JP2009238918A - スピンフィルタ効果素子及びスピントランジスタ - Google Patents

スピンフィルタ効果素子及びスピントランジスタ Download PDF

Info

Publication number
JP2009238918A
JP2009238918A JP2008081297A JP2008081297A JP2009238918A JP 2009238918 A JP2009238918 A JP 2009238918A JP 2008081297 A JP2008081297 A JP 2008081297A JP 2008081297 A JP2008081297 A JP 2008081297A JP 2009238918 A JP2009238918 A JP 2009238918A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
semiconductor layer
spin
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008081297A
Other languages
English (en)
Inventor
Tomoo Sasaki
智生 佐々木
Masamichi Tagami
勝通 田上
Toru Oikawa
亨 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008081297A priority Critical patent/JP2009238918A/ja
Publication of JP2009238918A publication Critical patent/JP2009238918A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】素子抵抗が低く、且つ、スピン偏極電子注入効率、又はスピン依存散乱効率の高いスピンフィルタ効果素子、及び、そのようなスピンフィルタ効果素子を用いたスピントランジスタを提供する。
【解決手段】本発明に係るスピントランジスタ10は、強磁性層SMを含む強磁性積層体を有するソース電極層3と、強磁性層DMを含む強磁性積層体を有するドレイン電極層7と、ソース電極層3及びドレイン電極層7が設けられた半導体層9と、半導体層9に直接又はゲート絶縁層GIを介して設けられたゲート電極層GEとを備え、ソース電極層3とドレイン電極層7のうち少なくとも一方は、半導体層9と強磁性積層体SM、DMとの間に介在する酸化物半導体層SO、DOをさらに有し、酸化物半導体層SO、DOは、半導体層9と、強磁性積層体との間のトンネル障壁を形成することを特徴とする。
【選択図】図1

