嵌合時の挿入力の評価として、動摩擦係数を用いた。嵌合型端子の接点部の形状を想定して、供試材から切り出した板状の雄試験片を水平な台に固定し、その上に供試材を内径1.5mmで半球加工した雌試験片を置いて、錫めっき面同士を接触させ、雌試験片に荷重W(3.0N)をかけて雄試験片を押え、横型荷重測定機(アイコーエンジニアリング株式会社製Model−2152)を用いて、雄試験片を水平方向に引張り(摺動速度80mm/min)、摺動距離5mmまでの最大摩擦力Fを測定した。摩擦係数Fを下記式(1)により求めた。供試材は雄試験片に適用し、雌試験片は黒鉛が付着していない錫めっき付き銅合金材(表面めっき層として平均厚さ0.5μmのCu−Sn合金被覆層と平均厚さ0.5μmのSn被覆層を有するもの)を用いた。
摩擦係数=F/W・・・・(1)
Subsequently, no. Using the test materials 1 to 26, the dynamic friction coefficient, the contact resistance value, and the bending workability were evaluated in the following manner. The results are also shown in Tables 4 and 5.
[Measuring method of dynamic friction coefficient]
A dynamic friction coefficient was used as an evaluation of the insertion force at the time of terminal fitting. Assuming the shape of the contact part of the mating type terminal, a female plate obtained by fixing a plate-shaped male test piece cut out from the test material to a horizontal base and processing the test material with an inner diameter of 1.5 mm thereon Place the test piece, bring the tin-plated surfaces into contact with each other, apply a load W (3.0 N) to the female test piece to hold the male test piece, and use a horizontal load measuring machine (Model-2152 manufactured by Aiko Engineering Co., Ltd.). The male test piece was pulled in the horizontal direction (sliding speed 80 mm / min), and the maximum frictional force F up to a sliding distance of 5 mm was measured. The friction coefficient F was determined by the following formula (1). The test material was applied to a male test piece, and the female test piece was a copper alloy material with tin plating to which graphite was not attached (Cu-Sn alloy coating layer having an average thickness of 0.5 μm as a surface plating layer and an average thickness of 0). Having a Sn coating layer of 5 μm).
Friction coefficient = F / W (1)

[高温放置後の接触抵抗測定]
加熱時の電気接点における信頼性の評価として、高温放置後の接触抵抗値を用いた。供試材に対し大気中にて160℃×120hrの熱処理を行った後、接触抵抗を4端子法により、開放電圧20mV、電流10mA、荷重3N、摺動の条件にて測定した。
[曲げ加工性]
試験片を圧延方向が長手になるように切出し、JISH3110に規定されるW曲げ試験冶具を用い、圧延方向に対して直角方向となるように9.8×103Nの荷重で曲げ加工を施した。その後、ミクロトーム法にて、断面を切出し観察を行った。曲げ加工性の評価は、試験後の曲げ加工部に発生したクラックが銅合金板材へ伝播しないレベルを○と評価し、銅合金母材へ伝播し銅合金板材へクラックが発生するレベルを×と評価した。
[Measurement of contact resistance after standing at high temperature]
As an evaluation of the reliability of the electrical contact during heating, the contact resistance value after leaving at high temperature was used. After the heat treatment of 160 ° C. × 120 hr was performed on the test material in the air, the contact resistance was measured by a four-terminal method under the conditions of an open circuit voltage of 20 mV, a current of 10 mA, a load of 3 N, and sliding.
[Bending workability]
The test piece was cut out so that the rolling direction was long, and was bent with a load of 9.8 × 103 N so as to be perpendicular to the rolling direction using a W bending test jig defined in JISH3110. Then, the cross section was cut out and observed by the microtome method. For the evaluation of bending workability, the level at which the crack generated in the bent part after the test does not propagate to the copper alloy sheet is evaluated as ◯, and the level at which the crack propagates to the copper alloy base material and the crack occurs in the copper alloy sheet is evaluated as x. evaluated.

