JP2009218363A - Feedthrough multilayer capacitor - Google Patents

Feedthrough multilayer capacitor Download PDF

Info

Publication number
JP2009218363A
JP2009218363A JP2008060021A JP2008060021A JP2009218363A JP 2009218363 A JP2009218363 A JP 2009218363A JP 2008060021 A JP2008060021 A JP 2008060021A JP 2008060021 A JP2008060021 A JP 2008060021A JP 2009218363 A JP2009218363 A JP 2009218363A
Authority
JP
Japan
Prior art keywords
signal
electrode
main
grounding
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008060021A
Other languages
Japanese (ja)
Other versions
JP4924490B2 (en
Inventor
Takashi Aoki
崇 青木
Hisaya Suzuki
久也 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008060021A priority Critical patent/JP4924490B2/en
Publication of JP2009218363A publication Critical patent/JP2009218363A/en
Application granted granted Critical
Publication of JP4924490B2 publication Critical patent/JP4924490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a feedthrough multilayer capacitor for suppressing increase of direct current (DC) resistance while suppressing increase of static capacitance. <P>SOLUTION: Within a capacitor material L1, there are arranged: internal electrodes 30 to 36 for signal including main electrodes 30a to 36a for signal and the first and the second lead electrodes 30b-36b and 30c-36c for signal extended to be led to the external surface of the capacitor material L1; and internal electrodes 20, 21 for grounding including main electrodes 20a, 21a for grounding and lead electrodes 20b, 21b, 20c, 21c for grounding extended to be led to the external surface of the capacitor material L1. The main electrodes 30a to 32a, 34a to 36a for signal of the internal electrodes 30 to 32, 34 to 36 for signal include regions opposing to other main electrodes for signal holding dielectric material layers 11, 12, 17, and 18 among these electrodes. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、貫通型積層コンデンサに関する。   The present invention relates to a feedthrough multilayer capacitor.

貫通型積層コンデンサとして、誘電体層と信号用内部電極及び接地用内部電極とが交互に積層されたコンデンサ素体と、当該コンデンサ素体に形成された信号用端子電極及び接地用端子電極とを備えたものが知られている(例えば、特許文献1参照)。
特開平01−206615号公報
As a feedthrough multilayer capacitor, a capacitor body in which dielectric layers, signal internal electrodes, and ground internal electrodes are alternately stacked, and a signal terminal electrode and a ground terminal electrode formed on the capacitor body are provided. What was provided is known (for example, refer patent document 1).
Japanese Patent Laid-Open No. 01-206615

本発明は、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能な貫通型積層コンデンサを提供することを課題とする。   An object of the present invention is to provide a feedthrough multilayer capacitor capable of suppressing an increase in DC resistance while suppressing an increase in capacitance.

ところで、一般的な貫通型積層コンデンサにあっては、直流抵抗が大きくなるとコンデンサから発生する熱が大きくなってしまう。そこで、本発明者らは、直流抵抗が大きくなることを抑制すべく、鋭意検討した結果、信号用内部電極の数を多くすることで貫通型積層コンデンサの直流抵抗を小さくすることが可能となるという事実を見出すに至った。   By the way, in a general feedthrough multilayer capacitor, when the direct current resistance increases, the heat generated from the capacitor increases. Thus, as a result of intensive studies to suppress the increase in DC resistance, the present inventors can reduce the DC resistance of the feedthrough multilayer capacitor by increasing the number of signal internal electrodes. I came to find the fact.

しかしながら、信号用内部電極の数が多くなるようにコンデンサ素体内に配置される内部電極の数を増やすと、貫通型積層コンデンサの静電容量が大きくなってしまう。貫通型積層コンデンサの静電容量が大きくなると、高周波数化に対応することが難しくなってしまう。   However, if the number of internal electrodes arranged in the capacitor body is increased so that the number of signal internal electrodes is increased, the capacitance of the feedthrough multilayer capacitor is increased. When the capacitance of the feedthrough multilayer capacitor increases, it becomes difficult to cope with higher frequencies.

そこで、本発明者らはさらに、静電容量の抑制と直流抵抗の抑制との双方の要求を満たし得る貫通型積層コンデンサについて鋭意研究を行った。その結果、本発明者等は、信号用内部電極の数を多くするとともに、信号用内部電極同士を対向させることで、静電容量及び直流抵抗の双方が抑制されるとの新たな事実を見出すに至った。   Accordingly, the present inventors have further conducted intensive research on a feedthrough multilayer capacitor that can satisfy both requirements of suppression of capacitance and suppression of DC resistance. As a result, the present inventors find a new fact that both the capacitance and the DC resistance are suppressed by increasing the number of signal internal electrodes and making the signal internal electrodes face each other. It came to.

かかる研究結果を踏まえ、本発明に係る貫通型積層コンデンサは、相対向する長方形状の第1及び第2の主面と、第1及び第2の主面間を連結するように伸びている相対向する第1及び第2の側面と、第1及び第2の主面間を連結するように伸びている相対向する第3及び第4の側面とをその外表面として有し、且つ誘電特性を有するコンデンサ素体と、コンデンサ素体内に配置された第1の数の信号用内部電極及び第2の数の接地用内部電極と、コンデンサ素体の外表面に配置された第1及び第2の信号用端子電極並びに接地用端子電極と、を備えており、各信号用内部電極は、信号用主電極部と、信号用主電極部からコンデンサ素体の外表面に引き出されるように伸びて第1の信号用端子電極に接続される第1の信号用引き出し電極部と、信号用主電極部からコンデンサ素体の外表面に引き出されるように伸びて第2の信号用端子電極に接続される第2の信号用引き出し電極部とを有し、各接地用内部電極は、接地用主電極部と、接地用主電極部からコンデンサ素体の外表面に引き出されるように伸びて接地用端子電極に接続される接地用引き出し電極部とを有し、第1の数の信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部は、コンデンサ素体の一部である第1の誘電領域を間に挟んで第2の数の接地用内部電極の少なくとも1つの接地用内部電極の接地用主電極部と対向する領域を有し、第1の数の信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部は、コンデンサ素体の一部である第2の誘電領域を間に挟んで他の信号用内部電極の信号用主電極部と対向する領域を有し、第1の数は、第2の数より大きいことを特徴とする。   Based on the research results, the feedthrough multilayer capacitor according to the present invention has a rectangular first and second main surfaces facing each other and a relative extension extending so as to connect the first and second main surfaces. First and second side surfaces facing each other and opposing third and fourth side surfaces extending so as to connect the first and second main surfaces as outer surfaces, and having dielectric properties , A first number of signal internal electrodes and a second number of ground internal electrodes disposed in the capacitor body, and first and second disposed on the outer surface of the capacitor body. Signal terminal electrodes and grounding terminal electrodes, and each signal internal electrode extends so as to be drawn from the signal main electrode portion and the signal main electrode portion to the outer surface of the capacitor body. A first signal lead electrode portion connected to the first signal terminal electrode; A second signal lead electrode portion extending from the signal main electrode portion to be drawn to the outer surface of the capacitor element body and connected to the second signal terminal electrode. A grounding main electrode portion; and a grounding lead electrode portion extending from the grounding main electrode portion to be drawn to the outer surface of the capacitor body and connected to the grounding terminal electrode, and the first number of signals The signal main electrode portion of at least one signal internal electrode of the internal electrode for use is at least one of the second number of ground internal electrodes with a first dielectric region that is a part of the capacitor body interposed therebetween. The signal main electrode portion of the at least one signal internal electrode of the first number of signal internal electrodes is a part of the capacitor element body and has a region facing the ground main electrode portion of the ground internal electrode. Of another signal internal electrode with a second dielectric region in between It has issue for main electrode area opposed to, the first number may be greater than the second number.

この貫通型積層コンデンサでは、信号用内部電極の数(第1の数)が接地用内部電極の数(第2の数)より大きい。よって、この貫通型積層コンデンサでは直流抵抗が大きくなることを抑制することが可能となる。また、信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部が、コンデンサ素体の第2の誘電領域を間に挟んで他の信号用内部電極の信号用主電極部と対向する領域を有している。そのため、この貫通型積層コンデンサでは、信号用内部電極の数(第1の数)を大きくしても、静電容量が大きくなることを抑制することが可能となる。   In this feedthrough multilayer capacitor, the number of signal internal electrodes (first number) is larger than the number of ground internal electrodes (second number). Therefore, in this feedthrough multilayer capacitor, it is possible to suppress an increase in DC resistance. The signal main electrode portion of at least one signal internal electrode of the signal internal electrode is opposed to the signal main electrode portion of another signal internal electrode with the second dielectric region of the capacitor body interposed therebetween. It has the area to do. Therefore, in this feedthrough multilayer capacitor, it is possible to suppress an increase in capacitance even if the number of signal internal electrodes (first number) is increased.

各接地用内部電極は、第1及び第2の主面の対向方向で見て、コンデンサ素体の第1及び第2の主面が対向する距離の第1の主面から4分の1の距離までの領域内又は第1及び第2の主面が対向する距離の第2の主面から4分の1の距離までの領域内に配置されていることが好ましい。また、各接地用内部電極は、第1及び第2の主面の対向方向で見て、第1の数の信号用内部電極の何れよりも第1の主面側又は第2の主面側に配置されていることが好ましい。   Each of the grounding inner electrodes is a quarter of the distance from the first main surface of the capacitor element body when the first and second main surfaces face each other when viewed in the opposing direction of the first and second main surfaces. It is preferable to arrange in the area up to the distance or in the area up to a quarter distance from the second main surface of the distance where the first and second main surfaces face each other. Each grounding internal electrode has a first main surface side or a second main surface side relative to any of the first number of signal internal electrodes when viewed in the opposing direction of the first and second main surfaces. It is preferable to arrange | position.

これらの場合、接地用内部電極がコンデンサ素体の外表面に近い位置に配置されるため、バレル研磨を施してコンデンサ素体を製造した場合、接地用内部電極がコンデンサ素体の外表面に引き出されやすくなる。上記貫通型積層コンデンサでは、接地用内部電極の数が信号用内部電極に比べて少ないため、接地用内部電極が容易に且つ確実に接地用端子電極に接続されていることが好ましい。   In these cases, since the grounding inner electrode is disposed at a position close to the outer surface of the capacitor body, when the capacitor body is manufactured by barrel polishing, the grounding inner electrode is pulled out to the outer surface of the capacitor body. It becomes easy to be. In the feedthrough multilayer capacitor, since the number of grounding internal electrodes is smaller than that of the signal internal electrodes, the grounding internal electrodes are preferably connected to the grounding terminal electrode easily and reliably.

第1の誘電領域の第1及び第2の主面の対向方向での長さが、第2の誘電領域の第1及び第2の主面の対向方向での長さよりも長いことが好ましい。この場合、信号用内部電極と接地用内部電極との間の距離が、信号用内部電極間の距離よりも長くなるため、接地用内部電極がコンデンサ素体の外側に配置されやすくなる。接地用内部電極がコンデンサ素体の外側に配置されることにより、接地用内部電極が接地用端子電極に容易に且つ確実に接続されやすくなる。   The length of the first dielectric region in the opposing direction of the first and second main surfaces is preferably longer than the length of the second dielectric region in the opposing direction of the first and second main surfaces. In this case, since the distance between the signal internal electrode and the ground internal electrode is longer than the distance between the signal internal electrodes, the ground internal electrode is easily disposed outside the capacitor body. By disposing the grounding internal electrode outside the capacitor body, the grounding internal electrode is easily and reliably connected to the grounding terminal electrode.

第1及び第2の信号用端子電極はそれぞれ、第1又は第2の側面に配置されており、各信号用内部電極の第1の信号用引き出し電極部は、第1の信号用端子電極が配置された第1又は第2の側面に引き出されるように伸び、各信号用内部電極の第2の信号用引き出し電極部は、第2の信号用端子電極が配置された第1又は第2の側面に引き出されるように伸びていてもよい。この場合、信号の入出力端子である第1及び第2の信号用端子電極に接続される基板上のランドパターンを形成しやすくなる。   The first and second signal terminal electrodes are respectively disposed on the first or second side surface, and the first signal lead electrode portion of each signal internal electrode is formed by the first signal terminal electrode. The second signal lead-out electrode portion of each signal internal electrode extends so as to be drawn out to the arranged first or second side face, and the second signal terminal electrode is arranged in the first or second side. You may extend so that it may be pulled out to the side. In this case, it is easy to form land patterns on the substrate connected to the first and second signal terminal electrodes which are signal input / output terminals.

各信号用内部電極において、第3及び第4の側面の対向方向での信号用主電極部の幅と第3及び第4の側面の対向方向での第1の信号用引き出し電極部の幅と第3及び第4の側面の対向方向での第2の信号用引き出し電極部の幅とが同じであることが好ましい。この場合、信号用内部電極と信号用端子電極との間の接続をより確実に実現することが可能となる。   In each signal internal electrode, the width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces and the width of the first signal lead-out electrode portion in the opposing direction of the third and fourth side surfaces It is preferable that the width of the second signal extraction electrode portion in the opposing direction of the third and fourth side surfaces is the same. In this case, the connection between the signal internal electrode and the signal terminal electrode can be more reliably realized.

各信号用内部電極において、第3及び第4の側面の対向方向での信号用主電極部の幅は、第3及び第4の側面の対向方向での第1の信号用引き出し電極部の幅並びに第3及び第4の側面の対向方向での第2の信号用引き出し電極部の幅の何れよりも広いことが好ましい。この場合、第1及び第2の信号用端子電極の幅を狭くすることができる。その結果、コンデンサ素体の外表面上において、信号用端子電極と接地用端子電極との間で短絡が発生することが抑制される。   In each signal internal electrode, the width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces is the width of the first signal extraction electrode portion in the opposing direction of the third and fourth side surfaces. In addition, it is preferable that the width of the second signal extraction electrode portion is wider than the width of the second signal extraction electrode portion in the opposing direction of the third and fourth side surfaces. In this case, the width of the first and second signal terminal electrodes can be reduced. As a result, occurrence of a short circuit between the signal terminal electrode and the ground terminal electrode on the outer surface of the capacitor body is suppressed.

第3及び第4の側面の対向方向での信号用主電極部の幅は、第3及び第4の側面の対向方向での接地用主電極部の幅より広いことが好ましい。このように、信号用主電極部の幅を広くすることで、この貫通型積層コンデンサの直流抵抗が大きくなることが抑制される。また、信号用主電極部の幅を広くすることで、この貫通型積層コンデンサでは、信号用主電極部と接地用主電極部との間で形成される静電容量が信号用主電極部ではなく接地用主電極部の大きさによって規定されることとなる。そのため、信号用内部電極及び接地用内部電極が所望の位置からずれて配置された場合であっても、それらの間で形成される静電容量は接地用主電極部の大きさで結局決まるため、所望の値からずれることが抑制される。その結果、貫通型積層コンデンサ間での静電容量のばらつきが抑制される。   The width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces is preferably wider than the width of the grounding main electrode portion in the opposing direction of the third and fourth side surfaces. Thus, by increasing the width of the signal main electrode portion, the direct current resistance of the feedthrough multilayer capacitor is suppressed from increasing. In addition, by increasing the width of the signal main electrode portion, in this feedthrough multilayer capacitor, the electrostatic capacitance formed between the signal main electrode portion and the ground main electrode portion is smaller in the signal main electrode portion. In other words, it is defined by the size of the main electrode portion for grounding. For this reason, even if the signal internal electrode and the ground internal electrode are arranged out of the desired position, the capacitance formed between them is ultimately determined by the size of the ground main electrode portion. The deviation from the desired value is suppressed. As a result, variation in capacitance between feedthrough multilayer capacitors is suppressed.

接地用端子電極は、第3又は第4の側面に配置されており、接地用内部電極の接地用引き出し電極部は、接地用端子電極が配置された第3又は第4の側面に引き出されるように伸び、第1及び第2の側面の対向方向での接地用引き出し電極部の幅は、第3及び第4の側面の対向方向での第1の信号用引き出し電極部の幅並びに第3及び第4の側面の対向方向での第2の信号用引き出し電極部の幅の何れよりも広いことが好ましい。この場合、等価直列インダクタンス(ESL)の値を低減することが可能となる。   The ground terminal electrode is disposed on the third or fourth side surface, and the ground lead electrode portion of the ground internal electrode is led out to the third or fourth side surface on which the ground terminal electrode is disposed. The width of the ground lead electrode portion in the opposing direction of the first and second side surfaces is the width of the first signal lead electrode portion in the opposing direction of the third and fourth side surfaces, and the third and It is preferable that the width is larger than any of the widths of the second signal extraction electrode portions in the opposing direction of the fourth side surface. In this case, the value of the equivalent series inductance (ESL) can be reduced.

本発明によれば、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能な貫通型積層コンデンサを提供することができる。   According to the present invention, it is possible to provide a feedthrough multilayer capacitor capable of suppressing an increase in DC resistance while suppressing an increase in capacitance.

以下、添付図面を参照して、好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
Hereinafter, preferred embodiments will be described in detail with reference to the accompanying drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.
(First embodiment)

図1〜図4に基づいて、第1実施形態に係る貫通型積層コンデンサの構成について説明する。図1は、本実施形態に係る貫通型積層コンデンサの斜視図である。図2は、図1に示した貫通型積層コンデンサのII−II矢印断面図である。図3は、図1に示した貫通型積層コンデンサのIII−III矢印断面図である。図4は、第1実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   The structure of the feedthrough multilayer capacitor according to the first embodiment will be described with reference to FIGS. FIG. 1 is a perspective view of the feedthrough multilayer capacitor according to the present embodiment. 2 is a cross-sectional view of the feedthrough multilayer capacitor shown in FIG. 1 taken along the line II-II. 3 is a cross-sectional view of the feedthrough multilayer capacitor shown in FIG. 1 taken along the line III-III. FIG. 4 is an exploded perspective view of the capacitor body included in the feedthrough multilayer capacitor according to the first embodiment.

図1に示すように、貫通型積層コンデンサC1は、誘電特性を有するコンデンサ素体L1と、コンデンサ素体L1の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。   As shown in FIG. 1, the feedthrough multilayer capacitor C1 includes a capacitor body L1 having dielectric characteristics, first and second signal terminal electrodes 1 and 2, and first and second signal terminal electrodes 1 and 2 disposed on the outer surface of the capacitor body L1. 1 and second grounding terminal electrodes 3 and 4.

コンデンサ素体L1は、図1に示されるように、直方体状であり、その外表面として、相対向する長方形状の第1及び第2の主面L1a、L1bと、第1及び第2の主面間を連結するように第1及び第2の主面の短辺方向に伸びている相対向する第1及び第2の側面L1c、L1dと、第1及び第2の主面間を連結するように第1及び第2の主面の長辺方向に伸びている相対向する第3及び第4の側面L1e、L1fとを有する。   As shown in FIG. 1, the capacitor body L1 has a rectangular parallelepiped shape, and has rectangular first and second main faces L1a and L1b opposite to each other as outer surfaces thereof, and first and second main faces. The opposing first and second side faces L1c, L1d extending in the short side direction of the first and second main faces and the first and second main faces are connected so as to connect the faces. As described above, the first and second main surfaces have opposite third and fourth side faces L1e and L1f extending in the long side direction.

第1の信号用端子電極1は、コンデンサ素体L1の第1の側面L1cに配置されている。第1の信号用端子電極1は、第1の側面L1c全面を覆うように、第1及び第2の主面L1a、L1b並びに第3及び第4の側面L1e、L1fの端部(第1の側面L1c側の端部)に亘って形成されている。第2の信号用端子電極2は、コンデンサ素体L1の第2の側面L1dに配置されている。第2の信号用端子電極2は、第2の側面L1d全面を覆うように、第1及び第2の主面L1a、L1b並びに第3及び第4の側面L1e、L1fの端部(第2の側面L1d側の端部)に亘って形成されている。   The first signal terminal electrode 1 is disposed on the first side face L1c of the capacitor body L1. The first signal terminal electrode 1 covers the entire surface of the first side face L1c so that the first and second main faces L1a and L1b and the end portions of the third and fourth side faces L1e and L1f (first (The end on the side face L1c side). The second signal terminal electrode 2 is disposed on the second side face L1d of the capacitor body L1. The second signal terminal electrode 2 covers the entire surface of the second side face L1d, and ends of the first and second main faces L1a, L1b and the third and fourth side faces L1e, L1f (second (The end on the side face L1d side).

第1の信号用端子電極1と第2の信号用端子電極2とは、第1の側面L1cと第2の側面L1dとが対向する方向で対向する。   The first signal terminal electrode 1 and the second signal terminal electrode 2 face each other in the direction in which the first side face L1c and the second side face L1d face each other.

第1の接地用端子電極3は、コンデンサ素体L1の第3の側面L1e上に配置されている。第1の接地用端子電極3は、第3の側面L1eの第1及び第2の側面L1c、L1dの対向方向の略中央の一部を、第1及び第2の主面L1a、L1bの対向方向に沿って横断するように覆っている。第1の接地用端子電極3はさらに、第1及び第2の主面L1a、L1bの第3の側面L1e側の端部の一部も覆う。   The first ground terminal electrode 3 is disposed on the third side face L1e of the capacitor body L1. The first ground terminal electrode 3 has a part of the substantially central portion in the opposing direction of the first and second side faces L1c, L1d of the third side face L1e and the first and second main faces L1a, L1b. It covers so as to cross along the direction. The first ground terminal electrode 3 further covers part of the end portions of the first and second main surfaces L1a and L1b on the third side face L1e side.

第2の接地用端子電極4は、コンデンサ素体L1の第4の側面L1f上に配置されている。第2の接地用端子電極4は、第4の側面L1fの第1及び第2の側面L1c、L1dの対向方向の略中央の一部を、第1及び第2の主面L1a、L1bの対向方向に沿って横断するように覆っている。第2の接地用端子電極4はさらに、第1及び第2の主面L1a、L1bの第4の側面L1f側の端部の一部も覆う。   The second ground terminal electrode 4 is disposed on the fourth side face L1f of the capacitor body L1. The second grounding terminal electrode 4 has a part of the substantially central portion in the opposing direction of the first and second side faces L1c, L1d of the fourth side face L1f, and the first and second main faces L1a, L1b. It covers so as to cross along the direction. The second ground terminal electrode 4 further covers part of the end portions of the first and second main surfaces L1a and L1b on the fourth side face L1f side.

第1の接地用端子電極3と第2の接地用端子電極4とは、第3の側面L1eと第4の側面L1fとが対向する方向で対向する。   The first ground terminal electrode 3 and the second ground terminal electrode 4 face each other in the direction in which the third side face L1e and the fourth side face L1f face each other.

第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、例えば導電性金属粉末及びガラスフリットを含む導電性ペーストをコンデンサ素体の外表面の付与し、焼き付けることによって形成される。必要に応じて、焼き付けられた端子電極の上にめっき層が形成されることもある。これらの第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、コンデンサ素体L1の表面上においては互いに電気的に絶縁されて形成されている。   The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 are made of, for example, conductive paste containing conductive metal powder and glass frit on the outer surface of the capacitor body. Formed by applying and baking. If necessary, a plating layer may be formed on the baked terminal electrode. The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 are formed on the surface of the capacitor body L1 so as to be electrically insulated from each other. Yes.

貫通型積層コンデンサC1では、第1の主面L1a又は第2の主面L1bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。例えば、コンデンサ素体L1の第2の主面L1bが回路基板と対向するように貫通型積層コンデンサC1を実装する場合、第1及び第2の信号用端子電極1,2を基板上に形成され、信号配線に接続されたランド電極に接続し、第3及び第4の接地用端子電極3、4を基板上に形成され、グランド配線に接続されたグランド電極に接続する。   In the feedthrough multilayer capacitor C1, the first main surface L1a or the second main surface L1b is preferably mounted on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component). For example, when the feedthrough multilayer capacitor C1 is mounted so that the second main surface L1b of the capacitor body L1 faces the circuit board, the first and second signal terminal electrodes 1 and 2 are formed on the board. The third and fourth grounding terminal electrodes 3 and 4 are formed on the substrate and connected to the ground electrode connected to the ground wiring.

コンデンサ素体L1は、図2〜図4に示されるように、第1及び第2の主面L1a、L1bの対向方向に積層された複数(本実施形態では、10層)の誘電体層10〜19を有する。各誘電体層10〜19は、例えば誘電体セラミック(BaTiO系、Ba(Ti,Zr)O系、又は(Ba,Ca)TiO系等の誘電体セラミック)を含むセラミックグリーンシートの焼結体から構成される。なお、実際のコンデンサ素体L1では、誘電体層10〜19の間の境界が視認できない程度に一体化されている。 As shown in FIGS. 2 to 4, the capacitor body L <b> 1 includes a plurality (10 layers in this embodiment) of dielectric layers 10 stacked in the opposing direction of the first and second main surfaces L <b> 1 a and L <b> 1 b. ~ 19. Each of the dielectric layers 10 to 19 is made of a ceramic green sheet containing dielectric ceramic (dielectric ceramic such as BaTiO 3 series, Ba (Ti, Zr) O 3 series, or (Ba, Ca) TiO 3 series). Consists of union. Note that the actual capacitor body L1 is integrated so that the boundary between the dielectric layers 10 to 19 is not visible.

誘電体層13〜16は、図2〜図4に示されているように、誘電体層10〜12、17〜19に比べて第1及び第2の主面L1a、L1bの対向方向での厚さが厚い。各誘電体層10〜19は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。したがって、誘電体層13〜16は、積層数の点で多いセラミックグリーンシートの焼結体から構成されることで誘電体層10〜12、17〜19に比べて厚さが厚くなっていてもよく、あるいは厚さの大きい1枚のセラミックグリーンシートの焼結体から構成されることで誘電体層10〜12、17〜19に比べて厚さが厚くなっていてもよい。   As shown in FIGS. 2 to 4, the dielectric layers 13 to 16 are opposed to the first and second main surfaces L1a and L1b in comparison with the dielectric layers 10 to 12 and 17 to 19. Thick. Each of the dielectric layers 10 to 19 may be composed of a sintered body of a single ceramic green sheet or may be composed of a sintered body of a plurality of ceramic green sheets. Therefore, even if the dielectric layers 13 to 16 are made of a sintered body of ceramic green sheets having a large number of laminated layers, the dielectric layers 13 to 16 are thicker than the dielectric layers 10 to 12 and 17 to 19. Alternatively, it may be thicker than the dielectric layers 10 to 12 and 17 to 19 by being composed of a sintered body of one ceramic green sheet having a large thickness.

コンデンサ素体L1には、第1の数(本実施形態では7層)の信号用内部電極30〜36及び第2の数(本実施形態では2層)の接地用内部電極20、21が配置されている。信号用内部電極30〜36の数である第1の数は、接地用内部電極20、21の数である第2の数より大きい。   A first number (seven layers in this embodiment) of signal internal electrodes 30 to 36 and a second number (two layers in this embodiment) of grounding internal electrodes 20 and 21 are arranged on the capacitor body L1. Has been. The first number that is the number of the signal internal electrodes 30 to 36 is larger than the second number that is the number of the grounding internal electrodes 20 and 21.

各信号用内部電極30〜36は、信号用主電極部30a〜36aと、信号用主電極部30a〜36aからコンデンサ素体L1の第1の側面L1cに引き出されるように伸びる第1の信号用引き出し電極部30b〜36bと、信号用主電極部30a〜36aからコンデンサ素体L1の第2の側面L1dに引き出されるように伸びる第2の信号用引き出し電極部30c〜36cとを有する。信号用主電極部30a〜36a、第1の信号用引き出し電極部30b〜36b、及び第2の信号用引き出し電極部30c〜36cは、一体的に形成されている。   Each of the signal internal electrodes 30 to 36 has a signal main electrode portion 30a to 36a and a first signal signal extending so as to be drawn from the signal main electrode portions 30a to 36a to the first side face L1c of the capacitor body L1. The lead electrode portions 30b to 36b and the second signal lead electrode portions 30c to 36c extending so as to be drawn from the signal main electrode portions 30a to 36a to the second side face L1d of the capacitor body L1. The signal main electrode portions 30a to 36a, the first signal lead electrode portions 30b to 36b, and the second signal lead electrode portions 30c to 36c are integrally formed.

信号用主電極部30a〜36aは、第1及び第2の側面L1c、L1dの対向方向を長辺方向とし、第3及び第4の側面L1e、L1fの対向方向を短辺方向とする矩形状を呈する。   The signal main electrode portions 30a to 36a have a rectangular shape in which the opposing direction of the first and second side faces L1c and L1d is the long side direction and the opposing direction of the third and fourth side faces L1e and L1f is the short side direction. Presents.

第1の信号用引き出し電極部30b〜36bは、信号用主電極部30a〜36aの第1の側面L1c側の端部ら伸びている。第1の信号用引き出し電極部30b〜36bは、信号用主電極部30a〜36aと第3及び第4の側面L1e、L1fの対向方向での幅が同じである。第1の信号用引き出し電極部30b〜36bは、その端が第1の側面L1cに露出し、当該露出した端部で第1の信号用端子電極1に接続される。   The first signal extraction electrode portions 30b to 36b extend from the ends of the signal main electrode portions 30a to 36a on the first side face L1c side. The first signal extraction electrode portions 30b to 36b have the same width in the opposing direction of the signal main electrode portions 30a to 36a and the third and fourth side faces L1e and L1f. The ends of the first signal lead electrode portions 30b to 36b are exposed at the first side face L1c, and the exposed end portions are connected to the first signal terminal electrode 1.

第2の信号用引き出し電極部30c〜36cは、信号用主電極部30a〜36aの第2の側面L1d側の端部ら伸びている。第2の信号用引き出し電極部30c〜36cは、信号用主電極部30a〜36aと第3及び第4の側面L1e、L1fの対向方向での幅が同じである。第2の信号用引き出し電極部30c〜36cは、その端が第2の側面L1dに露出し、当該露出した端部で第2の信号用端子電極2に接続される。   The second signal lead electrode portions 30c to 36c extend from the end portions on the second side face L1d side of the signal main electrode portions 30a to 36a. The second signal extraction electrode portions 30c to 36c have the same width in the opposing direction of the signal main electrode portions 30a to 36a and the third and fourth side faces L1e and L1f. The ends of the second signal lead electrode portions 30c to 36c are exposed at the second side face L1d, and the exposed end portions are connected to the second signal terminal electrode 2.

第1の信号用端子電極1は、第1の信号用引き出し電極部30b〜36bの第1の側面L1cに露出した部分をすべて覆うように形成されており、第1の信号用引き出し電極部30b〜36bは、第1の信号用端子電極1に物理的且つ電気的に接続される。これにより、信号用内部電極30〜36は、第1の信号用端子電極1に接続されることとなる。   The first signal terminal electrode 1 is formed so as to cover all the exposed portions of the first signal lead electrode portions 30b to 36b on the first side face L1c, and the first signal lead electrode portion 30b. ˜36b are physically and electrically connected to the first signal terminal electrode 1. As a result, the signal internal electrodes 30 to 36 are connected to the first signal terminal electrode 1.

第2の信号用端子電極2は、第2の信号用引き出し電極部30c〜36cの第2の側面L1dに露出した部分をすべて覆うように形成されており、第2の信号用引き出し電極部30c〜36cは、第2の信号用端子電極2に物理的且つ電気的に接続される。これにより、信号用内部電極30〜36は、第2の信号用端子電極2に接続されることとなる。   The second signal terminal electrode 2 is formed so as to cover all the portions exposed to the second side face L1d of the second signal lead electrode portions 30c to 36c, and the second signal lead electrode portion 30c. ˜36c are physically and electrically connected to the second signal terminal electrode 2. As a result, the signal internal electrodes 30 to 36 are connected to the second signal terminal electrode 2.

各接地用内部電極20、21は、接地用主電極部20a、21aと、接地用主電極部20a、21aからコンデンサ素体L1の第3の側面L1eに引き出されるように伸びる第1の接地用引き出し電極部20b、21bと、接地用主電極部20a、21aからコンデンサ素体L1の第4の側面L1fに引き出されるように伸びる第2の接地用引き出し電極部20c、21cとを有する。接地用主電極部20a、21a、第1の接地用引き出し電極部20b、21b、及び第2の接地用引き出し電極部20c、21cは、一体的に形成されている。   Each of the grounding internal electrodes 20 and 21 is connected to the grounding main electrode parts 20a and 21a and the first grounding electrode extending so as to be drawn from the grounding main electrode parts 20a and 21a to the third side face L1e of the capacitor body L1. The lead electrode portions 20b and 21b and the second ground lead electrode portions 20c and 21c extending so as to be drawn from the ground main electrode portions 20a and 21a to the fourth side face L1f of the capacitor body L1. The grounding main electrode portions 20a and 21a, the first grounding lead electrode portions 20b and 21b, and the second ground lead electrode portions 20c and 21c are integrally formed.

接地用主電極部20a、21aは、第1及び第2の側面L1c、L1dの対向方向を長辺方向とし、第3及び第4の側面L1e、L1fの対向方向を短辺方向とする矩形状を呈する。   The grounding main electrode portions 20a and 21a have a rectangular shape in which the opposing direction of the first and second side faces L1c and L1d is the long side direction and the opposing direction of the third and fourth side faces L1e and L1f is the short side direction. Presents.

第1の接地用引き出し電極部20b、21bは、接地用主電極部20a、21aの第3の側面L1e側の端部である長辺の略中央から伸びている。第1の接地用引き出し電極部20b、21bは、接地用主電極部20a、21aに比べて第1及び第2の側面L1c、L1dの対向方向での幅が小さい。第1の接地用引き出し電極部20b、21bは、その端が第3の側面L1eに露出し、当該露出した端部で第1の接地用端子電極3に接続される。   The first ground lead electrode portions 20b and 21b extend from substantially the center of the long side which is the end portion on the third side face L1e side of the ground main electrode portions 20a and 21a. The first ground lead electrode portions 20b and 21b have a smaller width in the facing direction of the first and second side faces L1c and L1d than the ground main electrode portions 20a and 21a. The ends of the first ground lead electrode portions 20b and 21b are exposed at the third side face L1e, and are connected to the first ground terminal electrode 3 at the exposed end portions.

第2の接地用引き出し電極部20c、21cは、接地用主電極部20a、21aの第4の側面L1f側の端部である長辺の略中央から伸びている。第2の接地用引き出し電極部20c、21cは、接地用主電極部20a、21aに比べて第1及び第2の側面L1c、L1dの対向方向での幅が小さい。第2の接地用引き出し電極部20c、21cは、その端が第4の側面L1fに露出し、当該露出した端部で第2の接地用端子電極4に接続される。   The second ground lead electrode portions 20c, 21c extend from the approximate center of the long side, which is the end portion on the fourth side face L1f side of the ground main electrode portions 20a, 21a. The second ground lead electrode portions 20c and 21c have a smaller width in the facing direction of the first and second side faces L1c and L1d than the ground main electrode portions 20a and 21a. The ends of the second ground lead electrode portions 20c and 21c are exposed at the fourth side face L1f, and the exposed end portions are connected to the second ground terminal electrode 4.

第1の接地用端子電極3は、第1の接地用引き出し電極部20b、21bの第3の側面L1eに露出した部分をすべて覆うように形成されており、第1の接地用引き出し電極部20b、21bは、第1の接地用端子電極3に物理的且つ電気的に接続される。これにより、接地用内部電極20、21は、第1の接地用端子電極3に接続されることとなる。   The first ground terminal electrode 3 is formed so as to cover all the exposed portions of the first ground lead electrode portions 20b and 21b on the third side face L1e, and the first ground lead electrode portion 20b. , 21 b are physically and electrically connected to the first ground terminal electrode 3. As a result, the grounding internal electrodes 20 and 21 are connected to the first grounding terminal electrode 3.

第2の接地用端子電極4は、第2の接地用引き出し電極部20c、21cの第4の側面L1fに露出した部分をすべて覆うように形成されており、第2の接地用引き出し電極部20c、21cは、第2の接地用端子電極4に物理的且つ電気的に接続される。これにより、接地用内部電極20、21は、第2の接地用端子電極4に接続されることとなる。   The second ground terminal electrode 4 is formed so as to cover all the exposed portions of the second ground lead electrode portions 20c, 21c on the fourth side face L1f, and the second ground lead electrode portion 20c. , 21 c are physically and electrically connected to the second ground terminal electrode 4. As a result, the grounding internal electrodes 20 and 21 are connected to the second grounding terminal electrode 4.

本実施形態では、信号用内部電極30〜36及び接地用内部電極20,21は、第1及び第2の主面L1a、L1bの対向方向に沿って、信号用内部電極33が略中央に位置し、接地用内部電極20、21がその両隣に位置し、接地用内部電極20から第1の主面L1aに向かって信号用内部電極32、31、30が配置され、接地用内部電極21から第2の主面L1bに向かって信号用内部電極34、35、36が配置されている。   In the present embodiment, the signal internal electrodes 30 to 36 and the grounding internal electrodes 20 and 21 are positioned substantially at the center along the opposing direction of the first and second main surfaces L1a and L1b. The grounding internal electrodes 20, 21 are located on both sides of the grounding internal electrodes 20, and the signal internal electrodes 32, 31, 30 are arranged from the grounding internal electrode 20 toward the first main surface L1a. Signal internal electrodes 34, 35, and 36 are arranged toward the second main surface L1b.

信号用内部電極32の信号用主電極部32aは、コンデンサ素体L1の一部である誘電体層13(第1の誘電領域)を間に挟んで、接地用内部電極20の接地用主電極部20aと誘電体層10〜19の積層方向(第1及び第2の主面L1a、L1bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極32と、接地用内部電極20とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層13のうち、信号用内部電極32の信号用主電極部32aと接地用内部電極20の接地用主電極部20aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 32a of the signal internal electrode 32 has the dielectric layer 13 (first dielectric region) that is a part of the capacitor body L1 interposed therebetween, and the ground main electrode of the ground internal electrode 20 is interposed therebetween. It includes regions facing each other in the stacking direction of the portion 20a and the dielectric layers 10-19 (opposing directions of the first and second main faces L1a, L1b). That is, the signal internal electrode 32 and the ground internal electrode 20 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 13 that overlaps the signal main electrode portion 32a of the signal internal electrode 32 and the ground main electrode portion 20a of the ground internal electrode 20 substantially generates a capacitance component. It is an area.

信号用内部電極33の信号用主電極部33aは、コンデンサ素体L1の一部である誘電体層14(第1の誘電領域)を間に挟んで、接地用内部電極20の接地用主電極部20aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極33と、接地用内部電極20とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層14のうち、信号用内部電極33の信号用主電極部33aと接地用内部電極20の接地用主電極部20aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 33a of the signal internal electrode 33 has a dielectric layer 14 (first dielectric region) that is a part of the capacitor body L1 and sandwiches the ground main electrode of the ground internal electrode 20 therebetween. It includes regions facing each other in the stacking direction of the portion 20a and the dielectric layers 10-19. That is, the signal internal electrode 33 and the ground internal electrode 20 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 14 that overlaps the signal main electrode portion 33a of the signal internal electrode 33 and the ground main electrode portion 20a of the ground internal electrode 20 substantially generates a capacitance component. It is an area.

信号用内部電極33の信号用主電極部33aは、コンデンサ素体L1の一部である誘電体層15(第1の誘電領域)を間に挟んで、接地用内部電極21の接地用主電極部21aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極33と、接地用内部電極21とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層15のうち、信号用内部電極33の信号用主電極部33aと接地用内部電極21の接地用主電極部21aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 33a of the signal internal electrode 33 is a ground main electrode of the ground internal electrode 21 with the dielectric layer 15 (first dielectric region) which is a part of the capacitor body L1 interposed therebetween. The region 21a and the dielectric layers 10 to 19 include regions facing each other in the stacking direction. That is, the signal internal electrode 33 and the ground internal electrode 21 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 15 that overlaps the signal main electrode portion 33a of the signal internal electrode 33 and the ground main electrode portion 21a of the ground internal electrode 21 substantially generates a capacitance component. It is an area.

信号用内部電極34の信号用主電極部34aは、コンデンサ素体L1の一部である誘電体層16(第1の誘電領域)を間に挟んで、接地用内部電極21の接地用主電極部21aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極34と、接地用内部電極21とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層16のうち、信号用内部電極34の信号用主電極部34aと接地用内部電極21の接地用主電極部21aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 34a of the signal internal electrode 34 has the dielectric layer 16 (first dielectric region) which is a part of the capacitor body L1 interposed therebetween, and the ground main electrode of the ground internal electrode 21 is sandwiched therebetween. The region 21a and the dielectric layers 10 to 19 include regions facing each other in the stacking direction. That is, the signal internal electrode 34 and the ground internal electrode 21 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 16 that overlaps the signal main electrode portion 34a of the signal internal electrode 34 and the ground main electrode portion 21a of the ground internal electrode 21 substantially generates a capacitance component. It is an area.

信号用内部電極30の信号用主電極部30aは、コンデンサ素体L1の一部である誘電体層11(第2の誘電領域)を間に挟んで信号用内部電極31の信号用主電極部31aと互いに対向する領域を含んでいる。すなわち、信号用内部電極30、31は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 30a of the signal internal electrode 30 is a signal main electrode portion of the signal internal electrode 31 with a dielectric layer 11 (second dielectric region) that is a part of the capacitor body L1 interposed therebetween. 31a and a region facing each other. That is, the signal internal electrodes 30 and 31 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極31の信号用主電極部31aは、コンデンサ素体L1の一部である誘電体層12(第2の誘電領域)を間に挟んで信号用内部電極32の信号用主電極部32aと互いに対向する領域を含んでいる。すなわち、信号用内部電極31、32は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 31a of the signal internal electrode 31 is a signal main electrode portion of the signal internal electrode 32 with the dielectric layer 12 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 32a and a region facing each other. That is, the signal internal electrodes 31 and 32 have regions overlapping each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極34の信号用主電極部34aは、コンデンサ素体L1の一部である誘電体層17(第2の誘電領域)を間に挟んで信号用内部電極35の信号用主電極部35aと互いに対向する領域を含んでいる。すなわち、信号用内部電極34、35は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 34a of the signal internal electrode 34 is a signal main electrode portion of the signal internal electrode 35 with the dielectric layer 17 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 35a and a region facing each other. That is, the signal internal electrodes 34 and 35 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極35の信号用主電極部35aは、コンデンサ素体L1の一部である誘電体層18(第2の誘電領域)を間に挟んで信号用内部電極36の信号用主電極部36aと互いに対向する領域を含んでいる。すなわち、信号用内部電極35、36は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 35a of the signal internal electrode 35 is a signal main electrode portion of the signal internal electrode 36 with the dielectric layer 18 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 36a and a region facing each other. That is, the signal internal electrodes 35 and 36 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

図2及び図3から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層13〜16の第1及び第2の主面L1a、L1bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層11、12、17、18の第1及び第2の主面L1a、L1bの対向方向での長さよりも長い。   As apparent from FIGS. 2 and 3, the first dielectric region, that is, the first of the dielectric layers 13 to 16, which is a part of the capacitor body located between the signal internal electrode and the ground internal electrode. And the length of the second main surfaces L1a and L1b in the opposing direction is a second dielectric region that is a part of the capacitor body located between the signal internal electrodes, that is, the dielectric layers 11, 12, 17 and 18 are longer than the length in the opposing direction of the first and second main surfaces L1a and L1b.

図4に示すように、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20a、21aの幅をdとし、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 4, the third and fourth side faces L1e, grounding main electrode portion 20a in the opposing direction of L1f, 21a width of the d 1, third and fourth side faces L1e, opposing direction of L1f When the width of the signal main electrode 30a~36a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

貫通型積層コンデンサC1では、信号用内部電極30〜36の数(第1の数)が7層であり、接地用内部電極20、21の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC1では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C1, the number of signal internal electrodes 30 to 36 (first number) is seven layers, and the number of grounding internal electrodes 20, 21 (second number) is two layers. That is, the first number is greater than the second number. Therefore, the feedthrough multilayer capacitor C1 can suppress an increase in DC resistance.

また、貫通型積層コンデンサC1では、数が多い信号用内部電極30〜36は、その一部である信号用内部電極30、31、35、36の信号用主電極部30a、31a、35a、36aが、コンデンサ素体L1の第2の誘電領域である誘電体層11、12、17、18を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC1では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。   In the feedthrough multilayer capacitor C1, the large number of signal internal electrodes 30 to 36 are signal main electrode portions 30a, 31a, 35a, 36a of the signal internal electrodes 30, 31, 35, 36, which are a part of the signal internal electrodes 30-36. However, it has the area | region which opposes on both sides of the dielectric material layers 11, 12, 17, and 18 which are the 2nd dielectric material area | regions of the capacitor | condenser body L1. Therefore, in the feedthrough multilayer capacitor C1, it is possible to prevent the capacitance from increasing even if the number of signal internal electrodes is increased to suppress an increase in DC resistance.

一般的な貫通型コンデンサでは、信号用内部電極及び接地用内部電極の何れか一方のみの数を多くし、さらに同種の内部電極同士を対向させるような配置は、静電容量の形成に寄与しないため行わない。本実施形態に係る貫通型積層コンデンサC1では、通常の貫通型積層コンデンサでは採用しない上述のような配置をあえて採ることによって、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することを可能にしている。   In a general feedthrough capacitor, an arrangement in which only one of the signal internal electrode and the ground internal electrode is increased and the internal electrodes of the same type are opposed to each other does not contribute to the formation of the capacitance. Do not do it. In the feedthrough multilayer capacitor C1 according to the present embodiment, the DC resistance is increased while suppressing an increase in capacitance by intentionally adopting the above-described arrangement that is not employed in a normal feedthrough multilayer capacitor. It is possible to suppress.

貫通型積層コンデンサC1では、誘電体層13〜16の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)が、誘電体層11、12、17、18の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極32〜34と接地用内部電極20、21との間の距離が、信号用内部電極30〜32、34〜36間の距離よりも長くなるため、接地用内部電極20、21がコンデンサ素体L1の外側に配置されやすくなる。   In the feedthrough multilayer capacitor C1, the thicknesses (lengths) of the dielectric layers 13 to 16 in the opposing direction of the first and second main surfaces L1a and L1b are the first and second dielectric layers 11, 12, 17, and 18. It is thicker (longer) than the thickness (length) in the facing direction of the first and second main faces L1a, L1b. Therefore, the distance between the signal internal electrodes 32-34 and the ground internal electrodes 20, 21 is longer than the distance between the signal internal electrodes 30-32, 34-36. 21 is easily disposed outside the capacitor body L1.

コンデンサ素体L1は、一般に、焼結後、端子電極を外表面に形成する前にバレル研磨を行う。バレル研磨では、コンデンサ素体L1の外側ほど研磨が進み、側面に引き出されるように伸びた引き出し電極部もより一層外表面に露出しやすくなる。そのため、接地用内部電極20、21がコンデンサ素体L1の外側に配置されることにより、接地用内部電極20、21は第1及び第2の接地用端子電極3、4に容易に且つ確実に接続されやすくなる。   Capacitor body L1 is generally barrel-polished after sintering and before terminal electrodes are formed on the outer surface. In the barrel polishing, the polishing progresses toward the outer side of the capacitor body L1, and the extraction electrode portion extended so as to be drawn out to the side surface is more easily exposed to the outer surface. Therefore, by arranging the grounding inner electrodes 20 and 21 outside the capacitor body L1, the grounding inner electrodes 20 and 21 can be easily and reliably connected to the first and second grounding terminal electrodes 3 and 4. It becomes easy to be connected.

貫通型積層コンデンサC1では、信号用内部電極30〜36において、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅と第3及び第4の側面L1e、L1fの対向方向での第1の信号用引き出し電極部30b〜36bの幅と第3及び第4の側面L1e、L1fの対向方向での第2の信号用引き出し電極部30c〜36cの幅とが同じである。そのため、信号用内部電極30〜36と第1及び第2の信号用端子電極1、2との間の接続をより確実に実現することが可能となる。
このように、本実施形態に係る貫通型積層コンデンサC1は、相対向する長方形状の第1及び第2の主面と、前記第1及び第2の主面間を連結するように伸びている相対向する第1及び第2の側面と、前記第1及び第2の主面間を連結するように伸びている相対向する第3及び第4の側面とをその外表面として有し、且つ誘電特性を有するコンデンサ素体と、複数の信号用内部電極を有し、前記コンデンサ素体内に配置された信号用内部電極群と、前記コンデンサ素体内に配置された接地用内部電極と、前記コンデンサ素体の前記外表面に配置された第1及び第2の信号用端子電極並びに接地用端子電極と、を備えており、前記信号用内部電極群と前記接地用内部電極とは、前記第1及び第2の主面の対向方向に沿って並置されており、前記各信号用内部電極は、信号用主電極部と、前記信号用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記第1の信号用端子電極に接続される第1の信号用引き出し電極部と、前記信号用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記第2の信号用端子電極に接続される第2の信号用引き出し電極部とを有し、前記接地用内部電極は、接地用主電極部と、前記接地用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記接地用端子電極に接続される接地用引き出し電極部とを有し、前記複数の信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部は、前記コンデンサ素体の一部を間に挟んで前記接地用内部電極の前記接地用主電極部と対向する領域を有することを特徴とする。
In the feedthrough multilayer capacitor C1, in the signal internal electrodes 30 to 36, the widths of the signal main electrode portions 30a to 36a and the third and fourth side surfaces L1e in the opposing direction of the third and fourth side faces L1e and L1f. , The widths of the first signal lead electrode portions 30b to 36b in the facing direction of L1f and the widths of the second signal lead electrode portions 30c to 36c in the facing direction of the third and fourth side faces L1e and L1f Are the same. Therefore, the connection between the signal internal electrodes 30 to 36 and the first and second signal terminal electrodes 1 and 2 can be more reliably realized.
As described above, the feedthrough multilayer capacitor C1 according to the present embodiment extends so as to connect the opposing first and second main surfaces of the rectangular shape and the first and second main surfaces. The first and second side surfaces facing each other and the third and fourth side surfaces facing each other extending so as to connect the first and second main surfaces as outer surfaces, and A capacitor body having dielectric characteristics, a plurality of signal internal electrodes, a group of signal internal electrodes disposed in the capacitor body, a grounding internal electrode disposed in the capacitor body, and the capacitor First and second signal terminal electrodes and grounding terminal electrodes disposed on the outer surface of the element body, and the signal internal electrode group and the grounding internal electrode include the first and second grounding terminal electrodes. And juxtaposed along the opposing direction of the second main surface, The signal internal electrode includes a signal main electrode portion, and a first signal electrode extending from the signal main electrode portion so as to be drawn to the outer surface of the capacitor element body and connected to the first signal terminal electrode. A signal lead electrode portion; a second signal lead electrode portion extending from the signal main electrode portion to be drawn to the outer surface of the capacitor element body and connected to the second signal terminal electrode; And the grounding internal electrode is connected to the grounding terminal electrode by extending from the grounding main electrode part so as to be drawn to the outer surface of the capacitor body. A signal main electrode portion of at least one signal internal electrode of the plurality of signal internal electrodes, wherein a part of the capacitor body is sandwiched between the ground internal electrodes. Opposite to the main electrode for grounding And having a that region.

ここで、図5に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図5に示すように、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅dは、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20、21の幅dより広くてもよい。 Here, FIG. 5 shows an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 5, the third and fourth side faces L1e, the width d 2 of the signal main electrode 30a~36a in the opposing direction of L1f, the third and fourth side faces L1e, in the opposing direction of the L1f It may be wider than the width d 1 of the grounding main electrode portions 20, 21.

このように、信号用主電極部30a〜36aの幅を接地用主電極部20a、21aに比べて広くすることで、第1実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, the DC resistance of the feedthrough multilayer capacitor according to the modification of the first embodiment is increased by making the widths of the signal main electrode portions 30a to 36a wider than those of the grounding main electrode portions 20a and 21a. This is further suppressed.

また、信号用主電極部30a〜36aの幅を広くすることで、貫通型積層コンデンサC1の変形例では、信号用主電極部32a〜34aと接地用主電極部20a、21aとの間で形成される静電容量が信号用主電極部32a〜34aではなく接地用主電極部20a、21aの大きさによって規定されることとなる。そのため、信号用内部電極32〜34及び接地用内部電極20、21が所望の位置からずれて配置された場合であっても、それらの間で形成される静電容量は接地用主電極部20a、21aの大きさで結局決まるため、所望の値からずれることが抑制される。すなわち、信号用内部電極32〜34及び接地用内部電極20、21の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。その結果、第1実施形態の変形例に係る貫通型積層コンデンサの静電容量のばらつきが抑制される。
(第2実施形態)
Further, by increasing the width of the signal main electrode portions 30a to 36a, in the modified example of the feedthrough multilayer capacitor C1, the signal main electrode portions 32a to 34a and the grounding main electrode portions 20a and 21a are formed. The capacitance to be determined is defined not by the signal main electrode portions 32a to 34a but by the size of the grounding main electrode portions 20a and 21a. Therefore, even if the signal internal electrodes 32 to 34 and the grounding internal electrodes 20 and 21 are arranged out of a desired position, the capacitance formed between them is the grounding main electrode portion 20a. , 21a is finally determined, so that deviation from a desired value is suppressed. That is, even when a stacking shift occurs between the signal internal electrodes 32 to 34 and the grounding internal electrodes 20 and 21, it is possible to suppress the influence on the capacitance formed between them. It becomes. As a result, variation in the capacitance of the feedthrough multilayer capacitor according to the modification of the first embodiment is suppressed.
(Second Embodiment)

図6〜図8に基づいて、第2実施形態に係る貫通型積層コンデンサの構成について説明する。図6は、図1に示した第1実施形態に係る貫通型積層コンデンサのII−II矢印断面図に相当する、第2実施形態に係る貫通型積層コンデンサの断面図である。図7は、図1に示した第1実施形態に係る貫通型積層コンデンサのIII−III矢印断面図に相当する、第2実施形態に係る貫通型積層コンデンサの断面図である。図8は、第2実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   A configuration of the feedthrough multilayer capacitor according to the second embodiment will be described with reference to FIGS. FIG. 6 is a cross-sectional view of the feedthrough multilayer capacitor according to the second embodiment, corresponding to the cross-sectional view taken along the line II-II of the feedthrough multilayer capacitor according to the first embodiment shown in FIG. FIG. 7 is a cross-sectional view of the feedthrough multilayer capacitor according to the second embodiment corresponding to the cross-sectional view taken along the line III-III of the feedthrough multilayer capacitor according to the first embodiment shown in FIG. FIG. 8 is an exploded perspective view of a capacitor body included in the feedthrough multilayer capacitor according to the second embodiment.

第2実施形態に係る貫通型積層コンデンサC2は、コンデンサ素体L1内での接地用内部電極20、21の配置の点で第1実施形態に係る貫通型積層コンデンサC1と相違する。   The feedthrough multilayer capacitor C2 according to the second embodiment is different from the feedthrough multilayer capacitor C1 according to the first embodiment in the arrangement of the grounding internal electrodes 20 and 21 in the capacitor body L1.

第2実施形態に係る貫通型積層コンデンサC2は、コンデンサ素体L1と、コンデンサ素体L1の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、図1に示した第1実施形態に係る貫通型積層コンデンサC1と同じ配置でコンデンサ素体L1の外表面上に配置される。   The feedthrough multilayer capacitor C2 according to the second embodiment includes a capacitor body L1, first and second signal terminal electrodes 1 and 2, and first and second signal terminals 1 and 2 disposed on the outer surface of the capacitor body L1. Ground terminal electrodes 3 and 4 are provided. The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 have the same arrangement as the feedthrough multilayer capacitor C1 according to the first embodiment shown in FIG. It arrange | positions on the outer surface of the element | base_body L1.

貫通型積層コンデンサC2では、第1の主面L1a又は第2の主面L1bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。   In the feedthrough multilayer capacitor C2, the first main surface L1a or the second main surface L1b is preferably mounted on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component).

コンデンサ素体L1は、図6〜図8に示されるように、第1及び第2の主面L1a、L1bの対向方向に積層された複数(本実施形態では、10層)の誘電体層10〜19を有する。   As shown in FIGS. 6 to 8, the capacitor body L <b> 1 includes a plurality (10 layers in this embodiment) of dielectric layers 10 stacked in the opposing direction of the first and second main surfaces L <b> 1 a and L <b> 1 b. ~ 19.

誘電体層11、12、17、18は、図6〜図8に示されているように、誘電体層10、13〜16、19に比べて第1及び第2の主面L1a、L1bの対向方向での厚さが厚い。各誘電体層10〜19は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。   As shown in FIGS. 6 to 8, the dielectric layers 11, 12, 17 and 18 are formed on the first and second main surfaces L <b> 1 a and L <b> 1 b as compared with the dielectric layers 10, 13 to 16 and 19. Thick in the opposite direction. Each of the dielectric layers 10 to 19 may be composed of a sintered body of a single ceramic green sheet or may be composed of a sintered body of a plurality of ceramic green sheets.

貫通型積層コンデンサC2のコンデンサ素体L1には、第1の数(本実施形態では7層)の信号用内部電極30〜36及び第2の数(本実施形態では2層)の接地用内部電極20、21が配置されている。信号用内部電極30〜36の数である第1の数は、接地用内部電極20、21の数である第2の数より大きい。   The capacitor body L1 of the feedthrough multilayer capacitor C2 includes a first number (seven layers in this embodiment) of signal internal electrodes 30 to 36 and a second number (two layers in this embodiment) of grounding internals. Electrodes 20 and 21 are arranged. The first number that is the number of the signal internal electrodes 30 to 36 is larger than the second number that is the number of the grounding internal electrodes 20 and 21.

本実施形態では、信号用内部電極30〜36及び接地用内部電極20,21は、第1及び第2の主面L1a、L1bの対向方向に沿って、略中央に位置する信号用内部電極33から第1の主面L1aに向かって、2層の信号用内部電極32、31、接地用内部電極20、信号用内部電極30がこの順で配置されており、また信号用内部電極33から第2の主面L1bに向かって、2層の信号用内部電極34、35、接地用内部電極21、信号用内部電極36がこの順で配置されている。   In the present embodiment, the signal internal electrodes 30 to 36 and the grounding internal electrodes 20 and 21 are the signal internal electrodes 33 located substantially in the center along the opposing direction of the first and second main surfaces L1a and L1b. Two layers of signal internal electrodes 32 and 31, a ground internal electrode 20, and a signal internal electrode 30 are arranged in this order from the signal internal electrode 33 toward the first main surface L1a. Two layers of signal internal electrodes 34, 35, grounding internal electrode 21, and signal internal electrode 36 are arranged in this order toward the two major surfaces L1b.

貫通型積層コンデンサC2では、接地用内部電極20は、第1及び第2の主面L1a、L1bの対向方向で見て、コンデンサ素体L1の第1及び第2の主面L1a、L1bが対向する距離hの第1の主面L1aから4分の1の距離までの領域内に配置されている。すなわち、第1及び第2の主面L1a、L1bの対向方向で見て、第1の主面L1aと接地用内部電極20との間の距離hは、コンデンサ素体L1の第1及び第2の主面L1a、L1bが対向する距離hの4分の1より小さい。 In the feedthrough multilayer capacitor C2, the grounding internal electrode 20 is opposed to the first and second main surfaces L1a and L1b of the capacitor body L1 when viewed in the opposing direction of the first and second main surfaces L1a and L1b. It arranged in the region of up to 1 in 4 minutes from the first major surface L1a distance h 1 to. In other words, the distance h 2 between the first main surface L1a and the grounding internal electrode 20 when viewed in the opposing direction of the first and second main surfaces L1a, L1b is the first and second of the capacitor body L1. second main surfaces L1a, 1 less than a quarter of the distance h 1 which L1b is opposed.

貫通型積層コンデンサC2では、接地用内部電極21は、第1及び第2の主面L1a、L1bの対向方向で見て、コンデンサ素体L1の第1及び第2の主面L1a、L1bが対向する距離hの第2の主面L1bから4分の1の距離までの領域内に配置されている。すなわち、第1及び第2の主面L1a、L1bの対向方向で見て、第2の主面L1bと接地用内部電極21との間の距離hは、コンデンサ素体L1の第1及び第2の主面L1a、L1bが対向する距離hの4分の1より小さい。 In the feedthrough multilayer capacitor C2, the grounding internal electrode 21 is opposed to the first and second main surfaces L1a and L1b of the capacitor body L1 when viewed in the opposing direction of the first and second main surfaces L1a and L1b. It arranged in the region of up to 1 in 4 minutes from the second major surface L1b distance h 1 to. In other words, the distance h 3 between the second main surface L1b and the grounding internal electrode 21 when viewed in the opposing direction of the first and second main surfaces L1a, L1b is the first and second of the capacitor body L1. second main surfaces L1a, 1 less than a quarter of the distance h 1 which L1b is opposed.

このように、貫通型積層コンデンサC2では、接地用内部電極20、21がコンデンサ素体L1の外表面に近い位置に配置されている。   Thus, in the feedthrough multilayer capacitor C2, the grounding inner electrodes 20, 21 are arranged at positions close to the outer surface of the capacitor body L1.

信号用内部電極30の信号用主電極部30aは、コンデンサ素体L1の一部である誘電体層11(第1の誘電領域)を間に挟んで、接地用内部電極20の接地用主電極部20aと誘電体層10〜19の積層方向(第1及び第2の主面L1a、L1bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極30と、接地用内部電極20とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層11のうち、信号用内部電極30の信号用主電極部30aと接地用内部電極20の接地用主電極部20aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 30a of the signal internal electrode 30 has a grounding main electrode of the grounding internal electrode 20 with a dielectric layer 11 (first dielectric region) which is a part of the capacitor body L1 interposed therebetween. It includes regions facing each other in the stacking direction of the portion 20a and the dielectric layers 10-19 (opposing directions of the first and second main faces L1a, L1b). That is, the signal internal electrode 30 and the ground internal electrode 20 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Accordingly, a portion of the dielectric layer 11 that overlaps the signal main electrode portion 30a of the signal internal electrode 30 and the ground main electrode portion 20a of the ground internal electrode 20 substantially generates a capacitance component. It is an area.

信号用内部電極31の信号用主電極部31aは、コンデンサ素体L1の一部である誘電体層12(第1の誘電領域)を間に挟んで、接地用内部電極20の接地用主電極部20aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極31と、接地用内部電極20とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層12のうち、信号用内部電極31の信号用主電極部31aと接地用内部電極20の接地用主電極部20aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 31a of the signal internal electrode 31 has the dielectric layer 12 (first dielectric region) that is a part of the capacitor body L1 interposed therebetween, and the ground main electrode of the ground internal electrode 20 It includes regions facing each other in the stacking direction of the portion 20a and the dielectric layers 10-19. That is, the signal internal electrode 31 and the ground internal electrode 20 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 12 that overlaps the signal main electrode portion 31a of the signal internal electrode 31 and the ground main electrode portion 20a of the ground internal electrode 20 substantially generates a capacitance component. It is an area.

信号用内部電極35の信号用主電極部35aは、コンデンサ素体L1の一部である誘電体層17(第1の誘電領域)を間に挟んで、接地用内部電極21の接地用主電極部21aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極35と、接地用内部電極21とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層17のうち、信号用内部電極35の信号用主電極部35aと接地用内部電極21の接地用主電極部21aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 35a of the signal internal electrode 35 has a grounding main electrode of the grounding internal electrode 21 with the dielectric layer 17 (first dielectric region) which is a part of the capacitor body L1 interposed therebetween. The region 21a and the dielectric layers 10 to 19 include regions facing each other in the stacking direction. That is, the signal internal electrode 35 and the ground internal electrode 21 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 17 that overlaps the signal main electrode portion 35a of the signal internal electrode 35 and the ground main electrode portion 21a of the ground internal electrode 21 substantially generates a capacitance component. It is an area.

信号用内部電極36の信号用主電極部36aは、コンデンサ素体L1の一部である誘電体層18(第1の誘電領域)を間に挟んで、接地用内部電極21の接地用主電極部21aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極36と、接地用内部電極21とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層18のうち、信号用内部電極36の信号用主電極部36aと接地用内部電極21の接地用主電極部21aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 36a of the signal internal electrode 36 has the dielectric layer 18 (first dielectric region) that is a part of the capacitor body L1 interposed therebetween, and the ground main electrode of the ground internal electrode 21 is sandwiched therebetween. The region 21a and the dielectric layers 10 to 19 include regions facing each other in the stacking direction. That is, the signal internal electrode 36 and the ground internal electrode 21 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 18 that overlaps the signal main electrode portion 36a of the signal internal electrode 36 and the ground main electrode portion 21a of the ground internal electrode 21 substantially generates a capacitance component. It is an area.

信号用内部電極31の信号用主電極部31aは、コンデンサ素体L1の一部である誘電体層13(第2の誘電領域)を間に挟んで信号用内部電極32の信号用主電極部32aと互いに対向する領域を含んでいる。すなわち、信号用内部電極31、32は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 31a of the signal internal electrode 31 is a signal main electrode portion of the signal internal electrode 32 with the dielectric layer 13 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 32a and a region facing each other. That is, the signal internal electrodes 31 and 32 have regions overlapping each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極32の信号用主電極部32aは、コンデンサ素体L1の一部である誘電体層14(第2の誘電領域)を間に挟んで信号用内部電極33の信号用主電極部33aと互いに対向する領域を含んでいる。すなわち、信号用内部電極32、33は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 32a of the signal internal electrode 32 is a signal main electrode portion of the signal internal electrode 33 with the dielectric layer 14 (second dielectric region) as a part of the capacitor body L1 interposed therebetween. 33a and a region facing each other. That is, the signal internal electrodes 32 and 33 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極33の信号用主電極部33aは、コンデンサ素体L1の一部である誘電体層15(第2の誘電領域)を間に挟んで信号用内部電極34の信号用主電極部35aと互いに対向する領域を含んでいる。すなわち、信号用内部電極33、34は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 33a of the signal internal electrode 33 is a signal main electrode portion of the signal internal electrode 34 with the dielectric layer 15 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 35a and a region facing each other. That is, the signal internal electrodes 33 and 34 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極34の信号用主電極部34aは、コンデンサ素体L1の一部である誘電体層16(第2の誘電領域)を間に挟んで信号用内部電極35の信号用主電極部35aと互いに対向する領域を含んでいる。すなわち、信号用内部電極34、35は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 34a of the signal internal electrode 34 is a signal main electrode portion of the signal internal electrode 35 with the dielectric layer 16 (second dielectric region) as a part of the capacitor body L1 interposed therebetween. 35a and a region facing each other. That is, the signal internal electrodes 34 and 35 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

図6及び図7から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層11、12、17、18の第1及び第2の主面L1a、L1bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層13〜16の第1及び第2の主面L1a、L1bの対向方向での長さよりも長い。   As is apparent from FIGS. 6 and 7, a first dielectric region that is a part of the capacitor body located between the signal internal electrode and the ground internal electrode, that is, the dielectric layers 11, 12, 17, 18 is a second dielectric region in which the length of the first and second main surfaces L1a and L1b in the opposing direction is a part of the capacitor body located between the signal internal electrodes, that is, a dielectric layer It is longer than the length of the first and second main surfaces L1a and L1b of 13 to 16 in the facing direction.

図8に示すように、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20a、21aの幅をdとし、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 8, third and fourth side faces L1e, grounding main electrode portion 20a in the opposing direction of L1f, 21a width of the d 1, third and fourth side faces L1e, opposing direction of L1f When the width of the signal main electrode 30a~36a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

貫通型積層コンデンサC2では、信号用内部電極30〜36の数(第1の数)が7層であり、接地用内部電極20、21の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC2では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C2, the number of signal internal electrodes 30 to 36 (first number) is seven layers, and the number of grounding internal electrodes 20, 21 (second number) is two layers. That is, the first number is greater than the second number. Therefore, the feedthrough multilayer capacitor C2 can suppress an increase in DC resistance.

また、貫通型積層コンデンサC2では、数が多い信号用内部電極30〜36の一部である信号用内部電極31〜35の信号用主電極部31a〜35aが、誘電体層13〜16を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC2では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。したがって、貫通型積層コンデンサC2では、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能である。   In the feedthrough multilayer capacitor C2, the signal main electrode portions 31a to 35a of the signal internal electrodes 31 to 35, which are a part of the signal internal electrodes 30 to 36 having a large number, are interposed between the dielectric layers 13 to 16. It has a region that faces when sandwiched between. Therefore, in the feedthrough multilayer capacitor C2, even if the number of signal internal electrodes is increased to suppress an increase in DC resistance, it is possible to suppress an increase in capacitance. Therefore, the feedthrough multilayer capacitor C2 can suppress an increase in DC resistance while suppressing an increase in capacitance.

貫通型積層コンデンサC2では、接地用内部電極20、21がコンデンサ素体L1の外表面に近い位置に配置されている。そのため、例えば焼結後にバレル研磨を施して製造したコンデンサ素体L1では、接地用内部電極20、21がコンデンサ素体L1の外表面に引き出されやすくなる。そのため、接地用内部電極20、21は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C2, the grounding inner electrodes 20, 21 are arranged at positions close to the outer surface of the capacitor body L1. Therefore, for example, in the capacitor body L1 manufactured by barrel polishing after sintering, the grounding internal electrodes 20 and 21 are easily pulled out to the outer surface of the capacitor body L1. Therefore, the grounding internal electrodes 20 and 21 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC2では、接地用内部電極20、21の数が信号用内部電極30〜36に比べて少ない。そのため、特に接地用内部電極20、21が容易に且つ確実に接地用端子電極3,4に接続されていることが好ましい。   In the feedthrough multilayer capacitor C2, the number of grounding inner electrodes 20, 21 is smaller than that of the signal inner electrodes 30-36. Therefore, it is particularly preferable that the grounding internal electrodes 20 and 21 are connected to the grounding terminal electrodes 3 and 4 easily and reliably.

貫通型積層コンデンサC2では、誘電体層11、12、17、18の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)が、誘電体層13〜16の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極30、31、35、36と接地用内部電極20、21との間の距離が、信号用内部電極31〜35間の距離よりも長くなるため、接地用内部電極20、21がコンデンサ素体L1の外側に配置されやすくなる。その結果、接地用内部電極20、21は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C2, the thicknesses (lengths) of the dielectric layers 11, 12, 17, and 18 in the opposing direction of the first and second main surfaces L1a and L1b are the same as those of the dielectric layers 13 to 16. It is thicker (longer) than the thickness (length) in the facing direction of the first and second main faces L1a, L1b. Therefore, the distance between the signal internal electrodes 30, 31, 35, 36 and the ground internal electrodes 20, 21 is longer than the distance between the signal internal electrodes 31-35. 21 is easily disposed outside the capacitor body L1. As a result, the grounding internal electrodes 20 and 21 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC2では、信号用内部電極30〜36において、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅と第3及び第4の側面L1e、L1fの対向方向での第1及び第2の信号用引き出し電極部30b〜36b、30c〜36cの幅とが同じである。そのため、信号用内部電極30〜36と第1及び第2の信号用端子電極1、2との間の接続をより確実に実現することが可能となる。   In the feedthrough multilayer capacitor C2, in the signal internal electrodes 30 to 36, the widths of the signal main electrode portions 30a to 36a and the third and fourth side surfaces L1e in the opposing direction of the third and fourth side faces L1e and L1f. , The widths of the first and second signal extraction electrode portions 30b to 36b and 30c to 36c in the opposing direction of L1f are the same. Therefore, the connection between the signal internal electrodes 30 to 36 and the first and second signal terminal electrodes 1 and 2 can be more reliably realized.

ここで、図9に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図9に示すように、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅dは、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20、21の幅dより広くてもよい。 Here, FIG. 9 shows an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 9, the third and fourth side faces L1e, the width d 2 of the signal main electrode 30a~36a in the opposing direction of L1f, the third and fourth side faces L1e, in the opposing direction of the L1f It may be wider than the width d 1 of the grounding main electrode portions 20, 21.

このように、信号用主電極部30a〜36aの幅を接地用主電極部20a、21aに比べて広くすることで、第2実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, by increasing the width of the signal main electrode portions 30a to 36a as compared with the grounding main electrode portions 20a and 21a, the DC resistance of the feedthrough multilayer capacitor according to the modification of the second embodiment is increased. This is further suppressed.

また、信号用主電極部30a〜36aの幅を広くすることで、信号用内部電極30、31、35、36及び接地用内部電極20、21の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。
(第3実施形態)
Further, by increasing the width of the signal main electrode portions 30a to 36a, even if a stacking shift occurs between the signal internal electrodes 30, 31, 35, 36 and the ground internal electrodes 20, 21. It is possible to suppress the influence on the capacitance formed between them.
(Third embodiment)

図10〜図12に基づいて、第3実施形態に係る貫通型積層コンデンサの構成について説明する。図10は、図1に示した第1実施形態に係る貫通型積層コンデンサのII−II矢印断面図に相当する、第3実施形態に係る貫通型積層コンデンサの断面図である。図11は、図1に示した第1実施形態に係る貫通型積層コンデンサのIII−III矢印断面図に相当する、第3実施形態に係る貫通型積層コンデンサの断面図である。図12は、第3実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   The structure of the feedthrough multilayer capacitor according to the third embodiment will be described with reference to FIGS. FIG. 10 is a cross-sectional view of the feedthrough multilayer capacitor in accordance with the third embodiment corresponding to the cross-sectional view taken along the line II-II of the feedthrough multilayer capacitor in accordance with the first embodiment shown in FIG. FIG. 11 is a cross-sectional view of the feedthrough multilayer capacitor according to the third embodiment, corresponding to the cross section taken along the line III-III of the feedthrough multilayer capacitor according to the first embodiment shown in FIG. FIG. 12 is an exploded perspective view of a capacitor body included in the feedthrough multilayer capacitor according to the third embodiment.

第3実施形態に係る貫通型積層コンデンサC3は、コンデンサ素体L1内での接地用内部電極20、21の配置の点で第1実施形態に係る貫通型積層コンデンサC1と相違する。   The feedthrough multilayer capacitor C3 according to the third embodiment is different from the feedthrough multilayer capacitor C1 according to the first embodiment in the arrangement of the grounding internal electrodes 20 and 21 in the capacitor body L1.

第3実施形態に係る貫通型積層コンデンサC3は、コンデンサ素体L1と、コンデンサ素体L1の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、図1に示した第1実施形態に係る貫通型積層コンデンサC1と同じ配置でコンデンサ素体L1の外表面上に配置される。   The feedthrough multilayer capacitor C3 according to the third embodiment includes a capacitor body L1, first and second signal terminal electrodes 1 and 2 and first and second signal terminals 1 and 2 disposed on the outer surface of the capacitor body L1. Ground terminal electrodes 3 and 4 are provided. The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 have the same arrangement as the feedthrough multilayer capacitor C1 according to the first embodiment shown in FIG. It arrange | positions on the outer surface of the element | base_body L1.

貫通型積層コンデンサC3では、第1の主面L1a又は第2の主面L1bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。   In the feedthrough multilayer capacitor C3, it is preferable to mount the first main surface L1a or the second main surface L1b on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component).

コンデンサ素体L1は、図10〜図12に示されるように、第1及び第2の主面L1a、L1bの対向方向に積層された複数(本実施形態では、10層)の誘電体層10〜19を有する。   As shown in FIGS. 10 to 12, the capacitor body L <b> 1 includes a plurality of (10 layers in this embodiment) dielectric layers 10 stacked in the opposing direction of the first and second main surfaces L <b> 1 a and L <b> 1 b. ~ 19.

誘電体層10、11、18、19は、図10〜図12に示されているように、誘電体層12〜17に比べて第1及び第2の主面L1a、L1bの対向方向での厚さが厚い。各誘電体層10〜19は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。   As shown in FIGS. 10 to 12, the dielectric layers 10, 11, 18, and 19 are in a direction opposite to the first and second main surfaces L <b> 1 a and L <b> 1 b as compared with the dielectric layers 12 to 17. Thick. Each of the dielectric layers 10 to 19 may be composed of a sintered body of a single ceramic green sheet or may be composed of a sintered body of a plurality of ceramic green sheets.

貫通型積層コンデンサC3のコンデンサ素体L1には、第1の数(本実施形態では7層)の信号用内部電極30〜36及び第2の数(本実施形態では2層)の接地用内部電極20、21が配置されている。信号用内部電極30〜36の数である第1の数は、接地用内部電極20、21の数である第2の数より大きい。   The capacitor body L1 of the feedthrough multilayer capacitor C3 includes a first number (seven layers in the present embodiment) of signal internal electrodes 30 to 36 and a second number (two layers in the present embodiment) of grounding internals. Electrodes 20 and 21 are arranged. The first number that is the number of the signal internal electrodes 30 to 36 is larger than the second number that is the number of the grounding internal electrodes 20 and 21.

本実施形態では、信号用内部電極30〜36及び接地用内部電極20,21は、第1及び第2の主面L1a、L1bの対向方向に沿って、略中央に位置する信号用内部電極33から第1の主面L1aに向かって、3層の信号用内部電極32、31、30、接地用内部電極20がこの順で配置されており、また信号用内部電極33から第2の主面L1bに向かって、3層の信号用内部電極34、35、36、接地用内部電極21がこの順で配置されている。   In the present embodiment, the signal internal electrodes 30 to 36 and the grounding internal electrodes 20 and 21 are the signal internal electrodes 33 located substantially in the center along the opposing direction of the first and second main surfaces L1a and L1b. The three layers of signal internal electrodes 32, 31, 30 and the ground internal electrode 20 are arranged in this order from the first main surface L1a to the first main surface L1a, and from the signal internal electrode 33 to the second main surface. Toward L1b, three layers of signal internal electrodes 34, 35, and 36 and a grounding internal electrode 21 are arranged in this order.

貫通型積層コンデンサC3では、接地用内部電極20は、第1及び第2の主面L1a、L1bの対向方向で見て、第1の数の信号用内部電極30〜36の何れよりも第1の主面L1a側に配置されている。接地用内部電極21は、第1及び第2の主面L1a、L1bの対向方向で見て、第1の数の信号用内部電極30〜36の何れよりも第2の主面L1b側に配置されている。このように、貫通型積層コンデンサC3では、接地用内部電極20、21がコンデンサ素体L1の外表面に近い位置に配置されている。   In the feedthrough multilayer capacitor C3, the grounding internal electrode 20 is first than any of the first number of signal internal electrodes 30 to 36 when viewed in the opposing direction of the first and second main surfaces L1a and L1b. Is arranged on the main surface L1a side. The grounding internal electrode 21 is arranged closer to the second main surface L1b than any of the first number of signal internal electrodes 30 to 36 when viewed in the opposing direction of the first and second main surfaces L1a and L1b. Has been. As described above, in the feedthrough multilayer capacitor C3, the grounding inner electrodes 20, 21 are arranged at positions close to the outer surface of the capacitor body L1.

信号用内部電極30の信号用主電極部30aは、コンデンサ素体L1の一部である誘電体層11(第1の誘電領域)を間に挟んで、接地用内部電極20の接地用主電極部20aと誘電体層10〜19の積層方向(第1及び第2の主面L1a、L1bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極30と、接地用内部電極20とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層11のうち、信号用内部電極30の信号用主電極部30aと接地用内部電極20の接地用主電極部20aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 30a of the signal internal electrode 30 has a grounding main electrode of the grounding internal electrode 20 with a dielectric layer 11 (first dielectric region) which is a part of the capacitor body L1 interposed therebetween. It includes regions facing each other in the stacking direction of the portion 20a and the dielectric layers 10-19 (opposing directions of the first and second main faces L1a, L1b). That is, the signal internal electrode 30 and the ground internal electrode 20 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Accordingly, a portion of the dielectric layer 11 that overlaps the signal main electrode portion 30a of the signal internal electrode 30 and the ground main electrode portion 20a of the ground internal electrode 20 substantially generates a capacitance component. It is an area.

信号用内部電極36の信号用主電極部36aは、コンデンサ素体L1の一部である誘電体層18(第1の誘電領域)を間に挟んで、接地用内部電極21の接地用主電極部21aと誘電体層10〜19の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極36と、接地用内部電極21とは、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層18のうち、信号用内部電極36の信号用主電極部36aと接地用内部電極21の接地用主電極部21aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 36a of the signal internal electrode 36 has the dielectric layer 18 (first dielectric region) that is a part of the capacitor body L1 interposed therebetween, and the ground main electrode of the ground internal electrode 21 is sandwiched therebetween. The region 21a and the dielectric layers 10 to 19 include regions facing each other in the stacking direction. That is, the signal internal electrode 36 and the ground internal electrode 21 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b. Therefore, a portion of the dielectric layer 18 that overlaps the signal main electrode portion 36a of the signal internal electrode 36 and the ground main electrode portion 21a of the ground internal electrode 21 substantially generates a capacitance component. It is an area.

信号用内部電極30の信号用主電極部30aは、コンデンサ素体L1の一部である誘電体層12(第2の誘電領域)を間に挟んで信号用内部電極31の信号用主電極部31aと互いに対向する領域を含んでいる。すなわち、信号用内部電極30、31は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 30a of the signal internal electrode 30 is a signal main electrode portion of the signal internal electrode 31 with the dielectric layer 12 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 31a and a region facing each other. That is, the signal internal electrodes 30 and 31 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極31の信号用主電極部31aは、コンデンサ素体L1の一部である誘電体層13(第2の誘電領域)を間に挟んで信号用内部電極32の信号用主電極部32aと互いに対向する領域を含んでいる。すなわち、信号用内部電極31、32は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 31a of the signal internal electrode 31 is a signal main electrode portion of the signal internal electrode 32 with the dielectric layer 13 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 32a and a region facing each other. That is, the signal internal electrodes 31 and 32 have regions overlapping each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極32の信号用主電極部32aは、コンデンサ素体L1の一部である誘電体層14(第2の誘電領域)を間に挟んで信号用内部電極33の信号用主電極部33aと互いに対向する領域を含んでいる。すなわち、信号用内部電極32、33は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 32a of the signal internal electrode 32 is a signal main electrode portion of the signal internal electrode 33 with the dielectric layer 14 (second dielectric region) as a part of the capacitor body L1 interposed therebetween. 33a and a region facing each other. That is, the signal internal electrodes 32 and 33 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極33の信号用主電極部33aは、コンデンサ素体L1の一部である誘電体層15(第2の誘電領域)を間に挟んで信号用内部電極34の信号用主電極部34aと互いに対向する領域を含んでいる。すなわち、信号用内部電極33、34は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 33a of the signal internal electrode 33 is a signal main electrode portion of the signal internal electrode 34 with the dielectric layer 15 (second dielectric region) which is a part of the capacitor body L1 interposed therebetween. 34a and a region facing each other. That is, the signal internal electrodes 33 and 34 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極34の信号用主電極部34aは、コンデンサ素体L1の一部である誘電体層16(第2の誘電領域)を間に挟んで信号用内部電極35の信号用主電極部35aと互いに対向する領域を含んでいる。すなわち、信号用内部電極34、35は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 34a of the signal internal electrode 34 is a signal main electrode portion of the signal internal electrode 35 with the dielectric layer 16 (second dielectric region) as a part of the capacitor body L1 interposed therebetween. 35a and a region facing each other. That is, the signal internal electrodes 34 and 35 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

信号用内部電極35の信号用主電極部35aは、コンデンサ素体L1の一部である誘電体層17(第2の誘電領域)を間に挟んで信号用内部電極36の信号用主電極部36aと互いに対向する領域を含んでいる。すなわち、信号用内部電極35、36は、第1及び第2の主面L1a、L1bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 35a of the signal internal electrode 35 is a signal main electrode portion of the signal internal electrode 36 with the dielectric layer 17 (second dielectric region) as a part of the capacitor body L1 interposed therebetween. 36a and a region facing each other. That is, the signal internal electrodes 35 and 36 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L1a and L1b.

図10及び図11から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層11、18の第1及び第2の主面L1a、L1bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層12〜17の第1及び第2の主面L1a、L1bの対向方向での長さよりも長い。   As is apparent from FIGS. 10 and 11, the first dielectric region, that is, the first of the dielectric layers 11 and 18, which is a part of the capacitor body located between the signal internal electrode and the ground internal electrode. And the length of the second main surfaces L1a and L1b in the facing direction of the second dielectric region that is a part of the capacitor body located between the signal inner electrodes, that is, the dielectric layers 12 to 17 It is longer than the length of the first and second main surfaces L1a and L1b in the facing direction.

図12に示すように、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20a、21aの幅をdとし、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 12, third and fourth side faces L1e, grounding main electrode portion 20a in the opposing direction of L1f, 21a width of the d 1, third and fourth side faces L1e, opposing direction of L1f When the width of the signal main electrode 30a~36a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

貫通型積層コンデンサC3では、信号用内部電極30〜36の数(第1の数)が7層であり、接地用内部電極20、21の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC3では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C3, the number of signal inner electrodes 30 to 36 (first number) is seven layers, and the number of grounding inner electrodes 20, 21 (second number) is two layers. That is, the first number is greater than the second number. Therefore, the feedthrough multilayer capacitor C3 can suppress an increase in DC resistance.

また、貫通型積層コンデンサC3では、数が多い信号用内部電極30〜36の信号用主電極部30a〜36aが、誘電体層12〜17を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC3では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。したがって、貫通型積層コンデンサC3では、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能である。   In the feedthrough multilayer capacitor C3, the signal main electrode portions 30a to 36a of the large number of signal internal electrodes 30 to 36 have regions facing each other with the dielectric layers 12 to 17 therebetween. . Therefore, in the feedthrough multilayer capacitor C3, even if the number of signal internal electrodes is increased to suppress an increase in DC resistance, it is possible to suppress an increase in capacitance. Therefore, in the feedthrough multilayer capacitor C3, it is possible to suppress an increase in DC resistance while suppressing an increase in capacitance.

貫通型積層コンデンサC3では、接地用内部電極20、21がコンデンサ素体L1の外表面に近い位置に配置されている。そのため、例えば焼結後にバレル研磨を施して製造したコンデンサ素体L1では、接地用内部電極20、21がコンデンサ素体L1の外表面に引き出されやすくなる。そのため、接地用内部電極20、21は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C3, the grounding inner electrodes 20, 21 are arranged at positions close to the outer surface of the capacitor body L1. Therefore, for example, in the capacitor body L1 manufactured by barrel polishing after sintering, the grounding internal electrodes 20 and 21 are easily pulled out to the outer surface of the capacitor body L1. Therefore, the grounding internal electrodes 20 and 21 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC3では、接地用内部電極20、21の数が信号用内部電極30〜36に比べて少ない。そのため、特に接地用内部電極20、21が容易に且つ確実に接地用端子電極3,4に接続されていることが好ましい。   In the feedthrough multilayer capacitor C3, the number of grounding inner electrodes 20, 21 is smaller than that of the signal inner electrodes 30-36. Therefore, it is particularly preferable that the grounding internal electrodes 20 and 21 are connected to the grounding terminal electrodes 3 and 4 easily and reliably.

貫通型積層コンデンサC3では、誘電体層11、18の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)が、誘電体層12〜17の第1及び第2の主面L1a、L1bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極30、36と接地用内部電極20、21との間の距離が、信号用内部電極30〜36間の距離よりも長くなるため、接地用内部電極20、21がコンデンサ素体L1の外側に配置されやすくなる。その結果、接地用内部電極20、21は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C3, the thicknesses (lengths) of the dielectric layers 11 and 18 in the facing direction of the first and second main surfaces L1a and L1b are the first and second thicknesses of the dielectric layers 12 to 17, respectively. Is thicker (longer) than the thickness (length) in the opposing direction of the main surfaces L1a and L1b. Therefore, since the distance between the signal internal electrodes 30 and 36 and the ground internal electrodes 20 and 21 is longer than the distance between the signal internal electrodes 30 to 36, the ground internal electrodes 20 and 21 are not connected to the capacitor element. It becomes easy to arrange | position outside the body L1. As a result, the grounding internal electrodes 20 and 21 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC3では、信号用内部電極30〜36において、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅と第3及び第4の側面L1e、L1fの対向方向での第1及び第2の信号用引き出し電極部30b〜36b、30c〜36cの幅とが同じである。そのため、信号用内部電極30〜36と第1及び第2の信号用端子電極1、2との間の接続をより確実に実現することが可能となる。   In the feedthrough multilayer capacitor C3, in the signal internal electrodes 30 to 36, the widths of the signal main electrode portions 30a to 36a and the third and fourth side surfaces L1e in the opposing direction of the third and fourth side faces L1e and L1f. , The widths of the first and second signal extraction electrode portions 30b to 36b and 30c to 36c in the opposing direction of L1f are the same. Therefore, the connection between the signal internal electrodes 30 to 36 and the first and second signal terminal electrodes 1 and 2 can be more reliably realized.

ここで、図13に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図13に示すように、第3及び第4の側面L1e、L1fの対向方向での信号用主電極部30a〜36aの幅dは、第3及び第4の側面L1e、L1fの対向方向での接地用主電極部20、21の幅dより広くてもよい。 Here, FIG. 13 shows an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 13, the width d 2 of the signal main electrode portions 30a to 36a in the facing direction of the third and fourth side faces L1e, L1f is the facing direction of the third and fourth side faces L1e, L1f. It may be wider than the width d 1 of the grounding main electrode portions 20, 21.

このように、信号用主電極部30a〜36aの幅を接地用主電極部20a、21aに比べて広くすることで、第3実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, by making the width of the signal main electrode portions 30a to 36a wider than the grounding main electrode portions 20a and 21a, the DC resistance of the feedthrough multilayer capacitor according to the modification of the third embodiment is increased. This is further suppressed.

また、信号用主電極部30a〜36aの幅を広くすることで、信号用内部電極30、36及び接地用内部電極20、21の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。
(第4実施形態)
Further, by increasing the width of the signal main electrode portions 30a to 36a, even if a stacking deviation occurs between the signal internal electrodes 30 and 36 and the ground internal electrodes 20 and 21, between these It is possible to suppress the influence on the capacitance formed by the above.
(Fourth embodiment)

図14〜図17に基づいて、第4実施形態に係る貫通型積層コンデンサの構成について説明する。図14は、本実施形態に係る貫通型積層コンデンサの斜視図である。図15は、図14に示した貫通型積層コンデンサのXV−XV矢印断面図である。図16は、図14に示した貫通型積層コンデンサのXVI−XVI矢印断面図である。図17は、第4実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   The structure of the feedthrough multilayer capacitor according to the fourth embodiment will be described with reference to FIGS. FIG. 14 is a perspective view of the feedthrough multilayer capacitor according to the present embodiment. 15 is a cross-sectional view of the feedthrough multilayer capacitor shown in FIG. 14 taken along arrows XV-XV. 16 is a cross-sectional view of the feedthrough multilayer capacitor shown in FIG. 14 taken along arrows XVI-XVI. FIG. 17 is an exploded perspective view of a capacitor body included in the feedthrough multilayer capacitor according to the fourth embodiment.

図14に示すように、貫通型積層コンデンサC4は、誘電特性を有するコンデンサ素体L2と、コンデンサ素体L2の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。   As shown in FIG. 14, the feedthrough multilayer capacitor C4 includes a capacitor element L2 having dielectric characteristics, first and second signal terminal electrodes 1 and 2, and first and second signal terminal electrodes 1 and 2 arranged on the outer surface of the capacitor element L2. 1 and second grounding terminal electrodes 3 and 4.

コンデンサ素体L2は、図14に示されるように、直方体状であり、その外表面として、相対向する長方形状の第1及び第2の主面L2a、L2bと、第1及び第2の主面間を連結するように第1及び第2の主面の短辺方向に伸びている相対向する第1及び第2の側面L2c、L2dと、第1及び第2の主面間を連結するように第1及び第2の主面の長辺方向に伸びている相対向する第3及び第4の側面L2e、L2fとを有する。   As shown in FIG. 14, the capacitor body L2 has a rectangular parallelepiped shape, and has rectangular first and second main faces L2a and L2b opposite to each other as outer surfaces thereof, and first and second main faces. The opposing first and second side faces L2c and L2d extending in the short side direction of the first and second main faces and the first and second main faces are connected so as to connect the faces. As described above, the first and second main surfaces have opposite third and fourth side faces L2e and L2f extending in the long side direction.

第1の信号用端子電極1は、コンデンサ素体L2の第1の側面L2c上に配置されている。第1の信号用端子電極1は、第1の側面L2cの第3及び第4の側面L2e、L2fの対向方向の略中央の一部を、第1及び第2の主面L2a、L2bの対向方向に沿って横断するように覆っている。第1の信号用端子電極1はさらに、第1及び第2の主面L2a、L2bの第1の側面L2c側の端部の一部も覆う。   The first signal terminal electrode 1 is disposed on the first side face L2c of the capacitor body L2. The first signal terminal electrode 1 is formed such that a part of a substantially central portion in the opposing direction of the third and fourth side faces L2e and L2f of the first side face L2c is opposed to the first and second main faces L2a and L2b. It covers so as to cross along the direction. The first signal terminal electrode 1 further covers part of the end portions of the first and second main surfaces L2a, L2b on the first side face L2c side.

第2の信号用端子電極2は、コンデンサ素体L2の第2の側面L2d上に配置されている。第2の信号用端子電極2は、第2の側面L2dの第3及び第4の側面L2e、L2fの対向方向の略中央の一部を、第1及び第2の主面L2a、L2bの対向方向に沿って横断するように覆っている。第2の信号用端子電極2はさらに、第1及び第2の主面L2a、L2bの第2の側面L2d側の端部の一部も覆う。   The second signal terminal electrode 2 is disposed on the second side face L2d of the capacitor body L2. The second signal terminal electrode 2 is formed so that a part of the substantial center in the facing direction of the third and fourth side faces L2e, L2f of the second side face L2d is opposed to the first and second main faces L2a, L2b. It covers so as to cross along the direction. The second signal terminal electrode 2 further covers part of the ends of the first and second main faces L2a, L2b on the second side face L2d side.

第1の信号用端子電極1と第2の信号用端子電極2とは、第1の側面L2cと第2の側面L2dとが対向する方向で対向する。   The first signal terminal electrode 1 and the second signal terminal electrode 2 face each other in the direction in which the first side face L2c and the second side face L2d face each other.

第1の接地用端子電極3は、コンデンサ素体L2の第3の側面L2eに配置されている。第1の接地用端子電極3は、第3の側面L2e全面を覆うように、第1及び第2の主面L2a、L2b並びに第1及び第2の側面L2c、L2dの端部(第3の側面L2e側の端部)に亘って形成されている。第2の接地用端子電極4は、コンデンサ素体L2の第4の側面L2fに配置されている。第2の接地用端子電極4は、第4の側面L2f全面を覆うように、第1及び第2の主面L2a、L2b並びに第1及び第2の側面L2c、L2dの端部(第4の側面L2f側の端部)に亘って形成されている。   The first ground terminal electrode 3 is disposed on the third side face L2e of the capacitor body L2. The first ground terminal electrode 3 covers the entire surface of the third side face L2e so that the first and second main faces L2a, L2b and the end portions of the first and second side faces L2c, L2d (third It is formed over the side L2e side end). The second ground terminal electrode 4 is disposed on the fourth side face L2f of the capacitor body L2. The second ground terminal electrode 4 covers the entire surface of the fourth side face L2f, and the end portions of the first and second main faces L2a, L2b and the first and second side faces L2c, L2d (fourth (The end on the side face L2f side).

第1の接地用端子電極3と第2の接地用端子電極4とは、第3の側面L2eと第4の側面L2fとが対向する方向で対向する。   The first ground terminal electrode 3 and the second ground terminal electrode 4 face each other in the direction in which the third side face L2e and the fourth side face L2f face each other.

これらの第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、コンデンサ素体L2の表面上においては互いに電気的に絶縁されて形成されている。   The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 are formed on the surface of the capacitor body L2 so as to be electrically insulated from each other. Yes.

貫通型積層コンデンサC4では、第1の主面L2a又は第2の主面L2bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。例えば、コンデンサ素体L2の第2の主面L2bが回路基板と対向するように貫通型積層コンデンサC4を実装する場合、第1及び第2の信号用端子電極1,2を基板上に形成され、信号配線に接続されたランド電極に接続し、第1及び第2の接地用端子電極3、4を基板上に形成され、グランド配線に接続されたグランド電極に接続する。   In the feedthrough multilayer capacitor C4, it is preferable that the first main surface L2a or the second main surface L2b is mounted on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component). For example, when the feedthrough multilayer capacitor C4 is mounted so that the second main surface L2b of the capacitor body L2 faces the circuit board, the first and second signal terminal electrodes 1 and 2 are formed on the board. The first and second ground terminal electrodes 3 and 4 are formed on the substrate and connected to the ground electrode connected to the ground wiring.

コンデンサ素体L2は、図15〜図17に示されるように、第1及び第2の主面L2a、L2bの対向方向に積層された複数(本実施形態では、10層)の誘電体層50〜59を有する。各誘電体層50〜59は、例えば誘電体セラミック(BaTiO系、Ba(Ti,Zr)O系、又は(Ba,Ca)TiO系等の誘電体セラミック)を含むセラミックグリーンシートの焼結体から構成される。なお、実際のコンデンサ素体L2では、誘電体層50〜59の間の境界が視認できない程度に一体化されている。 As shown in FIGS. 15 to 17, the capacitor body L <b> 2 includes a plurality (10 layers in this embodiment) of dielectric layers 50 stacked in the opposing direction of the first and second main surfaces L <b> 2 a and L <b> 2 b. ~ 59. Each of the dielectric layers 50 to 59 is formed by firing a ceramic green sheet containing dielectric ceramic (dielectric ceramic such as BaTiO 3 series, Ba (Ti, Zr) O 3 series, or (Ba, Ca) TiO 3 series). Consists of union. Note that the actual capacitor body L2 is integrated so that the boundary between the dielectric layers 50 to 59 is not visible.

誘電体層53〜56は、図15〜図17に示されているように、誘電体層50〜52、57〜59に比べて第1及び第2の主面L2a、L2bの対向方向での厚さが厚い。各誘電体層50〜59は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。したがって、誘電体層53〜56は、積層数の点で多いセラミックグリーンシートの焼結体から構成されることで誘電体層50〜52、57〜59に比べて厚さが厚くなっていてもよく、あるいは厚さの大きい1枚のセラミックグリーンシートの焼結体から構成されることで誘電体層50〜52、57〜59に比べて厚さが厚くなっていてもよい。   As shown in FIGS. 15 to 17, the dielectric layers 53 to 56 are opposed to the first and second main surfaces L <b> 2 a and L <b> 2 b in comparison with the dielectric layers 50 to 52 and 57 to 59. Thick. Each of the dielectric layers 50 to 59 may be composed of a sintered body of one ceramic green sheet, or may be composed of a sintered body of a plurality of ceramic green sheets. Therefore, even if the dielectric layers 53 to 56 are made of a sintered body of ceramic green sheets having a large number of laminated layers, the dielectric layers 53 to 56 are thicker than the dielectric layers 50 to 52 and 57 to 59. Alternatively, it may be thicker than the dielectric layers 50 to 52 and 57 to 59 by being composed of a sintered body of one ceramic green sheet having a large thickness.

コンデンサ素体L2には、第1の数(本実施形態では7層)の信号用内部電極70〜76及び第2の数(本実施形態では2層)の接地用内部電極60、61が配置されている。信号用内部電極70〜76の数である第1の数は、接地用内部電極60、61の数である第2の数より大きい。   A first number (seven layers in this embodiment) of signal internal electrodes 70 to 76 and a second number (two layers in this embodiment) of grounding internal electrodes 60 and 61 are arranged on the capacitor body L2. Has been. The first number that is the number of the signal internal electrodes 70 to 76 is larger than the second number that is the number of the grounding internal electrodes 60 and 61.

各信号用内部電極70〜76は、信号用主電極部70a〜76aと、信号用主電極部70a〜76aからコンデンサ素体L2の第1の側面L2cに引き出されるように伸びる第1の信号用引き出し電極部70b〜76bと、信号用主電極部70a〜76aからコンデンサ素体L2の第2の側面L2dに引き出されるように伸びる第2の信号用引き出し電極部70c〜76cとを有する。信号用主電極部70a〜76a、第1の信号用引き出し電極部70b〜76b、及び第2の信号用引き出し電極部70c〜76cは、一体的に形成されている。   Each of the signal internal electrodes 70 to 76 extends from the signal main electrode portions 70a to 76a and the signal main electrode portions 70a to 76a so as to be drawn to the first side face L2c of the capacitor body L2. The lead electrode portions 70b to 76b and the second signal lead electrode portions 70c to 76c extending so as to be drawn from the signal main electrode portions 70a to 76a to the second side face L2d of the capacitor body L2. The signal main electrode portions 70a to 76a, the first signal lead electrode portions 70b to 76b, and the second signal lead electrode portions 70c to 76c are integrally formed.

信号用主電極部70a〜76aは、第1及び第2の側面L2c、L2dの対向方向を長辺方向とし、第3及び第4の側面L2e、L2fの対向方向を短辺方向とする矩形状を呈する。   The signal main electrode portions 70a to 76a have a rectangular shape in which the opposing direction of the first and second side faces L2c and L2d is the long side direction and the opposing direction of the third and fourth side faces L2e and L2f is the short side direction. Presents.

第1の信号用引き出し電極部70b〜76bは、信号用主電極部70a〜76aの第1の側面L2c側の端部である短辺の略中央から伸びている。第1の信号用引き出し電極部70b〜76bは、信号用主電極部70a〜76aに比べて第3及び第4の側面L2e、L2fの対向方向での幅が小さい。第1の信号用引き出し電極部70b〜76bは、その端が第1の側面L2cに露出し、当該露出した端部で第1の信号用端子電極1に接続される。   The first signal lead electrode portions 70b to 76b extend from substantially the center of the short side which is the end portion on the first side face L2c side of the signal main electrode portions 70a to 76a. The first signal extraction electrode portions 70b to 76b have a smaller width in the facing direction of the third and fourth side faces L2e and L2f than the signal main electrode portions 70a to 76a. The ends of the first signal lead electrode portions 70b to 76b are exposed at the first side face L2c, and the exposed end portions are connected to the first signal terminal electrode 1.

第2の信号用引き出し電極部70c〜76cは、信号用主電極部70a〜76aの第2の側面L2d側の端部である短辺の略中央から伸びている。第2の信号用引き出し電極部70c〜76cは、信号用主電極部70a〜76aに比べて第3及び第4の側面L2e、L2fの対向方向での幅が小さい。第2の信号用引き出し電極部70c〜76cは、その端が第2の側面L2dに露出し、当該露出した端部で第2の信号用端子電極2に接続される。   The second signal lead electrode portions 70c to 76c extend from substantially the center of the short side which is the end portion on the second side face L2d side of the signal main electrode portions 70a to 76a. The second signal extraction electrode portions 70c to 76c have a smaller width in the facing direction of the third and fourth side faces L2e and L2f than the signal main electrode portions 70a to 76a. The ends of the second signal lead electrode portions 70c to 76c are exposed at the second side face L2d, and the exposed end portions are connected to the second signal terminal electrode 2.

第1の信号用端子電極1は、第1の信号用引き出し電極部70b〜76bの第1の側面L2cに露出した部分をすべて覆うように形成されており、第1の信号用引き出し電極部70b〜76bは、第1の信号用端子電極1に物理的且つ電気的に接続される。これにより、信号用内部電極70〜76は、第1の信号用端子電極1に接続されることとなる。   The first signal terminal electrode 1 is formed so as to cover all the exposed portions of the first signal lead electrode portions 70b to 76b on the first side face L2c, and the first signal lead electrode portion 70b. ˜76b are physically and electrically connected to the first signal terminal electrode 1. As a result, the signal internal electrodes 70 to 76 are connected to the first signal terminal electrode 1.

第2の信号用端子電極2は、第2の信号用引き出し電極部70c〜76cの第2の側面L2dに露出した部分をすべて覆うように形成されており、第2の信号用引き出し電極部70c〜76cは、第2の信号用端子電極2に物理的且つ電気的に接続される。これにより、信号用内部電極70〜76は、第2の信号用端子電極2に接続されることとなる。   The second signal terminal electrode 2 is formed so as to cover all the portions exposed to the second side face L2d of the second signal lead electrode portions 70c to 76c, and the second signal lead electrode portion 70c. ˜76c are physically and electrically connected to the second signal terminal electrode 2. As a result, the signal internal electrodes 70 to 76 are connected to the second signal terminal electrode 2.

図17に示されるように、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。本実施形態に係る貫通型積層コンデンサC4では、第1の信号用引き出し電極部70b〜76bの幅並びに第2の信号用引き出し電極部70c〜76cの幅は何れもdであって、同じであるが、異なっていてもよい。 As shown in FIG. 17, the width d 3 of the first and second ground lead electrode portions 60b, 61b, 60c, 61c in the opposing direction of the first and second side faces L2c, L2d is fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c. In feedthrough multilayer capacitor C4 according to the present embodiment, the width and the width of the second signal lead electrode portions 70c~76c of the first signal lead electrode portions 70b~76b is a both a d 4, the same Yes, but it can be different.

図17に示されるように、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1の信号用引き出し電極部70b〜76bの幅d並びに第3及び第4の側面L2e、L2fの対向方向での第2の信号用引き出し電極部70c〜76cの幅dの何れよりも広い。 As shown in FIG. 17, the signal internal electrodes 70-76, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f is, the third and The width d 4 of the first signal extraction electrode portions 70b to 76b in the opposing direction of the four side surfaces L2e and L2f and the second signal extraction electrode portion in the opposing direction of the third and fourth side surfaces L2e and L2f 70c~76c wider than either of the width d 4 of the.

各接地用内部電極60、61は、接地用主電極部60a、61aと、接地用主電極部60a、61aからコンデンサ素体L2の第3の側面L2eに引き出されるように伸びる第1の接地用引き出し電極部60b、61bと、接地用主電極部60a、61aからコンデンサ素体L2の第4の側面L2fに引き出されるように伸びる第2の接地用引き出し電極部60c、61cとを有する。接地用主電極部60a、61a、第1の接地用引き出し電極部60b、61b、及び第2の接地用引き出し電極部60c、61cは、一体的に形成されている。   The grounding inner electrodes 60, 61 are grounded main electrode portions 60a, 61a and a first grounding electrode extending so as to be drawn from the grounding main electrode portions 60a, 61a to the third side face L2e of the capacitor body L2. The lead electrode portions 60b and 61b, and the second ground lead electrode portions 60c and 61c extending from the ground main electrode portions 60a and 61a so as to be drawn to the fourth side face L2f of the capacitor body L2. The grounding main electrode portions 60a and 61a, the first grounding lead electrode portions 60b and 61b, and the second grounding lead electrode portions 60c and 61c are integrally formed.

接地用主電極部60a、61aは、第1及び第2の側面L2c、L2dの対向方向を長辺方向とし、第3及び第4の側面L2e、L2fの対向方向を短辺方向とする矩形状を呈する。   The grounding main electrode portions 60a and 61a have a rectangular shape in which the opposing direction of the first and second side faces L2c and L2d is the long side direction and the opposing direction of the third and fourth side faces L2e and L2f is the short side direction. Presents.

第1の接地用引き出し電極部60b、61bは、接地用主電極部60a、61aの第3の側面L2e側の端部である長辺の略中央から伸びている。第1の接地用引き出し電極部60b、61bは、接地用主電極部60a、61aに比べて第1及び第2の側面L2c、L2dの対向方向での幅が小さい。第1の接地用引き出し電極部60b、61bは、その端が第3の側面L2eに露出し、当該露出した端部で第1の接地用端子電極3に接続される。   The first ground lead electrode portions 60b and 61b extend from substantially the center of the long side which is the end portion on the third side face L2e side of the ground main electrode portions 60a and 61a. The first ground lead electrode portions 60b and 61b have a smaller width in the facing direction of the first and second side faces L2c and L2d than the ground main electrode portions 60a and 61a. The ends of the first ground lead electrode portions 60b and 61b are exposed at the third side face L2e, and the exposed end portions are connected to the first ground terminal electrode 3.

第2の接地用引き出し電極部60c、61cは、接地用主電極部60a、61aの第4の側面L2f側の端部である長辺の略中央から伸びている。第2の接地用引き出し電極部60c、61cは、接地用主電極部60a、61aに比べて第1及び第2の側面L2c、L2dの対向方向での幅が小さい。第2の接地用引き出し電極部60c、61cは、その端が第4の側面L2fに露出し、当該露出した端部で第2の接地用端子電極4に接続される。   The second ground lead electrode portions 60c and 61c extend from substantially the center of the long side which is the end portion on the fourth side face L2f side of the ground main electrode portions 60a and 61a. The second ground lead electrode portions 60c and 61c have a smaller width in the facing direction of the first and second side faces L2c and L2d than the ground main electrode portions 60a and 61a. The ends of the second ground lead electrode portions 60c and 61c are exposed at the fourth side face L2f, and the exposed end portions are connected to the second ground terminal electrode 4.

第1の接地用端子電極3は、第1の接地用引き出し電極部60b、61bの第3の側面L2eに露出した部分をすべて覆うように形成されており、第1の接地用引き出し電極部60b、61bは、第1の接地用端子電極3に物理的且つ電気的に接続される。これにより、接地用内部電極60、61は、第1の接地用端子電極3に接続されることとなる。   The first ground terminal electrode 3 is formed so as to cover all the exposed portions of the first ground lead electrode portions 60b and 61b on the third side face L2e, and the first ground lead electrode portion 60b. , 61b are physically and electrically connected to the first ground terminal electrode 3. As a result, the grounding internal electrodes 60 and 61 are connected to the first grounding terminal electrode 3.

第2の接地用端子電極4は、第2の接地用引き出し電極部60c、61cの第4の側面L2fに露出した部分をすべて覆うように形成されており、第2の接地用引き出し電極部60c、61cは、第2の接地用端子電極4に物理的且つ電気的に接続される。これにより、接地用内部電極60、61は、第2の接地用端子電極4に接続されることとなる。   The second ground terminal electrode 4 is formed so as to cover all the exposed portions of the second ground lead electrode portions 60c and 61c on the fourth side face L2f, and the second ground lead electrode portion 60c. , 61 c are physically and electrically connected to the second ground terminal electrode 4. As a result, the grounding internal electrodes 60 and 61 are connected to the second grounding terminal electrode 4.

本実施形態では、信号用内部電極70〜76及び接地用内部電極60,61は、第1及び第2の主面L2a、L2bの対向方向に沿って、信号用内部電極73が略中央に位置し、接地用内部電極60、61がその両隣に位置し、接地用内部電極60から第1の主面L2aに向かって信号用内部電極72、71、70が配置され、接地用内部電極61から第2の主面L2bに向かって信号用内部電極74、75、76が配置されている。   In the present embodiment, the signal internal electrodes 70 to 76 and the grounding internal electrodes 60 and 61 are arranged so that the signal internal electrode 73 is located substantially at the center along the opposing direction of the first and second main surfaces L2a and L2b. The grounding internal electrodes 60, 61 are located on both sides of the grounding internal electrodes 60, the signal internal electrodes 72, 71, 70 are arranged from the grounding internal electrode 60 toward the first main surface L2a. Signal internal electrodes 74, 75, and 76 are arranged toward the second main surface L2b.

信号用内部電極72の信号用主電極部72aは、コンデンサ素体L2の一部である誘電体層53(第1の誘電領域)を間に挟んで、接地用内部電極60の接地用主電極部60aと誘電体層50〜59の積層方向(第1及び第2の主面L2a、L2bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極72と、接地用内部電極60とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層53のうち、信号用内部電極72の信号用主電極部72aと接地用内部電極60の接地用主電極部60aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 72a of the signal internal electrode 72 is a ground main electrode of the ground internal electrode 60 with a dielectric layer 53 (first dielectric region) which is a part of the capacitor body L2 interposed therebetween. It includes regions facing each other in the stacking direction of the portion 60a and the dielectric layers 50 to 59 (the opposing direction of the first and second main faces L2a and L2b). That is, the signal internal electrode 72 and the ground internal electrode 60 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b. Therefore, a portion of the dielectric layer 53 that overlaps the signal main electrode portion 72a of the signal internal electrode 72 and the ground main electrode portion 60a of the ground internal electrode 60 substantially generates a capacitance component. It is an area.

信号用内部電極73の信号用主電極部73aは、コンデンサ素体L2の一部である誘電体層54(第1の誘電領域)を間に挟んで、接地用内部電極60の接地用主電極部60aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極73と、接地用内部電極60とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層54のうち、信号用内部電極73の信号用主電極部73aと接地用内部電極60の接地用主電極部60aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 73a of the signal internal electrode 73 is a ground main electrode of the ground internal electrode 60 with a dielectric layer 54 (first dielectric region) which is a part of the capacitor body L2 interposed therebetween. The region 60a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 73 and the ground internal electrode 60 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b. Therefore, a portion of the dielectric layer 54 that overlaps the signal main electrode portion 73a of the signal internal electrode 73 and the ground main electrode portion 60a of the ground internal electrode 60 substantially generates a capacitance component. It is an area.

信号用内部電極73の信号用主電極部73aは、コンデンサ素体L2の一部である誘電体層55(第1の誘電領域)を間に挟んで、接地用内部電極61の接地用主電極部61aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極73と、接地用内部電極61とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層55のうち、信号用内部電極73の信号用主電極部73aと接地用内部電極61の接地用主電極部61aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 73a of the signal internal electrode 73 is a ground main electrode of the ground internal electrode 61 with a dielectric layer 55 (first dielectric region) that is a part of the capacitor body L2 interposed therebetween. The region 61a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 73 and the ground internal electrode 61 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b. Therefore, a portion of the dielectric layer 55 that overlaps the signal main electrode portion 73a of the signal internal electrode 73 and the ground main electrode portion 61a of the ground internal electrode 61 substantially generates a capacitance component. It is an area.

信号用内部電極74の信号用主電極部74aは、コンデンサ素体L2の一部である誘電体層56(第1の誘電領域)を間に挟んで、接地用内部電極61の接地用主電極部61aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極74と、接地用内部電極61とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層56のうち、信号用内部電極74の信号用主電極部74aと接地用内部電極61の接地用主電極部61aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 74a of the signal internal electrode 74 has the dielectric layer 56 (first dielectric region) that is a part of the capacitor body L2 interposed therebetween, and the ground main electrode of the ground internal electrode 61. The region 61a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 74 and the ground internal electrode 61 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b. Therefore, a portion of the dielectric layer 56 that overlaps the signal main electrode portion 74a of the signal internal electrode 74 and the ground main electrode portion 61a of the ground internal electrode 61 substantially generates a capacitance component. It is an area.

信号用内部電極70の信号用主電極部70aは、コンデンサ素体L2の一部である誘電体層51(第2の誘電領域)を間に挟んで信号用内部電極71の信号用主電極部71aと互いに対向する領域を含んでいる。すなわち、信号用内部電極70、71は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 70a of the signal internal electrode 70 is a signal main electrode portion of the signal internal electrode 71 with a dielectric layer 51 (second dielectric region) that is a part of the capacitor body L2 interposed therebetween. The area | region which mutually opposes 71a is included. That is, the signal internal electrodes 70 and 71 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極71の信号用主電極部71aは、コンデンサ素体L2の一部である誘電体層52(第2の誘電領域)を間に挟んで信号用内部電極72の信号用主電極部72aと互いに対向する領域を含んでいる。すなわち、信号用内部電極71、72は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 71a of the signal internal electrode 71 is a signal main electrode portion of the signal internal electrode 72 with a dielectric layer 52 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 72a and a region facing each other. That is, the signal internal electrodes 71 and 72 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極74の信号用主電極部74aは、コンデンサ素体L2の一部である誘電体層57(第2の誘電領域)を間に挟んで信号用内部電極75の信号用主電極部75aと互いに対向する領域を含んでいる。すなわち、信号用内部電極74、75は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 74a of the signal internal electrode 74 is a signal main electrode portion of the signal internal electrode 75 with a dielectric layer 57 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 75a and a region facing each other. That is, the signal internal electrodes 74 and 75 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極75の信号用主電極部75aは、コンデンサ素体L2の一部である誘電体層58(第2の誘電領域)を間に挟んで信号用内部電極76の信号用主電極部76aと互いに対向する領域を含んでいる。すなわち、信号用内部電極75、76は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 75a of the signal internal electrode 75 is a signal main electrode portion of the signal internal electrode 76 with a dielectric layer 58 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 76a and a region facing each other. That is, the signal internal electrodes 75 and 76 have regions overlapping each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

図15及び図16から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層53〜56の第1及び第2の主面L2a、L2bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層51、52、57、58の第1及び第2の主面L2a、L2bの対向方向での長さよりも長い。   As is apparent from FIGS. 15 and 16, the first dielectric region that is a part of the capacitor body located between the signal internal electrode and the ground internal electrode, that is, the first dielectric layers 53 to 56. And the length of the second main surfaces L2a and L2b in the opposing direction is a second dielectric region that is a part of the capacitor body located between the signal internal electrodes, that is, the dielectric layers 51, 52, It is longer than the length of the first and second main faces L2a, L2b of 57, 58 in the facing direction.

図17に示すように、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60a、61aの幅をdとし、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 17, third and fourth side faces L2e, grounding main electrode portion 60a in the opposing direction of L2f, 61a width of the d 1, third and fourth side faces L2e, opposing direction of L2f When the width of the signal main electrode 70a~76a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

貫通型積層コンデンサC4では、信号用内部電極70〜76の数(第1の数)が7層であり、接地用内部電極60、61の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC4では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C4, the number of signal internal electrodes 70 to 76 (first number) is seven layers, and the number of grounding internal electrodes 60 and 61 (second number) is two layers. That is, the first number is greater than the second number. Therefore, in the feedthrough multilayer capacitor C4, it is possible to suppress an increase in DC resistance.

また、貫通型積層コンデンサC4では、数が多い信号用内部電極70〜76は、その一部である信号用内部電極70、71、75、76の信号用主電極部70a、71a、75a、76aが、コンデンサ素体L2の第2の誘電領域である誘電体層51、52、57、58を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC4では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。   Further, in the feedthrough multilayer capacitor C4, the large number of signal internal electrodes 70 to 76 are the signal main electrode portions 70a, 71a, 75a, 76a of the signal internal electrodes 70, 71, 75, 76 which are a part thereof. However, it has the area | region which opposes on both sides of the dielectric material layers 51, 52, 57, and 58 which are the 2nd dielectric area | regions of the capacitor | condenser body L2. Therefore, in the feedthrough multilayer capacitor C4, even if the number of signal internal electrodes is increased to suppress an increase in DC resistance, it is possible to suppress an increase in capacitance.

本実施形態に係る貫通型積層コンデンサC4では、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することを可能にしている。   In the feedthrough multilayer capacitor C4 according to the present embodiment, it is possible to suppress an increase in DC resistance while suppressing an increase in capacitance.

貫通型積層コンデンサC4では、誘電体層53〜56の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)が、誘電体層51、52、57、58の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極72〜74と接地用内部電極60、61との間の距離が、信号用内部電極70〜72、74〜76間の距離よりも長くなるため、接地用内部電極60、61がコンデンサ素体L2の外側に配置されやすくなる。   In the feedthrough multilayer capacitor C4, the thicknesses (lengths) of the dielectric layers 53 to 56 in the opposing direction of the first and second main surfaces L2a and L2b are the same as those of the dielectric layers 51, 52, 57, and 58. It is thicker (longer) than the thickness (length) in the facing direction of the first and second main faces L2a, L2b. Therefore, since the distance between the signal internal electrodes 72 to 74 and the ground internal electrodes 60 and 61 is longer than the distance between the signal internal electrodes 70 to 72 and 74 to 76, the ground internal electrode 60, 61 is easily disposed outside the capacitor body L2.

コンデンサ素体L2は、一般に、焼結後、端子電極を外表面に形成する前にバレル研磨を行う。バレル研磨では、コンデンサ素体L2の外側ほど研磨が進み、側面に引き出されるように伸びた引き出し電極部もより一層外表面に露出しやすくなる。そのため、接地用内部電極60、61がコンデンサ素体L2の外側に配置されることにより、接地用内部電極60、61は第1及び第2の接地用端子電極3、4に容易に且つ確実に接続されやすくなる。   Capacitor body L2 is generally barrel-polished after sintering and before terminal electrodes are formed on the outer surface. In the barrel polishing, the polishing progresses toward the outer side of the capacitor body L2, and the lead electrode portion extended so as to be drawn to the side surface is more easily exposed to the outer surface. Therefore, the grounding inner electrodes 60 and 61 are arranged outside the capacitor body L2, so that the grounding inner electrodes 60 and 61 can be easily and reliably connected to the first and second grounding terminal electrodes 3 and 4. It becomes easy to be connected.

貫通型積層コンデンサC4では、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dが、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。そのため、第1及び第2の信号用端子電極1、2の幅を狭くすることができる。その結果、コンデンサ素体L2の外表面上において、信号用端子電極1、2と接地用端子電極3、4との間で短絡が発生することが抑制される。 In feedthrough multilayer capacitor C4, the signal internal electrodes 70-76, third and fourth side faces L2e, the width d 2 of the signal main electrode 70a~76a in the opposing direction of the L2f, third and fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c. Therefore, the widths of the first and second signal terminal electrodes 1 and 2 can be reduced. As a result, occurrence of a short circuit between the signal terminal electrodes 1 and 2 and the ground terminal electrodes 3 and 4 on the outer surface of the capacitor body L2 is suppressed.

貫通型積層コンデンサC4では、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。したがって、貫通型積層コンデンサC4では、等価直列インダクタンス(ESL)の値を低減することが可能となる。 In feedthrough multilayer capacitor C4, the first and second side surfaces L2c, the first and second ground lead electrode portions 60b in the opposite direction of L2d, 61b, 60c, 61c the width d 3 of the third and 4 is wider than the width d4 of the first and second signal lead electrode portions 70b to 76b and 70c to 76c in the direction in which the side surfaces L2e and L2f of the fourth plate face each other. Therefore, the feedthrough multilayer capacitor C4 can reduce the value of the equivalent series inductance (ESL).

ここで、図18に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図18に示すように、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60a、61aの幅dより広くてもよい。 Here, FIG. 18 is an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 18, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f, the third and fourth side faces L2e, in the opposing direction of the L2f grounding main electrode portion 60a of the may be wider than the width d 1 of 61a.

このように、信号用主電極部70a〜76aの幅を接地用主電極部60a、61aに比べて広くすることで、第4実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, by increasing the width of the signal main electrode portions 70a to 76a as compared with the grounding main electrode portions 60a and 61a, the DC resistance of the feedthrough multilayer capacitor according to the modification of the fourth embodiment is increased. This is further suppressed.

また、信号用主電極部70a〜76aの幅を広くすることで、貫通型積層コンデンサC4の変形例では、信号用主電極部72a〜74aと接地用主電極部60a、61aとの間で形成される静電容量が信号用主電極部72a〜74aではなく接地用主電極部60a、61aの大きさによって規定されることとなる。そのため、信号用内部電極72〜74及び接地用内部電極60、61が所望の位置からずれて配置された場合であっても、それらの間で形成される静電容量は接地用主電極部60a、61aの大きさで結局決まるため、所望の値からずれることが抑制される。すなわち、信号用内部電極72〜74及び接地用内部電極60、61の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。その結果、第4実施形態の変形例に係る貫通型積層コンデンサの静電容量のばらつきが抑制される。
(第5実施形態)
Further, by increasing the width of the signal main electrode portions 70a to 76a, in the modification of the feedthrough multilayer capacitor C4, the signal main electrode portions 72a to 74a and the grounding main electrode portions 60a and 61a are formed. The capacitance to be determined is defined by the size of the grounding main electrode portions 60a and 61a, not the signal main electrode portions 72a to 74a. Therefore, even if the signal internal electrodes 72 to 74 and the grounding internal electrodes 60 and 61 are arranged so as to deviate from the desired positions, the capacitance formed between them is the grounding main electrode portion 60a. , 61a is ultimately determined, so that deviation from a desired value is suppressed. That is, even when a stacking shift occurs between the signal internal electrodes 72 to 74 and the ground internal electrodes 60 and 61, it is possible to suppress the influence on the capacitance formed between them. It becomes. As a result, variation in the capacitance of the feedthrough multilayer capacitor according to the modification of the fourth embodiment is suppressed.
(Fifth embodiment)

図19〜図21に基づいて、第5実施形態に係る貫通型積層コンデンサの構成について説明する。図19は、図14に示した第4実施形態に係る貫通型積層コンデンサのXV−XV矢印断面図に相当する、第5実施形態に係る貫通型積層コンデンサの断面図である。図20は、図14に示した第4実施形態に係る貫通型積層コンデンサのXVI−XVI矢印断面図に相当する、第5実施形態に係る貫通型積層コンデンサの断面図である。図21は、第5実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   Based on FIGS. 19-21, the structure of the feedthrough multilayer capacitor according to the fifth embodiment will be described. FIG. 19 is a cross-sectional view of the feedthrough multilayer capacitor in accordance with the fifth embodiment, corresponding to the cross section taken along the line XV-XV of the feedthrough multilayer capacitor in accordance with the fourth embodiment shown in FIG. FIG. 20 is a cross-sectional view of the feedthrough multilayer capacitor in accordance with the fifth embodiment, corresponding to the cross section taken along the line XVI-XVI of the feedthrough multilayer capacitor in accordance with the fourth embodiment shown in FIG. FIG. 21 is an exploded perspective view of a capacitor body included in the feedthrough multilayer capacitor according to the fifth embodiment.

第5実施形態に係る貫通型積層コンデンサC5は、コンデンサ素体L2内での接地用内部電極60、61の配置の点で第4実施形態に係る貫通型積層コンデンサC4と相違する。   The feedthrough multilayer capacitor C5 according to the fifth embodiment is different from the feedthrough multilayer capacitor C4 according to the fourth embodiment in the arrangement of the grounding internal electrodes 60 and 61 in the capacitor body L2.

第5実施形態に係る貫通型積層コンデンサC5は、コンデンサ素体L2と、コンデンサ素体L2の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、図14に示した第4実施形態に係る貫通型積層コンデンサC4と同じ配置でコンデンサ素体L2の外表面上に配置される。   The feedthrough multilayer capacitor C5 according to the fifth embodiment includes a capacitor body L2, first and second signal terminal electrodes 1 and 2, and first and second signal terminals 1 and 2 disposed on the outer surface of the capacitor body L2. Ground terminal electrodes 3 and 4 are provided. The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 have the same arrangement as the feedthrough multilayer capacitor C4 according to the fourth embodiment shown in FIG. It arrange | positions on the outer surface of the element | base_body L2.

貫通型積層コンデンサC5では、第1の主面L2a又は第2の主面L2bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。   In the feedthrough multilayer capacitor C5, it is preferable that the first main surface L2a or the second main surface L2b is mounted on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component).

コンデンサ素体L2は、図19〜図21に示されるように、第1及び第2の主面L2a、L2bの対向方向に積層された複数(本実施形態では、10層)の誘電体層50〜59を有する。   As shown in FIGS. 19 to 21, the capacitor body L2 includes a plurality of (10 layers in the present embodiment) dielectric layers 50 stacked in the opposing direction of the first and second main faces L2a and L2b. ~ 59.

誘電体層51、52、57、58は、図19〜図21に示されているように、誘電体層50、53〜56、59に比べて第1及び第2の主面L2a、L2bの対向方向での厚さが厚い。各誘電体層50〜59は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。   As shown in FIGS. 19 to 21, the dielectric layers 51, 52, 57, and 58 are formed on the first and second main surfaces L2a and L2b as compared with the dielectric layers 50, 53 to 56, and 59. Thick in the opposite direction. Each of the dielectric layers 50 to 59 may be composed of a sintered body of one ceramic green sheet, or may be composed of a sintered body of a plurality of ceramic green sheets.

貫通型積層コンデンサC5のコンデンサ素体L2には、第1の数(本実施形態では7層)の信号用内部電極70〜76及び第2の数(本実施形態では2層)の接地用内部電極60、61が配置されている。信号用内部電極70〜76の数である第1の数は、接地用内部電極60、61の数である第2の数より大きい。   The capacitor body L2 of the feedthrough multilayer capacitor C5 includes a first number (seven layers in this embodiment) of signal internal electrodes 70 to 76 and a second number (two layers in this embodiment) of grounding internals. Electrodes 60 and 61 are disposed. The first number that is the number of the signal internal electrodes 70 to 76 is larger than the second number that is the number of the grounding internal electrodes 60 and 61.

本実施形態では、信号用内部電極70〜76及び接地用内部電極60,61は、第1及び第2の主面L2a、L2bの対向方向に沿って、略中央に位置する信号用内部電極73から第1の主面L2aに向かって、2層の信号用内部電極72、71、接地用内部電極60、信号用内部電極70がこの順で配置されており、また信号用内部電極73から第2の主面L2bに向かって、2層の信号用内部電極74、75、接地用内部電極61、信号用内部電極76がこの順で配置されている。   In the present embodiment, the signal internal electrodes 70 to 76 and the grounding internal electrodes 60 and 61 are the signal internal electrodes 73 located substantially in the center along the opposing direction of the first and second main surfaces L2a and L2b. The two layers of signal internal electrodes 72 and 71, the ground internal electrode 60, and the signal internal electrode 70 are arranged in this order from the signal internal electrode 73 toward the first main surface L2a. Two layers of signal internal electrodes 74 and 75, a ground internal electrode 61, and a signal internal electrode 76 are arranged in this order toward the second main surface L2b.

貫通型積層コンデンサC5では、接地用内部電極60は、第1及び第2の主面L2a、L2bの対向方向で見て、コンデンサ素体L2の第1及び第2の主面L2a、L2bが対向する距離hの第1の主面L2aから4分の1の距離までの領域内に配置されている。すなわち、第1及び第2の主面L2a、L2bの対向方向で見て、第1の主面L2aと接地用内部電極60との間の距離hは、コンデンサ素体L2の第1及び第2の主面L2a、L2bが対向する距離hの4分の1より小さい。 In the feedthrough multilayer capacitor C5, the grounding internal electrode 60 is opposed to the first and second main surfaces L2a and L2b of the capacitor body L2 when viewed in the opposing direction of the first and second main surfaces L2a and L2b. It arranged in the region of up to 1 in 4 minutes from the first major surface L2a distance h 1 to. In other words, the distance h 2 between the first main surface L2a and the grounding internal electrode 60 when viewed in the opposing direction of the first and second main surfaces L2a, L2b is the first and second of the capacitor body L2. second main surfaces L2a, 1 less than a quarter of the distance h 1 which L2b is opposed.

貫通型積層コンデンサC5では、接地用内部電極61は、第1及び第2の主面L2a、L2bの対向方向で見て、コンデンサ素体L2の第1及び第2の主面L2a、L2bが対向する距離hの第2の主面L2bから4分の1の距離までの領域内に配置されている。すなわち、第1及び第2の主面L2a、L2bの対向方向で見て、第2の主面L2bと接地用内部電極61との間の距離hは、コンデンサ素体L2の第1及び第2の主面L2a、L2bが対向する距離hの4分の1より小さい。 In the feedthrough multilayer capacitor C5, the grounding internal electrode 61 is opposed to the first and second main surfaces L2a and L2b of the capacitor body L2 when viewed in the opposing direction of the first and second main surfaces L2a and L2b. It arranged in the region of up to 1 in 4 minutes from the second major surface L2b distance h 1 to. In other words, the distance h 3 between the second main surface L2b and the grounding internal electrode 61 when viewed in the opposing direction of the first and second main surfaces L2a, L2b is the first and second of the capacitor body L2. second main surfaces L2a, 1 less than a quarter of the distance h 1 which L2b is opposed.

このように、貫通型積層コンデンサC5では、接地用内部電極60、61がコンデンサ素体L2の外表面に近い位置に配置されている。   Thus, in the feedthrough multilayer capacitor C5, the grounding inner electrodes 60 and 61 are disposed at positions close to the outer surface of the capacitor body L2.

信号用内部電極70の信号用主電極部70aは、コンデンサ素体L2の一部である誘電体層51(第1の誘電領域)を間に挟んで、接地用内部電極60の接地用主電極部60aと誘電体層50〜59の積層方向(第1及び第2の主面L2a、L2bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極70と、接地用内部電極60とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層51のうち、信号用内部電極70の信号用主電極部70aと接地用内部電極60の接地用主電極部60aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 70a of the signal internal electrode 70 is a ground main electrode of the ground internal electrode 60 with a dielectric layer 51 (first dielectric region) which is a part of the capacitor body L2 interposed therebetween. It includes regions facing each other in the stacking direction of the portion 60a and the dielectric layers 50 to 59 (the opposing direction of the first and second main faces L2a and L2b). That is, the signal internal electrode 70 and the ground internal electrode 60 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a, L2b. Accordingly, a portion of the dielectric layer 51 that overlaps the signal main electrode portion 70a of the signal internal electrode 70 and the ground main electrode portion 60a of the ground internal electrode 60 substantially generates a capacitance component. It is an area.

信号用内部電極71の信号用主電極部71aは、コンデンサ素体L2の一部である誘電体層52(第1の誘電領域)を間に挟んで、接地用内部電極60の接地用主電極部60aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極71と、接地用内部電極60とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層52のうち、信号用内部電極71の信号用主電極部71aと接地用内部電極60の接地用主電極部60aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 71a of the signal internal electrode 71 is a ground main electrode of the ground internal electrode 60 with a dielectric layer 52 (first dielectric region) that is a part of the capacitor body L2 interposed therebetween. The region 60a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 71 and the ground internal electrode 60 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a, L2b. Therefore, a portion of the dielectric layer 52 that overlaps the signal main electrode portion 71a of the signal internal electrode 71 and the ground main electrode portion 60a of the ground internal electrode 60 substantially generates a capacitance component. It is an area.

信号用内部電極75の信号用主電極部75aは、コンデンサ素体L2の一部である誘電体層57(第1の誘電領域)を間に挟んで、接地用内部電極61の接地用主電極部61aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極75と、接地用内部電極61とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層57のうち、信号用内部電極75の信号用主電極部75aと接地用内部電極61の接地用主電極部61aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 75a of the signal internal electrode 75 has a grounding main electrode of the grounding internal electrode 61 with a dielectric layer 57 (first dielectric region) that is a part of the capacitor body L2 interposed therebetween. The region 61a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 75 and the ground internal electrode 61 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b. Therefore, a portion of the dielectric layer 57 that overlaps the signal main electrode portion 75a of the signal internal electrode 75 and the ground main electrode portion 61a of the ground internal electrode 61 substantially generates a capacitance component. It is an area.

信号用内部電極76の信号用主電極部76aは、コンデンサ素体L2の一部である誘電体層58(第1の誘電領域)を間に挟んで、接地用内部電極61の接地用主電極部61aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極76と、接地用内部電極61とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層58のうち、信号用内部電極76の信号用主電極部76aと接地用内部電極61の接地用主電極部61aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 76a of the signal internal electrode 76 has a dielectric layer 58 (first dielectric region) that is a part of the capacitor body L2 and sandwiches the ground main electrode 61 of the ground internal electrode 61. The region 61a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 76 and the grounding internal electrode 61 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a, L2b. Therefore, a portion of the dielectric layer 58 that overlaps the signal main electrode portion 76a of the signal internal electrode 76 and the ground main electrode portion 61a of the ground internal electrode 61 substantially generates a capacitance component. It is an area.

信号用内部電極71の信号用主電極部71aは、コンデンサ素体L2の一部である誘電体層53(第2の誘電領域)を間に挟んで信号用内部電極72の信号用主電極部72aと互いに対向する領域を含んでいる。すなわち、信号用内部電極71、72は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。
信号用内部電極72の信号用主電極部72aは、コンデンサ素体L2の一部である誘電体層54(第2の誘電領域)を間に挟んで信号用内部電極73の信号用主電極部73aと互いに対向する領域を含んでいる。すなわち、信号用内部電極72、73は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。
The signal main electrode portion 71a of the signal internal electrode 71 is a signal main electrode portion of the signal internal electrode 72 with a dielectric layer 53 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 72a and a region facing each other. That is, the signal internal electrodes 71 and 72 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.
The signal main electrode portion 72a of the signal internal electrode 72 is a signal main electrode portion of the signal internal electrode 73 with a dielectric layer 54 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 73a and a region facing each other. That is, the signal internal electrodes 72 and 73 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極73の信号用主電極部73aは、コンデンサ素体L2の一部である誘電体層55(第2の誘電領域)を間に挟んで信号用内部電極74の信号用主電極部75aと互いに対向する領域を含んでいる。すなわち、信号用内部電極73、74は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 73a of the signal internal electrode 73 is a signal main electrode portion of the signal internal electrode 74 with a dielectric layer 55 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 75a and a region facing each other. That is, the signal internal electrodes 73 and 74 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極74の信号用主電極部74aは、コンデンサ素体L2の一部である誘電体層56(第2の誘電領域)を間に挟んで信号用内部電極75の信号用主電極部75aと互いに対向する領域を含んでいる。すなわち、信号用内部電極74、75は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 74a of the signal internal electrode 74 is a signal main electrode portion of the signal internal electrode 75 with a dielectric layer 56 (second dielectric region) that is a part of the capacitor body L2 interposed therebetween. 75a and a region facing each other. That is, the signal internal electrodes 74 and 75 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

図19及び図20から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層51、52、57、58の第1及び第2の主面L2a、L2bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層53〜56の第1及び第2の主面L2a、L2bの対向方向での長さよりも長い。   As is apparent from FIGS. 19 and 20, the first dielectric region, that is, the dielectric layers 51, 52, 57, which are part of the capacitor body located between the signal internal electrode and the ground internal electrode, 58 is a second dielectric region in which the length of the first main surface L2a and the second main surface L2b in the opposing direction is a part of the capacitor body located between the signal internal electrodes, that is, the dielectric layer It is longer than the length in the opposing direction of 53 and 56 1st and 2nd main surface L2a, L2b.

図21に示すように、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60a、61aの幅をdとし、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 21, third and fourth side faces L2e, grounding main electrode portion 60a in the opposing direction of L2f, 61a width of the d 1, third and fourth side faces L2e, opposing direction of L2f When the width of the signal main electrode 70a~76a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

図21に示されるように、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。 As shown in FIG. 21, first and second side surfaces L2c, the first and second ground lead electrode portions 60b in the opposite direction of L2d, 61b, 60c, 61c the width d 3 of the third and fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c.

本実施形態に係る貫通型積層コンデンサC5では、第1の信号用引き出し電極部70b〜76bの幅並びに第2の信号用引き出し電極部70c〜76cの幅は何れもdであって、同じであるが、異なっていてもよい。 In feedthrough multilayer capacitor C5 according to the present embodiment, the width and the width of the second signal lead electrode portions 70c~76c of the first signal lead electrode portions 70b~76b is a both a d 4, the same Yes, but it can be different.

図21に示されるように、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1の信号用引き出し電極部70b〜76bの幅d並びに第3及び第4の側面L2e、L2fの対向方向での第2の信号用引き出し電極部70c〜76cの幅dの何れよりも広い。 As shown in FIG. 21, the signal internal electrodes 70-76, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f is, the third and The width d 4 of the first signal extraction electrode portions 70b to 76b in the opposing direction of the four side surfaces L2e and L2f and the second signal extraction electrode portion in the opposing direction of the third and fourth side surfaces L2e and L2f 70c~76c wider than either of the width d 4 of the.

貫通型積層コンデンサC5では、信号用内部電極70〜76の数(第1の数)が7層であり、接地用内部電極60、61の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC5では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C5, the number of signal internal electrodes 70 to 76 (first number) is seven layers, and the number of grounding internal electrodes 60 and 61 (second number) is two layers. That is, the first number is greater than the second number. Therefore, the feedthrough multilayer capacitor C5 can suppress an increase in DC resistance.

また、貫通型積層コンデンサC5では、数が多い信号用内部電極70〜76の一部である信号用内部電極71〜75の信号用主電極部71a〜75aが、誘電体層53〜56を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC5では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。したがって、貫通型積層コンデンサC5では、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能である。   In the feedthrough multilayer capacitor C5, the signal main electrode portions 71a to 75a of the signal internal electrodes 71 to 75, which are a part of the large number of signal internal electrodes 70 to 76, are interposed between the dielectric layers 53 to 56. It has a region that faces when sandwiched between. Therefore, in the feedthrough multilayer capacitor C5, even if the number of signal internal electrodes is increased to suppress an increase in DC resistance, it is possible to suppress an increase in capacitance. Therefore, in the feedthrough multilayer capacitor C5, it is possible to suppress an increase in DC resistance while suppressing an increase in capacitance.

貫通型積層コンデンサC5では、接地用内部電極60、61がコンデンサ素体L2の外表面に近い位置に配置されている。そのため、例えば焼結後にバレル研磨を施して製造したコンデンサ素体L2では、接地用内部電極60、61がコンデンサ素体L2の外表面に引き出されやすくなる。そのため、接地用内部電極60、61は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C5, the grounding inner electrodes 60 and 61 are disposed at positions close to the outer surface of the capacitor body L2. Therefore, for example, in the capacitor body L2 manufactured by barrel polishing after sintering, the grounding internal electrodes 60 and 61 are easily drawn out to the outer surface of the capacitor body L2. Therefore, the grounding internal electrodes 60 and 61 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC5では、接地用内部電極60、61の数が信号用内部電極70〜76に比べて少ない。そのため、特に接地用内部電極60、61が容易に且つ確実に接地用端子電極3,4に接続されていることが好ましい。   In the feedthrough multilayer capacitor C5, the number of grounding inner electrodes 60, 61 is smaller than that of the signal inner electrodes 70-76. Therefore, it is particularly preferable that the grounding internal electrodes 60 and 61 are connected to the grounding terminal electrodes 3 and 4 easily and reliably.

貫通型積層コンデンサC5では、誘電体層51、52、57、58の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)が、誘電体層53〜56の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極70、71、75、76と接地用内部電極60、61との間の距離が、信号用内部電極71〜75間の距離よりも長くなるため、接地用内部電極60、61がコンデンサ素体L2の外側に配置されやすくなる。その結果、接地用内部電極60、61は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C5, the thicknesses (lengths) of the dielectric layers 51, 52, 57, and 58 in the opposing direction of the first and second main surfaces L2a and L2b are the same as those of the dielectric layers 53 to 56. It is thicker (longer) than the thickness (length) in the facing direction of the first and second main faces L2a, L2b. Therefore, since the distance between the signal internal electrodes 70, 71, 75, 76 and the ground internal electrodes 60, 61 is longer than the distance between the signal internal electrodes 71-75, the ground internal electrode 60, 61 is easily disposed outside the capacitor body L2. As a result, the grounding internal electrodes 60 and 61 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC5では、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dが、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。そのため、第1及び第2の信号用端子電極1、2の幅を狭くすることができる。その結果、コンデンサ素体L2の外表面上において、信号用端子電極1、2と接地用端子電極3、4との間で短絡が発生することが抑制される。 In feedthrough multilayer capacitor C5, the signal internal electrodes 70-76, third and fourth side faces L2e, the width d 2 of the signal main electrode 70a~76a in the opposing direction of the L2f, third and fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c. Therefore, the widths of the first and second signal terminal electrodes 1 and 2 can be reduced. As a result, occurrence of a short circuit between the signal terminal electrodes 1 and 2 and the ground terminal electrodes 3 and 4 on the outer surface of the capacitor body L2 is suppressed.

貫通型積層コンデンサC5では、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。したがって、貫通型積層コンデンサC5では、等価直列インダクタンス(ESL)の値を低減することが可能となる。 In feedthrough multilayer capacitor C5, the first and second side surfaces L2c, the first and second ground lead electrode portions 60b in the opposite direction of L2d, 61b, 60c, 61c the width d 3 of the third and 4 is wider than the width d4 of the first and second signal lead electrode portions 70b to 76b and 70c to 76c in the direction in which the side surfaces L2e and L2f of the fourth plate face each other. Therefore, in the feedthrough multilayer capacitor C5, the value of the equivalent series inductance (ESL) can be reduced.

ここで、図22に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図22に示すように、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60、61の幅dより広くてもよい。 Here, FIG. 22 shows an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 22, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f, the third and fourth side faces L2e, in the opposing direction of the L2f It may be wider than the width d 1 of the grounding main electrode portions 60, 61.

このように、信号用主電極部70a〜76aの幅を接地用主電極部60a、61aに比べて広くすることで、第5実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, the DC resistance of the feedthrough multilayer capacitor according to the modification of the fifth embodiment is increased by making the widths of the signal main electrode portions 70a to 76a wider than those of the grounding main electrode portions 60a and 61a. This is further suppressed.

また、信号用主電極部70a〜76aの幅を広くすることで、信号用内部電極70、71、75、76及び接地用内部電極60、61の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。
(第6実施形態)
Further, by increasing the width of the signal main electrode portions 70a to 76a, even if a stacking shift occurs between the signal internal electrodes 70, 71, 75, 76 and the grounding internal electrodes 60, 61. It is possible to suppress the influence on the capacitance formed between them.
(Sixth embodiment)

図23〜図25に基づいて、第6実施形態に係る貫通型積層コンデンサの構成について説明する。図23は、図1に示した第4実施形態に係る貫通型積層コンデンサのXV−XV矢印断面図に相当する、第6実施形態に係る貫通型積層コンデンサの断面図である。図24は、図1に示した第4実施形態に係る貫通型積層コンデンサのXVI−XVI矢印断面図に相当する、第6実施形態に係る貫通型積層コンデンサの断面図である。図25は、第6実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。   The structure of the feedthrough multilayer capacitor according to the sixth embodiment will be described with reference to FIGS. FIG. 23 is a cross-sectional view of the feedthrough multilayer capacitor in accordance with the sixth embodiment corresponding to the cross section taken along the line XV-XV of the feedthrough multilayer capacitor in accordance with the fourth embodiment shown in FIG. FIG. 24 is a cross-sectional view of the feedthrough multilayer capacitor in accordance with the sixth embodiment, corresponding to the cross section taken along the line XVI-XVI of the feedthrough multilayer capacitor in accordance with the fourth embodiment shown in FIG. FIG. 25 is an exploded perspective view of a capacitor body included in the feedthrough multilayer capacitor according to the sixth embodiment.

第6実施形態に係る貫通型積層コンデンサC6は、コンデンサ素体L2内での接地用内部電極60、61の配置の点で第4実施形態に係る貫通型積層コンデンサC4と相違する。   The feedthrough multilayer capacitor C6 according to the sixth embodiment is different from the feedthrough multilayer capacitor C4 according to the fourth embodiment in that the grounding internal electrodes 60 and 61 are arranged in the capacitor body L2.

第6実施形態に係る貫通型積層コンデンサC6は、コンデンサ素体L2と、コンデンサ素体L2の外表面に配置された第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4とを備えている。第1及び第2の信号用端子電極1、2並びに第1及び第2の接地用端子電極3、4は、図1に示した第4実施形態に係る貫通型積層コンデンサC4と同じ配置でコンデンサ素体L2の外表面上に配置される。   The feedthrough multilayer capacitor C6 according to the sixth embodiment includes a capacitor body L2, first and second signal terminal electrodes 1 and 2, and first and second signal terminals 1 and 2 disposed on the outer surface of the capacitor body L2. Ground terminal electrodes 3 and 4 are provided. The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 have the same arrangement as the feedthrough multilayer capacitor C4 according to the fourth embodiment shown in FIG. It arrange | positions on the outer surface of the element | base_body L2.

貫通型積層コンデンサC6では、第1の主面L2a又は第2の主面L2bを、他の部品(例えば、回路基板や電子部品等)に対する実装面として回路基板等に実装することが好ましい。   In the feedthrough multilayer capacitor C6, it is preferable that the first main surface L2a or the second main surface L2b is mounted on a circuit board or the like as a mounting surface for other components (for example, a circuit board or an electronic component).

コンデンサ素体L2は、図23〜図25に示されるように、第1及び第2の主面L2a、L2bの対向方向に積層された複数(本実施形態では、10層)の誘電体層50〜59を有する。   As shown in FIGS. 23 to 25, the capacitor body L2 includes a plurality of (10 layers in this embodiment) dielectric layers 50 stacked in the opposing direction of the first and second main faces L2a and L2b. ~ 59.

誘電体層50、51、58、59は、図23〜図25に示されているように、誘電体層52〜57に比べて第1及び第2の主面L2a、L2bの対向方向での厚さが厚い。各誘電体層50〜59は、1枚のセラミックグリーンシートの焼結体から構成されていても、あるいは複数枚のセラミックグリーンシートの焼結体から構成されていてもよい。   As shown in FIGS. 23 to 25, the dielectric layers 50, 51, 58, and 59 are in a direction opposite to the first and second main surfaces L <b> 2 a and L <b> 2 b as compared with the dielectric layers 52 to 57. Thick. Each of the dielectric layers 50 to 59 may be composed of a sintered body of one ceramic green sheet, or may be composed of a sintered body of a plurality of ceramic green sheets.

貫通型積層コンデンサC6のコンデンサ素体L2には、第1の数(本実施形態では7層)の信号用内部電極70〜76及び第2の数(本実施形態では2層)の接地用内部電極60、61が配置されている。信号用内部電極70〜76の数である第1の数は、接地用内部電極60、61の数である第2の数より大きい。   The capacitor body L2 of the feedthrough multilayer capacitor C6 includes a first number (seven layers in this embodiment) of signal internal electrodes 70 to 76 and a second number (two layers in this embodiment) of grounding internals. Electrodes 60 and 61 are disposed. The first number that is the number of the signal internal electrodes 70 to 76 is larger than the second number that is the number of the grounding internal electrodes 60 and 61.

本実施形態では、信号用内部電極70〜76及び接地用内部電極60,61は、第1及び第2の主面L2a、L2bの対向方向に沿って、略中央に位置する信号用内部電極73から第1の主面L2aに向かって、3層の信号用内部電極72、71、70、接地用内部電極60がこの順で配置されており、また信号用内部電極73から第2の主面L2bに向かって、3層の信号用内部電極74、75、76、接地用内部電極61がこの順で配置されている。   In the present embodiment, the signal internal electrodes 70 to 76 and the grounding internal electrodes 60 and 61 are the signal internal electrodes 73 located substantially in the center along the opposing direction of the first and second main surfaces L2a and L2b. 3 layers of signal internal electrodes 72, 71, 70 and grounding internal electrode 60 are arranged in this order from the first main surface L2a to the first main surface L2a, and from the signal internal electrode 73 to the second main surface. Toward L2b, three layers of signal internal electrodes 74, 75, 76 and a ground internal electrode 61 are arranged in this order.

貫通型積層コンデンサC6では、接地用内部電極60は、第1及び第2の主面L2a、L2bの対向方向で見て、第1の数の信号用内部電極70〜76の何れよりも第1の主面L2a側に配置されている。接地用内部電極61は、第1及び第2の主面L2a、L2bの対向方向で見て、第1の数の信号用内部電極70〜76の何れよりも第2の主面L2b側に配置されている。このように、貫通型積層コンデンサC6では、接地用内部電極60、61がコンデンサ素体L2の外表面に近い位置に配置されている。   In the feedthrough multilayer capacitor C6, the grounding inner electrode 60 is first than any of the first number of signal inner electrodes 70 to 76 when viewed in the opposing direction of the first and second main faces L2a and L2b. Is disposed on the main surface L2a side. The grounding internal electrode 61 is disposed closer to the second main surface L2b than any of the first number of signal internal electrodes 70 to 76 when viewed in the opposing direction of the first and second main surfaces L2a and L2b. Has been. As described above, in the feedthrough multilayer capacitor C6, the grounding inner electrodes 60 and 61 are disposed at positions close to the outer surface of the capacitor body L2.

信号用内部電極70の信号用主電極部70aは、コンデンサ素体L2の一部である誘電体層51(第1の誘電領域)を間に挟んで、接地用内部電極60の接地用主電極部60aと誘電体層50〜59の積層方向(第1及び第2の主面L2a、L2bの対向方向)に互いに対向する領域を含んでいる。すなわち、信号用内部電極70と、接地用内部電極60とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層51のうち、信号用内部電極70の信号用主電極部70aと接地用内部電極60の接地用主電極部60aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 70a of the signal internal electrode 70 is a ground main electrode of the ground internal electrode 60 with a dielectric layer 51 (first dielectric region) which is a part of the capacitor body L2 interposed therebetween. It includes regions facing each other in the stacking direction of the portion 60a and the dielectric layers 50 to 59 (the opposing direction of the first and second main faces L2a and L2b). That is, the signal internal electrode 70 and the ground internal electrode 60 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a, L2b. Accordingly, a portion of the dielectric layer 51 that overlaps the signal main electrode portion 70a of the signal internal electrode 70 and the ground main electrode portion 60a of the ground internal electrode 60 substantially generates a capacitance component. It is an area.

信号用内部電極76の信号用主電極部76aは、コンデンサ素体L2の一部である誘電体層58(第1の誘電領域)を間に挟んで、接地用内部電極61の接地用主電極部61aと誘電体層50〜59の積層方向に互いに対向する領域を含んでいる。すなわち、信号用内部電極76と、接地用内部電極61とは、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。したがって、誘電体層58のうち、信号用内部電極76の信号用主電極部76aと接地用内部電極61の接地用主電極部61aとに重なる部分は、静電容量成分を実質的に生じさせる領域である。   The signal main electrode portion 76a of the signal internal electrode 76 has a dielectric layer 58 (first dielectric region) that is a part of the capacitor body L2 and sandwiches the ground main electrode 61 of the ground internal electrode 61. The region 61a and the dielectric layers 50 to 59 include regions facing each other in the stacking direction. That is, the signal internal electrode 76 and the grounding internal electrode 61 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a, L2b. Therefore, a portion of the dielectric layer 58 that overlaps the signal main electrode portion 76a of the signal internal electrode 76 and the ground main electrode portion 61a of the ground internal electrode 61 substantially generates a capacitance component. It is an area.

信号用内部電極70の信号用主電極部70aは、コンデンサ素体L2の一部である誘電体層52(第2の誘電領域)を間に挟んで信号用内部電極71の信号用主電極部71aと互いに対向する領域を含んでいる。すなわち、信号用内部電極70、71は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 70a of the signal internal electrode 70 is a signal main electrode portion of the signal internal electrode 71 with a dielectric layer 52 (second dielectric region) that is a part of the capacitor body L2 interposed therebetween. The area | region which mutually opposes 71a is included. That is, the signal internal electrodes 70 and 71 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極71の信号用主電極部71aは、コンデンサ素体L2の一部である誘電体層53(第2の誘電領域)を間に挟んで信号用内部電極72の信号用主電極部72aと互いに対向する領域を含んでいる。すなわち、信号用内部電極71、72は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 71a of the signal internal electrode 71 is a signal main electrode portion of the signal internal electrode 72 with a dielectric layer 53 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 72a and a region facing each other. That is, the signal internal electrodes 71 and 72 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極72の信号用主電極部72aは、コンデンサ素体L2の一部である誘電体層54(第2の誘電領域)を間に挟んで信号用内部電極73の信号用主電極部73aと互いに対向する領域を含んでいる。すなわち、信号用内部電極72、73は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 72a of the signal internal electrode 72 is a signal main electrode portion of the signal internal electrode 73 with a dielectric layer 54 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 73a and a region facing each other. That is, the signal internal electrodes 72 and 73 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極73の信号用主電極部73aは、コンデンサ素体L2の一部である誘電体層55(第2の誘電領域)を間に挟んで信号用内部電極74の信号用主電極部74aと互いに対向する領域を含んでいる。すなわち、信号用内部電極73、74は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 73a of the signal internal electrode 73 is a signal main electrode portion of the signal internal electrode 74 with a dielectric layer 55 (second dielectric region) as a part of the capacitor body L2 interposed therebetween. 74a and the area | region which mutually opposes is included. That is, the signal internal electrodes 73 and 74 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極74の信号用主電極部74aは、コンデンサ素体L2の一部である誘電体層56(第2の誘電領域)を間に挟んで信号用内部電極75の信号用主電極部75aと互いに対向する領域を含んでいる。すなわち、信号用内部電極74、75は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 74a of the signal internal electrode 74 is a signal main electrode portion of the signal internal electrode 75 with a dielectric layer 56 (second dielectric region) that is a part of the capacitor body L2 interposed therebetween. 75a and a region facing each other. That is, the signal internal electrodes 74 and 75 have regions that overlap each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

信号用内部電極75の信号用主電極部75aは、コンデンサ素体L2の一部である誘電体層57(第2の誘電領域)を間に挟んで信号用内部電極76の信号用主電極部76aと互いに対向する領域を含んでいる。すなわち、信号用内部電極75、76は、第1及び第2の主面L2a、L2bの対向方向から見て互いに重なる領域を有している。   The signal main electrode portion 75a of the signal internal electrode 75 is a signal main electrode portion of the signal internal electrode 76 with a dielectric layer 57 (second dielectric region) that is a part of the capacitor body L2 interposed therebetween. 76a and a region facing each other. That is, the signal internal electrodes 75 and 76 have regions overlapping each other when viewed from the opposing direction of the first and second main surfaces L2a and L2b.

図23及び図24から明らかなように、信号用内部電極と接地用内部電極との間に位置するコンデンサ素体の一部である第1の誘電領域、すなわち誘電体層51、58の第1及び第2の主面L2a、L2bの対向方向での長さが、信号用内部電極同士の間に位置するコンデンサ素体の一部である第2の誘電領域、すなわち誘電体層52〜57の第1及び第2の主面L2a、L2bの対向方向での長さよりも長い。   As is apparent from FIGS. 23 and 24, the first dielectric region, that is, the first of the dielectric layers 51 and 58, which is a part of the capacitor body located between the signal internal electrode and the ground internal electrode. And the length of the second main surfaces L2a and L2b in the facing direction of the second dielectric region that is a part of the capacitor body located between the signal internal electrodes, that is, the dielectric layers 52 to 57 It is longer than the length of the first and second main faces L2a, L2b in the facing direction.

図25に示すように、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60a、61aの幅をdとし、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅をdとすると、本実施形態ではdとdは略同じである。 As shown in FIG. 25, third and fourth side faces L2e, grounding main electrode portion 60a in the opposing direction of L2f, 61a width of the d 1, third and fourth side faces L2e, opposing direction of L2f When the width of the signal main electrode 70a~76a and d 2 at, d 1 and d 2 in the present embodiment is substantially the same.

図25に示されるように、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。 As shown in FIG. 25, the width d 3 of the first and second ground lead electrode portions 60b, 61b, 60c, 61c in the opposing direction of the first and second side faces L2c, L2d is fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c.

本実施形態に係る貫通型積層コンデンサC6では、第1の信号用引き出し電極部70b〜76bの幅並びに第2の信号用引き出し電極部70c〜76cの幅は何れもdであって、同じであるが、異なっていてもよい。 In feedthrough multilayer capacitor C6 according to the present embodiment, the width and the width of the second signal lead electrode portions 70c~76c of the first signal lead electrode portions 70b~76b is a both a d 4, the same Yes, but it can be different.

図25に示されるように、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1の信号用引き出し電極部70b〜76bの幅d並びに第3及び第4の側面L2e、L2fの対向方向での第2の信号用引き出し電極部70c〜76cの幅dの何れよりも広い。 As shown in FIG. 25, the signal internal electrodes 70-76, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f is, the third and The width d 4 of the first signal extraction electrode portions 70b to 76b in the opposing direction of the four side surfaces L2e and L2f and the second signal extraction electrode portion in the opposing direction of the third and fourth side surfaces L2e and L2f 70c~76c wider than either of the width d 4 of the.

貫通型積層コンデンサC6では、信号用内部電極70〜76の数(第1の数)が7層であり、接地用内部電極60、61の数(第2の数)が2層である。すなわち、第1の数の方が第2の数より大きい。よって、貫通型積層コンデンサC6では、直流抵抗が大きくなることを抑制することが可能となる。   In the feedthrough multilayer capacitor C6, the number of signal internal electrodes 70 to 76 (first number) is seven layers, and the number of ground internal electrodes 60 and 61 (second number) is two layers. That is, the first number is greater than the second number. Therefore, the feedthrough multilayer capacitor C6 can suppress an increase in DC resistance.

また、貫通型積層コンデンサC6では、数が多い信号用内部電極70〜76の信号用主電極部70a〜76aが、誘電体層52〜57を間に挟んでと対向する領域を有している。そのため、貫通型積層コンデンサC6では、直流抵抗が大きくなることを抑制すべく信号用内部電極の数を大きくしても、静電容量が大きくなってしまうことを抑制することが可能となる。したがって、貫通型積層コンデンサC6では、静電容量が大きくなることを抑制しつつ、直流抵抗が大きくなることを抑制することが可能である。   In the feedthrough multilayer capacitor C6, the large number of signal main electrodes 70a to 76a of the signal internal electrodes 70 to 76 have regions facing each other with the dielectric layers 52 to 57 interposed therebetween. . Therefore, in the feedthrough multilayer capacitor C6, even if the number of signal internal electrodes is increased to suppress an increase in DC resistance, it is possible to suppress an increase in capacitance. Therefore, in the feedthrough multilayer capacitor C6, it is possible to suppress an increase in DC resistance while suppressing an increase in capacitance.

貫通型積層コンデンサC6では、接地用内部電極60、61がコンデンサ素体L2の外表面に近い位置に配置されている。そのため、例えば焼結後にバレル研磨を施して製造したコンデンサ素体L2では、接地用内部電極60、61がコンデンサ素体L2の外表面に引き出されやすくなる。そのため、接地用内部電極60、61は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C6, the grounding inner electrodes 60 and 61 are disposed at positions close to the outer surface of the capacitor body L2. Therefore, for example, in the capacitor body L2 manufactured by barrel polishing after sintering, the grounding internal electrodes 60 and 61 are easily drawn out to the outer surface of the capacitor body L2. Therefore, the grounding internal electrodes 60 and 61 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC6では、接地用内部電極60、61の数が信号用内部電極70〜76に比べて少ない。そのため、特に接地用内部電極60、61が容易に且つ確実に接地用端子電極3,4に接続されていることが好ましい。   In the feedthrough multilayer capacitor C6, the number of grounding inner electrodes 60, 61 is smaller than that of the signal inner electrodes 70-76. Therefore, it is particularly preferable that the grounding internal electrodes 60 and 61 are connected to the grounding terminal electrodes 3 and 4 easily and reliably.

貫通型積層コンデンサC6では、誘電体層51、58の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)が、誘電体層52〜57の第1及び第2の主面L2a、L2bの対向方向での厚さ(長さ)よりも厚い(長い)。そのため、信号用内部電極70、76と接地用内部電極60、61との間の距離が、信号用内部電極70〜76間の距離よりも長くなるため、接地用内部電極60、61がコンデンサ素体L2の外側に配置されやすくなる。その結果、接地用内部電極60、61は、容易に且つ確実に第1及び第2の接地用端子電極3、4に接続されてやすくなる。   In the feedthrough multilayer capacitor C6, the thicknesses (lengths) of the dielectric layers 51, 58 in the facing direction of the first and second main surfaces L2a, L2b are the first and second thicknesses of the dielectric layers 52-57. Is thicker (longer) than the thickness (length) in the opposing direction of the main surfaces L2a and L2b. Therefore, since the distance between the signal internal electrodes 70 and 76 and the ground internal electrodes 60 and 61 is longer than the distance between the signal internal electrodes 70 to 76, the ground internal electrodes 60 and 61 are not connected to the capacitor element. It becomes easy to arrange | position outside the body L2. As a result, the grounding internal electrodes 60 and 61 are easily and reliably connected to the first and second grounding terminal electrodes 3 and 4.

貫通型積層コンデンサC6では、信号用内部電極70〜76において、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dが、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。そのため、第1及び第2の信号用端子電極1、2の幅を狭くすることができる。その結果、コンデンサ素体L2の外表面上において、信号用端子電極1、2と接地用端子電極3、4との間で短絡が発生することが抑制される。 In feedthrough multilayer capacitor C6, the signal internal electrodes 70-76, third and fourth side faces L2e, the width d 2 of the signal main electrode 70a~76a in the opposing direction of the L2f, third and fourth aspect L2e, first and second signal lead-out electrode portion 70b~76b in the opposing direction of L2f, wider than the width d 4 of 70C~76c. Therefore, the widths of the first and second signal terminal electrodes 1 and 2 can be reduced. As a result, occurrence of a short circuit between the signal terminal electrodes 1 and 2 and the ground terminal electrodes 3 and 4 on the outer surface of the capacitor body L2 is suppressed.

貫通型積層コンデンサC6では、第1及び第2の側面L2c、L2dの対向方向での第1及び第2の接地用引き出し電極部60b、61b、60c、61cの幅dは、第3及び第4の側面L2e、L2fの対向方向での第1及び第2の信号用引き出し電極部70b〜76b、70c〜76cの幅dよりも広い。したがって、貫通型積層コンデンサC6では、等価直列インダクタンス(ESL)の値を低減することが可能となる。 In feedthrough multilayer capacitor C6, the first and second side surfaces L2c, the first and second ground lead electrode portions 60b in the opposite direction of L2d, 61b, 60c, 61c the width d 3 of the third and 4 is wider than the width d4 of the first and second signal lead electrode portions 70b to 76b and 70c to 76c in the direction in which the side surfaces L2e and L2f of the fourth plate face each other. Therefore, the feedthrough multilayer capacitor C6 can reduce the value of the equivalent series inductance (ESL).

ここで、図26に、本実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。図26に示すように、第3及び第4の側面L2e、L2fの対向方向での信号用主電極部70a〜76aの幅dは、第3及び第4の側面L2e、L2fの対向方向での接地用主電極部60、61の幅dより広くてもよい。 Here, FIG. 26 is an exploded perspective view of a capacitor body included in a modification of the feedthrough multilayer capacitor according to the present embodiment. As shown in FIG. 26, third and fourth side faces L2e, width d 2 of the signal main electrode 70a~76a in the opposing direction of L2f, the third and fourth side faces L2e, in the opposing direction of the L2f It may be wider than the width d 1 of the grounding main electrode portions 60, 61.

このように、信号用主電極部70a〜76aの幅を接地用主電極部60a、61aに比べて広くすることで、第6実施形態の変形例に係る貫通型積層コンデンサの直流抵抗が大きくなることがさらに抑制される。   Thus, by increasing the width of the signal main electrode portions 70a to 76a as compared with the grounding main electrode portions 60a and 61a, the DC resistance of the feedthrough multilayer capacitor according to the modification of the sixth embodiment is increased. This is further suppressed.

また、信号用主電極部70a〜76aの幅を広くすることで、信号用内部電極70、76及び接地用内部電極60、61の間で積層ずれが起きた場合であっても、これらの間で形成される静電容量に与える影響を抑制することが可能となる。   Further, by increasing the width of the signal main electrode portions 70a to 76a, even when a stacking shift occurs between the signal internal electrodes 70 and 76 and the ground internal electrodes 60 and 61, the signal main electrode portions 70a to 76a It is possible to suppress the influence on the capacitance formed by the above.

以上、本発明の好適な実施形態及び変形例について説明してきたが、本発明は必ずしも上述した実施形態及び変形例に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。   The preferred embodiments and modifications of the present invention have been described above, but the present invention is not necessarily limited to the above-described embodiments and modifications, and various modifications can be made without departing from the scope of the invention. is there.

例えば、第1及び第2の信号用端子電極1、2、並びに第1及び第2の接地用端子電極3,4は、コンデンサ素体L1、L2の外表面に配置されていればよく、上述した実施形態及び変形例にて示された配置でなくてもよい。   For example, the first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 may be disposed on the outer surface of the capacitor bodies L1 and L2. The arrangements shown in the embodiments and the modifications may not be required.

また、第1及び第2の信号用端子電極1、2、並びに第1及び第2の接地用端子電極3,4は、図1及び図14に示したような形状で、コンデンサ素体L1、L2の外表面上に形成されていなくてもよい。図27に、図1に示した貫通型積層コンデンサC1の変形例の斜視図を示す。図27に示した貫通型積層コンデンサでは、第1及び第2の信号用端子電極1、2のうち、第1及び第2の主面L1a、L1bに形成された部分の縁が曲線を描いている。また、第1及び第2の接地用端子電極3、4のうち、第1及び第2の主面L1a、L1bに形成された部分の縁が曲線を描いている。   The first and second signal terminal electrodes 1 and 2 and the first and second ground terminal electrodes 3 and 4 have the shapes as shown in FIG. 1 and FIG. It may not be formed on the outer surface of L2. FIG. 27 shows a perspective view of a modified example of the feedthrough multilayer capacitor C1 shown in FIG. In the feedthrough multilayer capacitor shown in FIG. 27, the edges of the portions formed on the first and second main surfaces L1a and L1b of the first and second signal terminal electrodes 1 and 2 are curved. Yes. Moreover, the edge of the part formed in 1st and 2nd main surface L1a, L1b among the 1st and 2nd earthing terminal electrodes 3 and 4 has drawn the curve.

図28に、図14に示した貫通型積層コンデンサC4の変形例の斜視図を示す。図28に示した貫通型積層コンデンサでは、第1及び第2の信号用端子電極1、2のうち、第1及び第2の主面L2a、L2bに形成された部分の縁が曲線を描いている。また、第1及び第2の接地用端子電極3、4のうち、第1及び第2の主面L2a、L2bに形成された部分の縁が曲線を描いている。図27、図28のように端子電極を形成することにより、端子電極同士が接続されてしまい、端子電極間で短絡が発生してしまうことが抑制される。   FIG. 28 is a perspective view of a modification of the feedthrough multilayer capacitor C4 shown in FIG. In the feedthrough multilayer capacitor shown in FIG. 28, the edges of the portions of the first and second signal terminal electrodes 1 and 2 formed on the first and second main surfaces L2a and L2b are curved. Yes. Moreover, the edge of the part formed in 1st and 2nd main surface L2a, L2b among the 1st and 2nd earthing terminal electrodes 3 and 4 has drawn the curve. By forming the terminal electrodes as shown in FIGS. 27 and 28, the terminal electrodes are connected to each other, and a short circuit is prevented from occurring between the terminal electrodes.

また、コンデンサ素体L1、L2に含まれる誘電体層10〜19、50〜59の積層数及び各内部電極20、21、30〜36、60、61、70〜76の積層数は、信号用内部電極の数が接地用内部電極の数より大きい限り、上述した実施形態及び変形例にて示された数に限られない。各内部電極20、21、30〜36、60、61、70〜76の形状は、上述した実施形態及び変形例に示された形状に限られない。各内部電極20、21、30〜36、60、61、70〜76のコンデンサ素体L1、L2における位置は、上述した実施形態及び変形例に示された位置に限られない。   Further, the number of laminated dielectric layers 10 to 19 and 50 to 59 and the number of laminated internal electrodes 20, 21, 30 to 36, 60, 61, and 70 to 76 included in the capacitor bodies L1 and L2 are for signals. As long as the number of internal electrodes is larger than the number of grounding internal electrodes, the number is not limited to that shown in the above-described embodiments and modifications. The shape of each internal electrode 20, 21, 30-36, 60, 61, 70-76 is not restricted to the shape shown by embodiment and the modification mentioned above. The positions of the internal electrodes 20, 21, 30 to 36, 60, 61, and 70 to 76 in the capacitor body L1 and L2 are not limited to the positions shown in the above-described embodiments and modifications.

第1の誘電領域の第1及び第2の主面L1a(L2a)、L1b(L2b)の対向方向での長さが、第2の誘電領域の第1及び第2の主面L1a(L2a)、L1b(L2b)の対向方向での長さよりも長くなく、例えば等しくてもよい。   The length in the opposing direction of the first and second main surfaces L1a (L2a) and L1b (L2b) of the first dielectric region is the first and second main surfaces L1a (L2a) of the second dielectric region. , L1b (L2b) is not longer than the length in the opposing direction, and may be equal, for example.

各信号用内部電極30〜36、70〜76において、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第1の信号用引き出し電極部30b〜36b、70b〜76bの幅と第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第2の信号用引き出し電極部30c〜36c、70c〜76cの幅とが同じでなくてもよい。   In each of the signal internal electrodes 30 to 36 and 70 to 76, the first signal extraction electrode portions 30b to 36b and 70b to 76b in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f). And the widths of the second signal extraction electrode portions 30c to 36c and 70c to 76c in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f) may not be the same.

各信号用内部電極30〜36、70〜76において、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第1の信号用引き出し電極部30b〜36b、70b〜76bの幅と第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第2の信号用引き出し電極部30c〜36c、70c〜76cの幅とが同じでなくてもよい。したがって、例えば、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向において、第1の信号用引き出し電極部30b〜36b、70b〜76bの幅が信号用主電極部30a〜36a、70a〜76aの幅と同じであって、第2の信号用引き出し電極部30c〜36c、70c〜76cの幅が信号用主電極部30a〜36a、70a〜76aの幅より狭くてもよい。   In each of the signal internal electrodes 30 to 36 and 70 to 76, the first signal extraction electrode portions 30b to 36b and 70b to 76b in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f). And the widths of the second signal extraction electrode portions 30c to 36c and 70c to 76c in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f) may not be the same. Therefore, for example, in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f), the widths of the first signal extraction electrode portions 30b to 36b and 70b to 76b are the signal main electrode portions 30a to 30b. The widths of the second signal extraction electrode portions 30c to 36c and 70c to 76c may be smaller than the widths of the signal main electrode portions 30a to 36a and 70a to 76a. .

各信号用内部電極30〜36、70〜76において、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での信号用主電極部30a〜36a、70a〜76aの幅は、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第1の信号用引き出し電極部30b〜36b、70b〜76bの幅並びに第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第2の信号用引き出し電極部30c〜36c、70c〜76cの幅の何れか一方又は双方より狭くてもよい。   In each of the signal internal electrodes 30 to 36 and 70 to 76, the widths of the signal main electrode portions 30a to 36a and 70a to 76a in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f) are , The widths of the first signal extraction electrode portions 30b to 36b and 70b to 76b in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f), and the third and fourth side faces L1e (L2e). ), The width of the second signal extraction electrode portions 30c to 36c and 70c to 76c in the opposing direction of L1f (L2f) may be narrower than one or both of them.

第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での信号用主電極部30a〜36a、70a〜76aの幅は、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での接地用主電極部20a、21a、60a、61aの幅より狭くてもよい。   The widths of the signal main electrode portions 30a to 36a and 70a to 76a in the opposing direction of the third and fourth side faces L1e (L2e) and L1f (L2f) are the same as the third and fourth side faces L1e (L2e) and L1f. It may be narrower than the width of the grounding main electrode portions 20a, 21a, 60a, 61a in the facing direction of (L2f).

第1及び第2の側面L1c(L2c)、L1d(L2d)の対向方向での接地用引き出し電極部20b、21b、20c、21c、60b、61b、60c、61cの幅は、第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第1の信号用引き出し電極部30b〜36b、70b〜76bの幅並びに第3及び第4の側面L1e(L2e)、L1f(L2f)の対向方向での第2の信号用引き出し電極部30c〜36c、70c〜76cの幅の何れか一方又は双方よりも狭い又は同じであってもよい。   The widths of the ground extraction electrode portions 20b, 21b, 20c, 21c, 60b, 61b, 60c, 61c in the opposing direction of the first and second side faces L1c (L2c), L1d (L2d) are the third and fourth widths. Widths of the first signal extraction electrode portions 30b to 36b and 70b to 76b in the opposing direction of the side surfaces L1e (L2e) and L1f (L2f), and the third and fourth side surfaces L1e (L2e) and L1f (L2f) The width may be narrower than or equal to one or both of the widths of the second signal extraction electrode portions 30c to 36c and 70c to 76c in the opposite direction.

第1実施形態に係る貫通型積層コンデンサの斜視図である。1 is a perspective view of a feedthrough multilayer capacitor according to a first embodiment. 図1に示した貫通型積層コンデンサのII−II矢印断面図である。It is II-II arrow sectional drawing of the feedthrough multilayer capacitor shown in FIG. 図1に示した貫通型積層コンデンサのIII−III矢印断面図である。FIG. 3 is a cross-sectional view of the feedthrough multilayer capacitor shown in FIG. 第1実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。1 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a first embodiment. 第1実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。An exploded perspective view of a capacitor element body included in a modification of the feedthrough multilayer capacitor according to the first embodiment is shown. 第2実施形態に係る貫通型積層コンデンサのII−II矢印断面図に対応する図である。It is a figure corresponding to the II-II arrow sectional view of the feedthrough multilayer capacitor concerning a 2nd embodiment. 第2実施形態に係る貫通型積層コンデンサのIII−III矢印断面図に対応する図である。It is a figure corresponding to the III-III arrow sectional view of the feedthrough multilayer capacitor concerning a 2nd embodiment. 第2実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。FIG. 6 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a second embodiment. 第2実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。The disassembled perspective view of the capacitor | condenser body included in the modification of the feedthrough multilayer capacitor which concerns on 2nd Embodiment is shown. 第3実施形態に係る貫通型積層コンデンサのII−II矢印断面図に対応する図である。It is a figure corresponding to the II-II arrow sectional view of the feedthrough multilayer capacitor concerning a 3rd embodiment. 第3実施形態に係る貫通型積層コンデンサのIII−III矢印断面図に対応する図である。It is a figure corresponding to the III-III arrow sectional view of the feedthrough multilayer capacitor concerning a 3rd embodiment. 第3実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。FIG. 6 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a third embodiment. 第3実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。The disassembled perspective view of the capacitor | condenser body contained in the modification of the feedthrough multilayer capacitor which concerns on 3rd Embodiment is shown. 第4実施形態に係る貫通型積層コンデンサの斜視図である。It is a perspective view of the feedthrough multilayer capacitor according to the fourth embodiment. 図14に示した貫通型積層コンデンサのXV−XV矢印断面図に対応する図である。It is a figure corresponding to the XV-XV arrow sectional drawing of the feedthrough multilayer capacitor shown in FIG. 図14に示した貫通型積層コンデンサのXVI−XVI矢印断面図に対応する図である。It is a figure corresponding to the XVI-XVI arrow sectional drawing of the feedthrough multilayer capacitor shown in FIG. 第4実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。FIG. 10 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a fourth embodiment. 第4実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。The disassembled perspective view of the capacitor | condenser body contained in the modification of the feedthrough multilayer capacitor which concerns on 4th Embodiment is shown. 第5実施形態に係る貫通型積層コンデンサのXV−XV矢印断面図に対応する図である。It is a figure corresponding to the XV-XV arrow sectional view of the feedthrough multilayer capacitor concerning a 5th embodiment. 第5実施形態に係る貫通型積層コンデンサのXVI−XVI矢印断面図に対応する図である。It is a figure corresponding to the XVI-XVI arrow sectional view of the feedthrough multilayer capacitor concerning a 5th embodiment. 第5実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。FIG. 10 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a fifth embodiment. 第5実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。The disassembled perspective view of the capacitor | condenser body contained in the modification of the feedthrough multilayer capacitor which concerns on 5th Embodiment is shown. 第6実施形態に係る貫通型積層コンデンサのXV−XV矢印断面図に対応する図である。It is a figure corresponding to the XV-XV arrow sectional view of the feedthrough multilayer capacitor concerning a 6th embodiment. 第6実施形態に係る貫通型積層コンデンサのXVI−XVI矢印断面図に対応する図である。It is a figure corresponding to the XVI-XVI arrow sectional view of the feedthrough multilayer capacitor concerning a 6th embodiment. 第6実施形態に係る貫通型積層コンデンサに含まれるコンデンサ素体の分解斜視図である。FIG. 10 is an exploded perspective view of a capacitor body included in a feedthrough multilayer capacitor according to a sixth embodiment. 第6実施形態に係る貫通型積層コンデンサの変形例に含まれるコンデンサ素体の分解斜視図を示す。The disassembled perspective view of the capacitor | condenser body contained in the modification of the feedthrough multilayer capacitor which concerns on 6th Embodiment is shown. 図1に示した貫通型積層コンデンサの変形例の斜視図を示す。The perspective view of the modification of the feedthrough multilayer capacitor shown in FIG. 1 is shown. 図14に示した貫通型積層コンデンサの変形例の斜視図を示す。FIG. 15 is a perspective view of a modified example of the feedthrough multilayer capacitor illustrated in FIG. 14.

符号の説明Explanation of symbols

C1〜C6…貫通型積層コンデンサ、L1、L2…コンデンサ素体、1…第1の信号用端子電極、2…第2の信号用端子電極、3…第1の接地用端子電極、4…第2の接地用端子電極、10〜19、50〜59…誘電体層、20、21、60、61…接地用内部電極、20a、21a、60a、61a…接地用主電極部、20b、21b、60b、61b…第1の接地用引き出し電極部、20c、21c、60c、61c…第2の接地用引き出し電極部、30〜36、70〜76…信号用内部電極、30a〜36a…信号用主電極部、30b〜36b…第1の信号用引き出し電極部、30c〜36c…第2の信号用引き出し電極部。
C1 to C6 ... feedthrough multilayer capacitors, L1, L2 ... capacitor body, 1 ... first signal terminal electrode, 2 ... second signal terminal electrode, 3 ... first ground terminal electrode, 4 ... first 2 grounding terminal electrodes, 10 to 19, 50 to 59 ... dielectric layers, 20, 21, 60, 61 ... grounding internal electrodes, 20a, 21a, 60a, 61a ... grounding main electrode parts, 20b, 21b, 60b, 61b... First ground lead electrode portion, 20c, 21c, 60c, 61c... Second ground lead electrode portion, 30 to 36, 70 to 76... Signal internal electrode, 30a to 36a. Electrode part, 30b-36b ... 1st signal extraction electrode part, 30c-36c ... 2nd signal extraction electrode part.

Claims (9)

相対向する長方形状の第1及び第2の主面と、前記第1及び第2の主面間を連結するように伸びている相対向する第1及び第2の側面と、前記第1及び第2の主面間を連結するように伸びている相対向する第3及び第4の側面とをその外表面として有し、且つ誘電特性を有するコンデンサ素体と、
前記コンデンサ素体内に配置された第1の数の信号用内部電極及び第2の数の接地用内部電極と、
前記コンデンサ素体の前記外表面に配置された第1及び第2の信号用端子電極並びに接地用端子電極と、を備えており、
前記各信号用内部電極は、信号用主電極部と、前記信号用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記第1の信号用端子電極に接続される第1の信号用引き出し電極部と、前記信号用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記第2の信号用端子電極に接続される第2の信号用引き出し電極部とを有し、
前記各接地用内部電極は、接地用主電極部と、前記接地用主電極部から前記コンデンサ素体の前記外表面に引き出されるように伸びて前記接地用端子電極に接続される接地用引き出し電極部とを有し、
前記第1の数の信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部は、前記コンデンサ素体の一部である第1の誘電領域を間に挟んで前記第2の数の接地用内部電極の少なくとも1つの接地用内部電極の接地用主電極部と対向する領域を有し、
前記第1の数の信号用内部電極の少なくとも1つの信号用内部電極の信号用主電極部は、前記コンデンサ素体の一部である第2の誘電領域を間に挟んで他の信号用内部電極の信号用主電極部と対向する領域を有し、
前記第1の数は、前記第2の数より大きいことを特徴とする貫通型積層コンデンサ。
Opposite rectangular first and second main surfaces, opposing first and second side surfaces extending so as to connect the first and second main surfaces, and the first and second surfaces A capacitor element body having third and fourth opposite side surfaces extending so as to connect the second main surfaces as outer surfaces and having dielectric characteristics;
A first number of signal internal electrodes and a second number of ground internal electrodes disposed within the capacitor body;
First and second signal terminal electrodes and ground terminal electrodes disposed on the outer surface of the capacitor body,
Each signal internal electrode is connected to the first signal terminal electrode extending from the signal main electrode portion and the signal main electrode portion so as to be drawn to the outer surface of the capacitor body. One signal lead electrode portion and a second signal lead electrode extending from the signal main electrode portion to the outer surface of the capacitor element body and connected to the second signal terminal electrode And
Each of the grounding internal electrodes includes a grounding main electrode portion and a grounding lead electrode extending from the grounding main electrode portion to be drawn to the outer surface of the capacitor body and connected to the grounding terminal electrode And
The signal main electrode portion of at least one signal internal electrode of the first number of signal internal electrodes is the second number with a first dielectric region being a part of the capacitor body interposed therebetween. A region facing the grounding main electrode portion of at least one of the grounding internal electrodes,
The signal main electrode portion of at least one signal internal electrode of the first number of signal internal electrodes is another signal internal with a second dielectric region that is a part of the capacitor body interposed therebetween. Having a region facing the signal main electrode part of the electrode,
The feedthrough multilayer capacitor is characterized in that the first number is larger than the second number.
前記各接地用内部電極は、前記第1及び第2の主面の対向方向で見て、前記コンデンサ素体の前記第1及び第2の主面が対向する距離の前記第1の主面から4分の1の距離までの領域内又は前記前記第1及び第2の主面が対向する距離の前記第2の主面から4分の1の距離までの領域内に配置されていることを特徴とする請求項1記載の貫通型積層コンデンサ。   Each of the grounding internal electrodes is viewed from the first main surface at a distance where the first and second main surfaces of the capacitor body face each other when viewed in the opposing direction of the first and second main surfaces. It is arranged in a region up to a quarter distance or in a region up to a quarter distance from the second main surface where the first and second main surfaces face each other. The feedthrough multilayer capacitor as claimed in claim 1. 前記各接地用内部電極は、前記第1及び第2の主面の対向方向で見て、前記第1の数の信号用内部電極の何れよりも前記第1の主面側又は前記第2の主面側に配置されていることを特徴とする請求項1記載の貫通型積層コンデンサ。   Each of the grounding internal electrodes has the first main surface side or the second main electrode more than any of the first number of signal internal electrodes when viewed in the opposing direction of the first and second main surfaces. The feedthrough multilayer capacitor according to claim 1, wherein the feedthrough multilayer capacitor is disposed on a main surface side. 前記第1の誘電領域の前記第1及び第2の主面の対向方向での長さが、前記第2の誘電領域の前記第1及び第2の主面の対向方向での長さよりも長いことを特徴とする請求項1〜3の何れか一項記載の貫通型積層コンデンサ。   The length of the first dielectric region in the facing direction of the first and second main surfaces is longer than the length of the second dielectric region in the facing direction of the first and second main surfaces. The feedthrough multilayer capacitor according to any one of claims 1 to 3, wherein the feedthrough multilayer capacitor is provided. 前記第1及び第2の信号用端子電極はそれぞれ、前記第1又は第2の側面に配置されており、
前記各信号用内部電極の前記第1の信号用引き出し電極部は、前記第1の信号用端子電極が配置された前記第1又は第2の側面に引き出されるように伸び、
前記各信号用内部電極の前記第2の信号用引き出し電極部は、前記第2の信号用端子電極が配置された前記第1又は第2の側面に引き出されるように伸びていることを特徴とする請求項1〜4の何れか一項記載の貫通型積層コンデンサ。
The first and second signal terminal electrodes are respectively disposed on the first or second side surfaces,
The first signal lead electrode portion of each signal internal electrode extends so as to be drawn to the first or second side surface on which the first signal terminal electrode is disposed,
The second signal lead electrode portion of each signal internal electrode extends so as to be drawn to the first or second side surface on which the second signal terminal electrode is disposed. The feedthrough multilayer capacitor according to any one of claims 1 to 4.
前記各信号用内部電極において、前記第3及び第4の側面の対向方向での前記信号用主電極部の幅と前記第3及び第4の側面の対向方向での前記第1の信号用引き出し電極部の幅と前記第3及び第4の側面の対向方向での前記第2の信号用引き出し電極部の幅とが同じであることを特徴とする請求項5記載の貫通型積層コンデンサ。   In each of the signal internal electrodes, the width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces and the first signal lead-out in the opposing direction of the third and fourth side surfaces 6. The feedthrough multilayer capacitor according to claim 5, wherein the width of the electrode portion and the width of the second signal lead electrode portion in the opposing direction of the third and fourth side surfaces are the same. 前記各信号用内部電極において、前記第3及び第4の側面の対向方向での前記信号用主電極部の幅は、前記第3及び第4の側面の対向方向での前記第1の信号用引き出し電極部の幅並びに前記第3及び第4の側面の対向方向での前記第2の信号用引き出し電極部の幅の何れよりも広いことを特徴とする請求項5記載の貫通型積層コンデンサ。   In each of the signal internal electrodes, the width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces is set so that the width of the signal main electrode portion in the opposing direction of the third and fourth side surfaces is 6. The feedthrough multilayer capacitor according to claim 5, wherein a width of the lead electrode portion and a width of the second signal lead electrode portion in the opposing direction of the third and fourth side surfaces are wider. 前記第3及び第4の側面の対向方向での前記信号用主電極部の幅は、前記第3及び第4の側面の対向方向での前記接地用主電極部の幅より広いことを特徴とする請求項5〜7の何れか一項記載の貫通型積層コンデンサ。   The width of the signal main electrode portion in the facing direction of the third and fourth side surfaces is wider than the width of the grounding main electrode portion in the facing direction of the third and fourth side surfaces. The feedthrough multilayer capacitor according to any one of claims 5 to 7. 前記接地用端子電極は、前記第3又は第4の側面に配置されており、
前記接地用内部電極の前記接地用引き出し電極部は、前記接地用端子電極が配置された前記第3又は第4の側面に引き出されるように伸び、
前記第1及び第2の側面の対向方向での前記接地用引き出し電極部の幅は、前記第3及び第4の側面の対向方向での前記第1の信号用引き出し電極部の幅並びに前記第3及び第4の側面の対向方向での前記第2の信号用引き出し電極部の幅の何れよりも広いことを特徴とする請求項5〜8の何れか一項記載の貫通型積層コンデンサ。

The grounding terminal electrode is disposed on the third or fourth side surface,
The ground lead electrode portion of the ground internal electrode extends so as to be drawn to the third or fourth side surface on which the ground terminal electrode is disposed,
The width of the ground lead electrode portion in the opposing direction of the first and second side surfaces is the width of the first signal lead electrode portion in the opposing direction of the third and fourth side surfaces and the first 9. The feedthrough multilayer capacitor according to claim 5, wherein the feedthrough multilayer capacitor is wider than any of the widths of the second signal extraction electrode portions in the opposing direction of the third and fourth side surfaces.

JP2008060021A 2008-03-10 2008-03-10 Feed-through multilayer capacitor Active JP4924490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060021A JP4924490B2 (en) 2008-03-10 2008-03-10 Feed-through multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060021A JP4924490B2 (en) 2008-03-10 2008-03-10 Feed-through multilayer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011229508A Division JP5304869B2 (en) 2011-10-19 2011-10-19 Feed-through multilayer capacitor

Publications (2)

Publication Number Publication Date
JP2009218363A true JP2009218363A (en) 2009-09-24
JP4924490B2 JP4924490B2 (en) 2012-04-25

Family

ID=41189953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060021A Active JP4924490B2 (en) 2008-03-10 2008-03-10 Feed-through multilayer capacitor

Country Status (1)

Country Link
JP (1) JP4924490B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104736A (en) * 2010-11-12 2012-05-31 Tdk Corp Feedthrough capacitor, and mounting structure for the same
JP2012104784A (en) * 2010-11-15 2012-05-31 Tdk Corp Feedthrough capacitor
CN102737840A (en) * 2011-04-04 2012-10-17 Tdk株式会社 Feedthrough multilayer capacitor
JP2012248571A (en) * 2011-05-25 2012-12-13 Tdk Corp Feed-through multilayer capacitor
JP2014183241A (en) * 2013-03-20 2014-09-29 Murata Mfg Co Ltd Penetration type capacitor
CN104282432A (en) * 2013-07-09 2015-01-14 三星电机株式会社 Multilayer ceramic capacitor and mounting circuit board therefor
CN104282437A (en) * 2013-07-11 2015-01-14 三星电机株式会社 Multilayer ceramic capacitor and board for mounting the same
US8988851B1 (en) 2013-10-22 2015-03-24 Murata Manufacturing Co., Ltd. Capacitor including four terminal electrodes
US9358825B1 (en) 2015-02-05 2016-06-07 Murata Manufacturing Co., Ltd. Gravure printing plate and method of manufacturing multilayer ceramic electronic component
JP2016127262A (en) * 2014-12-26 2016-07-11 太陽誘電株式会社 Feedthrough multilayer ceramic capacitor
US9633784B2 (en) 2013-10-25 2017-04-25 Murata Manufacturing Co., Ltd. Electronic component
JP2020077793A (en) * 2018-11-08 2020-05-21 株式会社村田製作所 Laminated ceramic capacitor

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250409A (en) * 1989-03-23 1990-10-08 Murata Mfg Co Ltd Lc filter
JPH0349306A (en) * 1989-07-17 1991-03-04 Murata Mfg Co Ltd Noise filter
JPH06302471A (en) * 1993-04-15 1994-10-28 Tokin Corp Bandpass filter
JPH07201655A (en) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd Multilayer electronic device
JPH07254528A (en) * 1994-03-16 1995-10-03 Murata Mfg Co Ltd Laminated noise filter
JPH087622Y2 (en) * 1992-09-03 1996-03-04 株式会社村田製作所 Feedthrough multilayer capacitor
JPH08181035A (en) * 1994-12-26 1996-07-12 Sumitomo Metal Ind Ltd Laminated chip capacitor
JPH0955335A (en) * 1995-08-10 1997-02-25 Murata Mfg Co Ltd Laminated type through capacitor
JPH11261361A (en) * 1998-03-11 1999-09-24 Nec Corp Stacked lc high pass filter
JP2000138127A (en) * 1998-10-30 2000-05-16 Kyocera Corp Laminated ceramic capacitor
JP2001044059A (en) * 1999-07-29 2001-02-16 Kyocera Corp Multilayer ceramic capacitor
JP2005032900A (en) * 2003-07-10 2005-02-03 Murata Mfg Co Ltd Layered feed-through capacitor and array thereof
JP2005044871A (en) * 2003-07-24 2005-02-17 Tdk Corp Three terminal feed-through capacitor
JP2005072149A (en) * 2003-08-21 2005-03-17 Tdk Corp Multilayer capacitor
JP2005340371A (en) * 2004-05-25 2005-12-08 Murata Mfg Co Ltd Laminated ceramic electronic component and manufacturing method thereof
JP2006100451A (en) * 2004-09-28 2006-04-13 Taiyo Yuden Co Ltd Three-terminal multilayer capacitor and packaging structure
JP2008021861A (en) * 2006-07-13 2008-01-31 Tdk Corp Feed-through multilayer capacitor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250409A (en) * 1989-03-23 1990-10-08 Murata Mfg Co Ltd Lc filter
JPH0349306A (en) * 1989-07-17 1991-03-04 Murata Mfg Co Ltd Noise filter
JPH087622Y2 (en) * 1992-09-03 1996-03-04 株式会社村田製作所 Feedthrough multilayer capacitor
JPH06302471A (en) * 1993-04-15 1994-10-28 Tokin Corp Bandpass filter
JPH07201655A (en) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd Multilayer electronic device
JPH07254528A (en) * 1994-03-16 1995-10-03 Murata Mfg Co Ltd Laminated noise filter
JPH08181035A (en) * 1994-12-26 1996-07-12 Sumitomo Metal Ind Ltd Laminated chip capacitor
JPH0955335A (en) * 1995-08-10 1997-02-25 Murata Mfg Co Ltd Laminated type through capacitor
JPH11261361A (en) * 1998-03-11 1999-09-24 Nec Corp Stacked lc high pass filter
JP2000138127A (en) * 1998-10-30 2000-05-16 Kyocera Corp Laminated ceramic capacitor
JP2001044059A (en) * 1999-07-29 2001-02-16 Kyocera Corp Multilayer ceramic capacitor
JP2005032900A (en) * 2003-07-10 2005-02-03 Murata Mfg Co Ltd Layered feed-through capacitor and array thereof
JP2005044871A (en) * 2003-07-24 2005-02-17 Tdk Corp Three terminal feed-through capacitor
JP2005072149A (en) * 2003-08-21 2005-03-17 Tdk Corp Multilayer capacitor
JP2005340371A (en) * 2004-05-25 2005-12-08 Murata Mfg Co Ltd Laminated ceramic electronic component and manufacturing method thereof
JP2006100451A (en) * 2004-09-28 2006-04-13 Taiyo Yuden Co Ltd Three-terminal multilayer capacitor and packaging structure
JP2008021861A (en) * 2006-07-13 2008-01-31 Tdk Corp Feed-through multilayer capacitor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104736A (en) * 2010-11-12 2012-05-31 Tdk Corp Feedthrough capacitor, and mounting structure for the same
US8587922B2 (en) 2010-11-12 2013-11-19 Tdk Corporation Feed-through capacitor and feed-through capacitor mounting structure
JP2012104784A (en) * 2010-11-15 2012-05-31 Tdk Corp Feedthrough capacitor
CN102737840A (en) * 2011-04-04 2012-10-17 Tdk株式会社 Feedthrough multilayer capacitor
JP2012221993A (en) * 2011-04-04 2012-11-12 Tdk Corp Through-type multilayer capacitor
JP2012248571A (en) * 2011-05-25 2012-12-13 Tdk Corp Feed-through multilayer capacitor
JP2014183241A (en) * 2013-03-20 2014-09-29 Murata Mfg Co Ltd Penetration type capacitor
CN104282432A (en) * 2013-07-09 2015-01-14 三星电机株式会社 Multilayer ceramic capacitor and mounting circuit board therefor
CN104282437A (en) * 2013-07-11 2015-01-14 三星电机株式会社 Multilayer ceramic capacitor and board for mounting the same
US8988851B1 (en) 2013-10-22 2015-03-24 Murata Manufacturing Co., Ltd. Capacitor including four terminal electrodes
US9633784B2 (en) 2013-10-25 2017-04-25 Murata Manufacturing Co., Ltd. Electronic component
JP2016127262A (en) * 2014-12-26 2016-07-11 太陽誘電株式会社 Feedthrough multilayer ceramic capacitor
US9358825B1 (en) 2015-02-05 2016-06-07 Murata Manufacturing Co., Ltd. Gravure printing plate and method of manufacturing multilayer ceramic electronic component
KR20160096559A (en) 2015-02-05 2016-08-16 가부시키가이샤 무라타 세이사쿠쇼 Gravure printing plate and method of manufacturing multilayer ceramic electronic component
JP2020077793A (en) * 2018-11-08 2020-05-21 株式会社村田製作所 Laminated ceramic capacitor

Also Published As

Publication number Publication date
JP4924490B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924490B2 (en) Feed-through multilayer capacitor
JP4374041B2 (en) Multilayer capacitor
US7667950B2 (en) Multilayer capacitor and electronic device
US7701696B2 (en) Multilayer capacitor
JP4086086B2 (en) Multilayer capacitor and its mounting structure
KR101963283B1 (en) Capacitor Component
JP4513855B2 (en) Multilayer capacitor
JP5949476B2 (en) Multilayer capacitor
JP5870674B2 (en) Multilayer capacitor array
KR20190053693A (en) 3-termibal multi-layered capacitor
US8189321B2 (en) Multilayer capacitor
JP6111768B2 (en) Feedthrough capacitor
JP3832504B2 (en) Multilayer capacitor and its mounting structure
JP2006203258A (en) Laminated capacitor and packaging structure thereof
JP5093044B2 (en) Multilayer capacitor
JP5304869B2 (en) Feed-through multilayer capacitor
JP6459717B2 (en) Multilayer ceramic capacitor
JP4096993B2 (en) Multilayer capacitor and its mounting structure
JP2004194170A (en) Noise filter
JP2021015962A (en) Multilayer capacitor and mounting board thereof
JP4710998B2 (en) Multilayer capacitor
JP4412386B2 (en) Feed-through multilayer capacitor
JP3998033B2 (en) Multilayer capacitor and its mounting structure
JP5077180B2 (en) Multilayer capacitor
JP2018129435A (en) Multilayer feed-through capacitor and electronic component device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150