Description

本発明は、スピンフィルタ効果素子及びスピントランジスタに関する。
近年、スピンエレクトロニクスに対する研究が注目されている。スピントランジスタは、電子のスピンを利用したトランジスタであり、新技術のイノベーションを起こすものとして期待されている。スピントランジスタは、新たな構造の記憶素子や、多機能の論理回路として利用することもでき、また、磁性体プロセスを用いて製造されることから、磁性素子の制御素子としての利用も考えられる。
例えば、下記特許文献1の図11において、強磁性体からなるソース電極とドレイン電極との間に非磁性の半導体層を設け、この半導体層上にゲート絶縁層を介してゲート電極層を設けたスピントランジスタが開示されている。
この従来技術のスピントランジスタにおいては、ソース電極によってスピン偏極した電子が半導体層に注入される。即ち、ソース電極は通常の電極としての機能と、スピンフィルタ効果膜としての機能を兼ねており、半導体層と共にスピンフィルタ効果素子を構成している。
そして、半導体層のチャネルを通ってドレイン電極内に注入される電子は、その偏極の方向に依存して散乱される。換言すれば、ソース電極から半導体層内のチャネルに注入された電子は、半導体層とドレイン電極との界面でスピン依存散乱する。即ち、ドレイン電極は通常の電極としての機能と、特定の方向に偏極した電子を優先的に受け入れるスピンフィルタ効果膜としての機能とを兼ねており、半導体層と共にスピンフィルタ効果素子を構成している。そのため、ソース電極とドレイン電極の磁化方向が平行の場合には、ソース・ドレイン電極間の抵抗は小さくなり、反平行の場合にはその抵抗は大きくなる。
スピントランジスタの記憶素子等への応用を考えた場合、ソース電極とドレイン電極の磁化方向が平行の場合と反平行の場合における、ソース・ドレイン電極間の抵抗変化率(以下、「ソース・ドレイン電極間の磁気抵抗率」という。)は大きい程好ましい。そして、ソース・ドレイン電極間の磁気抵抗率は、ソース電極又はドレイン電極と半導体層とで構成されるスピンフィルタ効果素子のスピンフィルタ効果の強さ、言い換えると、ソース電極を含むスピンフィルタ効果素子のスピン偏極電子注入効率、及び、ドレイン電極を含むスピンフィルタ効果素子のスピン依存散乱効率に大きく依存する。
スピンフィルタ効果素子のスピン偏極電子注入効率、及びスピン依存散乱効率を向上させるための方法の一つとして、半導体層とスピンフィルタ膜との間にトンネル絶縁層を設ける方法が知られている(例えば、下記特許文献2)。この方法によれば、スピンフィルタ効果膜内でスピン偏極した電子がトンネル絶縁層をトンネルして半導体層内に移動する際(又は、半導体層内のスピン偏極電子がトンネル絶縁層をトンネルしてスピンフィルタ効果膜内に移動する際)にスピン情報を失う(スピン散乱する)確率を低減させることが可能であることが知られている。
特開2004−111904号公報 特開2004−186274号公報
しかしながら、上述のような従来のスピントランジスタにおいては、トンネル絶縁層を有するスピンフィルタ効果素子を利用しているため、素子抵抗が増大するという問題点があった。スピンフィルタ効果素子及びスピントランジスタの素子抵抗が増大すると、消費電力が増大したり、発熱量が多くなって素子が破壊されたりといった不具合が発生する場合がある。
本発明は、このような課題に鑑みてなされたものであり、素子抵抗が低く、且つ、スピン偏極電子注入効率、又はスピン依存散乱効率の高いスピンフィルタ効果素子、及び、そのようなスピンフィルタ効果素子を用いたスピントランジスタを提供することを目的とする。
上述の課題を解決するため、本発明に係るスピンフィルタ効果素子は、半導体層と、半導体層上に設けられた酸化物半導体層と、強磁性層を有し酸化物半導体層の半導体層側とは反対側に設けられた強磁性積層体とを備え、酸化物半導体層は、半導体層と、強磁性積層体との間のトンネル障壁を形成することを特徴とする。
本発明のスピンフィルタ効果素子によれば、強磁性層を有する強磁性積層体を備えているため、この強磁性積層体がスピンフィルタ効果を担うこととなる。そして、酸化物半導体層は、半導体層と強磁性積層体との間のトンネル障壁を形成しているため、強磁性積層体と半導体層との間に電圧を印加すると、これらの間にトンネル電流が流れる。さらに、トンネル障壁を酸化物半導体層で形成しているため、従来のように絶縁層でトンネル障壁を形成した場合と比較して、トンネル障壁高さが低くなる。そのため、素子抵抗が低く、且つ、スピン偏極電子注入効率又はスピン依存散乱効率の高いスピンフィルタ効果素子を得ることができる。
さらに、酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度は、半導体層を構成する半導体原子の電気陰性度よりも小さいことが好ましい。これにより、酸化物半導体層を構成する酸素原子が半導体層に移動する確率を低減させることができる。そのため、酸化物半導体層が半導体層によって還元されたり、酸化物半導体層を構成する原子のうち、酸素原子以外の原子が半導体層を構成する原子と結合したりする確率を低減させることができるため、酸化物半導体層の特性を安定化させることができる。また、半導体層が酸化物半導体層によって酸化される確率を低減させることができるため、半導体層の特性を安定化させることができる。その結果、特性の安定したスピンフィルタ効果素子が得られる。
また、本発明に係るスピントランジスタは、強磁性層を含む強磁性積層体を有するソース電極層と、強磁性層を含む強磁性積層体を有するドレイン電極層と、ソース電極層及びドレイン電極層が設けられた半導体層と、半導体層に直接又はゲート絶縁層を介して設けられたゲート電極層とを備え、ソース電極層とドレイン電極層のうち少なくとも一方は、半導体層と強磁性積層体との間に介在する酸化物半導体層をさらに有し、酸化物半導体層は、半導体層と、強磁性積層体との間のトンネル障壁を形成することを特徴とする。
本発明のスピントランジスタによれば、ゲート電極層に電圧を印加することにより、この電圧に対応して半導体層内にチャネルが形成されるため、ソース電極層から半導体層のチャネル内に流れ込むキャリアが増加する。そのため、通常の電界効果トランジスタと同様の機能を発揮する。また、この際、強磁性層を含む強磁性積層体を有するソース電極層はスピンフィルタ効果膜として機能するため、ソース電極層の磁化方向と同方向にスピン偏極したキャリアが半導体層に注入される。
そして、半導体層に注入されたスピン偏極キャリアは、ドレイン電極層に流れ込む。この際、強磁性層を含む強磁性積層体を有するドレイン電極層は、スピンフィルタ効果膜として機能するため、半導体層に注入されたスピン偏極キャリアは、半導体層とドレイン電極層との界面において、スピン依存散乱することとなる。
即ち、ソース電極層の磁化方向がドレイン電極層の磁化方向とは逆向きの場合、半導体層に注入されたスピン偏極キャリアは半導体層とドレイン電極層の界面において大部分が反射され、ドレイン電極層には流れ込みにくい。一方、ソース電極層の磁化方向がドレイン電極層の磁化方向と同一の場合、半導体層に注入されたスピン偏極キャリアは半導体層とドレイン電極層の界面を大部分が通過し、ドレイン電極層に流れ込み易い。そのため、ソース電極層とドレイン電極層の磁化方向が平行の場合と反平行の場合とでは、ソース・ドレイン電極層間の抵抗値が異なることとなる。
そして、本発明のスピントランジスタでは、酸化物半導体層は、半導体層と強磁性積層体との間のトンネル障壁を形成しているため、従来のように絶縁層でトンネル障壁を形成した場合と比較して、トンネル障壁高さが低くなる。そのため、素子抵抗が低く、且つ、スピン偏極電子注入効率の高いスピンフィルタ効果素子、及び/又は、スピン依存散乱効率の高いスピンフィルタ効果素子を用いたスピントランジスタが得られる。
さらに、酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度は、半導体層を構成する半導体原子の電気陰性度よりも小さいことが好ましい。これにより、酸化物半導体層を構成する酸素原子が半導体層に移動する確率を低減させることができる。そのため、酸化物半導体層が半導体層によって還元されたり、酸化物半導体層を構成する原子のうち、酸素原子以外の原子が半導体層を構成する原子と結合したりする確率を低減させることができるため、酸化物半導体層の特性を安定化させることができる。また、半導体層が酸化物半導体層によって酸化される確率を低減させることができるため、半導体層の特性を安定化させることができる。その結果、特性の安定したスピントランジスタが得られる。