表4,5に示すように、リフロー後の表面めっき層の構成及び黒鉛粒子の分布形態に関する本発明の規定を満たすNo.1,5,12〜17,19は、いずれも動摩擦係数が従来例(No.11,25)に比べて大きく低下し、高温放置後の接触抵抗値が低く、かつ曲げ加工性が優れる。なお、Sn被覆層の平均厚さが大きいNo.5,19は、外観上のムラが若干見られた。
これに対し、黒鉛粒子の分布形態に関する本発明の規定のいずれかを満たさないNo.6〜10,21〜24は動摩擦係数の低下が少ないか、高温放置後の接触抵抗値が高くなっている。また、リフロー後の表面めっき層の構成に関する本発明の規定のいずれかを満たさないNo.2〜4,18,20は高温放置後の接触抵抗値が高いか、曲げ加工性が劣る。
As shown in Tables 4 and 5, No. 1 satisfying the provisions of the present invention regarding the structure of the surface plating layer after reflow and the distribution form of the graphite particles. As for 1, 5, 12-17, and 19, all, a dynamic friction coefficient falls large compared with a prior art example (No. 11, 25), the contact resistance value after high temperature leaving is low, and it is excellent in bending workability. In addition, No. with a large average thickness of Sn coating layer. Nos. 5 and 19 were slightly uneven in appearance.
On the other hand, No. which does not satisfy any of the provisions of the present invention regarding the distribution form of graphite particles. 6 to 10 and 21 to 24 have a small decrease in the dynamic friction coefficient or a high contact resistance value after being left at a high temperature. Moreover, No. which does not satisfy any of the provisions of the present invention relating to the configuration of the surface plating layer after reflow. Nos. 2 to 4, 18 and 20 have high contact resistance values after being left at high temperature or have poor bending workability.

Claims (11)

