JP2009215343A - Thermosetting resin - Google Patents

Thermosetting resin Download PDF

Info

Publication number
JP2009215343A
JP2009215343A JP2008057339A JP2008057339A JP2009215343A JP 2009215343 A JP2009215343 A JP 2009215343A JP 2008057339 A JP2008057339 A JP 2008057339A JP 2008057339 A JP2008057339 A JP 2008057339A JP 2009215343 A JP2009215343 A JP 2009215343A
Authority
JP
Japan
Prior art keywords
thermosetting resin
group
mass
carbon atoms
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008057339A
Other languages
Japanese (ja)
Other versions
JP5403730B2 (en
Inventor
Hiroshi Morita
博 森田
Hiromi Sato
宏美 佐藤
Seiichi Saito
誠一 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2008057339A priority Critical patent/JP5403730B2/en
Publication of JP2009215343A publication Critical patent/JP2009215343A/en
Application granted granted Critical
Publication of JP5403730B2 publication Critical patent/JP5403730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Polymers (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low dielectric thermosetting resin which can be formed at a low temperature, is excellent in heat resistance, and can lighten plasma displays. <P>SOLUTION: Provided is a thermosetting resin prepared by hydrolyzing a compound (1) (wherein, R<SP>1</SP>to R<SP>3</SP>are each identically or differently a straight chain or branched chain 1 to 4C alkyl group; R<SP>4</SP>is H or a straight chain or branched chain 1 to 4C alkyl group) and a compound (2) (wherein, R<SP>5</SP>to R<SP>8</SP>are each identically or differently a straight chain or branched chain 1 to 4C alkyl group) in a (1):(2) molar ratio of 70:30 to 90:10, and having a mol.wt. of ≥10,000. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は熱硬化性樹脂に関し、詳しくは、シラノール基の脱水縮合反応により硬化させることができ、高耐熱性で低誘電性の硬化物を得ることができる熱硬化性樹脂に関する。   The present invention relates to a thermosetting resin, and more particularly, to a thermosetting resin that can be cured by a dehydration condensation reaction of a silanol group and can obtain a cured product having high heat resistance and low dielectric properties.

プラズマディスプレイパネルは、ガス放電により発生した紫外線によって蛍光体を励起発光させて、可視光を得ることで画像を表示するディスプレイである。そのため、プラズマディスプレイパネルの素子における絶縁層(隔壁材料を含む)は加熱真空環境に晒されることから、その材料としては、従来より低融点ガラスなどが使用されている(特許文献1〜3参照)。これは、絶縁層に有機物を使用すると、その耐熱性の低さからアウトガスを生じてしまうからである。
特開2000−323043号公報 特開2002−124192号公報 特開2007−26960号公報
The plasma display panel is a display that displays an image by exciting and emitting phosphors with ultraviolet rays generated by gas discharge to obtain visible light. Therefore, since the insulating layer (including the partition wall material) in the element of the plasma display panel is exposed to a heating vacuum environment, a low melting point glass or the like has been conventionally used as the material (see Patent Documents 1 to 3). . This is because when an organic material is used for the insulating layer, outgas is generated due to its low heat resistance.
JP 2000-323043 A JP 2002-124192 A JP 2007-26960 A

しかしながら、ガラス材料は誘電率が高く、絶縁性能を維持するためにはある程度の厚みが必要であり、この点がプラズマディスプレイの軽量化を阻んでいた。また、低融点ガラスとはいえ、その融点は約650℃程度もあるため、エネルギー効率の点からも、より低温で絶縁層を形成できる材料が望まれていた。   However, the glass material has a high dielectric constant, and a certain amount of thickness is required to maintain the insulation performance. This has hindered the weight reduction of the plasma display. In addition, although it has a low melting point, it has a melting point of about 650 ° C., so that a material capable of forming an insulating layer at a lower temperature has been desired from the viewpoint of energy efficiency.

そこで本発明の目的は、従来より低温で形成することができ、耐熱性に優れ、すなわち、熱によるクラックや着色の発生がなく、かつ、プラズマディスプレイの軽量化を成し得る、低誘電性の硬化物を与えることが可能な熱硬化性樹脂を提供することにある。   Accordingly, an object of the present invention is a low dielectric property that can be formed at a lower temperature than before, has excellent heat resistance, that is, does not generate cracks or coloring due to heat, and can reduce the weight of a plasma display. It is providing the thermosetting resin which can give hardened | cured material.

本発明者らは鋭意研究した結果、下記構成とすることにより、上記課題を解決できることを見出して、本発明を解決するに至った。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by adopting the following configuration, and have solved the present invention.

すなわち、本発明の熱硬化性樹脂は、下記一般式(1)で表される芳香族珪素化合物(A)と下記一般式(2)で表される有機珪素化合物(B)とを、(A):(B)=70:30〜90:10(モル比)の割合で、かつ、分子量が10000以上となるように加水分解反応させて得られる有機ポリシロキサンからなることを特徴とするものである。

Figure 2009215343
(式(1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である) That is, the thermosetting resin of the present invention comprises an aromatic silicon compound (A) represented by the following general formula (1) and an organosilicon compound (B) represented by the following general formula (2): ) :( B) = 70: 30 to 90:10 (molar ratio), and it is characterized by comprising an organic polysiloxane obtained by a hydrolysis reaction so that the molecular weight is 10,000 or more. is there.
Figure 2009215343
(In the formula (1), R 1 to R 3 may be the same or different and are a linear or branched alkyl group having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or a linear or branched chain. Is an alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)

また、本発明の他の熱硬化性樹脂は、下記一般式(1−1)で表される芳香族珪素化合物(A−1)と、下記一般式(1−2)で表される芳香族珪素化合物(A−2)と、下記一般式(2−1)で表される有機珪素化合物(B−1)と、下記一般式(2−2)で表される有機珪素化合物(B−2)と、下記一般式(2−3)で表される有機珪素化合物(B−3)とを、〔(A−1)+(A−2)〕:〔(B−1)+(B−2)+(B−3)〕=70:30〜90:10(モル比)(但し、〔(A−1)+(A−2)+(B−1)+(B−2)+(B−3)〕の合計量に対し、〔(B−2)+(B−3)〕の合計量の割合は5モル%以下であり、(B−3)の割合は2モル%以下であり、かつ、(A−1)に対する(A−2)の割合は10モル%以下である)の割合で、かつ、分子量が10000以上となるように加水分解反応させて得られる有機ポリシロキサンからなることを特徴とするものである。

Figure 2009215343
(式(1−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(1−2)中、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基であり、R10〜R12は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−2)中、R13〜R16は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−3)中、R17〜R20は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である) Moreover, the other thermosetting resin of this invention is the aromatic silicon compound (A-1) represented by the following general formula (1-1), and the aromatic represented by the following general formula (1-2). Silicon compound (A-2), organosilicon compound (B-1) represented by the following general formula (2-1), and organosilicon compound (B-2) represented by the following general formula (2-2) ) And an organosilicon compound (B-3) represented by the following general formula (2-3): [(A-1) + (A-2)]: [(B-1) + (B− 2) + (B-3)] = 70:30 to 90:10 (molar ratio) (however, [(A-1) + (A-2) + (B-1) + (B-2) + ( B-3)] relative to the total amount of [(B-2) + (B-3)] is 5 mol% or less, and (B-3) is 2 mol% or less. And the ratio of (A-2) to (A-1) is 10 moles. At a rate of at which) or less and the molecular weight of which comprises an organic polysiloxane obtained by hydrolysis such that 10,000 or more.
Figure 2009215343
(In Formula (1-1), R 1 to R 3 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or linear or A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (1-2), R 9 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 10 to R 12 may be the same or different. A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2-1), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In formula (2-2), R 13 to R 16 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In formula (2-3), R 17 to R 20 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)

また、本発明の低誘電性絶縁膜は、上記本発明の熱硬化性樹脂を、380℃〜560℃で加熱硬化させて得られることを特徴とするものである。   The low dielectric insulating film of the present invention is obtained by heat curing the thermosetting resin of the present invention at 380 ° C. to 560 ° C.