さらに、酸化物半導体層は、その抵抗率が10−4Ωcm以上、10Ωcm以下であることが好ましい。これにより、酸化物半導体層は、その抵抗値が10−4Ωcm以上であるため、ソース電極層から半導体層へのスピン偏極電子注入効率が十分に高くすることができ、また、半導体層からドレイン電極層へ電子が移動する際のスピン依存散乱効果を高くすることができる。また、酸化物半導体層は、その抵抗値が10Ωcm以下であるため、スピントランジスタの素子抵抗を十分に低くすることができる。
さらに、半導体層はSiで構成されており、酸化物半導体層は、BeO、ZnO、CdO、及びInのいずれかの化合物で形成されていることが好ましい。
さらに、ソース電極層とドレイン電極層のうち少なくとも一方が有する強磁性積層体は、酸化物半導体層と強磁性層との間に非磁性金属層をさらに含むことが好ましい。これにより、ソース電極層とドレイン電極層のうち少なくとも一方と半導体層との間において、抵抗値の整合性を高めることができる。その結果、ソース電極層から半導体層へ電子が移動する際のスピン偏極電子注入効率を高めること、及び/又は、半導体層からドレイン電極層へ電子が移動する際のスピン依存散乱効果を高めることができる。
さらに、非磁性金属層は、Cu、Al、及びZnのうちのいずれかの金属、又はいずれかを含む合金であることが好ましい。
さらに、ソース電極層とドレイン電極層のうち少なくとも一方の磁化方向は固定されていることが好ましい。これにより、ソース電極層とドレイン電極層のそれぞれの磁化方向の相対的な角度を変更させることが容易になる。その結果、ソース・ドレイン電極間の抵抗値を容易に変化させることが可能なスピントランジスタを得ることができる。
さらに、ソース電極層とドレイン電極層の保磁力は、互いに異なることが好ましい。これにより、ソース電極層とドレイン電極層のそれぞれの磁化方向の相対的な角度を変更させることによってソース・ドレイン電極間の抵抗値をより容易に変化させることが可能なスピントランジスタを得ることができる。
さらに、ソース電極層とドレイン電極層の少なくとも一方は、形状異方性によってその磁化方向が固定されていることが好ましい。これにより、ソース電極層とドレイン電極層の少なくとも一方を適切な形状になるように形成するだけで、その磁化方向を固定することができる。
また、ソース電極層とドレイン電極層の少なくとも一方は、強磁性層と接する反強磁性層をさらに含み、ソース電極層とドレイン電極層の少なくとも一方の磁化方向は、反強磁性層からの交換結合磁界によって固定されていることが好ましい。これにより、ソース電極層やドレイン電極層の形状に関わらず、その磁化方向を固定することができる。
本発明によれば、素子抵抗が低く、且つ、スピン偏極電子注入効率、又はスピン依存散乱効率の高いスピンフィルタ効果素子、及び、そのようなスピンフィルタ効果素子を用いたスピントランジスタが提供される。
以下、実施の形態に係るスピンフィルタ効果素子及びスピントランジスタについて、添付図面を参照しながら詳細に説明する。なお、各図面において、同一要素には同一符号を用いることとし、重複する説明は省略する。また、図面中の構成要素内及び構成要素間の寸法比は、図面の見易さのため、それぞれ任意となっている。
図1は、本発明の実施形態に係るスピンフィルタ効果素子11、13を備えたスピントランジスタ10の縦断面構成を示す模式図である。
本実施形態に係るスピントランジスタ10は、半導体層9と、半導体層9に設けられたソース電極層3と、半導体層9に設けられたドレイン電極層7と、半導体層9にゲート絶縁層GIを介して設けられたゲート電極層GEとを備えている。スピントランジスタ10の積層方向は、図1のZ軸に沿った方向となる。
ソース電極層3は、強磁性層SMと、半導体層9と強磁性層SMとの間に介在する酸化物半導体層SOとを有している。そして、酸化物半導体層SOは、半導体層9と強磁性層SMとの間のトンネル障壁を形成するように薄く形成されている。そのため、半導体層9と強磁性層SMとの間に電圧を印加すると、これらの間にトンネル電流を流すことが可能となっている。なお、このトンネル電流は、後述のようにスピン偏極電子の移動によって生じるスピン偏極電流である。
ドレイン電極層7は、半導体層9上にソース電極層3と離間するように設けられており、ソース電極層3と同様の構成を有している。即ち、ドレイン電極層7は、強磁性層DMと、半導体層9と強磁性層DMとの間に介在する酸化物半導体層DOとを有している。そして、酸化物半導体層DOは、半導体層9と強磁性層DMとの間のトンネル障壁を形成するように薄く形成されている。そのため、半導体層9と強磁性層DMとの間に電圧を印加すると、これらの間にトンネル電流を流すことが可能となっている。なお、このトンネル電流は、後述のようにスピン偏極電子によるスピン偏極電流である。
ゲート電極層GEは、半導体層9のソース電極層3及びドレイン電極層7が設けられた側とは反対側にゲート絶縁層GIを介して設けられている。なお、ゲート電極層GEは、半導体層9のソース電極層3及びドレイン電極層7が設けられた側に設けてもよく、また、ゲート絶縁層GIを介さずに半導体層9とショットキー接触するように半導体層9に設けてもよい。
ソース電極層3とゲート電極層GEとの間にはゲート電圧VGSが印加可能となっており、ソース電極層3とドレイン電極層7との間には、ドレイン電圧VDSが印加可能となっている。ゲート電圧VGS及びドレイン電圧VDSの印加の有無は、それぞれ、ソース電極層3とゲート電極層GEとの間に介在するスイッチSW1及びソース電極層3とドレイン電極層7との間に介在するスイッチSW2によって決定される。
ソース電極層3が有する強磁性層SMの磁化方向SMM(ソース電極層3の磁化方向SMM)は、図1のY軸の正方向に沿った方向を向いており、後述のようにその方向に固定されている。また、ドレイン電極層7が有する強磁性層DMの磁化方向DMM(ドレイン電極層7の磁化方向DMM)は、図1のY軸の負方向に沿った方向を向いており、後述のようにその方向に固定されており、磁化方向DMMは外部磁場の印加等によって180度反転可能となっている。
半導体層9を構成する材料としては、SiやGaAs等の化合物半導体を用いることができる。なお、半導体層9の導電型はn型、p型のいずれであってもよい。
酸化物半導体層SO、DOを構成する材料は、酸化物半導体層SO、DOを構成する原子のうち、酸素原子以外の原子の電気陰性度が、半導体層9を構成する半導体原子の電気陰性度よりも小さくなるように選択することが好ましい。例えば、半導体層9がSiで構成されている場合、酸化物半導体層SO、DOは、Siよりも電気陰性度が小さいBe、Zn、Cd、又はInの酸化物であるBeO、ZnO、CdO、又はInで構成することが好ましい。また、酸化物半導体層SO、DOは、上述のようにそれぞれ半導体層9と強磁性層SMとの間、及び、半導体層9と強磁性層DMとの間のトンネル障壁を形成する膜厚となっており、例えば1〜5nmとなっている。また、酸化物半導体層SO、DOを構成する材料は、その抵抗率が10−4Ωcm以上、10Ωcm以下であることが好ましい。
強磁性層SM、DMは、例えばCoFe、NiFe、FeNiCo、CoFeB等の強磁性金属で形成することができ、その厚さは例えば10〜100nmである。なお、本実施形態においては、強磁性層SM及び強磁性層DMは、それぞれ単独で強磁性積層体となる。また、強磁性層SM及び強磁性層DM上に、ソース電極層3及びドレイン電極層7を保護するための金属材料等からなる保護層をさらに設けてもよい。この場合、強磁性層SMと保護層とで強磁性積層体となり、強磁性層DMと保護層とで強磁性積層体となる。
ゲート電極層GEは、例えば、Au、Ag、又はCu等の金属や、これらの金属を含む合金で形成することができ、その厚さは例えば5〜1000nmである。ゲート絶縁層GIは、例えばSiO、AlO等の非磁性の絶縁材料で形成することができる。
図2は、図1のZ軸方向から見たスピントランジスタ10の平面構成を示す図である。
図2に示すように、ソース電極層3は、Y軸に沿った方向に延びた平面形状となっている。具体的には、ソース電極層3は、一定幅のソース電極層中間部3aと、ソース電極層中間部3aの長手方向の両端に接する2つのソース電極層先端部3bとを有している。ソース電極層3がこのような形状となっているため、ソース電極層3の磁化方向SMMは、ソース電極層3の長手方向に向くこととなる。さらに、ソース電極層3の長手方向の両端部には先鋭な形状のソース電極層先端部3bが形成されているため、ソース電極層3が有する強磁性層SM(図1参照)内には磁区が形成され難くなっている。そのため、ソース電極層3の磁化方向SMMは外部磁場が印加等されても、その向きが非常に変化し難くなっており、ソース電極層3の磁化方向SMMは固定されている。
即ち、ソース電極層3の磁化方向SMMは、ソース電極層3の形状異方性によって固定されている。なお、ソース電極層3の磁化方向SMMが、図2のY軸の正方向を向く場合と、Y軸の負方向を向く場合の形状異方性エネルギーは同等となる。図2に示すようにソース電極層3の磁化方向SMMをY軸の正方向に向かせるには、例えば強い外部磁場をY軸の正方向に印加すればよい。その後、磁化方向SMMをY軸の負方向に向かせるには(磁化方向SMMを反転させるには)、例えば強い外部磁場をY軸の負方向に印加すればよい。
なお、本明細書において「磁性層の磁化方向が固定されている」とは、ノイズ磁界等によってはその磁化方向が変化しない状態を意味する。即ち、外部磁場の印加等を行っていない状態において磁性層の磁化方向は一定の方向を向いていることを意味する。そのため、磁性層の保磁力よりも大きな外部磁場を印加等すれば、磁性層の磁化方向を変更させることが可能である。また、ソース電極層3の保磁力の大きさは、例えば50〜500Oeとすることができる。
また、ドレイン電極層7は、ソース電極層3と同様にY軸に沿った方向に延びた平面形状となっている。しかし、ドレイン電極層7は、一定幅のドレイン電極層中間部7aの長手方向の一方の端部にのみドレイン電極層先端部7bが接しており、他方の端部には矩形状のドレイン電極層矩形部7cが接している点でソース電極層3の形状と異なる。ドレイン電極層7がこのような形状となっているため、ドレイン電極層7の磁化方向DMMは、ドレイン電極層7の長手方向に固定されている。しかし、ドレイン電極層7が有する強磁性層DM(図1参照)のドレイン電極層矩形部7cの領域には磁区が形成され易くなる。そのため、ドレイン電極層7に外部磁場を印加等すると、ドレイン電極層7の磁化方向DMMは容易に反転することとなる。即ち、ソース電極層3とドレイン電極層7の保磁力は、互いに異なっており、ソース電極層3の保磁力は、ドレイン電極層7の保磁力よりも大きくなっている。ドレイン電極層7の保磁力の大きさは、例えば10〜300Oeとすることができる。
ソース電極層3のソース電極層中間部3aの幅w3aは、例えば0.05〜2μmとすることができ、ソース電極層先端部3bの長さh3bは、例えば0.4〜5μmとすることができる。また、ソース電極層3の長さh3は、例えば1〜100μmとすることができる。即ち、幅w3aと長さh7の比率は、20〜1000であり、この場合には十分に形状異方性を有し、磁化方向SMMを十分に固定することができる。
ドレイン電極層7のドレイン電極層中間部7aの幅w7aは、例えば0.05〜2μmとすることができ、ドレイン電極層先端部7bの長さh7bは、例えば0.4〜5μmとすることができる。また、ドレイン電極層矩形部7cの幅w7cは、例えば1〜10μmとすることができ、ドレイン電極層矩形部7cの長さh7cは、例えば1〜20μmとすることができる。また、ドレイン電極層7の長さh7は、例えば1〜100μmとすることができる。即ち、幅w7aと長さh7の比率は、20〜1000であり、この場合には適切な強さで磁化方向DMMを固定することができる。
また、図2におけるスピントランジスタ10のI−I矢印断面図は図1であり、図2におけるスピントランジスタ10のIII−III矢印断面図は図3となる。図1〜図3に示すように、スピントランジスタ10の積層方向(Z軸に沿った方向)から見ると、ソース電極層3及びドレイン電極層7は、その一部において半導体層9と直接接触している。具体的には、ソース電極層3及びドレイン電極層7は、ソース電極層中間部3aの一部とドレイン電極層中間部7aの一部において、半導体層9と直接接触している。ソース電極層3及びドレイン電極層7のその他の部分は、SiO等の絶縁材料からなるギャップ層8を介して半導体層9に設けられている。そのため、ソース電極層3から半導体層9に電子が移動する際、電子はソース電極層3のうち半導体層9と直接接触する部分のみから半導体層9内に移動する。同様に、半導体層9からドレイン電極層7に電子が移動する際、電子は半導体層9のうちドレイン電極層7と直接接触する部分のみからドレイン電極層7内に移動する。このように、ソース電極層3及びドレイン電極層7は、それらの長手方向の端部であるソース電極層先端部3b、ドレイン電極層先端部7b、及びドレイン電極層矩形部7c以外の部分において、半導体層9と直接接触することが好ましい。
次に、図4及び図5を用いて、本実施形態のスピントランジスタ10の動作について説明する。以下、半導体層9の導電型がn型の場合のスピントランジスタ10の動作について説明する。
図4及び図5は、本実施形態に係るスピンフィルタ効果素子11、13を備えたスピントランジスタ10の縦断面構成を示す模式図である。図4に示すスピントランジスタ10は、図1に示すスピントランジスタ10のスイッチSW1及びスイッチSW2をオンにしたものを示している。また、図5に示すスピントランジスタ10は、図1に示すスピントランジスタ10のスイッチSW1及びスイッチSW2をオンにし、さらに、ドレイン電極層7の磁化方向DMMを180度反転させたものを示している。
図4に示すように、スイッチSW1をオンにすると、ソース電極層3とゲート電極層GEとの間には、ゲート電極層GE側が負となるようにゲート電圧VGSが印加される。すると、半導体層9のゲート電極層GEが設けられた側とは反対側の端部には、nチャネル9Cが形成される。
また、スイッチSW2をオンにすると、ソース電極層3とドレイン電極層7との間には、ドレイン電極層7側が正となるようにドレイン電圧VDSが印加される。すると、酸化物半導体層SOは半導体層9と強磁性層SMとの間のトンネル障壁を形成しているため、半導体層9と強磁性層SMとの間にトンネル電流が流れる。半導体層9と強磁性層SMとの間に流れるトンネル電流の大きさは、ドレイン電圧VDSの大きさに依存するため、スピントランジスタ10は通常の電界効果トランジスタと同様の機能を発揮する。また、この際、強磁性層SM内の電子emはソース電極層3の磁化の方向SMMと同方向にスピン偏極しているため、スピン偏極電子emが半導体層9内のnチャネル9C内に移動する。即ち、半導体層9と強磁性層SMとの間に流れるトンネル電流は、スピン偏極電子emの移動によって生じるスピン偏極電流である。そのため、強磁性層SMはスピンフィルタ効果を担っており、ソース電極層3は半導体層9内にスピン偏極電子emを注入するスピンフィルタ効果膜として機能し、ソース電極層3と半導体層9とで、スピンフィルタ効果素子11を構成している。
そして、酸化物半導体層DOは半導体層9と強磁性層DMとの間のトンネル障壁を形成しているため、半導体層9に注入されたスピン偏極電子esは強磁性層DMに流れ込む。即ち、強磁性層DMと半導体層9との間に流れるトンネル電流は、スピン偏極電子esの移動によって生じるスピン偏極電流である。しかし、ドレイン電極層7の磁化方向DMMとスピン偏極電子esのスピン偏極方向とは反平行であるため、スピン偏極電子esの大部分は半導体層9とドレイン電極層7の界面において反射され、スピン偏極電子esのうちドレイン電極層7に流れ込む電子は僅かとなる。即ち、強磁性層DMはスピンフィルタ効果を担っており、ドレイン電極層7は半導体層9内の電子のうち特定の方向にスピン偏極した電子を優先的に受け入れるスピンフィルタ効果膜として機能し、ドレイン電極層7と半導体層9とで、スピンフィルタ効果素子13を構成している。
一方、図5に示すように、図4に示す状態からドレイン電極層7の磁化方向DMMを180度反転させると、スピン偏極電子esのスピン偏極方向とドレイン電極層7の磁化方向DMMが平行になる。そのため、スピン偏極電子esの大部分は半導体層9とドレイン電極層7の界面において反射されることなく、ドレイン電極層7に流れ込む。
そのため、スピントランジスタ10は、ソース電極層3の磁化方向SMMとドレイン電極層7の磁化方向DMMが平行の場合と反平行の場合とでは、ソース電極層3−ドレイン電極層7間の抵抗値が異なることとなる。即ち、スピントランジスタ10は、ソース電極層3の磁化方向SMMと、ドレイン電極層7の磁化方向DMMについて、磁気抵抗効果を発揮することとなる。
上述のスピントランジスタ10の動作については、半導体層9の導電型がn型であるとして説明したが、半導体層9の導電型がp型であっても同様に考えることができる。半導体層9の導電型がp型の場合、上述の説明において、キャリアである電子はホールとなり、電圧の印加方向は逆となる。また、強磁性層SM、DM内や半導体層9内のホールのスピンの向きは、半導体層9の導電型がn型である場合とは逆になる。
上述のような本実施形態に係るスピンフィルタ効果素子11,13によれば、半導体層9と強磁性層SM、DMとの間のトンネル障壁を、それぞれ酸化物半導体層SO、DOで形成しているため(図1、図4及び図5参照)、従来のように絶縁層でトンネル障壁を形成した場合と比較して、トンネル障壁高さが低くなる。その結果、素子抵抗が低くなるため、消費電力が小さく、且つ、スピン偏極電子注入効率又はスピン依存散乱効率の高いスピンフィルタ効果素子11,13を得ることができる。
さらに、本実施形態のスピンフィルタ効果素子11,13では、好ましくは酸化物半導体層SO、DOを構成する半導体原子の電気陰性度は、半導体層9を構成する原子のうち、酸素原子以外の原子の電気陰性度よりも小さくなるように、酸化物半導体層SO、DO及び半導体層9を構成する材料を選択している。この場合、酸化物半導体層SO、DOを構成する酸素原子が半導体層9に移動する確率を低減させることができる。そのため、酸化物半導体層SO、DOが半導体層9によって還元されたり、酸化物半導体層SO、DOを構成する原子のうち、酸素原子以外の原子が半導体層9を構成する原子と結合したりする確率を低減させることができるため、酸化物半導体層SO、DOの特性を安定化させることができる。また、半導体層9が酸化物半導体層SO、DOによって酸化される確率を低減させることができるため、半導体層9の特性を安定化させることができる。その結果、特性の安定したスピンフィルタ効果素子11,13が得られる。
また、上述のような本実施形態に係るスピントランジスタ10(図1、図4及び図5参照)によれば、酸化物半導体層SO、DOは、それぞれ半導体層9と強磁性層SM、DMとの間のトンネル障壁を形成しているため、従来のように絶縁層でトンネル障壁を形成した場合と比較して、トンネル障壁高さが低くなる。その結果、素子抵抗が低くなるため、消費電力が小さく、且つ、スピン偏極電子注入効率の高いスピンフィルタ効果素子、及び、スピン依存散乱効率の高いスピンフィルタ効果素子11、13を用いたスピントランジスタ10が得られる。
さらに、本実施形態に係るスピントランジスタ10においては、好ましくは、酸化物半導体層SO、DOを構成する原子のうち、酸素原子以外の原子の電気陰性度は、半導体層9を構成する半導体原子の電気陰性度よりも小さくなるように、酸化物半導体層SO、DO及び半導体層9を構成する材料を選択している。この場合、酸化物半導体層SO、DOを構成する酸素原子が半導体層9に移動する確率を低減させることができる。そのため、酸化物半導体層SO、DOが半導体層9によって還元されたり、酸化物半導体層SO、DOを構成する原子のうち、酸素原子以外の原子が半導体層9を構成する原子と結合したりする確率を低減させることができるため、酸化物半導体層SO、DOの特性を安定化させることができる。また、半導体層9が酸化物半導体層SO、DOによって酸化される確率を低減させることができるため、半導体層9の特性を安定化させることができる。その結果、特性の安定したスピントランジスタ10が得られる。
本実施形態に係るスピントランジスタ10においては、好ましくは、酸化物半導体層SO、DOは、その抵抗率が10−4Ωcm以上、10Ωcm以下としている。酸化物半導体層SO、DOが抵抗値が10−4Ωcm以上である場合、ソース電極層3から半導体層9へのスピン偏極電子注入効率が十分に高くなり、また、半導体層9からドレイン電極層7へ電子が移動する際のスピン依存散乱効果を高くすることができる。また、酸化物半導体層SO、DOの抵抗値が10Ωcm以下である場合、スピントランジスタ10の素子抵抗を十分に低くすることができる。
また、本実施形態に係るスピントランジスタ10においては、ソース電極層3の磁化方向SMMとドレイン電極層7の磁化方向DMMは、それぞれ固定されている(図2参照)。また、好ましくは、ソース電極層3とドレイン電極層7の保磁力は、互いに異なるように、それぞれの磁化方向SMM、DMMを固定している。そのため、ソース電極層3の磁化方向SMMとドレイン電極層7の磁化方向の相対的な角度を変更させることが容易となっている。その結果、ソース電極層3−ドレイン電極層7間の抵抗値をより容易に変化させることが可能なスピントランジスタ10を得ることができる。
さらに、本実施形態に係るスピントランジスタ10においては、ソース電極層3の磁化方向SMMとドレイン電極層7の磁化方向DMMは、それぞれ形状異方性によって固定されている(図2参照)。そのため、ソース電極層3とドレイン電極層7を適切な形状になるように形成するだけで、それぞれの磁化方向SMM、DMMを固定することが可能となっている。
本実施形態においては、ソース電極層3の磁化方向SMMとドレイン電極層7の磁化方向DMMの双方がそれぞれ固定されているが、一方のみ固定されていてもよい。
また、本実施形態に係るスピントランジスタ10においては、スピントランジスタ10の積層方向(Z軸に沿った方向)から見ると、ソース電極層3及びドレイン電極層7は、ソース電極層中間部3aの一部とドレイン電極層中間部7aの一部において半導体層9と直接接触している(図2参照)。これにより、ソース電極層3の強磁性層SMのうち、磁区が安定している部分、即ち、強磁性層SMのソース電極層中間部3aからのみ半導体層9内にスピン偏極電子を注入することができる。そのため、ソース電極層3から半導体層9へ電子が移動する際のスピン偏極電子注入効率をより高めることが可能となっている。同様に、本実施形態に係るスピントランジスタ10においては、ドレイン電極層7の強磁性層DMのうち、磁区が安定している部分、即ち、強磁性層DMのドレイン電極層中間部7aのみに対して、半導体層9から電子を移動させることができる。そのため、半導体層9からドレイン電極層7へ電子が移動する際のスピン依存散乱効果を高めることができる。
上述の実施形態においては、ソース電極層3については、ソース電極層中間部3aの一部が半導体層9と直接接触しているが、例えば、ソース電極層中間部3aの一部及び一方のソース電極層先端部3bが半導体層9と直接接触していてもよい。同様に上述の実施形態においては、ドレイン電極層7については、ドレイン電極層中間部7aの一部が半導体層9と直接接触しているが、例えば、ドレイン電極層中間部7aの一部及びソース電極層先端部7bが半導体層9と直接接触していてもよい。
次に、本実施形態に係るスピンフィルタ効果素子及びスピントランジスタの変形例について説明する。
図6は、本実施形態の変形例に係るスピンフィルタ効果素子、及びスピントランジスタの一部の縦断面構成を示す模式図である。
図6(A)に示すように、ソース電極層3xは、酸化物半導体層SOと強磁性層SMとの間に非磁性金属層SRをさらに有していてもよい。この非磁性金属層SRは、例えば、Cu、Al、及びZnのうちのいずれかの金属、又はいずれかを含む合金で形成することができる。また、非磁性金属層SRの厚さは、例えば0.2nm以上1nm以下とすることができる。スピンフィルタ効果素子11x及びスピントランジスタが有するソース電極層3xをこのような構成にすることにより、ソース電極層3xと半導体層9との間において、抵抗値の整合性を高めることができる。その結果、ソース電極層3xから半導体層9へ電子が移動する際のスピン偏極電子注入効率をより高めることが可能となる。なお、この場合、強磁性層SMと非磁性金属層SRとで強磁性積層体となる。
同様に、図6(B)に示すように、ドレイン電極層7xは、酸化物半導体層DOと強磁性層DMとの間に非磁性金属層DRをさらに有していてもよい。この非磁性金属層DRは、非磁性金属層SRと同様の材質、膜厚とすることができる。スピンフィルタ効果素子13x及びスピントランジスタが有するソース電極層7xをこのような構成にすることにより、ドレイン電極層7xと半導体層9との間において、抵抗値の整合性を高めることができる。その結果、ドレイン電極層7xから半導体層9へ電子が移動する際のスピン偏極電子注入効率をより高めることが可能となる。なお、この場合、強磁性層DMと非磁性金属層DRとで強磁性積層体となる。また、ソース電極層3a及びドレイン電極層7xの双方が、それぞれ非磁性金属層SR及び非磁性金属層DRを有していてもよく、また、ソース電極層3x及びドレイン電極層7xの一方のみが、非磁性金属層SR又は非磁性金属層DRを有していてもよい。
図7は、本実施形態の他の態様の変形例に係るスピンフィルタ効果素子、及びスピントランジスタの一部の縦断面構成を示す模式図である。
図7(A)に示すように、ソース電極層3yは、さらに強磁性層SMと接する反強磁性層SAを有していてもよい。この反強磁性層SAは、例えば、PtMn、IrMn、及びRhMn等で形成することができる。また、反強磁性層SAの厚さは、例えば5nm以上10nm以下とすることができる。スピンフィルタ効果素子11y及びスピントランジスタが有するソース電極層3yをこのような構成にすることにより、磁場中アニール処理を行うと反強磁性層SAと強磁性層SMとの間には交換結合磁界SAJが働くため、磁化方向SMMは固定される。その結果、ソース電極層3yの形状に関わらず、その磁化方向SMMを固定することができる。なお、この場合、反強磁性層SAと強磁性層SMと非磁性金属層SRとで強磁性積層体となる。また、この場合、ソース電極層3yは、非磁性金属層SRを有していなくてもよい。
同様に、図7(B)に示すように、ドレイン電極層7yは、さらに強磁性層DMと接する反強磁性層DAを有していてもよい。この反強磁性層DAは、反強磁性層SAと同様の材質、膜厚とすることができる。スピンフィルタ効果素子13y及びスピントランジスタが有するドレイン電極層7yをこのような構成にすることにより、磁場中アニール処理を行うと反強磁性層DAと強磁性層DMとの間には交換結合磁界DAJが働くため、磁化方向DMMは固定される。その結果、ドレイン電極層7yの形状に関わらず、その磁化方向DMMを固定することができる。なお、この場合、反強磁性層DAと強磁性層DMと非磁性金属層DRとで強磁性積層体となる。また、この場合、ドレイン電極層7yは、非磁性金属層DRを有していなくてもよい。また、ソース電極層3y及びドレイン電極層7yの双方が、それぞれ反強磁性層SA及び反強磁性層DAを有していてもよく、また、ソース電極層3y及びドレイン電極層7yの一方のみが、反強磁性層SA又は反強磁性層DAを有していてもよい。
上述のように、ソース電極層3y及びドレイン電極層7yが、それぞれ反強磁性層SA及び反強磁性層DAによって、その磁化方向SMM、DMMが固定されている場合、ソース電極層3y及びドレイン電極層7yの形状の自由度が増すという利点がある。例えば、図8に示すように、ソース電極層3y及びドレイン電極層7yの形状は、スピントランジスタ10の積層方向(Z軸に沿った方向)から見て、正方形状にすることができる。また、ソース電極層3y及びドレイン電極層7yの形状は、矩形状、円形状、又は楕円状等にすることもできる。
以下、本発明の効果をより一層明らかなものとするため、実施例を用いて説明する。
実施例として5種類スピントランジスタの試料を作成した。それぞれの実施例の試料は、上述の実施形態における酸化物半導体層SO、DOの材質のみが異なるようにした。具体的な作成方法は以下の通りである。
まず、SOI基板を用意し、表面の自然酸化膜層をフッ酸によって除去した。その後、後の工程でソース電極層及びドレイン電極層の一部がSi表面と直接接触するように(図2参照)、SOI基板表面の矩形状の領域以外の部分に、ギャップ層としてのSiO膜を250nm成膜した。そして、SOI基板全面に、酸化物半導体層(1.6nm)、強磁性層としてのCoFe(10nm)、保護層としてのRu(2nm)/Ta(2nm)をこの順にスパッタリング法によって積層した。酸化物半導体層としては、5つの実施例ごとにそれぞれ、BeO、ZnO、CdO、In、及びSnOとした。
その後、パターニングを行い、酸化物半導体層/CoFe/Ru/Ta積層膜の一部をイオンミリングによって除去することによって、図2に示すソース電極層3及びドレイン電極層7と同様な形状のソース電極層及びドレイン電極層を形成した。ソース電極層の形状としては、h3=20μm、h3b=2μm、w3a=0.5μmとした。また、ドレイン電極層の形状としては、h7=20μm、w7c=h7c=5μm、h7b=2μm、w7a=0.75μmとした。
続いて、ソース電極層及びドレイン電極層に電圧を印加するためのCu配線を施し、各層の結晶化促進のために270度3時間のアニール処理を行った。
このようにして作製した5種類の実施例のそれぞれについて、ソース電極層及びドレイン電極層の長手方向に外部磁界を印加しながらソース電極層とドレイン電極層間の抵抗値を四端子法によって測定し、ソース電極層とドレイン電極層間の室温における磁気抵抗率を求めた。図9〜図13にその測定結果を示す。図9〜図13は、酸化物半導体層にそれぞれBeO、ZnO、CdO、In、及びSnOを用いた実施例についての磁気低効率の測定結果であり、横軸は印加磁界(外部磁界)、縦軸は磁気抵抗効果率(MR)を示している。
図9〜図13に示すように、いずれの実施例においても磁気抵抗効果が観測された。MRの最大値は、図9〜図13の順にそれぞれ2.3%、1.7%、0.42%、0.77%、0.31%となった。また、いずれの実施例においても、正方向に磁界を印加した場合、印加磁界が0〜145Oe付近までは素子抵抗が印加磁界に略比例する傾向が見られた。また、印加磁界が145Oeを超えた付近で、素子抵抗の増大が見られた。印加磁界をさらに増加させると、素子抵抗は再び増加したが、印加磁界が325Oeを越えた付近で、素子抵抗の急激な減少が見られた。また、負方向に磁界を印加した場合も同様の傾向が見られた。即ち、印加磁界が0〜−145Oe付近までは素子抵抗が印加磁界に略比例する傾向が見られた。また、印加磁界が−145Oeを超えた付近で、素子抵抗の増大が見られた。印加磁界をさらに増加させると、素子抵抗は再び増加したが、印加磁界が−325Oeを越えた付近で、素子抵抗の急激な減少が見られた。
これらの結果より、各実施例のソース電極層の保磁力は約325Oeであり、約325Oe(又は−325Oe)の磁界を印加することにより、ソース電極層の強磁性層の磁化方向が反転することがわかった。また、ドレイン電極層の保磁力は約145Oeであり、約145Oe(又は−145Oe)の磁界を印加することにより、ドレイン電極層の強磁性層の磁化方向が反転することがわかった。即ち、ソース電極層及びドレイン電極層の形状を図2に示すような形状にすることによって、ソース電極層及びドレイン電極層がそれぞれ有する強磁性層の磁化方向は形状異方性によって固定され、その固定の強さ(保磁力)には差が生じることがわかった。
図14は、上述の各実施例について、電気陰性度とMRの関係を示す図である。図14の横軸は、各実施例の酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度を示し、縦軸は、各実施例のMRの大きさを示している。図14より、酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度が、半導体層を構成する半導体原子であるSiの電気陰性度よりも小さい場合(酸化物半導体層を構成する原子のうち、酸素原子以外の原子がZn、Be、Cd、又はInである場合)、酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度が、半導体層を構成する半導体原子であるSiの電気陰性度よりも大きい場合(酸化物半導体層を構成する原子のうち、酸素原子以外の原子がSnである場合)と比較して、特にMRが大きくなることがわかった。
本発明の実施形態に係るスピンフィルタ効果素子を備えたスピントランジスタの縦断面構成を示す模式図である。 図1のZ軸方向から見たスピントランジスタの平面構成を示す図である。 図2におけるスピントランジスタのIII−III矢印断面図である。 本実施形態に係るスピンフィルタ効果素子を備えたスピントランジスタの縦断面構成を示す模式図である。 本実施形態に係るスピンフィルタ効果素子を備えたスピントランジスタの縦断面構成を示す模式図である。 本実施形態の変形例に係るスピンフィルタ効果素子、及びスピントランジスタの一部の縦断面構成を示す模式図である。 本実施形態の変形例に係るスピンフィルタ効果素子、及びスピントランジスタの一部の縦断面構成を示す模式図である。 本実施形態の変形例に係るスピンフィルタ効果素子、及びスピントランジスタの平面構成を示す模式図である。 実施例についての、磁気抵抗率の印加磁界依存性を示す図である。 実施例についての、磁気抵抗率の印加磁界依存性を示す図である。 実施例についての、磁気抵抗率の印加磁界依存性を示す図である。 実施例についての、磁気抵抗率の印加磁界依存性を示す図である。 実施例についての、磁気抵抗率の印加磁界依存性を示す図である。 実施例についての、磁気抵抗率と、酸化物半導体層を構成する半導体原子の電気陰性度との関係を示す図である。
符号の説明
3・・・ソース電極層、7・・・ドレイン電極層、10・・・スピントランジスタ、11,13・・・スピンフィルタ効果素子、GE・・・ゲート電極層、GI・・・ゲート絶縁層、SO、DO・・・酸化物半導体層、SM、DM・・・強磁性層、SMM、DMM・・・磁化方向。

Claims (12)

  1. 半導体層と、
    前記半導体層上に設けられた酸化物半導体層と、強磁性層を有し前記酸化物半導体層の前記半導体層側とは反対側に設けられた強磁性積層体と、
    を備え、
    前記酸化物半導体層は、前記半導体層と、前記強磁性積層体との間のトンネル障壁を形成することを特徴とするスピンフィルタ効果素子。
  2. 前記酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度は、前記半導体層を構成する半導体原子の電気陰性度よりも小さいことを特徴とする請求項1に記載のスピンフィルタ効果素子。
  3. 強磁性層を含む強磁性積層体を有するソース電極層と、
    強磁性層を含む強磁性積層体を有するドレイン電極層と、
    前記ソース電極層及び前記ドレイン電極層が設けられた半導体層と、
    前記半導体層に直接又はゲート絶縁層を介して設けられたゲート電極層と、
    を備え、
    前記ソース電極層と前記ドレイン電極層のうち少なくとも一方は、前記半導体層と前記強磁性積層体との間に介在する酸化物半導体層をさらに有し、
    前記酸化物半導体層は、前記半導体層と、前記強磁性積層体との間のトンネル障壁を形成することを特徴とするスピントランジスタ。
  4. 前記酸化物半導体層を構成する原子のうち、酸素原子以外の原子の電気陰性度は、前記半導体層を構成する半導体原子の電気陰性度よりも小さいことを特徴とする請求項3に記載のスピントランジスタ。
  5. 前記酸化物半導体層は、その抵抗率が10−4Ωcm以上、10Ωcm以下であることを特徴とする請求項3又は4に記載のスピントランジスタ。
  6. 前記半導体層はSiで構成されており、前記酸化物半導体層は、BeO、ZnO、CdO、及びInのいずれかの化合物で形成されていることを特徴とする請求項3〜5のいずれか一項に記載のスピントランジスタ。
  7. 前記ソース電極層と前記ドレイン電極層のうち少なくとも一方が有する前記強磁性積層体は、前記酸化物半導体層と前記強磁性層との間に非磁性金属層をさらに含むことを特徴とする請求項3〜6のいずれか一項に記載のスピントランジスタ。
  8. 前記非磁性金属層は、Cu、Al、及びZnのうちのいずれかの金属、又はいずれかを含む合金であることを特徴とする請求項7に記載のスピントランジスタ。
  9. 前記ソース電極層と前記ドレイン電極層のうち少なくとも一方の磁化方向は固定されていることを特徴とする請求項3〜8のいずれか一項に記載のスピントランジスタ。
  10. 前記ソース電極層と前記ドレイン電極層の保磁力は、互いに異なることを特徴とする請求項9に記載のスピントランジスタ。
  11. 前記ソース電極層と前記ドレイン電極層の少なくとも一方は、形状異方性によってその磁化方向が固定されていることを特徴とする請求項9又は10に記載のスピントランジスタ。
  12. 前記ソース電極層と前記ドレイン電極層の少なくとも一方は、前記強磁性層と接する反強磁性層をさらに含み、前記ソース電極層と前記ドレイン電極層の少なくとも一方の磁化方向は、前記反強磁性層からの交換結合磁界によって固定されていることを特徴とする請求項9又は10に記載のスピントランジスタ。
JP2008081297A 2008-03-26 2008-03-26 スピンフィルタ効果素子及びスピントランジスタ Withdrawn JP2009238918A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008081297A JP2009238918A (ja) 2008-03-26 2008-03-26 スピンフィルタ効果素子及びスピントランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008081297A JP2009238918A (ja) 2008-03-26 2008-03-26 スピンフィルタ効果素子及びスピントランジスタ

Publications (1)

Publication Number Publication Date
JP2009238918A true JP2009238918A (ja) 2009-10-15

Family

ID=41252537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008081297A Withdrawn JP2009238918A (ja) 2008-03-26 2008-03-26 スピンフィルタ効果素子及びスピントランジスタ

Country Status (1)

Country Link
JP (1) JP2009238918A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064822A1 (ja) * 2009-11-27 2011-06-03 株式会社 東芝 磁気抵抗効果素子、及び磁気記録再生装置
JP2011228545A (ja) * 2010-04-21 2011-11-10 Toshiba Corp 磁気抵抗効果素子及び磁気記録再生装置
JP2012059725A (ja) * 2010-09-03 2012-03-22 Tdk Corp スピン注入電極構造、スピン伝導素子及びスピン伝導デバイス
JP2014038894A (ja) * 2012-08-11 2014-02-27 Tohoku Univ マルチフェロイック薄膜及びそれを用いたデバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064822A1 (ja) * 2009-11-27 2011-06-03 株式会社 東芝 磁気抵抗効果素子、及び磁気記録再生装置
JP5518896B2 (ja) * 2009-11-27 2014-06-11 株式会社東芝 磁気抵抗効果素子、及び磁気記録再生装置
US9177574B2 (en) 2009-11-27 2015-11-03 Kabushiki Kaisha Toshiba Magneto-resistance effect device with mixed oxide function layer
JP2011228545A (ja) * 2010-04-21 2011-11-10 Toshiba Corp 磁気抵抗効果素子及び磁気記録再生装置
JP2012059725A (ja) * 2010-09-03 2012-03-22 Tdk Corp スピン注入電極構造、スピン伝導素子及びスピン伝導デバイス
JP2014038894A (ja) * 2012-08-11 2014-02-27 Tohoku Univ マルチフェロイック薄膜及びそれを用いたデバイス

Similar Documents

Publication Publication Date Title
CN108352447B (zh) 于高温退火后保持高矫顽力的具有垂直磁各向异性的磁性组件
US7679155B2 (en) Multiple magneto-resistance devices based on doped magnesium oxide
RU2595588C2 (ru) Магнитный записывающий элемент
US7944736B2 (en) Magnetoresistive device
US9059389B2 (en) Free layers with iron interfacial layer and oxide cap for high perpendicular anisotropy energy density
US20140203383A1 (en) Perpendicular magnetoresistive memory element
JP5398921B2 (ja) スピンデバイス、その動作方法およびその製造方法
JPWO2015076187A1 (ja) 磁気抵抗効果素子、Spin−MOSFET、磁気センサ及び磁気ヘッド
JP6838041B2 (ja) マグノンフィールド効果トランジスタとマグノントンネル接合
KR20180002798A (ko) 자성 터널 접합
JP2009064826A (ja) スピントランジスタ及びその製造方法
KR101939005B1 (ko) 자기 터널 접합
WO2015040928A1 (ja) スピンmosfet
JP2007005664A (ja) スピン注入磁化反転素子
JP2009238918A (ja) スピンフィルタ効果素子及びスピントランジスタ
US20100085803A1 (en) Electronic devices utilizing spin torque transfer to flip magnetic orientation
JP5082688B2 (ja) スピントランジスタ及び半導体メモリ
JP2006049426A (ja) 磁気抵抗効果素子とその製造方法、およびそれを用いた磁気ヘッドと磁気再生装置
JP2011009531A (ja) スピン伝導素子
KR101144211B1 (ko) 자기저항소자
JP2009105285A (ja) スピンフィルタ効果素子及びスピントランジスタ
JP2014154612A (ja) スピン注入電極構造及びそれを用いたスピン伝導素子
RU2392697C1 (ru) Туннельный магниторезистивный элемент
WO2022070378A1 (ja) 磁壁移動素子および磁気アレイ
WO2012137911A1 (ja) 磁気抵抗効果素子、及び磁気ランダムアクセスメモリ

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607