銅又は銅合金板材の表面に、平均厚さ0.1〜1.0μmのCu−Sn合金被覆層と、平均厚さ0.1〜2.5μmのSn被覆層からなる表面めっき層がこの順に形成され、前記Sn被覆層はリフロー処理されたもので、表面に黒鉛粒子が分散して付着し、前記黒鉛粒子が前記表面めっき層表面を面積比率30%以下で被い、かつ前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上で被い、そのうち粒径10μm以上の粒子の個数の割合が3%以上であることを特徴とする嵌合型端子用錫めっき付き銅又は銅合金板材。 On the surface of the copper or copper alloy sheet, a surface plating layer comprising a Cu—Sn alloy coating layer having an average thickness of 0.1 to 1.0 μm and an Sn coating layer having an average thickness of 0.1 to 2.5 μm in this order. The Sn coating layer is reflow-treated, and the graphite particles are dispersed and adhered to the surface, the graphite particles cover the surface plating layer surface with an area ratio of 30% or less, and the graphite particles Of these, the average particle diameter of graphite particles having a particle diameter of 2 μm or more is 3 to 30 μm, the surface plating layer surface is covered with an area ratio of 3% or more, and the ratio of the number of particles having a particle diameter of 10 μm or more is 3% or more. A copper or copper alloy sheet with tin plating for fitting type terminals. 銅又は銅合金板材の表面とCu−Sn合金被覆層の間にさらに平均厚さ0.5μm以下のCu被覆層が形成されていることを特徴とする請求項1に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 2. The fitting type terminal according to claim 1, wherein a Cu coating layer having an average thickness of 0.5 μm or less is further formed between the surface of the copper or copper alloy sheet and the Cu—Sn alloy coating layer. Copper or copper alloy sheet with tin plating. 前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が10〜15μmで、前記表面めっき層表面を面積比率10〜20%で被い、そのうち粒径10μm以上の粒子の個数の割合が20〜40%であることを特徴とする請求項1又は2に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 Of the graphite particles, the average particle size of graphite particles having a particle size of 2 μm or more is 10 to 15 μm, and the surface plating layer surface is covered with an area ratio of 10 to 20%, of which the ratio of the number of particles having a particle size of 10 μm or more is It is 20 to 40%, The copper or copper alloy board | plate material with a tin plating for fitting type terminals described in Claim 1 or 2. 表面めっき層の表面にCu−Sn合金被覆層が一部露出していることを特徴とする請求項1〜3のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 4. The copper or copper alloy plate with tin plating for fitting type terminals according to claim 1, wherein a part of the Cu-Sn alloy coating layer is exposed on the surface of the surface plating layer. 銅又は銅合金板材の表面に、平均厚さ0.1〜1.0μmのNi被覆層と、平均厚さ0.1〜1.0μmのCu−Sn合金被覆層と、平均厚さ0.1〜2.0μmのSn被覆層からなる表面めっき層がこの順に形成され、前記Sn被覆層はリフロー処理されたもので、表面に黒鉛粒子が分散して付着し、前記黒鉛粒子が前記表面めっき層表面を面積比率30%以下で被い、かつ前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が3〜30μmで、前記表面めっき層表面を面積比率3%以上で被い、そのうち粒径10μm以上の粒子の個数の割合が3%以上であることを特徴とする嵌合型端子用錫めっき付き銅又は銅合金板材。 On the surface of the copper or copper alloy sheet, an Ni coating layer having an average thickness of 0.1 to 1.0 μm, a Cu—Sn alloy coating layer having an average thickness of 0.1 to 1.0 μm, and an average thickness of 0.1 A surface plating layer comprising a Sn coating layer of ~ 2.0 μm is formed in this order, and the Sn coating layer is reflow-treated, and the graphite particles are dispersed and adhered to the surface, and the graphite particles are adhered to the surface plating layer. Covering the surface with an area ratio of 30% or less, and covering the surface plating layer surface with an area ratio of 3% or more with an average particle diameter of 3 to 30 μm of graphite particles having a particle diameter of 2 μm or more among the graphite particles, A copper or copper alloy plate material with tin plating for fitting type terminals, wherein the ratio of the number of particles having a particle size of 10 μm or more is 3% or more. Ni被覆層とCu−Sn合金被覆層の間にさらに平均厚さ0.5μm以下のCu被覆層が形成されていることを特徴とする請求項5に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 The tin coating for fitting type terminals according to claim 5, wherein a Cu coating layer having an average thickness of 0.5 μm or less is further formed between the Ni coating layer and the Cu—Sn alloy coating layer. Copper or copper alloy sheet. 前記黒鉛粒子のうち粒径2μm以上の黒鉛粒子の平均粒径が10〜15μmで、前記表面めっき層表面を面積比率10〜20%で被い、そのうち粒径10μm以上の粒子の個数の割合が20〜40%であることを特徴とする請求項5又は6に記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 Of the graphite particles, the average particle size of graphite particles having a particle size of 2 μm or more is 10 to 15 μm, and the surface plating layer surface is covered with an area ratio of 10 to 20%, of which the ratio of the number of particles having a particle size of 10 μm or more is It is 20 to 40%, The copper or copper alloy board | plate material with a tin plating for fitting type terminals described in Claim 5 or 6. 表面めっき層の表面にCu−Sn合金被覆層が一部露出していることを特徴とする請求項5〜7のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 The Cu-Sn alloy coating layer is partially exposed on the surface of the surface plating layer, and the copper or copper alloy sheet with tin plating for fitting type terminals described in any one of claims 5 to 7. 前記Sn被覆層は黒鉛粒子付着後にリフロー処理されたものであることを特徴とする請求項1〜8のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材。 The said Sn coating layer is a reflow-processed after graphite particle adhesion, The copper or copper alloy board | plate material with a tin plating for fitting type terminals described in any one of Claims 1-8 characterized by the above-mentioned. 銅又は銅合金板材の表面に、Cuめっき層とSnめっき層をこの順に形成し、Snめっき層の表面に黒鉛粒子を付着させ、次いでSnめっき層のリフロー処理を行うことを特徴とする請求項1〜4のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材の製造方法。 The Cu plating layer and the Sn plating layer are formed in this order on the surface of the copper or copper alloy sheet, the graphite particles are adhered to the surface of the Sn plating layer, and then the reflow treatment of the Sn plating layer is performed. The manufacturing method of the copper or copper alloy board | plate material with a tin plating for fitting type terminals described in any one of 1-4. 銅又は銅合金板材の表面に、Niめっき層とCuめっき層とSnめっき層をこの順に形成し、Snめっき層の表面に黒鉛粒子を付着させ、次いでリフロー処理を行うことを特徴とする請求項5〜8のいずれかに記載された嵌合型端子用錫めっき付き銅又は銅合金板材の製造方法。 The Ni plating layer, the Cu plating layer, and the Sn plating layer are formed in this order on the surface of the copper or copper alloy sheet, the graphite particles are adhered to the surface of the Sn plating layer, and then the reflow treatment is performed. The manufacturing method of the copper or copper alloy board | plate material with a tin plating for fitting type terminals described in any one of 5-8.
JP2010000504A 2010-01-05 2010-01-05 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same Expired - Fee Related JP5409401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000504A JP5409401B2 (en) 2010-01-05 2010-01-05 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000504A JP5409401B2 (en) 2010-01-05 2010-01-05 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2011140676A true JP2011140676A (en) 2011-07-21
JP5409401B2 JP5409401B2 (en) 2014-02-05