さらに、本発明のプラズマディスプレイは、上記本発明の低誘電性絶縁膜を用いたことを特徴とするものである。   Furthermore, the plasma display of the present invention is characterized by using the low dielectric insulating film of the present invention.

本発明によれば、上記構成としたことにより、従来より低温で形成することができるとともに、耐熱性に優れ、すなわち、熱によるクラックや着色の発生がなく、かつ、プラズマディスプレイの軽量化についても達成しうる、低誘電性の硬化物を与えることができる熱硬化性樹脂を実現することが可能となった。したがって、かかる熱硬化性樹脂を用いた本発明の低誘電性絶縁膜は軽量であって耐熱性に優れ、これを用いた本発明のプラズマディスプレイは、所望の耐熱性を有するとともに軽量であるとのメリットを有するものである。   According to the present invention, the above-described configuration enables formation at a lower temperature than the conventional one, and is excellent in heat resistance, that is, there is no generation of cracks or coloring due to heat, and the weight reduction of the plasma display. It has become possible to realize a thermosetting resin that can provide a low-dielectric cured product that can be achieved. Therefore, the low dielectric insulating film of the present invention using such a thermosetting resin is lightweight and excellent in heat resistance, and the plasma display of the present invention using this has a desired heat resistance and is lightweight. It has the merit of

以下、本発明の好適実施形態について詳細に説明する。
本発明の第1の熱硬化性樹脂は、下記一般式(1)で表される芳香族珪素化合物(A)と下記一般式(2)で表される有機珪素化合物(B)とを、所定割合にて加水分解反応させて得られる有機ポリシロキサンからなるものである。

Figure 2009215343
(式(1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である) Hereinafter, preferred embodiments of the present invention will be described in detail.
The first thermosetting resin of the present invention comprises an aromatic silicon compound (A) represented by the following general formula (1) and an organosilicon compound (B) represented by the following general formula (2) in a predetermined manner. It consists of an organic polysiloxane obtained by a hydrolysis reaction at a ratio.
Figure 2009215343
(In the formula (1), R 1 to R 3 may be the same or different and are a linear or branched alkyl group having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or a linear or branched chain. Is an alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)

〜Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、有機珪素化合物(B)との反応性の点で、好ましくはメチル基、エチル基であり、メチル基が最も好ましい。 Specific examples of R 1 to R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group, and the reactivity with the organosilicon compound (B). In this respect, a methyl group and an ethyl group are preferable, and a methyl group is most preferable.

の具体例としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、有機珪素化合物(B)との反応性の点で、好ましくは水素原子、メチル基であり、水素原子が最も好ましい。 Specific examples of R 4 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group, and the reactivity with the organosilicon compound (B). In this respect, a hydrogen atom and a methyl group are preferable, and a hydrogen atom is most preferable.

、Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、芳香族珪素化合物(A)との反応性の点で、好ましくはメチル基、エチル基であり、メチル基が最も好ましい。 Specific examples of R 5 and R 6 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. The reaction with the aromatic silicon compound (A) From the viewpoint of properties, a methyl group and an ethyl group are preferable, and a methyl group is most preferable.

、Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、芳香族珪素化合物(A)との反応性の点で、好ましくはメチル基、エチル基であり、エチル基が最も好ましい。 Specific examples of R 7 and R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. The reaction with the aromatic silicon compound (A) From the viewpoint of properties, a methyl group and an ethyl group are preferable, and an ethyl group is most preferable.

本発明の第1の熱硬化性樹脂は、上記芳香族珪素化合物(A)と有機珪素化合物(B)とを、(A):(B)=70:30〜90:10(モル比)、好適には75:25〜85:15(モル比)の割合で、加水分解反応させて得られるものである。芳香族珪素化合物(A)の割合が少なすぎると、熱硬化性樹脂を熱硬化させて得られる硬化物の耐熱性(耐熱変形性)に劣ることとなり、多すぎると耐クラック性に劣るものとなる。   The first thermosetting resin of the present invention comprises the above aromatic silicon compound (A) and organosilicon compound (B), (A) :( B) = 70: 30 to 90:10 (molar ratio), Preferably, it is obtained by a hydrolysis reaction at a ratio of 75:25 to 85:15 (molar ratio). If the ratio of the aromatic silicon compound (A) is too small, the heat resistance (heat deformation resistance) of the cured product obtained by thermosetting the thermosetting resin is inferior, and if it is too large, the crack resistance is inferior. Become.

本発明において、上記のように芳香族珪素化合物(A)と有機珪素化合物(B)を加水分解反応させるにあたっては、反応生成物の分子量が10000以上となるように反応させることが必要である。分子量が10000未満であると、熱硬化性樹脂を熱硬化させた場合に、得られる硬化物中にボイドが発生してしまう。   In the present invention, when the aromatic silicon compound (A) and the organosilicon compound (B) are subjected to a hydrolysis reaction as described above, it is necessary to cause the reaction product to have a molecular weight of 10,000 or more. When the molecular weight is less than 10,000, voids are generated in the resulting cured product when the thermosetting resin is thermoset.

このように分子量を10000以上に制御する方法については、特に限定されるものではなく、アルコキシシランの加水分解によるポリシロキサンの製造において公知の方法を用いればよいが、例えば、溶媒の量を調節(換言すると原料の濃度を調節)することによって、制御することができる。すなわち、溶媒を少なく(原料を高濃度に)することで、より高分子量とすることができる。その具体的な制御方法の例は、後述の実施例に示す。   Thus, the method for controlling the molecular weight to 10,000 or more is not particularly limited, and a known method may be used in the production of polysiloxane by hydrolysis of alkoxysilane. For example, the amount of solvent is adjusted ( In other words, it can be controlled by adjusting the concentration of the raw material. That is, a higher molecular weight can be obtained by reducing the amount of the solvent (making the raw material high in concentration). The example of the specific control method is shown in the below-mentioned Example.

また、本発明の第2の熱硬化性樹脂は、下記一般式(1−1)で表される芳香族珪素化合物(A−1)と、下記一般式(1−2)で表される芳香族珪素化合物(A−2)と、下記一般式(2−1)で表される有機珪素化合物(B−1)と、下記一般式(2−2)で表される有機珪素化合物(B−2)と、下記一般式(2−3)で表される有機珪素化合物(B−3)とを、所定割合にて加水分解反応させて得られる有機ポリシロキサンからなるものである。

Figure 2009215343
(式(1−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(1−2)中、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基であり、R10〜R12は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−2)中、R13〜R16は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−3)中、R17〜R20は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である) Moreover, the 2nd thermosetting resin of this invention is the aromatic silicon compound (A-1) represented by the following general formula (1-1), and the fragrance represented by the following general formula (1-2). Group silicon compound (A-2), organosilicon compound (B-1) represented by the following general formula (2-1), and organosilicon compound (B-) represented by the following general formula (2-2) 2) and an organic polysiloxane obtained by subjecting an organosilicon compound (B-3) represented by the following general formula (2-3) to a hydrolysis reaction at a predetermined ratio.
Figure 2009215343
(In Formula (1-1), R 1 to R 3 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or linear or A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (1-2), R 9 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 10 to R 12 may be the same or different. A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2-1), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In formula (2-2), R 13 to R 16 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In formula (2-3), R 17 to R 20 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)

上記一般式(1−1)で表される芳香族珪素化合物(A−1)は、上記芳香族珪素化合物(A)と同じものである。   The aromatic silicon compound (A-1) represented by the general formula (1-1) is the same as the aromatic silicon compound (A).

の具体例としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、有機珪素化合物(B−1)〜(B−3)との反応性の点で、好ましくは水素原子、メチル基であり、水素原子が最も好ましい。 Specific examples of R 9 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group, and include organosilicon compounds (B-1) to ( From the viewpoint of reactivity with B-3), a hydrogen atom and a methyl group are preferable, and a hydrogen atom is most preferable.

10の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、有機珪素化合物(B−1)〜(B−3)との反応性の点で、好ましくはメチル基である。 Specific examples of R 10 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and the like. Organosilicon compounds (B-1) to (B-3) From the viewpoint of reactivity with), a methyl group is preferred.

11、R12の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、有機珪素化合物(B−1)〜(B−3)との反応性の点で、好ましくはメチル基、エチル基であり、メチル基が最も好ましい。 Specific examples of R 11 and R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, and the like. The organosilicon compounds (B-1) to ( From the viewpoint of reactivity with B-3), a methyl group and an ethyl group are preferable, and a methyl group is most preferable.

上記一般式(2−1)で表される有機珪素化合物(B−1)は、上記有機珪素化合物(B)と同じものである。   The organosilicon compound (B-1) represented by the general formula (2-1) is the same as the organosilicon compound (B).

13の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、芳香族珪素化合物(A−1),(A−2)との反応性の点で、好ましくはメチル基、エチル基であり、メチル基が最も好ましい。 Specific examples of R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. Aromatic silicon compounds (A-1), (A- From the viewpoint of reactivity with 2), a methyl group and an ethyl group are preferable, and a methyl group is most preferable.

14〜R16の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、芳香族珪素化合物(A−1),(A−2)との反応性の点で、好ましくはメチル基、エチル基であり、エチル基が最も好ましい。 Specific examples of R 14 to R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. Aromatic silicon compounds (A-1), From the viewpoint of reactivity with (A-2), a methyl group and an ethyl group are preferable, and an ethyl group is most preferable.

17〜R20の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t−ブチル基などを挙げることができ、芳香族珪素化合物(A−1),(A−2)との反応性の点で、好ましくはメチル基、エチル基であり、エチル基が最も好ましい。 Specific examples of R 17 to R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a t-butyl group. Aromatic silicon compounds (A-1), From the viewpoint of reactivity with (A-2), a methyl group and an ethyl group are preferable, and an ethyl group is most preferable.

本発明の第2の熱硬化性樹脂は、上記芳香族珪素化合物(A−1),(A−2)および有機珪素化合物(B−1),(B−2),(B−3)を、〔(A−1)+(A−2)〕:〔(B−1)+(B−2)+(B−3)〕=70:30〜90:10(モル比)、好ましくは75:25〜85:15(モル比)の割合で加水分解反応させて得られるものである。但し、〔(A−1)+(A−2)+(B−1)+(B−2)+(B−3)〕の合計量に対し、〔(B−2)+(B−3)〕の合計量の割合は5モル%以下であり、(B−3)の割合は2モル%以下であり、かつ、(A−1)に対する(A−2)の割合は10モル%以下とする。以下、芳香族珪素化合物(A−1)および(A−2)を総称して「A成分」といい、有機珪素化合物(B−1)、(B−2)および(B−3)を総称して「B成分」ということとする。   The second thermosetting resin of the present invention comprises the above aromatic silicon compounds (A-1), (A-2) and organosilicon compounds (B-1), (B-2), (B-3). [(A-1) + (A-2)]: [(B-1) + (B-2) + (B-3)] = 70:30 to 90:10 (molar ratio), preferably 75 : Obtained by a hydrolysis reaction at a ratio of 25 to 85:15 (molar ratio). However, [(B-2) + (B-3) with respect to the total amount of [(A-1) + (A-2) + (B-1) + (B-2) + (B-3)]. )] Is 5 mol% or less, (B-3) is 2 mol% or less, and (A-2) to (A-2) is 10 mol% or less. And Hereinafter, the aromatic silicon compounds (A-1) and (A-2) are collectively referred to as “component A”, and the organosilicon compounds (B-1), (B-2), and (B-3) are collectively referred to. It will be referred to as “B component”.

A成分において化合物(A−1)は必須であり、また、化合物(A−2)は化合物(A−1)に対して10モル%以下であることが必要であり、好ましくは5モル%以下である。化合物(A−2)が多すぎると、熱硬化後の急冷時に硬化物にクラックが入ってしまう。化合物(A−2)は0モル%であってもよく、すなわち、A成分として化合物(A−1)のみを用いてもよい。   In the component A, the compound (A-1) is essential, and the compound (A-2) is required to be 10 mol% or less, preferably 5 mol% or less, relative to the compound (A-1). It is. When there is too much compound (A-2), a crack will enter into hardened | cured material at the time of rapid cooling after thermosetting. The compound (A-2) may be 0 mol%, that is, only the compound (A-1) may be used as the component A.

B成分において化合物(B−1)は必須であり、また、化合物(B−2),(B−3)の合計量はA成分の総量とB成分の総量との合計量に対して5モル%以下でなければならず、特に化合物(B−3)は、A成分の総量とB成分の総量との合計量に対して2モル%以下でなければならない。化合物(B−2),(B−3)の合計量が5モル%を超えると、熱硬化性樹脂を熱硬化させて得られる硬化物の耐クラック性が低下することとなる。また、化合物(B−2),(B−3)の合計量が5モル%未満であっても、化合物(B−3)の量が単独で2モル%を超えても、やはり熱硬化性樹脂を熱硬化させて得られる硬化物の耐クラック性が低下することとなる。したがって本発明においては、化合物(B−2),(B−3)はいずれかが0モル%であって、すなわち、B成分として化合物(B−1)および(B−2)のみ、または、化合物(B−1)および(B−3)のみを用いてもよく、化合物(B−2),(B−3)がいずれも0モル%であって、すなわち、B成分として化合物(B−1)のみを用いてもよい。   In the component B, the compound (B-1) is essential, and the total amount of the compounds (B-2) and (B-3) is 5 mol relative to the total amount of the total amount of the A component and the total amount of the B component. In particular, the compound (B-3) must be 2 mol% or less with respect to the total amount of the total amount of the component A and the total amount of the component B. If the total amount of the compounds (B-2) and (B-3) exceeds 5 mol%, the crack resistance of a cured product obtained by thermosetting the thermosetting resin will be reduced. Moreover, even if the total amount of the compounds (B-2) and (B-3) is less than 5 mol%, even if the amount of the compound (B-3) alone exceeds 2 mol%, it is still thermosetting. The crack resistance of the cured product obtained by thermosetting the resin will decrease. Therefore, in the present invention, either of the compounds (B-2) and (B-3) is 0 mol%, that is, only the compounds (B-1) and (B-2) as the B component, or Only the compounds (B-1) and (B-3) may be used, and both the compounds (B-2) and (B-3) are 0 mol%, that is, the compound (B- Only 1) may be used.

なお、A成分として化合物(A−1)のみを用い、B成分として化合物(B−1)のみを用いることもできるが、この場合は、上記本発明の第1の熱硬化性樹脂と同じものとなる。   In addition, although only a compound (A-1) can be used as A component and only a compound (B-1) can be used as B component, In this case, it is the same as the said 1st thermosetting resin of this invention. It becomes.

以上より、言い換えれば、本発明の第2の熱硬化性樹脂は、上記A成分の総量とB成分の総量とを、A成分:B成分=70:30〜90:10(モル比)、好ましくは75:25〜85:15(モル比)の割合で加水分解反応させて得られるものである。A成分の割合が少なすぎると、熱硬化性樹脂を熱硬化させて得られる硬化物の耐熱変形性に劣ることとなり、多すぎると、耐熱クラック性に劣るものとなる。   From the above, in other words, in the second thermosetting resin of the present invention, the total amount of the A component and the total amount of the B component are set to A component: B component = 70: 30 to 90:10 (molar ratio), preferably Is obtained by a hydrolysis reaction at a ratio of 75:25 to 85:15 (molar ratio). If the proportion of the component A is too small, the heat-deformability of a cured product obtained by thermosetting the thermosetting resin is inferior, and if it is too large, the heat-resistant cracking property is inferior.

本発明において、上記のようにA成分とB成分とを加水分解反応させるにあたっては、反応生成物の分子量が10000以上となるように反応させることが必要である。分子量が10000未満であると、熱硬化性樹脂を熱硬化させた場合に、得られる硬化物中にボイドが発生してしまう。   In the present invention, when the A component and the B component are hydrolyzed as described above, it is necessary to cause the reaction product to have a molecular weight of 10,000 or more. When the molecular weight is less than 10,000, voids are generated in the resulting cured product when the thermosetting resin is thermoset.

このように分子量を10000以上に制御する方法については、特に限定されるものではなく、アルコキシシランの加水分解によるポリシロキサンの製造における公知の方法を用いればよいが、例えば、溶媒の量を調節(換言すると原料の濃度を調節)することによって、制御することができる。すなわち、溶媒を少なく(原料を高濃度に)することで、より高分子量とすることができる。その具体的な制御方法の例は、後述の実施例に示す。   Thus, the method for controlling the molecular weight to 10,000 or more is not particularly limited, and a known method in the production of polysiloxane by hydrolysis of alkoxysilane may be used. For example, the amount of the solvent is adjusted ( In other words, it can be controlled by adjusting the concentration of the raw material. That is, a higher molecular weight can be achieved by reducing the amount of solvent (making the raw material high in concentration). The example of the specific control method is shown in the below-mentioned Example.

本発明の低誘電性絶縁膜は、上記本発明の熱硬化性樹脂を、380℃〜560℃で加熱硬化させて得られるものである。このときの硬化反応はシラノール基の脱水縮合反応であり、単に加熱することによって反応が進行するが、加熱硬化温度は380℃〜560℃、好ましくは400℃〜480℃であることが必要である。この温度が低すぎると、脱水縮合反応が十分に行われないため十分な硬化物とはならず、耐溶剤性に劣るものとなる。一方、温度が高すぎると硬化物が着色されてしまう。   The low dielectric insulating film of the present invention is obtained by heat curing the thermosetting resin of the present invention at 380 ° C. to 560 ° C. The curing reaction at this time is a dehydration condensation reaction of a silanol group, and the reaction proceeds by simply heating, but the heat curing temperature needs to be 380 ° C. to 560 ° C., preferably 400 ° C. to 480 ° C. . If the temperature is too low, the dehydration condensation reaction is not sufficiently performed, so that the cured product is not sufficient and the solvent resistance is poor. On the other hand, if the temperature is too high, the cured product will be colored.

本発明の低誘電性絶縁膜は、上記本発明の熱硬化性樹脂の加熱硬化温度である380℃〜560℃の範囲内で安定な材料であれば、任意の基材に形成することができ、例えば、ガラス基材、酸化アルミニウム、セラミックスなどを例示することができる。本発明の低誘電性絶縁膜は、プラズマディスプレイ製造工程における材料部材としての絶縁膜ないし絶縁層、若しくは隔壁材料として好ましく使用することができる。   The low dielectric insulating film of the present invention can be formed on any substrate as long as it is a stable material within the range of 380 ° C. to 560 ° C. which is the heat curing temperature of the thermosetting resin of the present invention. For example, a glass substrate, aluminum oxide, ceramics, etc. can be illustrated. The low dielectric insulating film of the present invention can be preferably used as an insulating film or insulating layer as a material member in a plasma display manufacturing process, or a partition material.

本発明の熱硬化性樹脂は、常温では固体であるため、基材への形成にあたっては、好ましくは溶剤に溶解した後、例えば、スピンコーティングなどの公知の適用方法によって、また、例えば、プラズマディスプレイであれば、低融点ガラス粉末を含有するペーストと同様に、基材に適用した後に必要であれば溶剤を揮発させるなどの工程を経た後、加熱硬化させればよい。   Since the thermosetting resin of the present invention is solid at room temperature, it is preferably dissolved in a solvent and then formed into a base material by a known application method such as spin coating, or for example, a plasma display. Then, similarly to the paste containing the low-melting glass powder, after applying to the base material, if necessary, after undergoing a process such as volatilization of the solvent, it may be heat-cured.

この場合に使用できる溶剤としては、上記本発明の熱硬化性樹脂を、作業環境下で容易に溶解でき、かつ、容易に揮発させることのできる溶剤であれば、特に限定されるものではない。具体的には例えば、酢酸ブチル、2−ヘプタノン、1−メトキシ−2−プロパノールアセテート等を例示することができる。   The solvent that can be used in this case is not particularly limited as long as the thermosetting resin of the present invention can be easily dissolved in a working environment and can be easily volatilized. Specific examples include butyl acetate, 2-heptanone, 1-methoxy-2-propanol acetate, and the like.

また、本発明のプラズマディスプレイは、上記本発明の低誘電性絶縁膜を用いたものである。すなわち、上述のように、本発明の低誘電性絶縁膜を、プラズマディスプレイ製造工程における材料部材としての絶縁膜ないし絶縁層、若しくは隔壁材料として使用したものであればよく、その形成方法は上述の通りである。プラズマディスプレイの製造におけるその他の工程については、従来公知の通りに行えばよく、特に制限されない。   The plasma display of the present invention uses the above-described low dielectric insulating film of the present invention. That is, as described above, the low dielectric insulating film of the present invention may be used as long as it is used as an insulating film or insulating layer as a material member in a plasma display manufacturing process, or as a partition material. Street. Other steps in the production of the plasma display may be performed as conventionally known, and are not particularly limited.

以下に、実施例を挙げて本発明をさらに説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto.

(実施例1)
芳香族珪素化合物(A)としてのフェニルトリメトキシシラン301質量部、および、有機珪素化合物(B)としてのジメチルジエトキシシラン75質量部(両者のモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
Example 1
270 parts by mass of toluene with respect to 301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A) and 75 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B) (the molar ratio of both is 75:25) Part was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン150質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、本発明の第1の熱硬化性樹脂(1)を得た。   Since the reaction solution was thickened, when diluted by adding 150 parts by mass of toluene, it was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain the first thermosetting resin (1) of the present invention.

得られた熱硬化性樹脂(1)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が40000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (1) had a weight average molecular weight (polystyrene conversion) of 40000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(実施例2)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン289質量部、芳香族珪素化合物(A−2)としてのフェニルメチルジメトキシシラン11質量部((A−1)に対する(A−2)の割合=4モル%)、および、有機珪素化合物(B−1)としてのジメチルジエトキシシラン75質量部(A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Example 2)
289 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 11 parts by mass of phenylmethyldimethoxysilane as the aromatic silicon compound (A-2) (of (A-2) relative to (A-1) 270 parts by mass of toluene with respect to 75 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1) (the molar ratio of component A to component B is 75:25) It was. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン210質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、本発明の第2の熱硬化性樹脂(2)を得た。   Since the reaction solution was thickened, 210 parts by mass of toluene was added to dilute it, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a second thermosetting resin (2) of the present invention.

得られた熱硬化性樹脂(2)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が21000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (2) had a weight average molecular weight (polystyrene conversion) of 21,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(実施例3)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン301質量部、有機珪素化合物(B−1)としてのジメチルジエトキシシラン62質量部、および、有機珪素化合物(B−2)としてのメチルトリエトキシシラン15質量部(A成分とB成分との合計量に対する(B−2)の割合=4モル%であり、A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Example 3)
301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 62 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1), and methyl as the organosilicon compound (B-2) Toluene 270 with respect to 15 parts by mass of triethoxysilane (ratio of (B-2) to the total amount of component A and component B = 4 mol%, molar ratio of component A to component B is 75:25) Part by weight was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was added dropwise to this mixture over 30 minutes. The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン150質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、本発明の第2の熱硬化性樹脂(3)を得た。   Since the reaction solution was thickened, when diluted by adding 150 parts by mass of toluene, it was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a second thermosetting resin (3) of the present invention.

得られた熱硬化性樹脂(3)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が54000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (3) had a weight average molecular weight (polystyrene conversion) of 54,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(実施例4)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン301質量部、有機珪素化合物(B−1)としてのジメチルジエトキシシラン62質量部、有機珪素化合物(B−2)としてのメチルトリエトキシシラン11質量部、および、有機珪素化合物(B−3)としてのテトラエトキシシラン4質量部(A成分とB成分との合計量に対する(B−2)と(B−3)との合計量の割合=4モル%であり、A成分とB成分との合計量に対する(B−3)の割合=1モル%であり、A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
Example 4
301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 62 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1), and methyltriethoxy as the organosilicon compound (B-2) 11 parts by mass of silane and 4 parts by mass of tetraethoxysilane as the organosilicon compound (B-3) (of the total amount of (B-2) and (B-3) with respect to the total amount of component A and component B) The ratio is 4 mol%, the ratio of (B-3) to the total amount of the A component and the B component is 1 mol%, and the molar ratio of the A component and the B component is 75:25). 270 parts by weight were added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン210質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、本発明の第2の熱硬化性樹脂(4)を得た。   Since the reaction solution was thickened, 210 parts by mass of toluene was added to dilute it, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a second thermosetting resin (4) of the present invention.

得られた熱硬化性樹脂(4)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が62000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (4) had a weight average molecular weight (polystyrene conversion) of 62,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(実施例5)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシランを289質量部、芳香族珪素化合物(A−2)としてのフェニルメチルジメトキシシラン11質量部((A−1)に対する(A−2)の割合=4モル%)、有機珪素化合物(B−1)としてのジメチルジエトキシシラン61質量部、有機珪素化合物(B−2)としてのメチルトリエトキシシラン10質量部、および、有機珪素化合物(B−3)としてのテトラエトキシシラン4質量部(A成分とB成分との合計量に対する(B−2)と(B−3)との合計量の割合=4モル%であり、A成分とB成分との合計量に対する(B−3)の割合=1モル%であり、A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Example 5)
289 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1) and 11 parts by mass of phenylmethyldimethoxysilane as the aromatic silicon compound (A-2) ((A-2) relative to (A-1) Ratio = 4 mol%), 61 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1), 10 parts by mass of methyltriethoxysilane as the organosilicon compound (B-2), and an organosilicon compound ( B-3) 4 parts by mass of tetraethoxysilane (the ratio of the total amount of (B-2) and (B-3) to the total amount of component A and component B) = 4 mol%, The ratio of (B-3) to the total amount with the B component = 1 mol%, and the molar ratio of the A component to the B component was 75:25), and 270 parts by mass of toluene was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン180質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、本発明の第2の熱硬化性樹脂(5)を得た。   Since the reaction solution was thickened, when 180 parts by mass of toluene was added for dilution, the solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a second thermosetting resin (5) of the present invention.

得られた熱硬化性樹脂(5)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が38000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (5) had a weight average molecular weight (polystyrene conversion) of 38000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例1)
芳香族珪素化合物(A)としてのフェニルトリメトキシシラン200質量部、および、有機珪素化合物(B)としてのジメチルジエトキシシラン100質量部(両者のモル比は60:40)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 1)
270 parts by mass of toluene with respect to 200 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A) and 100 parts by mass of dimethyldiethoxysilane as the organic silicon compound (B) (the molar ratio of both is 60:40) Part was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン200質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(6)を得た。   Since the reaction solution was thickened, 200 parts by mass of toluene was added to dilute it, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Then, it heat-reduced at 70 degreeC, all the organic solvents were removed, and the thermosetting resin (6) for a comparison was obtained.

得られた熱硬化性樹脂(6)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が48000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (6) had a weight average molecular weight (polystyrene conversion) of 48,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例2)
芳香族珪素化合物(A)としてのフェニルトリメトキシシラン305質量部、および、有機珪素化合物(B)としてのジメチルジエトキシシラン12質量部(両者のモル比は95:5)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 2)
270 parts by mass of toluene with respect to 305 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A) and 12 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B) (the molar ratio of both is 95: 5) Part was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン150質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(7)を得た。   Since the reaction solution was thickened, when diluted by adding 150 parts by mass of toluene, it was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Then, it heat-reduced at 70 degreeC, the organic solvent was removed altogether, and the thermosetting resin (7) for a comparison was obtained.

得られた熱硬化性樹脂(7)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が6200であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (7) had a weight average molecular weight (polystyrene conversion) of 6200. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例3)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン252質量部、芳香族珪素化合物(A−2)としてのフェニルメチルジメトキシシラン47質量部((A−1)に対する(A−2)の割合=20モル%)、および、有機珪素化合物(B−1)としてのジメチルジエトキシシラン75質量部(A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 3)
252 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 47 parts by mass of phenylmethyldimethoxysilane as the aromatic silicon compound (A-2) (of (A-2) relative to (A-1) 270 parts by mass of toluene with respect to 75 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1) (the molar ratio of component A to component B is 75:25) It was. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン250質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(8)を得た。   Since the reaction solution was thickened, 250 parts by mass of toluene was added to dilute, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Then, the organic solvent was removed by heating under reduced pressure at 70 ° C. to obtain a thermosetting resin (8) for comparison.

得られた熱硬化性樹脂(8)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が70000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (8) had a weight average molecular weight (polystyrene conversion) of 70000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例4)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン301質量部、有機珪素化合物(B−1)としてのジメチルジエトキシシラン43質量部、および、有機珪素化合物(B−2)としてのメチルトリエトキシシラン36質量部(A成分とB成分との合計量に対する(B−2)の割合=10モル%であり、A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 4)
301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 43 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1), and methyl as the organosilicon compound (B-2) Toluene 270 with respect to 36 parts by mass of triethoxysilane (ratio of (B-2) to the total amount of component A and component B = 10 mol%, molar ratio of component A to component B is 75:25) Part by weight was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン210質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(9)を得た。   Since the reaction solution was thickened, 210 parts by mass of toluene was added to dilute it, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a thermosetting resin (9) for comparison.

得られた熱硬化性樹脂(9)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が63000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (9) had a weight average molecular weight (polystyrene conversion) of 63,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例5)
芳香族珪素化合物(A−1)としてのフェニルトリメトキシシラン301質量部、有機珪素化合物(B−1)としてのジメチルジエトキシシラン61質量部、有機珪素化合物(B−2)としてのメチルトリエトキシシラン5質量部、および、有機珪素化合物(B−3)としてのテトラエトキシシラン13質量部(A成分とB成分との合計量に対する(B−2)と(B−3)の合計量の割合=4.5モル%であり、A成分とB成分との合計量に対する(B−3)の割合=3モル%であり、A成分とB成分とのモル比は75:25)に対し、トルエン270質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 5)
301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A-1), 61 parts by mass of dimethyldiethoxysilane as the organosilicon compound (B-1), and methyltriethoxy as the organosilicon compound (B-2) 5 parts by mass of silane and 13 parts by mass of tetraethoxysilane as the organosilicon compound (B-3) (the ratio of the total amount of (B-2) and (B-3) to the total amount of component A and component B) = 4.5 mol%, the ratio of (B-3) to the total amount of component A and component B = 3 mol%, and the molar ratio of component A and component B is 75:25), 270 parts by mass of toluene was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン210質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(10)を得た。   Since the reaction solution was thickened, 210 parts by mass of toluene was added to dilute it, and the reaction solution was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a thermosetting resin (10) for comparison.

得られた熱硬化性樹脂(10)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が65000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (10) had a weight average molecular weight (polystyrene conversion) of 65,000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(比較例6)
芳香族珪素化合物(A)としてのフェニルトリメトキシシラン301質量部、および、有機珪素化合物(B)としてのジメチルジエトキシシラン75質量部(両者のモル比は75:25)に対し、トルエン700質量部を加えた。温度が10℃を超えないように攪拌しながら、この混合物中に0.5質量%水酸化ナトリウム水溶液140質量部を30分かけて滴下し、滴下終了後、10℃で3時間攪拌した後、50℃で3時間攪拌した。このとき反応液は乳白色化していた。その後、66℃以上である70℃に2時間保持して脱アルコール処理した後、75℃で10時間攪拌した。
(Comparative Example 6)
700 parts by mass of toluene with respect to 301 parts by mass of phenyltrimethoxysilane as the aromatic silicon compound (A) and 75 parts by mass of dimethyldiethoxysilane as the organic silicon compound (B) (the molar ratio of both is 75:25) Part was added. While stirring so that the temperature does not exceed 10 ° C., 140 parts by mass of a 0.5% by mass aqueous sodium hydroxide solution was dropped into this mixture over 30 minutes. After completion of the dropwise addition, the mixture was stirred at 10 ° C. for 3 hours, The mixture was stirred at 50 ° C. for 3 hours. At this time, the reaction solution was milky white. Thereafter, after dealcoholizing by maintaining at 70 ° C., which is 66 ° C. or higher, for 2 hours, the mixture was stirred at 75 ° C. for 10 hours.

反応液が増粘していたため、トルエン150質量部を加えて希釈したところ、2層の液層に分離した。下層の水酸化ナトリウム水溶液層を分液にて除去し、上層のトルエン溶液層を得た。このトルエン溶液層をイオン交換水によりpH7以下になるまで水洗した後、孔径0.5マイクロメートルのメンブランフィルターにて濾過処理した。その後、70℃で加熱減圧処理して有機溶媒を全て除去し、比較のための熱硬化性樹脂(11)を得た。   Since the reaction solution was thickened, when diluted by adding 150 parts by mass of toluene, it was separated into two liquid layers. The lower sodium hydroxide aqueous solution layer was removed by liquid separation to obtain an upper toluene solution layer. This toluene solution layer was washed with ion-exchanged water until the pH became 7 or less, and then filtered through a membrane filter having a pore size of 0.5 micrometers. Thereafter, the organic solvent was completely removed by heating under reduced pressure at 70 ° C. to obtain a thermosetting resin (11) for comparison.

得られた熱硬化性樹脂(11)は、GPC(ゲルパーミエーションクロマトグラフィー)による分析の結果、重量平均分子量(ポリスチレン換算)が4000であった。また、FT−IR(赤外分光光度計)による定性分析の結果、Si−OH基に由来する3200〜3600cm−1の吸収が確認され、シラノール基の含有が確認された。 As a result of analysis by GPC (gel permeation chromatography), the obtained thermosetting resin (11) had a weight average molecular weight (polystyrene conversion) of 4000. Moreover, as a result of qualitative analysis by FT-IR (infrared spectrophotometer), 3200-3600 cm < -1 > absorption originating in Si-OH group was confirmed, and inclusion of the silanol group was confirmed.

(実施例6〜10,比較例7〜12)
それぞれ熱硬化性樹脂(1)〜(11)100質量部を1−メトキシ−2−プロパノールアセテート200質量部に溶解させて試験液を作製した。
(Examples 6 to 10, Comparative Examples 7 to 12)
A test solution was prepared by dissolving 100 parts by mass of thermosetting resins (1) to (11) in 200 parts by mass of 1-methoxy-2-propanol acetate.

2.5cm四方のガラス板上にそれぞれの試験液をスピンコートし、130℃で3分間加熱して溶剤を除去し、熱硬化性樹脂層を形成した。このときの樹脂熱硬化性樹脂層の厚さが7マイクロメートルとなるように、コート量を調節した。   Each test solution was spin-coated on a 2.5 cm square glass plate and heated at 130 ° C. for 3 minutes to remove the solvent, thereby forming a thermosetting resin layer. The coating amount was adjusted so that the thickness of the resin thermosetting resin layer at this time was 7 micrometers.

得られた熱硬化性樹脂層表面に、精密ドライバーを用いてひっかき傷をつけることにより、幅約100マイクロメートルで、ガラス板の一辺の中央部から対向する辺の中央部へかけて、また、深さ方向としてガラス面にかけて、熱硬化性樹脂層を除去することにより、溝構造を形成した。これを試験片とした。   By scratching the surface of the obtained thermosetting resin layer with a precision screwdriver, the width is about 100 micrometers, from the center of one side of the glass plate to the center of the opposite side, The groove structure was formed by removing the thermosetting resin layer over the glass surface as the depth direction. This was used as a test piece.

各試験片を、空気雰囲気下450℃で2時間加熱して熱硬化性樹脂層を硬化させ、本発明の低誘電性絶縁膜および比較のための絶縁膜を形成した後、以下の各評価を実施した。なお、下記評価の一部は硬化前後で行った。   Each test piece was heated at 450 ° C. for 2 hours in an air atmosphere to cure the thermosetting resin layer, and after forming the low dielectric insulating film of the present invention and the insulating film for comparison, the following evaluations were made. Carried out. A part of the following evaluation was performed before and after curing.

(断面変化試験)
株式会社ULVAC製の接触式表面形状測定装置Dektak−6Mを用いて、各試験片における溝構造の、ガラス面と絶縁膜との段差を加熱硬化前後で測定することにより、硬化の際の熱に対する形状安定性を評価した。断面形状に変化の無かったものを「○」、熱ダレ、湾曲等、断面形状の変化したものを「×」として、結果を下記の表1中に示す。
(Cross-section change test)
Using a contact surface shape measuring device Dektak-6M manufactured by ULVAC, Inc., measuring the step difference between the glass surface and the insulating film of the groove structure in each test piece before and after heat curing, against the heat during curing The shape stability was evaluated. The results are shown in Table 1 below, where “C” indicates that the cross-sectional shape did not change, and “X” indicates that the cross-sectional shape changed such as thermal sag and curvature.

(耐クラック性)
加熱硬化後の各試験片について目視にて観察し、絶縁膜中のクラックの有無を評価した。クラックの無いものを「○」、クラックの発生したものを「×」として、結果を下記の表1中に示す。
(Crack resistance)
Each test piece after heat curing was observed visually to evaluate the presence or absence of cracks in the insulating film. The results are shown in Table 1 below, with “O” indicating no cracks and “X” indicating occurrence of cracks.

(ボイド観察評価)
各試験片を光学顕微鏡(倍率100倍)にて観察し、絶縁膜中のボイドの有無を評価した。ボイドの無いものを「○」、ボイドの発生したものを「×」として、結果を下記の表1中に示す。
(Void observation evaluation)
Each test piece was observed with an optical microscope (magnification 100 times), and the presence or absence of voids in the insulating film was evaluated. The results are shown in Table 1 below, with “O” indicating no void and “X” indicating occurrence of a void.

(着色評価)
加熱硬化後の各試験片について目視にて観察し、絶縁膜の着色度合について評価した。無色透明であるものを「○」、着色または濁りの認められるものを「×」として、結果を下記の表1中に示す。
(Coloring evaluation)
Each test piece after heat curing was visually observed to evaluate the degree of coloring of the insulating film. The results are shown in Table 1 below, with “◯” indicating colorless and transparent, and “X” indicating coloring or turbidity.

(耐溶剤試験)
加熱硬化後の各試験片を、室温で30分間アセトン中に浸漬し、その前後の絶縁膜の膜厚変化率を、株式会社ULVAC製の接触式表面形状測定装置Dektak−6Mを用いて測定した。膜厚変化率が±5%未満であるものを「○」、膜厚変化率が±5%以上であるものを「×」として、結果を下記の表1中に示す。
(Solvent resistance test)
Each test piece after heat curing was immersed in acetone for 30 minutes at room temperature, and the film thickness change rate of the insulating film before and after that was measured using a contact type surface shape measuring device Dektak-6M manufactured by ULVAC. . The results are shown in Table 1 below, assuming that the film thickness change rate is less than ± 5% and that the film thickness change rate is ± 5% or more.

Figure 2009215343
Figure 2009215343

また、実施例6〜10の各試験片の絶縁膜について、アルミニウム付きガラス基板上で製膜し、熱硬化後に絶縁膜表面の任意の箇所にアルミニウムで対電極を蒸着形成した後、誘電率を測定したところ、いずれも100ヘルツにおいて2.9であった。これにより、上記表1の結果と併せて、本発明の低誘電性絶縁膜が非常に優れていることが確認できた。   Moreover, about the insulating film of each test piece of Examples 6-10, after forming into a film on the glass substrate with aluminum and carrying out vapor deposition formation of the counter electrode with aluminum in the arbitrary places of the insulating film surface after thermosetting, the dielectric constant is set. As a result of measurement, it was 2.9 at 100 hertz. Thereby, it has confirmed that the low dielectric insulating film of this invention was very excellent with the result of the said Table 1.

(実施例11)
上記熱硬化性樹脂(1)を用いた絶縁層を用いてプラズマディスプレイを作製したところ、低融点ガラスを絶縁層としたものに比べて、性能に劣るところがないばかりか軽量であり、優れたものであることが確認できた。
(Example 11)
When a plasma display was produced using an insulating layer using the thermosetting resin (1), it was not only inferior in performance but also superior in weight as compared with a low-melting glass made of an insulating layer. It was confirmed that.

Claims (4)

下記一般式(1)で表される芳香族珪素化合物(A)と下記一般式(2)で表される有機珪素化合物(B)とを、(A):(B)=70:30〜90:10(モル比)の割合で、かつ、分子量が10000以上となるように加水分解反応させて得られる有機ポリシロキサンからなることを特徴とする熱硬化性樹脂。
Figure 2009215343
(式(1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
An aromatic silicon compound (A) represented by the following general formula (1) and an organosilicon compound (B) represented by the following general formula (2) are converted into (A) :( B) = 70: 30 to 90. : A thermosetting resin comprising an organic polysiloxane obtained by a hydrolysis reaction in a ratio of 10 (molar ratio) and a molecular weight of 10,000 or more.
Figure 2009215343
(In the formula (1), R 1 to R 3 may be the same or different and are a linear or branched alkyl group having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or a linear or branched chain. Is an alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)
下記一般式(1−1)で表される芳香族珪素化合物(A−1)と、下記一般式(1−2)で表される芳香族珪素化合物(A−2)と、下記一般式(2−1)で表される有機珪素化合物(B−1)と、下記一般式(2−2)で表される有機珪素化合物(B−2)と、下記一般式(2−3)で表される有機珪素化合物(B−3)とを、〔(A−1)+(A−2)〕:〔(B−1)+(B−2)+(B−3)〕=70:30〜90:10(モル比)(但し、〔(A−1)+(A−2)+(B−1)+(B−2)+(B−3)〕の合計量に対し、〔(B−2)+(B−3)〕の合計量の割合は5モル%以下であり、(B−3)の割合は2モル%以下であり、かつ、(A−1)に対する(A−2)の割合は10モル%以下である)の割合で、かつ、分子量が10000以上となるように加水分解反応させて得られる有機ポリシロキサンからなることを特徴とする熱硬化性樹脂。
Figure 2009215343
(式(1−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基であり、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(1−2)中、Rは水素原子または直鎖若しくは分岐鎖の炭素原子数1〜4のアルキル基であり、R10〜R12は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−1)中、R〜Rは同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−2)中、R13〜R16は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
Figure 2009215343
(式(2−3)中、R17〜R20は同一でも異なっていてもよい、直鎖または分岐鎖の炭素原子数1〜4のアルキル基である)
An aromatic silicon compound (A-1) represented by the following general formula (1-1), an aromatic silicon compound (A-2) represented by the following general formula (1-2), and the following general formula ( 2-1), an organosilicon compound (B-2) represented by the following general formula (2-2), and a general formula (2-3) The organosilicon compound (B-3) is converted into [(A-1) + (A-2)]: [(B-1) + (B-2) + (B-3)] = 70:30. To 90:10 (molar ratio) (however, [(A-1) + (A-2) + (B-1) + (B-2) + (B-3)] B-2) + (B-3)] is 5 mol% or less, (B-3) is 2 mol% or less, and (A− to (A-1) 2) is 10 mol% or less) and the molecule There thermosetting resin comprises an organic polysiloxane obtained by hydrolysis such that 10,000 or more.
Figure 2009215343
(In Formula (1-1), R 1 to R 3 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms, and R 4 is a hydrogen atom or linear or A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (1-2), R 9 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 10 to R 12 may be the same or different. A branched alkyl group having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2-1), R 5 to R 8 may be the same or different and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In formula (2-2), R 13 to R 16 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)
Figure 2009215343
(In Formula (2-3), R 17 to R 20 may be the same or different, and are linear or branched alkyl groups having 1 to 4 carbon atoms)
請求項1または請求項2記載の熱硬化性樹脂を、380℃〜560℃で加熱硬化させて得られることを特徴とする低誘電性絶縁膜。   A low dielectric insulating film obtained by heat-curing the thermosetting resin according to claim 1 or 2 at 380 ° C to 560 ° C. 請求項3記載の低誘電性絶縁膜を用いたことを特徴とするプラズマディスプレイ。   A plasma display comprising the low dielectric insulating film according to claim 3.
JP2008057339A 2008-03-07 2008-03-07 Low dielectric insulating film, plasma display and manufacturing method thereof Expired - Fee Related JP5403730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008057339A JP5403730B2 (en) 2008-03-07 2008-03-07 Low dielectric insulating film, plasma display and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008057339A JP5403730B2 (en) 2008-03-07 2008-03-07 Low dielectric insulating film, plasma display and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009215343A true JP2009215343A (en) 2009-09-24
JP5403730B2 JP5403730B2 (en) 2014-01-29

Family

ID=41187545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008057339A Expired - Fee Related JP5403730B2 (en) 2008-03-07 2008-03-07 Low dielectric insulating film, plasma display and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5403730B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157543A1 (en) * 2011-05-13 2012-11-22 セントラル硝子株式会社 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition
WO2013058217A1 (en) * 2011-10-18 2013-04-25 旭硝子株式会社 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100343A (en) * 1988-10-07 1990-04-12 Showa Denko Kk Integrated circuit
JPH0598012A (en) * 1991-10-11 1993-04-20 Shin Etsu Chem Co Ltd Production of organopolysiloxane resin
JPH05239214A (en) * 1992-02-25 1993-09-17 Toray Dow Corning Silicone Co Ltd Production of alkoxylated silicone resin
JPH0782378A (en) * 1993-09-10 1995-03-28 Nippon Telegr & Teleph Corp <Ntt> Siloxane copolymer and method for synthesizing the same
JPH0812761A (en) * 1994-06-28 1996-01-16 Toshiba Silicone Co Ltd Silicone resin composition
JPH09111187A (en) * 1995-10-18 1997-04-28 Mitsubishi Electric Corp Silicone varnish, its production, and prepreg impregnated with silicone varnish
JPH09324051A (en) * 1996-06-06 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> Polymeric optical material and optical waveguide made therefrom
JPH10251407A (en) * 1997-03-14 1998-09-22 Nippon Steel Chem Co Ltd Silicone compound and its production
JP2005239886A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Manufacturing method of silicone ladder polymer
JP2005290104A (en) * 2004-03-31 2005-10-20 Central Glass Co Ltd Glassy substance for low dielectric material and glass plate used for display
JP2005298800A (en) * 2004-04-12 2005-10-27 Korea Advanced Inst Of Sci Technol Inorganic/organic mixed oligomer, nano-mixed polymer and method for producing them
JP2006022207A (en) * 2004-07-08 2006-01-26 Chisso Corp Silicon compound
WO2006080459A1 (en) * 2005-01-31 2006-08-03 Asahi Glass Company, Limited Curable silicone resin composition, hermetic container using same and electronic component
JP2006342308A (en) * 2005-06-10 2006-12-21 Dow Corning Toray Co Ltd Method for purification of silicone resin
JP2008280420A (en) * 2007-05-09 2008-11-20 Chisso Corp Crosslinkable siloxane polymer, siloxane-based crosslinkable composition and silicone membrane

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100343A (en) * 1988-10-07 1990-04-12 Showa Denko Kk Integrated circuit
JPH0598012A (en) * 1991-10-11 1993-04-20 Shin Etsu Chem Co Ltd Production of organopolysiloxane resin
JPH05239214A (en) * 1992-02-25 1993-09-17 Toray Dow Corning Silicone Co Ltd Production of alkoxylated silicone resin
JPH0782378A (en) * 1993-09-10 1995-03-28 Nippon Telegr & Teleph Corp <Ntt> Siloxane copolymer and method for synthesizing the same
JPH0812761A (en) * 1994-06-28 1996-01-16 Toshiba Silicone Co Ltd Silicone resin composition
JPH09111187A (en) * 1995-10-18 1997-04-28 Mitsubishi Electric Corp Silicone varnish, its production, and prepreg impregnated with silicone varnish
JPH09324051A (en) * 1996-06-06 1997-12-16 Nippon Telegr & Teleph Corp <Ntt> Polymeric optical material and optical waveguide made therefrom
JPH10251407A (en) * 1997-03-14 1998-09-22 Nippon Steel Chem Co Ltd Silicone compound and its production
JP2005239886A (en) * 2004-02-26 2005-09-08 Mitsubishi Electric Corp Manufacturing method of silicone ladder polymer
JP2005290104A (en) * 2004-03-31 2005-10-20 Central Glass Co Ltd Glassy substance for low dielectric material and glass plate used for display
JP2005298800A (en) * 2004-04-12 2005-10-27 Korea Advanced Inst Of Sci Technol Inorganic/organic mixed oligomer, nano-mixed polymer and method for producing them
JP2006022207A (en) * 2004-07-08 2006-01-26 Chisso Corp Silicon compound
WO2006080459A1 (en) * 2005-01-31 2006-08-03 Asahi Glass Company, Limited Curable silicone resin composition, hermetic container using same and electronic component
JP2006342308A (en) * 2005-06-10 2006-12-21 Dow Corning Toray Co Ltd Method for purification of silicone resin
JP2008280420A (en) * 2007-05-09 2008-11-20 Chisso Corp Crosslinkable siloxane polymer, siloxane-based crosslinkable composition and silicone membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157543A1 (en) * 2011-05-13 2012-11-22 セントラル硝子株式会社 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition
WO2013058217A1 (en) * 2011-10-18 2013-04-25 旭硝子株式会社 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto
CN103889712A (en) * 2011-10-18 2014-06-25 旭硝子株式会社 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto
KR20140079783A (en) 2011-10-18 2014-06-27 아사히 가라스 가부시키가이샤 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto
JPWO2013058217A1 (en) * 2011-10-18 2015-04-02 旭硝子株式会社 LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
KR101973826B1 (en) 2011-10-18 2019-08-26 에이지씨 가부시키가이샤 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto

Also Published As

Publication number Publication date
JP5403730B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
US10435513B2 (en) Composite of silicon oxide nanoparticles and silsesquioxane polymer, method for producing same, and composite material produced using composite thereof
JP6044792B2 (en) Composition for forming low refractive index film
JPH09175810A (en) Curing of hydrogensilsesquioxane resin by electron beam
JP2007111645A5 (en)
TWI400754B (en) A precursor film composition of a porous film and a method for producing the same, a porous film and a method for producing the same, and a semiconductor device
JP2014015543A (en) Low refractive index coating composition
JP6803842B2 (en) Polysiloxane formulations and coatings for optoelectronic applications
JP2021532221A (en) New polysiloxane compositions and their use
JPWO2009022583A1 (en) Porous silica precursor composition and production method thereof, porous silica film and formation method thereof, semiconductor element, image display device, and liquid crystal display device
JP2009091545A (en) Application liquid for forming silica-based coating film, preparation method for application liquid, and silica-based insulation film obtained from application liquid
JP5403730B2 (en) Low dielectric insulating film, plasma display and manufacturing method thereof
US20200270455A1 (en) Light-absorbing composition and optical filter
KR102276499B1 (en) Composition for forming silica-based coating film, and method for formation of a silica-based coating film using the same
JP2010065174A (en) Composition, antireflection film substrate, and solar cell system
WO2008026387A1 (en) Method of forming amorphous silica coating of low dielectric constant and amorphous silica coating of low dielectric constant obtained thereby
JP4996832B2 (en) Silica-based coating agent, silica-based thin film and structure using the same
JP2019512027A (en) Aging silsesquioxane polymer
JP2014152246A (en) Fluorine-containing group-modified polysilsesquioxane liquid, fluorine-containing group-modified polysilsesquioxane glass, and manufacturing methods of both
TW201418382A (en) White coating composition, and device employing a coating made of the composition
TWI583739B (en) A composition for a transparent film, a method for forming a transparent film, and a transparent film
JP2006241305A (en) Composition for film formation, insulating film and its manufacturing method
JPS6155164A (en) Production of silica film-forming coating solution
JP5591665B2 (en) Silsesquiazane polymer containing sulfonated phenyl group and siliceous membrane produced using the same
TWI536038B (en) Anti-reflective coating material,method for preparing the same ,and anti-reflective film employing the same
TW200306282A (en) New porogens for porous silica dielectric for integral circuit applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131025

LAPS Cancellation because of no payment of annual fees