Family

ID=44456733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000504A Expired - Fee Related JP5409401B2 (en) 2010-01-05 2010-01-05 Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5409401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694997A (en) * 2015-03-13 2015-06-10 哈尔滨工程大学 Method for obtaining nano Cu-Sn-graphite composite coating and Cu-Sn-graphite electroplating solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6645337B2 (en) * 2016-04-20 2020-02-14 株式会社オートネットワーク技術研究所 Connection terminal and connection terminal pair

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025486A1 (en) * 1997-11-14 1999-05-27 Toyo Kohan Co., Ltd. Surface-treated steel sheet having lowered contact resistance and connecting terminal members made by using the same
JP2006097062A (en) * 2004-09-29 2006-04-13 Dowa Mining Co Ltd Tinning material
JP2007009304A (en) * 2005-07-04 2007-01-18 Dowa Holdings Co Ltd Composite plated material, and method for producing the same
JP2007092144A (en) * 2005-09-29 2007-04-12 Dowa Metaltech Kk Composite-plated material and production method therefor
JP2008248294A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Plated material having lubricative particle, method of manufacturing the same and electric or electronic component using the same
JP2009242925A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025486A1 (en) * 1997-11-14 1999-05-27 Toyo Kohan Co., Ltd. Surface-treated steel sheet having lowered contact resistance and connecting terminal members made by using the same
JP2006097062A (en) * 2004-09-29 2006-04-13 Dowa Mining Co Ltd Tinning material
JP2007009304A (en) * 2005-07-04 2007-01-18 Dowa Holdings Co Ltd Composite plated material, and method for producing the same
JP2007092144A (en) * 2005-09-29 2007-04-12 Dowa Metaltech Kk Composite-plated material and production method therefor
JP2008248294A (en) * 2007-03-29 2008-10-16 Furukawa Electric Co Ltd:The Plated material having lubricative particle, method of manufacturing the same and electric or electronic component using the same
JP2009242925A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Sn-PLATED COPPER OR COPPER ALLOY, AND PRODUCING METHOD FOR THE SAME

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104694997A (en) * 2015-03-13 2015-06-10 哈尔滨工程大学 Method for obtaining nano Cu-Sn-graphite composite coating and Cu-Sn-graphite electroplating solution

Also Published As

Publication number Publication date
JP5409401B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP4090302B2 (en) Conductive material plate for forming connecting parts
KR102059693B1 (en) Tin-plated copper alloy terminal material with excellent insertion and discharge performance and method of manufacturing the same
JP5263435B1 (en) Tin-plated copper alloy terminal material with excellent insertability
JP6160582B2 (en) Tin-plated copper alloy terminal material and manufacturing method thereof
JP2007100220A (en) Conducting material for connection parts and manufacturing method therefor
TW201413068A (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics and method of manufacturing the same
JP2015143385A (en) tin-plated copper alloy terminal material
JP2014208878A (en) Tin-plated copper alloy terminal material excellent in withdrawal property
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP2015110829A (en) Tin-plated copper-alloy terminal material
JP6201554B2 (en) Mating type connection terminal
JP5640922B2 (en) Tin-plated copper alloy terminal material with excellent insertability
JP4090483B2 (en) Conductive connection parts
JP2006152389A (en) COPPER-BASED MATERIAL WITH Sn COATING AND TERMINAL
TWI479052B (en) Tin plating materials
JP5409401B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP5306870B2 (en) Tin-plated copper alloy sheet for mating terminals
JP5419737B2 (en) Tin-plated copper alloy sheet for mating type terminal and method for manufacturing the same
JP4090488B2 (en) Conductive material plate for connecting part forming process and manufacturing method thereof
JP2005154819A (en) Fitting type connection terminal
JP2015124434A (en) Tin-plated copper-alloy terminal material
JP6443092B2 (en) Tin-plated copper alloy terminal material
JP5442385B2 (en) Conductive member and manufacturing method thereof
JP2016141835A (en) Tinned copper alloy terminal material
JP6217390B2 (en) Tin-plated copper alloy terminal material with excellent insertability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

R150 Certificate of patent or registration of utility model

Ref document number: 5409401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees