WO2013058217A1 - Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto - Google Patents

Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto Download PDF

Info

Publication number
WO2013058217A1
WO2013058217A1 PCT/JP2012/076641 JP2012076641W WO2013058217A1 WO 2013058217 A1 WO2013058217 A1 WO 2013058217A1 JP 2012076641 W JP2012076641 W JP 2012076641W WO 2013058217 A1 WO2013058217 A1 WO 2013058217A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
resin layer
support plate
resin
laminate
Prior art date
Application number
PCT/JP2012/076641
Other languages
French (fr)
Japanese (ja)
Inventor
研一 江畑
俊彦 ▲樋▼口
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013539636A priority Critical patent/JP5924344B2/en
Priority to CN201280051485.6A priority patent/CN103889712B/en
Priority to KR1020147010179A priority patent/KR101973826B1/en
Publication of WO2013058217A1 publication Critical patent/WO2013058217A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10798Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing silicone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10899Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin
    • B32B17/10908Making laminated safety glass or glazing; Apparatus therefor by introducing interlayers of synthetic resin in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Silicon Polymers (AREA)
  • Liquid Crystal (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention relates to a laminate comprising a support plate layer, a resin layer and a glass substrate layer in this order, wherein the peel strength (y) on the interface between the support plate layer and the resin layer is higher than the peel strength (x) on the interface between the resin layer and the glass substrate or the cohesive failure strength (z) of the resin layer, a resin contained in the resin layer is a cross-linked silicone resin, the cross-linked silicone resin contains an organosiloxy unit (A-1) represented by formula (1) and an organosiloxy unit (B-1) represented by formula (2), the ratio of the sum total of the content of the component (A-1) and the content of the component (B-1) (i.e., (A-1) + (B-1)) to the total content of all of organosiloxy units is 70 to 100 mol%, and the ratio of the content of the component (A-1) to the sum total of the content of the component (A-1) and the content of the component (B-1) is 15 to 50 mol% in the cross-linked silicone resin. (In formula (1), R1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. In formula (2), R6 and R7 independently represent an alkyl group having 1 to 4 carbon atoms.)

Description

積層体、積層体の製造方法、および、電子デバイス用部材付きガラス基板の製造方法LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
 本発明は、積層体、積層体の製造方法、および、電子デバイス用部材付きガラス基板の製造方法に関する。 The present invention relates to a laminate, a method for producing a laminate, and a method for producing a glass substrate with a member for electronic devices.
 近年、太陽電池(PV)、液晶パネル(LCD)、有機ELパネル(OLED)などのデバイス(電子機器)の薄型化、軽量化が進行しており、これらのデバイスに用いるガラス基板の薄板化が進行している。薄板化によりガラス基板の強度が不足すると、デバイスの製造工程において、ガラス基板のハンドリング性が低下する。 In recent years, devices (electronic devices) such as solar cells (PV), liquid crystal panels (LCD), and organic EL panels (OLED) have been made thinner and lighter, and the glass substrates used in these devices have been made thinner. Progressing. If the strength of the glass substrate is insufficient due to the thinning, the handling property of the glass substrate is lowered in the device manufacturing process.
 そこで、従来から、最終厚さよりも厚いガラス基板上にデバイス用部材(例えば、薄膜トランジスタ)を形成した後、ガラス基板を化学エッチング処理により薄板化する方法が広く採用されている。しかしながら、この方法では、例えば、1枚のガラス基板の厚さを0.7mmから0.2mmや0.1mmに薄板化する場合、元々のガラス基板の材料の大半をエッチング液で削り落とすことになるので、生産性や原材料の使用効率という観点では好ましくない。 Therefore, conventionally, a method in which a device member (for example, a thin film transistor) is formed on a glass substrate thicker than the final thickness and then the glass substrate is thinned by chemical etching is widely used. However, in this method, for example, when the thickness of one glass substrate is reduced from 0.7 mm to 0.2 mm or 0.1 mm, most of the original glass substrate material is scraped off with an etching solution. Therefore, it is not preferable from the viewpoint of productivity and use efficiency of raw materials.
 また、上記の化学エッチングによるガラス基板の薄板化方法においては、ガラス基板表面に微細な傷が存在する場合、エッチング処理によって傷を起点として微細な窪み(エッチピット)が形成され、光学的な欠陥となる場合があった。 In addition, in the method of thinning a glass substrate by the above chemical etching, if a fine scratch exists on the surface of the glass substrate, a fine recess (etch pit) is formed from the scratch by the etching process, resulting in an optical defect. There was a case.
 最近では、上記の課題に対応するため、薄板ガラス基板と補強板とを積層した積層体を用意し、積層体の薄板ガラス基板上に表示装置などの電子デバイス用部材を形成した後、薄板ガラス基板から支持板を分離する方法が提案されている(例えば、特許文献1参照)。補強板は、支持板と、該支持板上に固定された樹脂層とを有し、樹脂層と薄板ガラス基板とが剥離可能に密着される。積層体の樹脂層と薄板ガラス基板の界面が剥離され、薄板ガラス基板から分離された補強板は、新たな薄板ガラス基板と積層され、積層体として再利用することが可能である。
 一方、耐熱性の樹脂層として、特許文献2に記載の熱硬化性樹脂を用いて得られる樹脂層が知られている。
Recently, in order to cope with the above-mentioned problems, a laminated body in which a thin glass substrate and a reinforcing plate are laminated is prepared, and a member for an electronic device such as a display device is formed on the thin glass substrate of the laminated body. A method of separating the support plate from the substrate has been proposed (see, for example, Patent Document 1). The reinforcing plate has a support plate and a resin layer fixed on the support plate, and the resin layer and the thin glass substrate are in close contact with each other in a peelable manner. The interface between the resin layer of the laminate and the thin glass substrate is peeled off, and the reinforcing plate separated from the thin glass substrate can be laminated with a new thin glass substrate and reused as a laminate.
On the other hand, a resin layer obtained using the thermosetting resin described in Patent Document 2 is known as a heat-resistant resin layer.
国際公開第07/018028号International Publication No. 07/018028 日本国特開2009-215343号公報Japanese Unexamined Patent Publication No. 2009-215343
 特許文献1に記載の積層体に関して、近年さらに高い耐熱性が要求されるようになってきた。積層体のガラス基板上に形成される電子デバイス用部材の高機能化や複雑化に伴い、電子デバイス用部材を形成する際の温度がさらに高温になると共に、その高温に曝される時間も長時間を要する場合が少なくない。
 特許文献1に記載の積層体は大気中300℃、1時間の処理に耐えうる。しかし、本発明者らの検討によれば、特許文献1に記載の積層体における樹脂層のシリコーン樹脂は、400℃においては短時間のうちに分解が起こり、多量のアウトガスが発生する。このようなアウトガスの発生は、ガラス基板上に形成される電子デバイス用部材を汚染し、結果として電子デバイスの生産性を低下させる原因となる。
 また、樹脂層の分解により樹脂層自体にクラックなどが生じ、その上に積層されるガラス基板との密着性が低下し、高温処理が施される電子デバイス用部材の製造時にガラス基板の位置ずれなどが生じやすく、結果として電子デバイスの生産性を低下させる懸念もある。
 さらに、積層体からガラス基板を分離する際に、熱劣化した樹脂層の一部が製品側であるガラス基板の剥離面に付着してしまうことがあり、その除去が非常に困難であった。
In recent years, higher heat resistance has been required for the laminate described in Patent Document 1. As electronic device members formed on the glass substrate of the laminate become more sophisticated and complex, the temperature at which the electronic device members are formed becomes higher and the time for exposure to the high temperatures is longer. It often takes time.
The laminate described in Patent Document 1 can withstand treatment at 300 ° C. for 1 hour in the atmosphere. However, according to the study by the present inventors, the silicone resin of the resin layer in the laminate described in Patent Document 1 decomposes in a short time at 400 ° C., and a large amount of outgas is generated. Generation | occurrence | production of such an outgas contaminates the member for electronic devices formed on a glass substrate, and becomes a cause of reducing the productivity of an electronic device as a result.
In addition, cracks and the like occur in the resin layer itself due to the decomposition of the resin layer, the adhesiveness with the glass substrate laminated thereon is lowered, and the position of the glass substrate is shifted during the manufacture of electronic device members subjected to high temperature processing There is also a concern that the productivity of electronic devices may be reduced as a result.
Furthermore, when the glass substrate is separated from the laminate, a part of the thermally deteriorated resin layer may adhere to the peeling surface of the glass substrate on the product side, which is very difficult to remove.
 本発明者は特許文献1に記載の樹脂層の耐熱性向上について検討した。耐熱性の高いシリコーン樹脂として、縮合反応により架橋したシリコーン樹脂が知られている。なお、特許文献1に記載のシリコーン樹脂は、ハイドロシリレーション反応により架橋したシリコーン樹脂である。縮合反応により架橋したシリコーン樹脂のうち、フェニル基などのアリール基がケイ素原子に結合した単位を有するシリコーン樹脂が特に耐熱性が高い。このようなシリコーン樹脂として特許文献2などに記載のシリコーン樹脂が知られている。しかし、特許文献2に記載のシリコーン樹脂を特許文献1に記載の樹脂層の材料として使用したところ、樹脂層のガラス基板と積層する表面の面状が荒れ、ガラス基板の樹脂層に対する密着性が必ずしも十分でなく、特許文献1に記載の積層体として使用することができなかった。 The inventor examined the improvement in heat resistance of the resin layer described in Patent Document 1. As a silicone resin having a high heat resistance, a silicone resin crosslinked by a condensation reaction is known. In addition, the silicone resin described in Patent Document 1 is a silicone resin crosslinked by a hydrosilylation reaction. Of silicone resins crosslinked by a condensation reaction, a silicone resin having a unit in which an aryl group such as a phenyl group is bonded to a silicon atom has particularly high heat resistance. As such a silicone resin, a silicone resin described in Patent Document 2 is known. However, when the silicone resin described in Patent Document 2 is used as a material for the resin layer described in Patent Document 1, the surface of the resin layer laminated with the glass substrate is rough, and the adhesion of the glass substrate to the resin layer is poor. It was not always sufficient, and could not be used as the laminate described in Patent Document 1.
 本発明は、上記課題に鑑みてなされたものであって、高温加熱処理条件下でも使用することができ、清浄化処理を施すことにより分離されたガラス基板の剥離面の清浄性を保持できる積層体、および、該積層体の製造方法を提供することを目的とする。
 また、本発明は、該積層体を使用した電子デバイス用部材付きガラス基板の製造方法を提供することも目的とする。
The present invention has been made in view of the above problems, and can be used even under high-temperature heat treatment conditions, and can maintain the cleanliness of the peeled surface of a glass substrate separated by performing a cleaning treatment. It aims at providing a manufacturing method of a body and this layered product.
Another object of the present invention is to provide a method for producing a glass substrate with a member for electronic devices using the laminate.
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、本発明を完成した。
 すなわち、本発明の第1の態様は、支持板の層と樹脂層とガラス基板の層と、をこの順で備え、前記支持板の層と前記樹脂層の界面の剥離強度(y)が、前記樹脂層と前記ガラス基板の界面の剥離強度(x)または前記樹脂層の凝集破壊強度(z)よりも高く、前記樹脂層の樹脂が架橋シリコーン樹脂であり、前記架橋シリコーン樹脂が、後述する式(1)で表されるオルガノシロキシ単位(A-1)と、後述する式(2)で表されるオルガノシロキシ単位(B-1)と、を含み、全オルガノシロキシ単位に対する(A-1)+(B-1)の割合が70~100モル%であり、かつ(A-1)と(B-1)の合計に対する(A-1)の割合が15~50モル%の架橋シリコーン樹脂である、積層体である。
As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
That is, the first aspect of the present invention comprises a support plate layer, a resin layer, and a glass substrate layer in this order, and the peel strength (y) at the interface between the support plate layer and the resin layer is It is higher than the peel strength (x) at the interface between the resin layer and the glass substrate or the cohesive failure strength (z) of the resin layer, the resin of the resin layer is a crosslinked silicone resin, and the crosslinked silicone resin will be described later. An organosiloxy unit (A-1) represented by the formula (1) and an organosiloxy unit (B-1) represented by the formula (2) to be described later. ) + (B-1) is 70-100 mol%, and the ratio of (A-1) to the sum of (A-1) and (B-1) is 15-50 mol%. It is a laminated body.
 第1の態様において、架橋シリコーン樹脂が、さらに、後述する式(3)で表されるオルガノシロキシ単位(A-2)および後述する式(4)で表されるオルガノシロキシ単位(B-2)のいずれか少なくとも一方を含み、[(A-1)+(A-2)+(B-1)+(B-2)]に対する[(A-1)+(B-2)]の割合が15~50モル%であることが好ましい。
 また、式(1)および式(3)において後述する式(9)で表わされるフェニル基(X)と、式(2)および(4)においてR6および/またはR7で表されるアルキル基(Y)の比が、[(X)]/[(X)+(Y)]=10~40モル%であることが好ましい。
 さらに、全オルガノシロキシ単位に対する[(A-1)+(A-2)+(B-1)+(B-2)]の割合が95~100モル%であることが好ましい。
 また、後述する式(1)~(4)で表されるオルガノシロキシ単位はいずれもオルガノアルコキシシラン化合物に由来する単位であることが好ましい。
In the first embodiment, the crosslinked silicone resin further comprises an organosiloxy unit (A-2) represented by the following formula (3) and an organosiloxy unit (B-2) represented by the following formula (4). And the ratio of [(A-1) + (B-2)] to [(A-1) + (A-2) + (B-1) + (B-2)] It is preferably 15 to 50 mol%.
In addition, the phenyl group (X) represented by the formula (9) described later in the formulas (1) and (3), and the alkyl group represented by R 6 and / or R 7 in the formulas (2) and (4) The ratio of (Y) is preferably [(X)] / [(X) + (Y)] = 10 to 40 mol%.
Further, the ratio of [(A-1) + (A-2) + (B-1) + (B-2)] to the total organosiloxy unit is preferably 95 to 100 mol%.
Further, the organosiloxy units represented by the formulas (1) to (4) described later are preferably units derived from an organoalkoxysilane compound.
 さらに、第1の態様において、剥離強度(x)は凝集破壊強度(z)よりも高いことが好ましい。また、前記樹脂層の厚さは1~5μmであることが好ましく、前記支持板はガラス板であることが好ましい。さらに、前記支持板と前記ガラス基板との25~300℃における平均線膨張係数の差が0~500×10-7/℃であることが好ましい。 Furthermore, in the first aspect, the peel strength (x) is preferably higher than the cohesive failure strength (z). The thickness of the resin layer is preferably 1 to 5 μm, and the support plate is preferably a glass plate. Further, the difference in average linear expansion coefficient between the support plate and the glass substrate at 25 to 300 ° C. is preferably 0 to 500 × 10 −7 / ° C.
 本発明の第2の態様は、本発明の第1の態様の積層体の製造方法であって、架橋硬化して後述する架橋シリコーン樹脂となる硬化性シリコーン樹脂の膜を支持板の表面に形成し、前記支持板の表面上で硬化性シリコーン樹脂を架橋硬化させて架橋シリコーン樹脂の膜を形成し、次いで、前記架橋シリコーン樹脂の膜の表面にガラス基板を積層する、積層体の製造方法である。 A second aspect of the present invention is a method for producing a laminate according to the first aspect of the present invention, in which a film of a curable silicone resin that is crosslinked and cured to become a crosslinked silicone resin described later is formed on the surface of a support plate. Then, a curable silicone resin is crosslinked and cured on the surface of the support plate to form a crosslinked silicone resin film, and then a glass substrate is laminated on the surface of the crosslinked silicone resin film. is there.
 第2の態様において、硬化性シリコーン樹脂がオルガノアルコキシシラン化合物の混合物の部分加水分解縮合物からなるとともに、該硬化性シリコーン樹脂および溶媒を含む溶液を支持板の表面に塗布して、溶媒を除去することにより硬化性シリコーン樹脂の膜を形成することが好ましい。また、上記部分加水分解縮合物の重量平均分子量は1万~20万であることが好ましい。さらに、上記部分加水分解縮合物の重量平均分子量は1万~10万であることがより好ましい。 In the second embodiment, the curable silicone resin comprises a partially hydrolyzed condensate of a mixture of organoalkoxysilane compounds, and a solution containing the curable silicone resin and a solvent is applied to the surface of the support plate to remove the solvent. Thus, it is preferable to form a film of a curable silicone resin. The weight average molecular weight of the partial hydrolysis-condensation product is preferably 10,000 to 200,000. Further, the weight average molecular weight of the partial hydrolysis-condensation product is more preferably 10,000 to 100,000.
 本発明の第3の態様は、本発明の第1の態様の積層体中のガラス基板上に電子デバイス用部材を形成して、電子デバイス用部材付き積層体を製造し、該電子デバイス用部材付き積層体から、樹脂層のガラス基板側界面または樹脂層内部を剥離面として、電子デバイス用部材付きガラス基板と樹脂層付き支持板とに分離し、次いで、電子デバイス用部材付きガラス基板の剥離面を清浄化する、電子デバイス用部材付きガラス基板の製造方法である。
 また、上記清浄化は溶媒を用いた洗浄であることが好ましく、洗浄は、溶解度パラメータが7~15の溶媒を使用した洗浄であることが好ましい。
 なお、上記電子デバイス用部材付きガラス基板を以下「部材付ガラス基板」という。
According to a third aspect of the present invention, an electronic device member is formed on the glass substrate in the laminate of the first aspect of the present invention to produce a laminate with an electronic device member, and the electronic device member Separation of the glass substrate with an electronic device member from the laminated body is separated into a glass substrate with an electronic device member and a support plate with a resin layer using the glass substrate side interface of the resin layer or the inside of the resin layer as a peeling surface. It is a manufacturing method of the glass substrate with a member for electronic devices which cleans a surface.
The cleaning is preferably cleaning using a solvent, and the cleaning is preferably cleaning using a solvent having a solubility parameter of 7 to 15.
In addition, the said glass substrate with a member for electronic devices is hereafter called "a glass substrate with a member."
 本発明によれば、高温加熱処理条件下でも使用することができ、清浄化処理を施すことにより分離されたガラス基板の剥離面の清浄性を保持できる積層体、および、該積層体の製造方法を提供することができる。
 また、本発明によれば、該積層体を使用した部材付ガラス基板の製造方法を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, the laminated body which can be used also on high temperature heat processing conditions, and can maintain the cleanliness of the peeling surface of the glass substrate isolate | separated by performing a cleaning process, and the manufacturing method of this laminated body Can be provided.
Moreover, according to this invention, the manufacturing method of the glass substrate with a member which uses this laminated body can also be provided.
図1は、本発明に係る積層体の一実施形態の模式的断面図である。FIG. 1 is a schematic cross-sectional view of an embodiment of a laminate according to the present invention. 図2は、本発明に係る電子デバイスの製造方法の一実施形態を工程順に示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an embodiment of a method for manufacturing an electronic device according to the present invention in the order of steps.
 以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、以下の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、以下の実施形態に種々の変形および置換を加えることができる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and the following embodiments are not deviated from the scope of the present invention. Various modifications and substitutions can be made.
 本発明の積層体は、支持板の層と樹脂層とガラス基板の層と、をこの順で備える。すなわち、支持板の層とガラス基板の層との間に樹脂層を有し、したがって、樹脂層は一方の側が支持板の層に接し、他方の側がガラス基板の層に接している。
 樹脂層とガラス基板の界面は剥離強度(x)を有し、樹脂層とガラス基板の界面に剥離強度(x)を越える引き剥がし方向の応力が加えられると、樹脂層とガラス基板の界面が剥離する。樹脂層と支持板の界面は剥離強度(y)を有し、樹脂層と支持板の界面に剥離強度(y)を越える引き剥がし方向の応力が加えられると、樹脂層と支持板の界面が剥離する。一方、樹脂層の樹脂はそれ自体の破壊に抗する強度を有し、樹脂層にガラス基板と支持板を引き剥がす方向の応力が加えられるとある程度の応力までは破壊せずにその応力に耐える。しかし、樹脂自体の強度を超える応力が加えられると樹脂層が破壊され、この樹脂層が耐える限度の強度を凝集破壊強度(z)という。
 本発明の積層体(後述の電子デバイス用部材付き積層体も意味する)においては、上記剥離強度(y)は、上記剥離強度(x)または上記凝集破壊強度(z)よりも高い。したがって、本発明の積層体にガラス基板と支持板を引き剥がす方向の応力が加えられると、本発明の積層体は、樹脂層とガラス基板の界面で剥離してガラス基板と樹脂層付き支持板に分離するか、または樹脂層の凝集破壊により樹脂が付着したガラス基板と樹脂が付着した支持板に分離する。両態様のどちらになるかは剥離強度(x)と凝集破壊強度(z)の大きさに依存し、剥離強度(x)が凝集破壊強度(z)よりも高い場合には樹脂層の凝集破壊が起こり、剥離強度(x)が凝集破壊強度(z)よりも低い場合には界面剥離が起こると考えられる。
The laminate of the present invention includes a support plate layer, a resin layer, and a glass substrate layer in this order. That is, a resin layer is provided between the support plate layer and the glass substrate layer. Therefore, one side of the resin layer is in contact with the support plate layer, and the other side is in contact with the glass substrate layer.
The interface between the resin layer and the glass substrate has a peel strength (x). When a stress in the peeling direction exceeding the peel strength (x) is applied to the interface between the resin layer and the glass substrate, the interface between the resin layer and the glass substrate becomes Peel off. The interface between the resin layer and the support plate has a peel strength (y). When a stress in the peeling direction exceeding the peel strength (y) is applied to the interface between the resin layer and the support plate, the interface between the resin layer and the support plate becomes Peel off. On the other hand, the resin of the resin layer has a strength to resist the destruction of itself, and if the resin layer is subjected to a stress in the direction of peeling the glass substrate and the support plate, the resin layer can withstand the stress without breaking to a certain extent. . However, when a stress exceeding the strength of the resin itself is applied, the resin layer is broken, and the strength that this resin layer can withstand is called the cohesive failure strength (z).
In the laminate of the present invention (which also means a laminate with a member for electronic devices described later), the peel strength (y) is higher than the peel strength (x) or the cohesive failure strength (z). Therefore, when a stress in the direction of peeling the glass substrate and the support plate is applied to the laminate of the present invention, the laminate of the present invention peels off at the interface between the resin layer and the glass substrate, and the support plate with the glass substrate and the resin layer is provided. Or a glass substrate to which resin is adhered and a support plate to which resin is adhered due to cohesive failure of the resin layer. Which of these modes is used depends on the magnitude of the peel strength (x) and the cohesive failure strength (z), and when the peel strength (x) is higher than the cohesive failure strength (z), the cohesive failure of the resin layer When the peeling strength (x) is lower than the cohesive failure strength (z), it is considered that the interfacial peeling occurs.
 上記のように、本発明の積層体における剥離強度(x)が凝集破壊強度(z)よりも高い場合、積層体のガラス基板と支持板と、を引き剥がすと、樹脂が付着したガラス基板と樹脂が付着した支持板が生じる。後述のように、積層体中のガラス基板上に電子デバイス用部材を形成した後の積層体では、分離されたガラス基板は部材付ガラス基板である。部材付ガラス基板の剥離面(ガラス基板の、電子デバイス用部材が形成されていない面)に樹脂が付着していることは好ましくないことより、剥離面に付着した樹脂を除去することが好ましい。
 さらに、付着した樹脂を除去するとしても、その量が少ないほど除去が容易であることから、分離した直後の剥離面に付着した樹脂は少ない方が好ましい。剥離強度(x)が凝集破壊強度(z)に近いほど部分的に界面剥離が生じる可能性が高まり、ガラス基板の剥離面に付着した樹脂の量は支持板に付着した樹脂量に比較して少なくなると考えられる。
 なお、下記のように剥離強度(x)と凝集破壊強度(z)がほぼ等しい場合は剥離面に樹脂が付着したガラス基板が生じやすいと考えられることより、本発明においては剥離強度(x)が凝集破壊強度(z)よりも高い場合に含めるものとする。
As described above, when the peel strength (x) in the laminate of the present invention is higher than the cohesive failure strength (z), when the laminate glass substrate and the support plate are peeled off, the resin-attached glass substrate and A support plate to which the resin has adhered is generated. As will be described later, in the laminate after the electronic device member is formed on the glass substrate in the laminate, the separated glass substrate is a glass substrate with a member. Since it is not preferable that the resin adheres to the peeling surface of the glass substrate with a member (the surface of the glass substrate on which the electronic device member is not formed), it is preferable to remove the resin adhering to the peeling surface.
Furthermore, even if the attached resin is removed, the smaller the amount, the easier the removal is. Therefore, it is preferable that the amount of resin attached to the peeled surface immediately after separation is small. The closer the peel strength (x) is to the cohesive failure strength (z), the higher the possibility that interfacial peeling will occur. The amount of resin adhering to the release surface of the glass substrate is compared to the amount of resin adhering to the support plate. It is thought that it will decrease.
In the present invention, when the peel strength (x) and the cohesive failure strength (z) are substantially equal, it is considered that a glass substrate having a resin adhered to the peel surface is likely to be formed. Therefore, in the present invention, the peel strength (x) Is higher than the cohesive failure strength (z).
 上記のように、本発明の積層体における剥離強度(x)が凝集破壊強度(z)よりも低い場合、積層体のガラス基板と支持板と、を引き剥がすと、ガラス基板と樹脂層付き支持板が生じる。剥離強度(x)が凝集破壊強度(z)に近いほど樹脂層の凝集破壊が生じやすくなり、剥離面に樹脂が付着したガラス基板が生じやすい。剥離強度(x)と凝集破壊強度(z)が近接している場合、個々の積層体毎に樹脂が付着したガラス基板と樹脂が付着していないガラス基板とが生じる可能性がある。したがって、たとえ樹脂の付着がないと思われる場合であっても、分離した後のガラス基板の剥離面に微量の樹脂の付着の可能性を考慮して、樹脂を除去する操作を行うことが好ましい。 As described above, when the peel strength (x) in the laminate of the present invention is lower than the cohesive failure strength (z), the glass substrate and the support plate are peeled off to support the glass substrate and the resin layer. A board is produced. The closer the peel strength (x) is to the cohesive failure strength (z), the more easily the cohesive failure of the resin layer occurs, and the more easily the glass substrate with the resin attached to the release surface is produced. When the peel strength (x) and the cohesive failure strength (z) are close to each other, there is a possibility that a glass substrate to which a resin is attached and a glass substrate to which no resin is attached are generated for each laminate. Therefore, even if it is considered that there is no resin adhesion, it is preferable to perform an operation of removing the resin in consideration of the possibility of a small amount of resin adhesion to the separation surface of the glass substrate after separation. .
 剥離強度(y)は、剥離強度(x)と凝集破壊強度(z)に比較して、両者よりも充分高いことが好ましい。これにより、分離後における支持板に付着した樹脂量をガラス基板に比較して相対的に多くすることができる。剥離強度(y)を高めることは、支持板に対する樹脂層の付着力を高め、かつ加熱処理後においてガラス基板に対してよりも相対的に高い付着力を維持できることを意味する。
 支持板に対する樹脂層の付着力を高めるためには、硬化性シリコーン樹脂を支持板上で架橋硬化させて樹脂層を形成することが好ましい。架橋硬化の際の接着力で、支持板に対して高い結合力で結合した樹脂層を形成することができる。
 一方、架橋硬化後の架橋シリコーン樹脂のガラス基板に対する結合力は、上記架橋硬化時に生じる結合力よりも低いのが通例である。したがって、支持板上で硬化性シリコーン樹脂を架橋硬化させて樹脂層を形成し、その後架橋硬化したシリコーン樹脂からなる樹脂層の面にガラス基板を積層して、積層体を製造することが好ましい。
The peel strength (y) is preferably sufficiently higher than both the peel strength (x) and the cohesive failure strength (z). Thereby, the resin amount adhering to the support plate after separation can be relatively increased as compared with the glass substrate. Increasing the peel strength (y) means increasing the adhesion of the resin layer to the support plate and maintaining a relatively higher adhesion than the glass substrate after the heat treatment.
In order to increase the adhesion of the resin layer to the support plate, it is preferable to form a resin layer by crosslinking and curing a curable silicone resin on the support plate. The resin layer bonded with a high bonding force to the support plate can be formed by the adhesive force at the time of crosslinking and curing.
On the other hand, the bonding force of the crosslinked silicone resin after crosslinking and curing to the glass substrate is usually lower than the bonding force generated during the crosslinking and curing. Therefore, it is preferable that a curable silicone resin is crosslinked and cured on a support plate to form a resin layer, and then a glass substrate is laminated on the surface of the resin layer made of the crosslinked and cured silicone resin to produce a laminate.
 縮合反応により架橋した架橋シリコーン樹脂の層表面の付着性は、特許文献1に記載のハイドロシリレーション反応により架橋した架橋シリコーン樹脂の層表面よりも高い。したがって、本発明において、支持板上で充分架橋硬化させたシリコーン樹脂層の表面にガラス基板を積層した場合、樹脂層表面とガラス基板表面との付着性は特許文献1に記載の積層体における場合よりも高いと考えられる。したがって、本発明の積層体の剥離強度(x)は、特許文献1に記載の積層体における樹脂層とガラス基板層との界面の剥離強度に比較して高くなると考えられる。
 さらに、縮合反応により架橋硬化する硬化性シリコーン樹脂の反応性は、ハイドロシリレーション反応により架橋硬化する硬化性シリコーン樹脂の反応性よりも低いと考えられる。したがって、支持板上に形成した樹脂層の樹脂の架橋反応をガラス基板と積層する前に充分に終了させておくことは容易ではない。未反応の架橋点が残存した架橋シリコーンからなる樹脂層にガラス基板を積層すると、積層後に未反応の架橋点が架橋して樹脂がガラス基板に接着し、剥離強度(x)が高くなることが考えられる。特に、積層体のガラス基板表面上に電子デバイス用部材を形成する際は加熱処理が行われることが多いことより、これによりガラス基板と樹脂層の界面の結合が進み、電子デバイス用部材形成後の積層体(電子デバイス用部材付き積層体)における剥離強度(x)はより高くなりやすい。
 よって、本発明においては、剥離に際しては、剥離強度(x)が凝集破壊強度(z)よりも高い場合が多いと考えられる。
The adhesion of the layer surface of the crosslinked silicone resin crosslinked by the condensation reaction is higher than the layer surface of the crosslinked silicone resin crosslinked by the hydrosilylation reaction described in Patent Document 1. Therefore, in the present invention, when a glass substrate is laminated on the surface of the silicone resin layer that has been sufficiently crosslinked and cured on the support plate, the adhesion between the resin layer surface and the glass substrate surface is the case of the laminate described in Patent Document 1. Is considered to be higher. Therefore, it is considered that the peel strength (x) of the laminate of the present invention is higher than the peel strength at the interface between the resin layer and the glass substrate layer in the laminate described in Patent Document 1.
Furthermore, the reactivity of the curable silicone resin that is crosslinked and cured by the condensation reaction is considered to be lower than the reactivity of the curable silicone resin that is crosslinked and cured by the hydrosilylation reaction. Therefore, it is not easy to sufficiently complete the crosslinking reaction of the resin of the resin layer formed on the support plate before laminating with the glass substrate. When a glass substrate is laminated on a resin layer made of crosslinked silicone in which unreacted crosslinking points remain, the unreacted crosslinking points are crosslinked after the lamination, and the resin adheres to the glass substrate, which may increase the peel strength (x). Conceivable. In particular, when a member for an electronic device is formed on the surface of a glass substrate of a laminate, heat treatment is often performed, so that the bonding at the interface between the glass substrate and the resin layer proceeds, and after the member for an electronic device is formed The peel strength (x) of the laminate (laminate with the electronic device member) is likely to be higher.
Therefore, in the present invention, it is considered that the peeling strength (x) is often higher than the cohesive failure strength (z) during peeling.
 また、縮合反応により架橋硬化する硬化性シリコーン樹脂は、硬化触媒を使用することなく加熱により架橋反応を充分に進めることができる。硬化触媒が残存した架橋シリコーン樹脂では硬化触媒の作用により架橋シリコーン樹脂の解重合による低分子量シリコーンの発生のおそれがあり、したがって硬化触媒を使用しないことにより低分子量シリコーンの生成を少なくすることができる。
 低分子量シリコーンが少ないことにより、積層体のガラス基板表面上に電子デバイス用部材を形成する際の高温条件下において低分子量シリコーンに起因するガス発生が少なく、ガスの発生による電子デバイス用部材の汚染のおそれが少ないという特徴が発揮される。
 なお、ガス発生の許容量以下の範囲において、剥離強度の調整の目的でケイ素化合物やフッ素化合物などを用いた積層しようとする界面への易剥離処理を積層前に施しても良い。
In addition, the curable silicone resin that is cross-linked and cured by the condensation reaction can sufficiently advance the cross-linking reaction by heating without using a curing catalyst. In the case of the crosslinked silicone resin in which the curing catalyst remains, there is a risk of generation of low molecular weight silicone due to depolymerization of the crosslinked silicone resin due to the action of the curing catalyst. Therefore, the generation of low molecular weight silicone can be reduced by not using the curing catalyst. .
Due to the low amount of low molecular weight silicone, there is little gas generation due to low molecular weight silicone under high temperature conditions when forming electronic device members on the glass substrate surface of the laminate, and contamination of electronic device members due to gas generation The characteristic that there is little fear of this is demonstrated.
In addition, in the range below the allowable amount of gas generation, an easy peeling treatment may be applied to the interface to be laminated using a silicon compound or a fluorine compound for the purpose of adjusting the peeling strength before the lamination.
 本発明において、ガラス基板と支持板の分離は電子デバイス用部材形成後の積層体(電子デバイス用部材付き積層体)に対して行われるのが通例であることより、分離されたガラス基板(部材付ガラス基板)の剥離面には樹脂が付着していると考えられる。上記のように、部材付ガラス基板の剥離面に樹脂が付着していることは好ましくなく、部材付ガラス基板の剥離面に付着した樹脂は通常その除去を必要とする。本発明における樹脂は溶剤溶解性を有し、したがって、溶剤を使用した除去操作で樹脂を除去することが好ましい。 In the present invention, the separation of the glass substrate and the support plate is usually performed on the laminated body (laminated body with the electronic device member) after the formation of the electronic device member. It is considered that the resin adheres to the peeling surface of the attached glass substrate. As described above, it is not preferable that the resin adheres to the peeling surface of the glass substrate with a member, and the resin attached to the peeling surface of the glass substrate with a member usually needs to be removed. The resin in the present invention has solvent solubility. Therefore, it is preferable to remove the resin by a removing operation using a solvent.
 図1は、本発明に係る積層体の一例の模式的断面図である。
 図1に示すように、積層体10は、支持板12の層とガラス基板16の層とそれらの間に樹脂層14が存在する積層体である。樹脂層14は、その一方の面が支持板12の層に接すると共に、その他方の面がガラス基板16の第1主面16aに接している。言い換えると、樹脂層14はガラス基板16の第1主面16aに接している。
 支持板12の層および樹脂層14からなる2層部分は、液晶パネルなどの電子デバイス用部材を製造する部材形成工程において、ガラス基板16を補強する。なお、積層体10製造のためにあらかじめ製造される支持板12の層および樹脂層14からなる2層部分を樹脂層付き支持板18という。
FIG. 1 is a schematic cross-sectional view of an example of a laminate according to the present invention.
As shown in FIG. 1, the laminated body 10 is a laminated body in which the layer of the support plate 12, the layer of the glass substrate 16, and the resin layer 14 exist between them. The resin layer 14 has one surface in contact with the layer of the support plate 12 and the other surface in contact with the first main surface 16 a of the glass substrate 16. In other words, the resin layer 14 is in contact with the first main surface 16 a of the glass substrate 16.
The two-layer portion composed of the layer of the support plate 12 and the resin layer 14 reinforces the glass substrate 16 in a member forming process for manufacturing a member for an electronic device such as a liquid crystal panel. In addition, the two-layer part which consists of the layer of the support plate 12 manufactured beforehand for manufacture of the laminated body 10 and the resin layer 14 is called the support plate 18 with a resin layer.
 この積層体10は、部材形成工程まで使用される。即ち、この積層体10は、そのガラス基板16の第2主面16b表面上に液晶表示装置などの電子デバイス用部材が形成されるまで使用される。その後、電子デバイス用部材が形成された積層体は、支持板12と部材付ガラス基板に分離され、部材付ガラス基板の剥離面に樹脂が付着している場合はその付着した樹脂が除去される。樹脂が付着した支持板12(または樹脂層14を有する支持板12)は電子デバイスを構成する部分とはならない。分離された支持板12は、必要により付着した樹脂や樹脂層14を除去した後、新たなガラス基板16と積層され、積層体10として再利用することができる。 This laminate 10 is used until the member forming step. That is, the laminate 10 is used until a member for an electronic device such as a liquid crystal display device is formed on the surface of the second main surface 16b of the glass substrate 16. Then, the laminated body in which the member for electronic devices was formed is isolate | separated into the support plate 12 and the glass substrate with a member, and when the resin has adhered to the peeling surface of the glass substrate with a member, the adhering resin is removed. . The support plate 12 to which the resin is attached (or the support plate 12 having the resin layer 14) is not a part constituting the electronic device. The separated support plate 12 is laminated with a new glass substrate 16 after removing the adhering resin or resin layer 14 if necessary, and can be reused as the laminate 10.
 以下で、まず、積層体を構成する各層(ガラス基板、支持板、樹脂層)および樹脂材料について詳述し、その後、積層体および電子デバイスの製造方法について詳述する。 Hereinafter, first, each layer (glass substrate, support plate, resin layer) and resin material constituting the laminate will be described in detail, and then the laminate and the method for manufacturing the electronic device will be described in detail.
(ガラス基板)
 ガラス基板16は、第1主面16aが樹脂層14と接し、樹脂層14側とは反対側の第2主面16bに電子デバイス用部材が設けられる。
 ガラス基板16の種類は、一般的なものであってよく、例えば、LCD、OLEDといった表示装置用のガラス基板などが挙げられる。ガラス基板16は耐薬品性、耐透湿性に優れ、且つ、熱収縮率が低い。熱収縮率の指標としては、JIS R 3102(1995年改正)に規定されている線膨張係数が用いられる。
(Glass substrate)
As for the glass substrate 16, the 1st main surface 16a touches the resin layer 14, and the member for electronic devices is provided in the 2nd main surface 16b on the opposite side to the resin layer 14 side.
The glass substrate 16 may be of a general type, and examples thereof include a glass substrate for a display device such as an LCD or an OLED. The glass substrate 16 is excellent in chemical resistance and moisture permeability and has a low heat shrinkage rate. As an index of the heat shrinkage rate, a linear expansion coefficient defined in JIS R 3102 (revised in 1995) is used.
 ガラス基板16の線膨張係数が大きいと、部材形成工程は加熱処理を伴うことが多いので、様々な不都合が生じやすい。例えば、ガラス基板16上にTFTを形成する場合、加熱下でTFTが形成されたガラス基板16を冷却すると、ガラス基板16の熱収縮によって、TFTの位置ずれが過大になるおそれがある。 If the linear expansion coefficient of the glass substrate 16 is large, the member forming process often involves heat treatment, and various inconveniences are likely to occur. For example, when a TFT is formed on the glass substrate 16, if the glass substrate 16 on which the TFT is formed is cooled under heating, the TFT may be displaced excessively due to thermal contraction of the glass substrate 16.
 ガラス基板16は、ガラス原料を溶融し、溶融ガラスを板状に成形して得られる。このような成形方法は、一般的なものであってよく、例えば、フロート法、フュージョン法、スロットダウンドロー法、フルコール法、ラバース法などが用いられる。また、特に厚さが薄いガラス基板16は、いったん板状に成形したガラスを成形可能温度に加熱し、延伸などの手段で引き伸ばして薄くする方法(リドロー法)で成形して得られる。 The glass substrate 16 is obtained by melting a glass raw material and molding the molten glass into a plate shape. Such a molding method may be a general one, and for example, a float method, a fusion method, a slot down draw method, a full call method, a rubber method, or the like is used. The glass substrate 16 having a particularly small thickness can be obtained by heating a glass once formed into a plate shape to a moldable temperature and then stretching it by means of stretching or the like to make it thin (redraw method).
 ガラス基板16のガラスは、特に限定されないが、無アルカリホウケイ酸ガラス、ホウケイ酸ガラス、ソーダライムガラス、高シリカガラス、その他の酸化ケイ素を主な成分とする酸化物系ガラスが好ましい。酸化物系ガラスとしては、酸化物換算による酸化ケイ素の含有量が40~90質量%のガラスが好ましい。 The glass of the glass substrate 16 is not particularly limited, but non-alkali borosilicate glass, borosilicate glass, soda lime glass, high silica glass, and other oxide-based glasses mainly composed of silicon oxide are preferable. As the oxide-based glass, a glass having a silicon oxide content of 40 to 90% by mass in terms of oxide is preferable.
 ガラス基板16のガラスとしては、電子デバイス用部材の種類やその製造工程に適したガラスが採用される。例えば、液晶パネル用のガラス基板は、アルカリ金属成分の溶出が液晶に影響を与えやすいことから、アルカリ金属成分を実質的に含まないガラス(無アルカリガラス)からなる(ただし、通常アルカリ土類金属成分は含まれる)。このように、ガラス基板16のガラスは、適用されるデバイスの種類およびその製造工程に基づいて適宜選択される。 As the glass of the glass substrate 16, glass suitable for the type of electronic device member and the manufacturing process thereof is employed. For example, a glass substrate for a liquid crystal panel is made of glass (non-alkali glass) that does not substantially contain an alkali metal component because the elution of an alkali metal component easily affects the liquid crystal (however, usually an alkaline earth metal) Ingredients are included). Thus, the glass of the glass substrate 16 is appropriately selected based on the type of device to be applied and its manufacturing process.
 ガラス基板16の厚さは、ガラス基板16の薄型化および/または軽量化の観点から、0.3mm以下であることが好ましく、より好ましくは0.15mm以下である。0.3mm以下の場合、ガラス基板16に良好なフレキシブル性を与えることが可能である。0.15mm以下の場合、ガラス基板16をロール状に巻き取ることが可能である。
 また、ガラス基板16の厚さは、ガラス基板16の製造が容易であること、ガラス基板16の取り扱いが容易であることなどの理由から、0.03mm以上であることが好ましい。
The thickness of the glass substrate 16 is preferably 0.3 mm or less, more preferably 0.15 mm or less, from the viewpoint of reducing the thickness and / or weight of the glass substrate 16. In the case of 0.3 mm or less, it is possible to give good flexibility to the glass substrate 16. In the case of 0.15 mm or less, the glass substrate 16 can be rolled up.
Further, the thickness of the glass substrate 16 is preferably 0.03 mm or more for reasons such as easy manufacture of the glass substrate 16 and easy handling of the glass substrate 16.
 なお、ガラス基板16は2層以上からなっていてもよく、この場合、各々の層を形成する材料は同種材料であってもよいし、異種材料であってもよい。また、この場合、「ガラス基板16の厚さ」は全ての層の合計の厚さを意味するものとする。 The glass substrate 16 may be composed of two or more layers. In this case, the material forming each layer may be the same material or a different material. In this case, “the thickness of the glass substrate 16” means the total thickness of all the layers.
[支持板]
 支持板12は、ガラス基板16を支持して補強し、後述する部材形成工程(電子デバイス用部材を製造する工程)において電子デバイス用部材の製造の際にガラス基板の変形、傷付き、破損などを防止する。
 支持板12としては、例えば、ガラス板、プラスチック板、SUS板などの金属板などが用いられる。通常、部材形成工程が熱処理を伴うため、支持板12はガラス基板16との線膨張係数の差の小さい材料で形成されることが好ましく、ガラス基板16と同一材料で形成されることがより好ましく、支持板12はガラス板であることが好ましい。特に、支持板12は、ガラス基板16と同じガラス材料からなるガラス板であることが好ましい。
[Support plate]
The support plate 12 supports and reinforces the glass substrate 16, and the glass substrate is deformed, scratched, damaged, etc. during the manufacture of the electronic device member in the member forming step (step of manufacturing the electronic device member) described later. To prevent.
As the support plate 12, for example, a metal plate such as a glass plate, a plastic plate, or a SUS plate is used. Usually, since the member forming process involves heat treatment, the support plate 12 is preferably formed of a material having a small difference in linear expansion coefficient from the glass substrate 16, and more preferably formed of the same material as the glass substrate 16. The support plate 12 is preferably a glass plate. In particular, the support plate 12 is preferably a glass plate made of the same glass material as the glass substrate 16.
 支持板12の厚さは、ガラス基板16よりも厚くてもよいし、薄くてもよい。好ましくは、ガラス基板16の厚さ、樹脂層14の厚さ、および積層体10の厚さに基づいて、支持板12の厚さが選択される。例えば、現行の部材形成工程が厚さ0.5mmの基板を処理するように設計されたものであって、ガラス基板16の厚さと樹脂層14の厚さとの和が0.1mmの場合、支持板12の厚さを0.4mmとする。支持板12の厚さは、通常の場合、0.2~5.0mmであることが好ましい。 The thickness of the support plate 12 may be thicker or thinner than the glass substrate 16. Preferably, the thickness of the support plate 12 is selected based on the thickness of the glass substrate 16, the thickness of the resin layer 14, and the thickness of the laminate 10. For example, when the current member forming process is designed to process a substrate having a thickness of 0.5 mm, and the sum of the thickness of the glass substrate 16 and the thickness of the resin layer 14 is 0.1 mm, the support is provided. The thickness of the plate 12 is 0.4 mm. In general, the thickness of the support plate 12 is preferably 0.2 to 5.0 mm.
 支持板12がガラス板の場合、ガラス板の厚さは、扱いやすく、割れにくいなどの理由から、0.08mm以上であることが好ましい。また、ガラス板の厚さは、電子デバイス用部材形成後に剥離する際に、割れずに適度に撓むような剛性が望まれる理由から、1.0mm以下であることが好ましい。 When the support plate 12 is a glass plate, the thickness of the glass plate is preferably 0.08 mm or more because it is easy to handle and difficult to break. Further, the thickness of the glass plate is preferably 1.0 mm or less because the rigidity is desired so that the glass plate is appropriately bent without being broken when it is peeled off after forming the electronic device member.
 支持板12とガラス基板16との25~300℃における平均線膨張係数(以下、単に「平均線膨張係数」という)の差は、好ましくは500×10-7/℃以下であり、より好ましくは300×10-7/℃以下であり、さらに好ましくは200×10-7/℃以下である。差が大き過ぎると、部材形成工程における加熱冷却時に、積層体10が激しく反ったり、支持板12とガラス基板16とが剥離したりする可能性がある。支持板12の材料がガラス基板16の材料と同じ場合、このような問題が生じるのを抑制することができる。 The difference in average linear expansion coefficient between the support plate 12 and the glass substrate 16 at 25 to 300 ° C. (hereinafter simply referred to as “average linear expansion coefficient”) is preferably 500 × 10 −7 / ° C. or less, more preferably It is 300 × 10 −7 / ° C. or less, more preferably 200 × 10 −7 / ° C. or less. If the difference is too large, the laminated body 10 may be warped severely or the support plate 12 and the glass substrate 16 may be peeled off during heating and cooling in the member forming process. When the material of the support plate 12 is the same as the material of the glass substrate 16, it can suppress that such a problem arises.
[樹脂層]
 樹脂層14は、ガラス基板16と支持板12と、を分離する操作が行われるまでガラス基板16の位置ずれを防止すると共に、ガラス基板16などが分離操作によって破損するのを防止する。樹脂層14のガラス基板16と接する表面14aは、ガラス基板16の第1主面16aに密着する。樹脂層14はガラス基板16の第1主面16aに弱い結合力で結合しており、その界面の剥離強度(x)は、樹脂層14と支持板12との間の界面の剥離強度(y)よりも低い場合が多い。樹脂層14とガラス基板16の界面の結合力は、積層体10のガラス基板16の面(第2主面16b)上に電子デバイス用部材を形成する前後に変化してもよい(すなわち、剥離強度(x)が変化してもよい)。しかし、電子デバイス用部材を形成した後であっても、剥離強度(x)は、剥離強度(y)よりも低いことが好ましい。
[Resin layer]
The resin layer 14 prevents displacement of the glass substrate 16 until the operation of separating the glass substrate 16 and the support plate 12 is performed, and prevents the glass substrate 16 and the like from being damaged by the separation operation. The surface 14 a of the resin layer 14 that contacts the glass substrate 16 is in close contact with the first main surface 16 a of the glass substrate 16. The resin layer 14 is bonded to the first main surface 16a of the glass substrate 16 with a weak bonding force, and the peel strength (x) of the interface is the peel strength (y of the interface between the resin layer 14 and the support plate 12). ) In many cases. The bonding force at the interface between the resin layer 14 and the glass substrate 16 may change before and after the electronic device member is formed on the surface (second main surface 16b) of the glass substrate 16 of the laminate 10 (that is, peeling). Intensity (x) may vary). However, even after the electronic device member is formed, the peel strength (x) is preferably lower than the peel strength (y).
 樹脂層14とガラス基板16の層とは弱い接着力やファンデルワールス力に起因する結合力で結合していると考えられる。樹脂層14を形成した後その表面にガラス基板16を積層する場合、樹脂層14の架橋シリコーン樹脂が接着力を示さないほど充分に架橋している場合はファンデルワールス力に起因する結合力で結合していると考えられる。しかし、上記のように、樹脂層14の架橋シリコーン樹脂は、ある程度の弱い接着力を有することが少なくない。たとえ接着性が極めて低い場合であっても、積層体製造後その積層体上に電子デバイス用部材を形成する際には、加熱操作などにより、樹脂層14の架橋シリコーン樹脂はガラス基板面に接着し、樹脂層14とガラス基板16の層との間の結合力は上昇すると考えられる。
 場合により、積層前の樹脂層14の表面や積層前のガラス基板16の第1主面16aに両者間の結合力を弱める処理を行って積層することもできる。積層する面に非接着性処理などを行い、その後積層することにより、樹脂層14とガラス基板16の層の界面の結合力を弱め、剥離強度(x)を低くすることができる。
It is considered that the resin layer 14 and the glass substrate 16 are bonded to each other with a bonding force resulting from a weak adhesive force or van der Waals force. When the glass substrate 16 is laminated on the surface after the resin layer 14 is formed, if the cross-linked silicone resin of the resin layer 14 is sufficiently cross-linked so as not to exhibit adhesive strength, the bonding force due to van der Waals force It is thought that it is united. However, as described above, the crosslinked silicone resin of the resin layer 14 often has a certain degree of weak adhesive strength. Even when the adhesion is extremely low, when a member for an electronic device is formed on the laminate after the laminate is manufactured, the crosslinked silicone resin of the resin layer 14 is adhered to the glass substrate surface by a heating operation or the like. In addition, the bonding force between the resin layer 14 and the glass substrate 16 is considered to increase.
In some cases, the surface of the resin layer 14 before lamination or the first main surface 16a of the glass substrate 16 before lamination can be laminated by performing a treatment for weakening the bonding force between them. By performing non-adhesive treatment or the like on the surface to be laminated and then laminating, the bonding strength at the interface between the resin layer 14 and the glass substrate 16 can be weakened, and the peel strength (x) can be lowered.
 樹脂層14は、接着力や粘着力などの強い結合力で支持板12表面に結合されている。たとえば、後述する硬化性シリコーン樹脂を支持板12表面で架橋硬化させることにより、架橋した樹脂を支持板12表面に接着して、高い結合力を得ることができる。また、支持板12表面と樹脂層14間に強い結合力を生じさせる処理(例えば、カップリング剤を使用した処理)を施して支持板12表面と樹脂層14間の結合力を高めることができる。
 樹脂層14と支持板12の層とが高い結合力で結合していることは、両者の界面の剥離強度(y)が高いことを意味する。
The resin layer 14 is bonded to the surface of the support plate 12 with a strong bonding force such as an adhesive force or an adhesive force. For example, by crosslinking and curing a curable silicone resin, which will be described later, on the surface of the support plate 12, the cross-linked resin can be adhered to the surface of the support plate 12 to obtain a high bonding strength. Moreover, the process (for example, process using a coupling agent) which produces strong bond strength between the support plate 12 surface and the resin layer 14 can be given, and the bond force between the support plate 12 surface and the resin layer 14 can be raised. .
The fact that the resin layer 14 and the layer of the support plate 12 are bonded with a high bonding force means that the peel strength (y) at the interface between them is high.
 樹脂層14の厚さは特に限定されないが、1~5μmであることが好ましく、1~4μmであることがより好ましく、1~3μmであることがさらに好ましい。樹脂層14の厚さがこのような範囲であると、樹脂層14とガラス基板16との間に気泡や異物が介在することがあっても、ガラス基板16のゆがみ欠陥の発生を抑制することができる。また、樹脂層14の厚さが厚すぎると、形成するのに時間および材料を要するため経済的ではない。
 なお、樹脂層14は2層以上からなっていてもよい。この場合「樹脂層14の厚さ」は全ての層の合計の厚さを意味するものとする。
 また、樹脂層14が2層以上からなる場合は、各々の層を形成する樹脂が異なる架橋シリコーン樹脂からなってもよい。
The thickness of the resin layer 14 is not particularly limited, but is preferably 1 to 5 μm, more preferably 1 to 4 μm, and still more preferably 1 to 3 μm. When the thickness of the resin layer 14 is within such a range, even if bubbles or foreign matter may be present between the resin layer 14 and the glass substrate 16, the occurrence of distortion defects in the glass substrate 16 can be suppressed. Can do. In addition, if the thickness of the resin layer 14 is too thick, it takes time and materials to form the resin layer 14 and is not economical.
The resin layer 14 may be composed of two or more layers. In this case, “the thickness of the resin layer 14” means the total thickness of all the layers.
Moreover, when the resin layer 14 consists of two or more layers, the resin which forms each layer may consist of a different crosslinked silicone resin.
 樹脂層14の樹脂は、その材料の特性としてそれ自体の強度を有し、凝集破壊強度(z)以上の応力を受けると樹脂が破壊する。したがって、樹脂層14にその厚さ方向でかつ引き延ばす方向の応力を受け、その応力が凝集破壊強度(z)以上となると樹脂層14が層の内部で破壊する。その結果、破壊面からガラス基板側の樹脂層はガラス基板表面に付着し、破壊面から支持板12側の樹脂層14はガラス基板16表面に付着する。したがって、電子デバイス用部材付き積層体において樹脂層14の樹脂が凝集破壊すると、一方は第1主面16aに樹脂が付着した部材付ガラス基板となり、他方は表面に樹脂が付着した支持板12となる。
 架橋シリコーン樹脂の凝集破壊強度(z)は、その材料としての特性として、樹脂層14と支持板12の層と間の結合力を特に低くすることがない限り、上記剥離強度(y)よりも高くなることは少ない。一方、上記剥離強度(x)と比較すると、凝集破壊強度(z)は、剥離強度(x)よりも低くなることも高くなることもある。上記のように、剥離強度(x)は調整することができ、また変化することもある。特に、ガラス基板16の第2主面16b上に電子デバイス用部材を形成する際に剥離強度(x)が上昇しやすく、これにより、凝集破壊強度(z)は剥離強度(x)よりも低くなりやすい。
 樹脂層14が凝集破壊した場合、ガラス基板16の第1主面16aの全面に樹脂が付着するとは限らない。凝集破壊強度(z)と剥離強度(x)との差が小さい場合、樹脂層14とガラス基板16の層が部分的に界面剥離し、ガラス基板表面の第1主面16aの一部に樹脂が付着していない面が生じることもある。
The resin of the resin layer 14 has its own strength as a characteristic of the material, and the resin breaks when subjected to a stress greater than the cohesive failure strength (z). Therefore, when the resin layer 14 receives stress in the thickness direction and in the extending direction, and the stress exceeds the cohesive failure strength (z), the resin layer 14 breaks inside the layer. As a result, the resin layer on the glass substrate side from the fracture surface adheres to the glass substrate surface, and the resin layer 14 on the support plate 12 side from the fracture surface adheres to the glass substrate 16 surface. Therefore, when the resin of the resin layer 14 cohesively breaks in the laminate with the member for electronic devices, one becomes a glass substrate with a member with the resin attached to the first main surface 16a, and the other has the support plate 12 with the resin attached to the surface. Become.
The cohesive failure strength (z) of the cross-linked silicone resin is higher than the peel strength (y) as long as the bonding strength between the resin layer 14 and the support plate 12 is not particularly lowered as a characteristic of the material. It is rare to get high. On the other hand, when compared with the peel strength (x), the cohesive failure strength (z) may be lower or higher than the peel strength (x). As noted above, the peel strength (x) can be adjusted and can vary. In particular, when the electronic device member is formed on the second main surface 16b of the glass substrate 16, the peel strength (x) is likely to increase, whereby the cohesive failure strength (z) is lower than the peel strength (x). Prone.
When the resin layer 14 is coherently broken, the resin does not always adhere to the entire first main surface 16a of the glass substrate 16. When the difference between the cohesive failure strength (z) and the peel strength (x) is small, the resin layer 14 and the glass substrate 16 are partially peeled at the interface, and the resin is formed on a part of the first main surface 16a on the glass substrate surface. There may be a surface that is not attached.
[架橋シリコーン樹脂]
 樹脂層14は架橋シリコーン樹脂からなる。架橋シリコーン樹脂は、硬化性シリコーン樹脂を架橋硬化して得られる。本発明における硬化性シリコーン樹脂は、モノマーである加水分解性オルガノシラン化合物の混合物(モノマー混合物)であるか、またはモノマー混合物を部分加水分解縮合反応させて得られる部分加水分解縮合物である。また、部分加水分解縮合物とモノマーの混合物であってもよい。本発明における硬化性シリコーン樹脂としてはモノマー混合物の部分加水分解縮合物が好ましい。
 硬化性シリコーン樹脂を架橋硬化させるためには、通常加熱により架橋反応を進めて硬化させる(すなわち、熱硬化させる)。硬化性シリコーン樹脂を熱硬化させることにより、架橋シリコーン樹脂が得られる。ただし、硬化に必ずしも加熱を必要としない場合もあり、室温硬化させることもできる。
[Crosslinked silicone resin]
The resin layer 14 is made of a crosslinked silicone resin. The crosslinked silicone resin is obtained by crosslinking and curing a curable silicone resin. The curable silicone resin in the present invention is a mixture (monomer mixture) of hydrolyzable organosilane compounds as monomers, or a partial hydrolysis condensate obtained by subjecting the monomer mixture to a partial hydrolysis condensation reaction. Moreover, the mixture of a partial hydrolysis-condensation product and a monomer may be sufficient. The curable silicone resin in the present invention is preferably a partially hydrolyzed condensate of a monomer mixture.
In order to crosslink and cure the curable silicone resin, it is usually cured by proceeding with a crosslinking reaction by heating (that is, thermosetting). A crosslinked silicone resin can be obtained by thermally curing the curable silicone resin. However, there are cases where heating is not necessarily required for curing, and room temperature curing can also be performed.
 通常、架橋シリコーン樹脂は、T単位と呼ばれる3官能オルガノシロキシ単位とD単位と呼ばれる2官能オルガノシロキシ単位とからなる。場合により、M単位と呼ばれる1官能オルガノシロキシ単位やQ単位と呼ばれる4官能オルガノシロキシ単位を含むこともある。なお、Q単位はケイ素原子に結合した有機基(ケイ素原子に結合した炭素原子を有する有機基)を有しない単位であるが、本発明においてはオルガノシロキシ単位とみなす。本発明における後述するオルガノシロキシ単位(A-1)や後述するオルガノシロキシ単位(B-2)はT単位であり、後述するオルガノシロキシ単位(B-1)や後述するオルガノシロキシ単位(A-2)はD単位である。なお、以下、オルガノシロキシ単位(A-1)を単に(A-1)単位、オルガノシロキシ単位(B-1)を単に(B-1)単位ともいう。他のオルガノシロキシ単位についても同様である。
 通常、架橋シリコーン樹脂におけるM単位は架橋シリコーン樹脂や硬化性シリコーン樹脂の分子量を調節するために使用され、Q単位は架橋点を増大させるために使用される。本発明における架橋シリコーン樹脂はM単位もQ単位も必要とせず、M単位もQ単位も含まないことが好ましく、含む場合があったとしてもその数は少ないことが好ましい。
 本発明における架橋シリコーン樹脂の全オルガノシロキシ単位に対するT単位とD単位の合計の割合は、本発明の効果がより優れる点で、90~100モル%が好ましく、95~100モル%がより好ましい。本発明における架橋シリコーン樹脂がM単位および/またはQ単位を含む場合、M単位とQ単位の割合はそれぞれ10モル%未満(ただし、両者の合計は10モル%未満)が好ましく、それぞれ5モル%未満(ただし、両者の合計は5モル%未満)が好ましい。本発明における架橋シリコーン樹脂はM単位とQ単位のいずれも含まないことが特に好ましい。
 架橋シリコーン樹脂がM単位を多く含む場合は樹脂の耐熱性が低下しやすく、Q単位を多く含む場合は樹脂の脆性が大きくなりやすく、いずれも本発明のおける樹脂層の材料として適しないおそれが生じる。
Usually, the crosslinked silicone resin is composed of a trifunctional organosiloxy unit called a T unit and a bifunctional organosiloxy unit called a D unit. In some cases, a monofunctional organosiloxy unit called M unit or a tetrafunctional organosiloxy unit called Q unit may be contained. The Q unit is a unit that does not have an organic group bonded to a silicon atom (an organic group having a carbon atom bonded to a silicon atom), but is regarded as an organosiloxy unit in the present invention. The organosiloxy unit (A-1) and organosiloxy unit (B-2) described later in the present invention are T units, and the organosiloxy unit (B-1) and organosiloxy unit (A-2) described below are T units. ) Is D units. Hereinafter, the organosiloxy unit (A-1) is also simply referred to as (A-1) unit, and the organosiloxy unit (B-1) is also simply referred to as (B-1) unit. The same applies to other organosiloxy units.
Usually, the M unit in the crosslinked silicone resin is used to adjust the molecular weight of the crosslinked silicone resin or curable silicone resin, and the Q unit is used to increase the crosslinking point. The cross-linked silicone resin in the present invention does not require M units or Q units, and preferably contains neither M units nor Q units, and even if included, the number is preferably small.
In the present invention, the ratio of the total of T units and D units to all organosiloxy units of the crosslinked silicone resin is preferably 90 to 100 mol%, more preferably 95 to 100 mol%, from the viewpoint that the effect of the present invention is more excellent. When the cross-linked silicone resin in the present invention contains M units and / or Q units, the proportion of M units and Q units is preferably less than 10 mol% (however, the sum of both is less than 10 mol%), and each is 5 mol%. Is preferable (however, the sum of both is less than 5 mol%). It is particularly preferred that the crosslinked silicone resin in the present invention contains neither M units nor Q units.
When the cross-linked silicone resin contains a large amount of M units, the heat resistance of the resin tends to decrease, and when it contains a large amount of Q units, the brittleness of the resin tends to increase, which may not be suitable as a material for the resin layer in the present invention. Arise.
 本発明における架橋シリコーン樹脂は、後述する式(1)で表されるオルガノシロキシ単位(A-1)と、後述する式(2)で表されるオルガノシロキシ単位(B-1)と、を含む。全オルガノシロキシ単位に対する(A-1)単位と(B-1)単位の合計量((A-1)+(B-1)で表わす)の割合は70~100モル%であり、30モル%未満は(A-1)単位以外のT単位、(B-1)単位以外のD単位、M単位およびQ単位の合計量である。M単位とQ単位は含まないことが好ましく、その場合30モル%未満は(A-1)単位以外のT単位と(B-1)単位以外のD単位の合計量である。全オルガノシロキシ単位に対する(A-1)+(B-1)の割合は85~100モル%であることが好ましく、90~100モル%であることがより好ましい。残余の単位は(A-1)単位以外のT単位(特に後述のオルガノシロキシ単位(B-2)が好ましい)および/または(B-1)単位以外のD単位(特に後述のオルガノシロキシ単位(A-2)が好ましい)であることが好ましい。 The crosslinked silicone resin in the present invention includes an organosiloxy unit (A-1) represented by the formula (1) described later and an organosiloxy unit (B-1) represented by the formula (2) described later. . The ratio of the total amount of (A-1) units and (B-1) units (represented by (A-1) + (B-1)) to all organosiloxy units is 70 to 100 mol%, and 30 mol% Below is the total amount of T units other than (A-1) units, D units other than (B-1) units, M units and Q units. M units and Q units are preferably not included. In this case, less than 30 mol% is the total amount of T units other than (A-1) units and D units other than (B-1) units. The ratio of (A-1) + (B-1) to all organosiloxy units is preferably 85 to 100 mol%, more preferably 90 to 100 mol%. The remaining units are T units other than the (A-1) unit (especially the organosiloxy unit (B-2) described later is preferred) and / or D units other than the (B-1) unit (especially the organosiloxy unit described later ( A-2) is preferred).
 本発明における架橋シリコーン樹脂において、(A-1)単位と(B-1)単位の合計に対する(A-1)単位の割合、すなわち(A-1)/[(A-1)+(B-1)]は、15~50モル%である。より好ましいこの割合は20~40モル%である。
 (A-1)単位が15モル%未満の場合、架橋シリコーン樹脂の耐熱性が劣り、樹脂層にボイドなどが生じやすく、一方、(A-1)単位が50モル%超の場合、樹脂の脆性が大きくなり樹脂層にクラックなどが生じやすく、いずれも樹脂層形成時に表面の平坦性が低下しやすく、その樹脂層表面にガラス基板を積層することが困難になりやすい。
In the crosslinked silicone resin of the present invention, the ratio of the (A-1) unit to the total of the (A-1) unit and the (B-1) unit, that is, (A-1) / [(A-1) + (B− 1)] is 15 to 50 mol%. A more preferred ratio is 20 to 40 mol%.
When the (A-1) unit is less than 15 mol%, the heat resistance of the crosslinked silicone resin is poor, and voids and the like are likely to occur in the resin layer. On the other hand, when the (A-1) unit is more than 50 mol%, The brittleness increases and cracks or the like are likely to occur in the resin layer. In either case, the flatness of the surface tends to be lowered during the formation of the resin layer, and it is difficult to laminate a glass substrate on the surface of the resin layer.
 架橋シリコーン樹脂が(A-1)単位以外のT単位や(B-1)単位以外のD単位を含む場合、(A-1)単位を含めた全T単位と(B-1)単位を含めた全D単位の合計量に対する全T単位の割合、すなわちT/[T+D]は、15~50モル%であることが好ましく、20~40モル%であることがより好ましい。T単位の割合が15モル%未満となると架橋シリコーン樹脂の耐熱性が低下しやすく、T単位の割合が50モル%超となると架橋シリコーン樹脂の脆性が大きくなりやすい。 When the crosslinked silicone resin contains T units other than (A-1) units and D units other than (B-1) units, all T units including (A-1) units and (B-1) units are included. The ratio of all T units to the total amount of all D units, that is, T / [T + D] is preferably 15 to 50 mol%, more preferably 20 to 40 mol%. When the proportion of T units is less than 15 mol%, the heat resistance of the crosslinked silicone resin tends to decrease, and when the proportion of T units exceeds 50 mol%, the brittleness of the crosslinked silicone resin tends to increase.
 本発明におけるオルガノシロキシ単位(A-1)は下記式(1)で表わされる単位であり、オルガノシロキシ単位(B-1)は下記式(2)で表わされる単位である。ただし、下記式(1)および式(2)において、R1は水素原子または炭素原子数1~4のアルキル基を表す。R6、R7は、それぞれ独立に、炭素原子数1~4のアルキル基を表す。 In the present invention, the organosiloxy unit (A-1) is a unit represented by the following formula (1), and the organosiloxy unit (B-1) is a unit represented by the following formula (2). However, in the following formulas (1) and (2), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. R 6 and R 7 each independently represents an alkyl group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)で示されるように、(A-1)単位はフェニル基を有するT単位であり、該フェニル基は炭素原子数1~4のアルキル基を有していてもよい。R1は水素原子または炭素原子数1または2のアルキル基が好ましく、特に水素原子が好ましい。式(2)で示されるように、(B-1)単位は2つのアルキル基を有するD単位である。2つのアルキル基はそれぞれメチル基またはエチル基であることが好ましく、いずれもメチル基であることがより好ましい。
 芳香環がケイ素原子に結合したオルガノシロキシ単位を有する架橋シリコーン樹脂は、アルキル基がケイ素原子に結合したオルガノシロキシ単位を有する架橋シリコーン樹脂に比較して耐熱性が高い。T単位の割合が大きな架橋シリコーン樹脂は耐熱性が良好であっても脆性が大きくなりやすいが、本発明おける架橋シリコーン樹脂は芳香環を有するT単位を有することにより、T単位の割合がある程度少ないものであっても、耐熱性が高く脆性が低い架橋シリコーン樹脂となる。
As represented by the formula (1), the unit (A-1) is a T unit having a phenyl group, and the phenyl group may have an alkyl group having 1 to 4 carbon atoms. R 1 is preferably a hydrogen atom or an alkyl group having 1 or 2 carbon atoms, and particularly preferably a hydrogen atom. As shown in Formula (2), the unit (B-1) is a D unit having two alkyl groups. The two alkyl groups are each preferably a methyl group or an ethyl group, more preferably a methyl group.
A crosslinked silicone resin having an organosiloxy unit in which an aromatic ring is bonded to a silicon atom has higher heat resistance than a crosslinked silicone resin having an organosiloxy unit in which an alkyl group is bonded to a silicon atom. Crosslinked silicone resins having a large proportion of T units tend to be brittle even when heat resistance is good, but the crosslinked silicone resin in the present invention has a T unit having an aromatic ring so that the proportion of T units is small to some extent. Even if it is a thing, it becomes a crosslinked silicone resin with high heat resistance and low brittleness.
 (A-1)単位以外の芳香環がケイ素原子に結合したオルガノシロキシ単位としては下記式(3)で表されるオルガノシロキシ単位(A-2)が好ましく、オルガノシロキシ単位(B-1)以外のアルキル基がケイ素原子に結合したオルガノシロキシ単位としては下記式(4)で表されるオルガノシロキシ単位(B-2)が好ましい。(A-2)単位はD単位であり、(B-2)単位はT単位である。下記式(3)および式(4)において、R1は水素原子または炭素原子数1~4のアルキル基を表し、R2は炭素原子数1~4のアルキル基を表す。R6は炭素原子数1~4のアルキル基を表す。 The organosiloxy unit in which an aromatic ring other than the unit (A-1) is bonded to a silicon atom is preferably an organosiloxy unit (A-2) represented by the following formula (3), and other than the organosiloxy unit (B-1) The organosiloxy unit in which the alkyl group is bonded to a silicon atom is preferably an organosiloxy unit (B-2) represented by the following formula (4). The unit (A-2) is a D unit, and the unit (B-2) is a T unit. In the following formulas (3) and (4), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms. R 6 represents an alkyl group having 1 to 4 carbon atoms.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 (A-1)単位や(A-2)単位以外の芳香環がケイ素原子に結合したオルガノシロキシ単位としては、2つの芳香環を有するD単位がある。また、(B-1)単位や(B-2)単位以外のアルキル基がケイ素原子に結合したオルガノシロキシ単位としては、炭素数が5以上のアルキル基を有するD単位やT単位がある。しかしこれらの単位を有する架橋シリコーン樹脂は機械的物性などの特性が不充分になるおそれがあり、本発明における架橋シリコーン樹脂としてはこのようなオルガノシロキシ単位を含まないものが好ましい。 An organosiloxy unit in which an aromatic ring other than the unit (A-1) or the unit (A-2) is bonded to a silicon atom includes a D unit having two aromatic rings. Examples of the organosiloxy unit in which an alkyl group other than the (B-1) unit or the (B-2) unit is bonded to a silicon atom include a D unit and a T unit having an alkyl group having 5 or more carbon atoms. However, the crosslinked silicone resin having these units may have insufficient properties such as mechanical properties, and the crosslinked silicone resin in the present invention preferably does not contain such an organosiloxy unit.
 本発明における架橋シリコーン樹脂は、(A-2)単位および(B-2)単位のいずれか少なくとも一方を含んでいてもよい。本発明における架橋シリコーン樹脂が(A-1)単位、(B-1)単位、および(A-2)単位と(B-2)単位のいずれか少なくとも一方からなる場合、上記T単位とD単位の合計に対するT単位の割合は[(A-1)+(A-2)+(B-1)+(B-2)]に対する[(A-1)+(B-2)]の割合であり、15~50モル%が好ましく、20~40モル%であることがより好ましい。
 また、全オルガノシロキシ単位に対する芳香環を有するオルガノシロキシ単位の割合、すなわち[(A-1)+(A-2)+(B-1)+(B-2)]に対する[(A-1)+(A-2)]の割合は20~40モル%が好ましい。より好ましいこの割合は、20~30モル%である。
 なお、上記のように全オルガノシロキシ単位に対する(A-1)単位と(B-1)単位の合計の割合、すなわち、[(A-1)+(A-2)+(B-1)+(B-2)]に対する[(A-1)+(B-1)]の割合は70~100モル%であり、85~100モル%であることが好ましく、95~100モル%であることがより好ましい。
The crosslinked silicone resin in the present invention may contain at least one of (A-2) unit and (B-2) unit. When the crosslinked silicone resin in the present invention comprises at least one of (A-1) unit, (B-1) unit, and (A-2) unit and (B-2) unit, the above T unit and D unit The ratio of T unit to the total of [(A-1) + (A-2) + (B-1) + (B-2)] is the ratio of [(A-1) + (B-2)] 15 to 50 mol% is preferable, and 20 to 40 mol% is more preferable.
Further, the ratio of the organosiloxy unit having an aromatic ring to the total organosiloxy unit, that is, [(A-1) to [(A-1) + (A-2) + (B-1) + (B-2)]. The ratio of + (A-2)] is preferably 20 to 40 mol%. A more preferable ratio is 20 to 30 mol%.
As described above, the ratio of the total of (A-1) units and (B-1) units to all organosiloxy units, ie, [(A-1) + (A-2) + (B-1) + The ratio of [(A-1) + (B-1)] to (B-2)] is 70 to 100 mol%, preferably 85 to 100 mol%, and 95 to 100 mol%. Is more preferable.
 本発明における架橋シリコーン樹脂は、上記式(1)および式(3)において下記式(9)で表わされるフェニル基(X)と、上記式(2)および(4)におけるR6および/またはR7で表されるアルキル基(Y)の比が、[(X)]/[(X)+(Y)]=10~40(モル%)であることが好ましく、10~20(モル%)であることがより好ましい。10(モル%)以上であれば耐熱性が良好であり、形成した樹脂層の平滑性が保たれるために良好に積層できる。40(モル%)以下であれば良好に積層できる程度の粘着性を有する。 The cross-linked silicone resin in the present invention includes a phenyl group (X) represented by the following formula (9) in the above formulas (1) and (3), and R 6 and / or R in the above formulas (2) and (4). The ratio of the alkyl group (Y) represented by 7 is preferably [(X)] / [(X) + (Y)] = 10 to 40 (mol%), preferably 10 to 20 (mol%). It is more preferable that If it is 10 (mol%) or more, the heat resistance is good and the smoothness of the formed resin layer is maintained, so that it can be laminated satisfactorily. If it is 40 (mol%) or less, it has the adhesiveness of the grade which can be laminated | stacked favorably.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(9)中、R1は水素原子または炭素原子数1~4のアルキル基を表す。 In the formula (9), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
[硬化性シリコーン樹脂]
 本発明における架橋シリコーン樹脂における各オルガノシロキシ単位はモノマーである加水分解性オルガノシラン化合物から生じる。加水分解性オルガノシラン化合物における加水分解性基は、アルコキシ基が好ましいがこれに限られず、塩素原子などのハロゲン原子、アシル基、アミノ基、アルコキシアルコキシ基などであってもよい。
 架橋シリコーン樹脂となる硬化性シリコーン樹脂としては、モノマーである加水分解性オルガノシラン化合物の混合物であってもよいが、加水分解性オルガノシラン化合物の混合物から得られる部分加水分解縮合物が好ましい。部分加水分解縮合物はシラノール基を有し、シラノール基同士の脱水縮合により架橋して架橋シリコーン樹脂となる。部分加水分解縮合物は加水分解性基を含むこともあり、加水分解性基とシラノール基の縮合反応や加水分解性基同士の縮合反応により架橋硬化することもある。
[Curable silicone resin]
Each organosiloxy unit in the crosslinked silicone resin in the present invention is generated from a hydrolyzable organosilane compound as a monomer. The hydrolyzable group in the hydrolyzable organosilane compound is preferably an alkoxy group, but is not limited thereto, and may be a halogen atom such as a chlorine atom, an acyl group, an amino group, or an alkoxyalkoxy group.
The curable silicone resin to be a crosslinked silicone resin may be a mixture of hydrolyzable organosilane compounds as monomers, but a partial hydrolysis condensate obtained from a mixture of hydrolyzable organosilane compounds is preferred. The partially hydrolyzed condensate has silanol groups and is crosslinked by dehydration condensation between the silanol groups to form a crosslinked silicone resin. The partially hydrolyzed condensate may contain a hydrolyzable group, and may be crosslinked and cured by a condensation reaction between the hydrolyzable group and the silanol group or a condensation reaction between the hydrolyzable groups.
 モノマーである加水分解性オルガノシラン化合物としては、加水分解性基としてアルコキシ基を有するアルコキシシラン化合物が好ましい。(A-1)単位となるアルコキシシラン化合物としては下記式(5)で表わされる化合物が好ましく、(B-1)単位となるアルコキシシラン化合物としては下記式(6)で表わされる化合物が好ましい。 As the hydrolyzable organosilane compound which is a monomer, an alkoxysilane compound having an alkoxy group as a hydrolyzable group is preferable. As the alkoxysilane compound serving as the (A-1) unit, a compound represented by the following formula (5) is preferable, and as the alkoxysilane compound serving as the (B-1) unit, a compound represented by the following formula (6) is preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 上記式(5)、式(6)において、R1、R6、R7は、それぞれ上記式(1)、式(2)におけるR1、R6、R7と同じである。R3、R4、R5、R8、およびR9は、それぞれ独立に、炭素原子数1~4のアルキル基を表す。
 R3、R4、R5、R8、R9は、それぞれ独立に、メチル基またはエチル基であることが好ましく、特にR3、R4、R5はいずれもメチル基であることが好ましく、R8、R9はいずれもエチル基であることが好ましい。
The formula (5), in equation (6), R 1, R 6, R 7 are each the above formula (1) is the same as R 1, R 6, R 7 in formula (2). R 3 , R 4 , R 5 , R 8 , and R 9 each independently represents an alkyl group having 1 to 4 carbon atoms.
R 3 , R 4 , R 5 , R 8 , and R 9 are each independently preferably a methyl group or an ethyl group, and R 3 , R 4 , and R 5 are preferably all methyl groups. , R 8 and R 9 are all preferably ethyl groups.
 (A-2)単位となるアルコキシシラン化合物としては下記式(7)で表わされる化合物が好ましく、(B-2)単位となるアルコキシシラン化合物としては下記式(8)で表わされる化合物が好ましい。 As the alkoxysilane compound serving as the (A-2) unit, a compound represented by the following formula (7) is preferable, and as the alkoxysilane compound serving as the (B-2) unit, a compound represented by the following formula (8) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(7)、式(8)において、R1、R2、R6は、それぞれ上記式(3)、式(4)におけるR1、R2、R6と同じである。R3、R4、R8、R9、R10は、それぞれ独立に、炭素原子数1~4のアルキル基を表す。
 R3、R4、R8、R9、R10は、それぞれ独立に、メチル基またはエチル基であることが好ましく、特にR3、R4はいずれもメチル基であることが好ましく、R8、R9、R10はいずれもエチル基であることが好ましい。
The equation (7), in equation (8), R 1, R 2, R 6 are each the above formula (3) is the same as R 1, R 2, R 6 in the formula (4). R 3 , R 4 , R 8 , R 9 and R 10 each independently represents an alkyl group having 1 to 4 carbon atoms.
R 3, R 4, R 8, R 9, R 10 each independently represents preferably a methyl group or an ethyl group, particularly preferably R 3, R 4 are each a methyl group, R 8 , R 9 and R 10 are all preferably ethyl groups.
 上記式(5)~(8)と上記式(1)~(4)とが示すように、各加水分解性オルガノシラン化合物1分子と各オルガノシロキシ単位の1つとは1対1に対応する。すなわち、架橋シリコーン樹脂における上記各オルガノシロキシ単位の割合は、上記各加水分解性オルガノシラン化合物(モノマー)の割合に対応する。したがって、上記各オルガノシロキシ単位の割合と同じ割合で混合したモノマー混合物やそのモノマー混合物から得られる部分加水分解縮合物を硬化性シリコーン樹脂として使用することにより、上記割合のオルガノシロキシ単位を有する架橋シリコーン樹脂が得られる。
 なお、M単位となる加水分解性オルガノシラン化合物としてはトリメチルエトキシシランなどのトリアルキルアルコキシシラン化合物が好ましく、Q単位となる加水分解性シラン化合物(ただし、本明細書では加水分解性オルガノシラン化合物とみなす)としてはテトラエトキシシランなどのテトラアルコキシシラン化合物が好ましい。
As shown in the above formulas (5) to (8) and the above formulas (1) to (4), one molecule of each hydrolyzable organosilane compound and one of each organosiloxy unit have a one-to-one correspondence. That is, the proportion of each organosiloxy unit in the crosslinked silicone resin corresponds to the proportion of each hydrolyzable organosilane compound (monomer). Therefore, by using a monomer mixture mixed in the same proportion as the proportion of each organosiloxy unit or a partially hydrolyzed condensate obtained from the monomer mixture as a curable silicone resin, a crosslinked silicone having an organosiloxy unit in the proportion described above. A resin is obtained.
In addition, as a hydrolyzable organosilane compound used as M unit, trialkyl alkoxysilane compounds, such as a trimethylethoxysilane, are preferable, and the hydrolyzable silane compound used as Q unit (however, in this specification, hydrolyzable organosilane compound and Tetraalkoxysilane compounds such as tetraethoxysilane are preferred.
 硬化性シリコーン樹脂としては、上記加水分解性オルガノシラン化合物を上記各オルガノシロキシ単位の割合となるように混合したモノマー混合物であってもよい。しかし、反応の制御や取り扱いなどの面から、部分加水分解縮合物であることが好ましい。以下、部分加水分解縮合物を硬化性オリゴマーともいう。
 部分加水分解縮合物は、加水分解性オルガノシラン化合物を上記各オルガノシロキシ単位の割合となるように混合したモノマー混合物を部分的に加水分解縮合させて得られる。部分的に加水分解縮合させる方法は、特に限定されない。通常は加水分解性オルガノシラン化合物の混合物を溶媒中、触媒存在下で反応させて製造される。触媒としては、酸触媒やアルカリ触媒が使用しうるが、反応を制御し適切な分子量の部分加水分解縮合物を得るためにはアルカリ触媒の使用が好ましい。また、加水分解反応には通常、水を使用することが好ましい。本発明に使用する部分加水分解縮合物は、溶媒中で加水分解性オルガノシラン化合物の混合物をアルカリ水溶液の存在下で反応させて製造された物が好ましい。具体的な部分加水分解縮合物の製造方法としては、上記特許文献2に記載の方法(特にその実施例に記載の方法)が好ましい。
The curable silicone resin may be a monomer mixture in which the hydrolyzable organosilane compound is mixed so as to have a proportion of each organosiloxy unit. However, it is preferably a partially hydrolyzed condensate from the aspects of reaction control and handling. Hereinafter, the partially hydrolyzed condensate is also referred to as a curable oligomer.
The partially hydrolyzed condensate is obtained by partially hydrolyzing and condensing a monomer mixture in which a hydrolyzable organosilane compound is mixed so as to have the ratio of each of the above organosiloxy units. The method of partially hydrolytic condensation is not particularly limited. Usually, it is produced by reacting a mixture of a hydrolyzable organosilane compound in a solvent in the presence of a catalyst. As the catalyst, an acid catalyst or an alkali catalyst can be used, but an alkali catalyst is preferably used in order to control the reaction and obtain a partial hydrolysis-condensation product having an appropriate molecular weight. In addition, it is usually preferable to use water for the hydrolysis reaction. The partial hydrolysis-condensation product used in the present invention is preferably a product produced by reacting a mixture of a hydrolyzable organosilane compound in a solvent in the presence of an aqueous alkaline solution. As a specific method for producing a partially hydrolyzed condensate, the method described in Patent Document 2 (particularly, the method described in the Examples) is preferable.
 本発明における硬化性シリコーン樹脂が上記硬化性オリゴマー(すなわち、部分加水分解縮合物)である場合、そのGPC(ゲルパーミエーションクロマトグラフィー)測定による、ポリスチレン換算の重量平均分子量は、5千以上であることが好ましい。より好ましいその重量平均分子量は1万以上である。この分子量が低すぎると架橋反応において副生する水やアルカノールの量が多くなり、架橋シリコーン樹脂中にボイドが生じるおそれが大きくなる。また、重量平均分子量が高くなりすぎると粘度が高くなりすぎたり、溶媒溶解性が低下するなどの不都合をきたすおそれがあることより、硬化性オリゴマーの重量平均分子量は20万以下が好ましく、10万以下がより好ましい。
 硬化性オリゴマーの分子量の調節は、反応条件を制御することにより行うことができる。例えば、硬化性オリゴマーを製造する際の溶媒量を調節し、加水分解性オルガノシラン化合物の濃度を高くすると高分子量物が得られ、濃度を低くすると低分子量物が得られる。
When the curable silicone resin in the present invention is the curable oligomer (that is, a partially hydrolyzed condensate), the polystyrene-reduced weight average molecular weight is 5,000 or more by GPC (gel permeation chromatography) measurement. It is preferable. The weight average molecular weight is more preferably 10,000 or more. If the molecular weight is too low, the amount of water or alkanol by-produced in the crosslinking reaction increases, and the risk of voids occurring in the crosslinked silicone resin increases. Further, if the weight average molecular weight becomes too high, the viscosity becomes too high, or the solvent solubility may be lowered, so that the weight average molecular weight of the curable oligomer is preferably 200,000 or less, preferably 100,000. The following is more preferable.
The molecular weight of the curable oligomer can be adjusted by controlling the reaction conditions. For example, by adjusting the amount of the solvent in producing the curable oligomer and increasing the concentration of the hydrolyzable organosilane compound, a high molecular weight product is obtained, and when the concentration is lowered, a low molecular weight product is obtained.
 上記のように硬化性オリゴマーは反応性基として主にシラノール基を有し、シラノール基同士の反応により架橋して架橋シリコーン樹脂となる。この架橋反応を行うには、硬化性シリコーン樹脂を加熱することが好ましい。シラノール基の架橋反応は脱水縮合反応であり水が副生するが、本発明の積層体の樹脂層が薄いことにより、たとえば支持板上で硬化性オリゴマーの膜を硬化させる際に副生する水を充分に除去することができる。
 架橋のための温度条件は架橋シリコーン樹脂の耐熱性や支持板との接着性を維持する範囲内で特に制限されないが、300~475℃が好ましく、350~450℃がより好ましい。また、加熱時間は、通常、30~300分が好ましく、60~120分がより好ましい。温度が低すぎると、架橋が充分でない樹脂となって樹脂の耐熱性が低下したり樹脂層の平坦性が低下しやすくなり、一方、温度が高すぎると樹脂層の支持板との接着力が低下しやすい。
As described above, the curable oligomer mainly has a silanol group as a reactive group, and is crosslinked by a reaction between the silanol groups to become a crosslinked silicone resin. In order to perform this crosslinking reaction, it is preferable to heat the curable silicone resin. The silanol group cross-linking reaction is a dehydration condensation reaction, and water is by-produced. However, the thin resin layer of the laminate of the present invention causes water to be by-produced when, for example, a curable oligomer film is cured on a support plate. Can be sufficiently removed.
The temperature conditions for crosslinking are not particularly limited as long as the heat resistance of the crosslinked silicone resin and the adhesion to the support plate are maintained, but are preferably 300 to 475 ° C, more preferably 350 to 450 ° C. The heating time is usually preferably 30 to 300 minutes, more preferably 60 to 120 minutes. If the temperature is too low, the resin will not be sufficiently crosslinked and the heat resistance of the resin will decrease or the flatness of the resin layer will tend to decrease, while if the temperature is too high, the adhesive strength of the resin layer to the support plate will be low. It tends to decline.
 上記硬化性オリゴマー以外の硬化性シリコーン樹脂の架橋硬化においては、架橋反応により水以外にアルカノールなども副生することがあるが、水と同様に樹脂中から容易に除去が可能である。これにより、積層体の樹脂層における水などの揮発成分の量を極めて少量とすることでき、積層体のガラス基板表面上に電子デバイス用部材を形成する際の高温条件下において水などの低分子化合物に起因するガス発生が少なくすることができる。 In the crosslinking and curing of curable silicone resins other than the curable oligomer, alkanol and the like may be by-produced in addition to water due to the crosslinking reaction, but can be easily removed from the resin like water. Thereby, the amount of volatile components such as water in the resin layer of the laminate can be made extremely small, and low molecules such as water under high temperature conditions when the electronic device member is formed on the glass substrate surface of the laminate. Gas generation caused by the compound can be reduced.
 支持板12上に樹脂層14を形成するために、支持板12上に硬化性シリコーン樹脂の層を形成し、その硬化性シリコーン樹脂を架橋硬化させて樹脂層14とすることが好ましい。支持板12上に硬化性シリコーン樹脂の層を形成するためには、硬化性シリコーン樹脂を溶媒に溶解させた溶液を使用し、この溶液を支持板12上に塗布して溶液の層を形成し、次いで溶媒を除去して硬化性シリコーン樹脂の層とすることが好ましい。溶液の濃度の調整などにより硬化性シリコーン樹脂の層の厚さを制御することができる。
 溶媒としては、作業環境下で硬化性シリコーン樹脂を容易に溶解でき、かつ、容易に揮発除去させることのできる溶媒であれば、特に限定されるものではない。具体的には、例えば、酢酸ブチル、2-ヘプタノン、1-メトキシ-2-プロパノールアセテート等を例示することができる。架橋反応により得られる樹脂層が平坦になりやすい点で、1-メトキシ-2-プロパノールアセテートが好ましい。
 硬化性シリコーン樹脂と硬化性オリゴマーを含む溶液の固形分濃度としては、30~70質量%が好ましく、40~60質量%がより好ましい。
In order to form the resin layer 14 on the support plate 12, it is preferable that a layer of a curable silicone resin is formed on the support plate 12 and the curable silicone resin is crosslinked and cured to form the resin layer 14. In order to form the curable silicone resin layer on the support plate 12, a solution in which the curable silicone resin is dissolved in a solvent is used, and this solution is applied on the support plate 12 to form a solution layer. Then, the solvent is preferably removed to form a curable silicone resin layer. The thickness of the curable silicone resin layer can be controlled by adjusting the concentration of the solution.
The solvent is not particularly limited as long as it can easily dissolve the curable silicone resin in a working environment and can be easily volatilized and removed. Specific examples include butyl acetate, 2-heptanone, 1-methoxy-2-propanol acetate and the like. 1-methoxy-2-propanol acetate is preferred because the resin layer obtained by the crosslinking reaction tends to be flat.
The solid content concentration of the solution containing the curable silicone resin and the curable oligomer is preferably 30 to 70% by mass, and more preferably 40 to 60% by mass.
[積層体およびその製造方法]
 本発明の積層体10は、上述したように、支持板12とガラス基板16とそれらの間に樹脂層14が存在する積層体である。
 本発明の積層体10の製造方法は特に制限されないが、剥離強度(y)が剥離強度(x)または凝集破壊強度(z)よりも高い積層体を得るために、支持板表面上で硬化性シリコーン樹脂を架橋硬化させて樹脂層を形成する方法が好ましい。すなわち、硬化性シリコーン樹脂の膜を支持板の表面に形成し、支持板表面上で硬化性シリコーン樹脂を架橋硬化させて架橋シリコーン樹脂の膜を形成し、次いで、架橋シリコーン樹脂の膜の表面にガラス基板を積層して、積層体を製造する方法である。
 以下、硬化性シリコーン樹脂の膜を支持板の表面に形成し、支持板表面上で硬化性シリコーン樹脂を架橋硬化させて架橋シリコーン樹脂の膜を形成する工程を樹脂層形成工程、架橋シリコーン樹脂の膜の表面にガラス基板を積層して積層体とする工程を積層工程といい、各工程の手順について詳述する。
[Laminated body and manufacturing method thereof]
As described above, the laminate 10 of the present invention is a laminate in which the support plate 12, the glass substrate 16, and the resin layer 14 exist between them.
The method for producing the laminate 10 of the present invention is not particularly limited, but is curable on the surface of the support plate in order to obtain a laminate having a peel strength (y) higher than the peel strength (x) or the cohesive failure strength (z). A method of forming a resin layer by crosslinking and curing a silicone resin is preferable. That is, a curable silicone resin film is formed on the surface of the support plate, and the curable silicone resin is crosslinked and cured on the surface of the support plate to form a crosslinked silicone resin film. In this method, a glass substrate is laminated to produce a laminate.
Hereinafter, the step of forming a curable silicone resin film on the surface of the support plate and crosslinking and curing the curable silicone resin on the surface of the support plate to form a crosslinked silicone resin film is a resin layer forming step, The process of laminating a glass substrate on the surface of the film to form a laminate is referred to as a lamination process, and the procedure of each process will be described in detail.
(樹脂層形成工程)
 樹脂層形成工程では、上述した硬化性シリコーン樹脂および溶媒を含む溶液を支持板12の表面上に塗布し、溶媒を除去して支持板12の表面上に硬化性シリコーン樹脂の膜を形成する。次いで、支持板12上の硬化性シリコーン樹脂の膜を熱硬化させ、樹脂層14を形成する。より具体的には、図2(A)に示すように、該工程では支持板12の少なくとも片面の表面上に樹脂層14が形成される。
(Resin layer forming process)
In the resin layer forming step, the above-described solution containing the curable silicone resin and the solvent is applied on the surface of the support plate 12, and the solvent is removed to form a film of the curable silicone resin on the surface of the support plate 12. Next, the curable silicone resin film on the support plate 12 is thermally cured to form the resin layer 14. More specifically, as shown in FIG. 2A, in this step, the resin layer 14 is formed on at least one surface of the support plate 12.
 支持板12表面上に硬化性シリコーン樹脂の溶液を塗布する方法は特に限定されず、公知の方法を使用することができる。例えば、スプレーコート法、ダイコート法、スピンコート法、ディップコート法、ロールコート法、バーコート法、スクリーン印刷法、グラビアコート法などが挙げられる。 The method of applying the curable silicone resin solution on the surface of the support plate 12 is not particularly limited, and a known method can be used. Examples thereof include spray coating, die coating, spin coating, dip coating, roll coating, bar coating, screen printing, and gravure coating.
 硬化性シリコーン樹脂はプレキュア(予備硬化)を行った後硬化(本硬化)を行って硬化させることが好ましい。プレキュアを行うことにより耐熱性に優れた樹脂層を得ることができる。プレキュアは溶媒の除去に引き続き行うことが好ましく、その場合、溶液の膜から溶媒を除去して硬化性シリコーン樹脂の膜を形成する工程とプレキュアを行う工程とは特に区別されない。溶媒の除去は100℃以上に加熱して行うことが好ましく、150℃以上に加熱することにより引き続きプレキュアを行うことができる。溶媒の除去とプレキュアを行う温度および加熱時間は、100~300℃、5~60分が好ましく、150~250℃、10~30分がより好ましい。 The curable silicone resin is preferably cured by precuring (precuring) and then curing (main curing). By performing precure, a resin layer having excellent heat resistance can be obtained. Pre-curing is preferably performed following removal of the solvent. In that case, there is no particular distinction between the step of removing the solvent from the solution film to form the curable silicone resin film and the step of pre-curing. The removal of the solvent is preferably performed by heating to 100 ° C. or higher, and precure can be continued by heating to 150 ° C. or higher. The temperature at which the solvent is removed and precured and the heating time are preferably 100 to 300 ° C. and 5 to 60 minutes, more preferably 150 to 250 ° C. and 10 to 30 minutes.
 硬化性シリコーン樹脂を熱硬化させる温度条件は、樹脂層の耐熱性を向上し、ガラス基板と積層後の剥離強度(x)を上記のように制御しうる範囲内で特に制限されないが、300~475℃が好ましく、350~450℃がより好ましい。また、加熱時間は、通常、30~300分が好ましく、60~120分がより好ましい。熱硬化の温度が低すぎると、耐熱性や樹脂層の平坦性が低下し、一方、温度が高すぎると剥離強度(x)が低くなりすぎ、いずれもガラス基板の積層が困難となることがある。 The temperature condition for thermosetting the curable silicone resin is not particularly limited as long as the heat resistance of the resin layer is improved and the peel strength (x) after lamination with the glass substrate can be controlled as described above. 475 ° C is preferable, and 350 to 450 ° C is more preferable. The heating time is usually preferably 30 to 300 minutes, more preferably 60 to 120 minutes. If the temperature of thermosetting is too low, the heat resistance and the flatness of the resin layer will be reduced. On the other hand, if the temperature is too high, the peel strength (x) will be too low, making it difficult to laminate the glass substrates. is there.
(積層工程)
 積層工程は、上記の樹脂層形成工程で得られた樹脂層14の層上にガラス基板16を積層し、支持板12の層と樹脂層14とガラス基板16の層と、をこの順で備える積層体を得る工程である。より具体的には、図2(B)に示すように、樹脂層14の支持板12側とは反対側の表面14aと、第1主面16aおよび第2主面16bを有するガラス基板16の第1主面16aと、を積層面として、樹脂層14とガラス基板16と、を積層し、積層体10を得る。
(Lamination process)
In the lamination step, the glass substrate 16 is laminated on the resin layer 14 obtained in the resin layer formation step, and the support plate 12, the resin layer 14, and the glass substrate 16 are provided in this order. This is a step of obtaining a laminate. More specifically, as shown in FIG. 2B, a glass substrate 16 having a surface 14a opposite to the support plate 12 side of the resin layer 14, and a first main surface 16a and a second main surface 16b. The resin layer 14 and the glass substrate 16 are laminated by using the first main surface 16a as a laminated surface to obtain the laminated body 10.
 ガラス基板16を樹脂層14上に積層する方法は特に制限されず、公知の方法を採用することができる。
 例えば、常圧環境下で樹脂層14の表面上にガラス基板16を重ねる方法が挙げられる。なお、必要に応じて、樹脂層14の表面上にガラス基板16を重ねた後、ロールやプレスを用いて樹脂層14にガラス基板16を圧着させてもよい。ロールまたはプレスによる圧着により、樹脂層14とガラス基板16の層との間に混入している気泡が比較的容易に除去されるので好ましい。
The method in particular of laminating | stacking the glass substrate 16 on the resin layer 14 is not restrict | limited, A well-known method is employable.
For example, a method of stacking the glass substrate 16 on the surface of the resin layer 14 under a normal pressure environment can be mentioned. If necessary, after the glass substrate 16 is overlaid on the surface of the resin layer 14, the glass substrate 16 may be pressure-bonded to the resin layer 14 using a roll or a press. It is preferable because air bubbles mixed between the resin layer 14 and the glass substrate 16 are relatively easily removed by pressure bonding using a roll or a press.
 真空ラミネート法や真空プレス法により圧着すると、気泡の混入の抑制や良好な密着の確保が行われるのでより好ましい。真空下で圧着することにより、微小な気泡が残存した場合でも、加熱により気泡が成長することがなく、ガラス基板16のゆがみ欠陥につながりにくいという利点もある。 It is more preferable to perform pressure bonding by a vacuum laminating method or a vacuum pressing method because it can suppress mixing of bubbles and ensure good adhesion. By press-bonding under vacuum, even if minute bubbles remain, there is an advantage that the bubbles do not grow by heating and are not likely to lead to a distortion defect of the glass substrate 16.
 ガラス基板16を積層する際には、樹脂層14に接触するガラス基板16の表面を十分に洗浄し、クリーン度の高い環境で積層することが好ましい。クリーン度が高いほど、ガラス基板16の平坦性は良好となるので好ましい。 When laminating the glass substrate 16, it is preferable that the surface of the glass substrate 16 in contact with the resin layer 14 is sufficiently washed and laminated in an environment with a high degree of cleanliness. The higher the degree of cleanliness, the better the flatness of the glass substrate 16, which is preferable.
 なお、ガラス基板16を積層した後、必要に応じて、プレアニール処理(加熱処理)を行ってもよい。該プレアニール処理を行うことにより、積層されたガラス基板16の樹脂層14に対する接着性が向上し、適切な剥離強度(x)とすることができ、後述する部材形成工程の際に電子デバイス用部材の位置ずれなどが生じにくくなり、電子デバイスの生産性が向上する。
 プレアニール処理の条件は使用される樹脂層の種類に応じて適宜最適な条件が選択されるが、ガラス基板16と樹脂層14の間の剥離強度(x)をより適切なものとする点から、300℃以上(好ましくは、300~400℃)で5分間以上(好ましく、5~30分間)加熱処理を行うことが好ましい。
In addition, after laminating | stacking the glass substrate 16, you may perform a pre-annealing process (heat processing) as needed. By performing the pre-annealing treatment, the adhesion of the laminated glass substrate 16 to the resin layer 14 is improved, and an appropriate peel strength (x) can be obtained. This makes it difficult to cause misalignment and improves the productivity of electronic devices.
The conditions for the pre-annealing process are appropriately selected according to the type of resin layer to be used, but from the viewpoint of making the peel strength (x) between the glass substrate 16 and the resin layer 14 more appropriate, Heat treatment is preferably performed at 300 ° C. or higher (preferably 300 to 400 ° C.) for 5 minutes or longer (preferably 5 to 30 minutes).
(積層体)
 本発明の積層体10は、種々の用途に使用することができ、例えば、後述する表示装置用パネル、PV、薄膜2次電池、表面に回路が形成された半導体ウェハ等の電子部品を製造する用途などが挙げられる。なお、該用途では、積層体10が高温条件(例えば、400℃以上)で曝される(例えば、1時間以上)場合が多い。
 ここで、表示装置用パネルとは、LCD、OLED、電子ペーパー、プラズマディスプレイパネル、フィールドエミッションパネル、量子ドットLEDパネル、MEMS(MICRO ELECTRO MECHANICAL SYSTEMS)シャッターパネル等が含まれる。
(Laminate)
The laminate 10 of the present invention can be used for various applications, for example, for manufacturing electronic parts such as a display device panel, PV, a thin film secondary battery, and a semiconductor wafer having a circuit formed on the surface. Applications are listed. In this application, the laminate 10 is often exposed (for example, 1 hour or longer) under high temperature conditions (for example, 400 ° C. or higher).
Here, the display device panel includes an LCD, an OLED, an electronic paper, a plasma display panel, a field emission panel, a quantum dot LED panel, a MEMS (MICRO ELECTRO mechanical system) shutter panel, and the like.
[部材付ガラス基板およびその製造方法]
 本発明においては、上述した積層体を用いて、ガラス基板と電子デバイス用部材と、を含む電子デバイス用部材付きガラス基板(部材付ガラス基板)が製造される。
 該部材付ガラス基板の製造方法は特に限定されないが、電子デバイスの生産性に優れる点から、上記積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造し、得られた電子デバイス用部材付き積層体から樹脂層のガラス基板側界面または樹脂層内部を剥離面として部材付ガラス基板と樹脂層付き支持板とに分離し、次いで、部材付ガラス基板の剥離面を清浄化する方法が好ましい。
 以下、上記積層体中のガラス基板上に電子デバイス用部材を形成して電子デバイス用部材付き積層体を製造する工程を部材形成工程、電子デバイス用部材付き積層体から樹脂層のガラス基板側界面または樹脂層内部を剥離面として部材付ガラス基板と樹脂層付き支持板とに分離する工程を分離工程、部材付ガラス基板の剥離面を清浄化する工程を清浄化処理工程という。
 以下に、各工程で使用される材料および手順について詳述する。
[Glass substrate with member and method for producing the same]
In this invention, the glass substrate with a member for electronic devices (glass substrate with a member) containing a glass substrate and the member for electronic devices is manufactured using the laminated body mentioned above.
Although the manufacturing method of this glass substrate with a member is not specifically limited, From the point which is excellent in the productivity of an electronic device, the member for electronic devices is formed on the glass substrate in the said laminated body, and the laminated body with a member for electronic devices is manufactured. Then, the obtained laminated body with a member for an electronic device is separated into a glass substrate with a member and a support plate with a resin layer with the glass substrate side interface of the resin layer or the inside of the resin layer as a peeling surface, and then the glass substrate with a member A method of cleaning the release surface is preferred.
Hereinafter, the step of forming a member for an electronic device on the glass substrate in the laminate and manufacturing the laminate with the member for an electronic device is a member forming step, and the glass substrate side interface of the resin layer from the laminate with the member for an electronic device Alternatively, the process of separating the resin layer inside into the glass substrate with a member and the support plate with the resin layer as a separation surface is referred to as a separation step, and the step of cleaning the separation surface of the glass substrate with a member as a cleaning treatment step.
The materials and procedures used in each process are described in detail below.
(部材形成工程)
 部材形成工程は、上記積層工程において得られた積層体10中のガラス基板16上に電子デバイス用部材を形成する工程である。より具体的には、図2(C)に示すように、ガラス基板16の第2主面16b(露出表面)上に電子デバイス用部材20を形成し、電子デバイス用部材付き積層体22を得る。
 まず、本工程で使用される電子デバイス用部材20について詳述し、その後工程の手順について詳述する。
(Member formation process)
A member formation process is a process of forming the member for electronic devices on the glass substrate 16 in the laminated body 10 obtained in the said lamination process. More specifically, as shown in FIG. 2C, the electronic device member 20 is formed on the second main surface 16b (exposed surface) of the glass substrate 16 to obtain the laminate 22 with the electronic device member. .
First, the electronic device member 20 used in this step will be described in detail, and the procedure of the subsequent steps will be described in detail.
(電子デバイス用部材(機能性素子))
 電子デバイス用部材20は、積層体10中のガラス基板16上に形成され電子デバイスの少なくとも一部を構成する部材である。より具体的には、電子デバイス用部材20としては、表示装置用パネル、太陽電池、薄膜2次電池、または、表面に回路が形成された半導体ウェハ等の電子部品などに用いられる部材(例えば、表示装置用部材、太陽電池用部材、薄膜2次電池用部材、電子部品用回路)が挙げられる。
(Electronic device components (functional elements))
The electronic device member 20 is a member that is formed on the glass substrate 16 in the laminate 10 and constitutes at least a part of the electronic device. More specifically, as the electronic device member 20, a member used for an electronic component such as a display panel, a solar cell, a thin film secondary battery, or a semiconductor wafer having a circuit formed on the surface (for example, Display member, solar cell member, thin film secondary battery member, electronic component circuit).
 例えば、太陽電池用部材としては、シリコン型では、正極の酸化スズなど透明電極、p層/i層/n層で表されるシリコン層、および負極の金属等が挙げられ、その他に、化合物型、色素増感型、量子ドット型などに対応する各種部材等を挙げることができる。
 また、薄膜2次電池用部材としては、リチウムイオン型では、正極および負極の金属または金属酸化物等の透明電極、電解質層のリチウム化合物、集電層の金属、封止層としての樹脂等が挙げられ、その他に、ニッケル水素型、ポリマー型、セラミックス電解質型などに対応する各種部材等を挙げることができる。
 また、電子部品用回路としては、CCDやCMOSでは、導電部の金属、絶縁部の酸化ケイ素や窒化珪素等が挙げられ、その他に圧力センサ・加速度センサなど各種センサやリジッドプリント基板、フレキシブルプリント基板、リジッドフレキシブルプリント基板などに対応する各種部材等を挙げることができる。
For example, as a member for a solar cell, a silicon type includes a transparent electrode such as tin oxide of a positive electrode, a silicon layer represented by p layer / i layer / n layer, a metal of a negative electrode, and the like. And various members corresponding to the dye-sensitized type, the quantum dot type, and the like.
Further, as a member for a thin film secondary battery, in the lithium ion type, a transparent electrode such as a metal or a metal oxide of a positive electrode and a negative electrode, a lithium compound of an electrolyte layer, a metal of a current collecting layer, a resin as a sealing layer, etc. In addition, various members corresponding to nickel hydrogen type, polymer type, ceramic electrolyte type and the like can be mentioned.
In addition, as a circuit for an electronic component, in a CCD or CMOS, a metal of a conductive part, a silicon oxide or a silicon nitride of an insulating part, and the like, various sensors such as a pressure sensor and an acceleration sensor, a rigid printed board, a flexible printed board And various members corresponding to a rigid flexible printed circuit board.
(工程の手順)
 上述した電子デバイス用部材付き積層体22の製造方法は特に限定されず、電子デバイス用部材の構成部材の種類に応じて従来公知の方法にて、積層体10のガラス基板16の第2主面16b表面上に、電子デバイス用部材20を形成する。
 なお、電子デバイス用部材20は、ガラス基板16の第2主面16bに最終的に形成される部材の全部(以下、「全部材」という)ではなく、全部材の一部(以下、「部分部材」という)であってもよい。樹脂層14から剥離された部分部材付きガラス基板を、その後の工程で全部材付きガラス基板(後述する電子デバイスに相当)とすることもできる。
 また、樹脂層14から剥離された、全部材付きガラス基板には、その剥離面(第1主面16a)に他の電子デバイス用部材が形成されてもよい。また、全部材付き積層体を組み立て、その後、全部材付き積層体から支持板12を剥離して、電子デバイスを製造することもできる。さらに、全部材付き積層体を2枚用いて組み立て、その後、全部材付き積層体から2枚の支持板12を剥離して、2枚のガラス基板を有する部材付ガラス基板を製造することもできる。
(Process procedure)
The manufacturing method of the laminated body 22 with the member for electronic devices mentioned above is not specifically limited, The 2nd main surface of the glass substrate 16 of the laminated body 10 by a conventionally well-known method according to the kind of structural member of the member for electronic devices. The electronic device member 20 is formed on the surface of 16b.
The electronic device member 20 is not all of the members finally formed on the second main surface 16b of the glass substrate 16 (hereinafter referred to as “all members”), but a part of all members (hereinafter referred to as “parts”). May be referred to as a member. The glass substrate with a partial member peeled from the resin layer 14 can be used as a glass substrate with all members (corresponding to an electronic device described later) in the subsequent steps.
Moreover, the other electronic device member may be formed in the peeling surface (1st main surface 16a) in the glass substrate with all the members peeled from the resin layer 14. FIG. Moreover, an electronic device can also be manufactured by assembling a laminate with all members and then peeling the support plate 12 from the laminate with all members. Furthermore, it can also assemble using two laminated bodies with all members, and can peel the 2 support plates 12 from the laminated body with all members, and can manufacture the glass substrate with a member which has two glass substrates. .
 例えば、OLEDを製造する場合を例にとると、積層体10のガラス基板16の樹脂層14側とは反対側の表面上(ガラス基板16の第2主面16bに該当)に有機EL構造体を形成するために、透明電極を形成する、さらに透明電極を形成した面上にホール注入層・ホール輸送層・発光層・電子輸送層等を蒸着する、裏面電極を形成する、封止板を用いて封止する、等の各種の層形成や処理が行われる。これらの層形成や処理として、具体的には、例えば、成膜処理、蒸着処理、封止板の接着処理等が挙げられる。 For example, taking the case of manufacturing an OLED as an example, the organic EL structure is formed on the surface of the laminate 10 opposite to the resin layer 14 side of the glass substrate 16 (corresponding to the second main surface 16b of the glass substrate 16). Forming a transparent electrode, depositing a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, etc. on the surface on which the transparent electrode is formed, forming a back electrode, sealing plate Various layer formation and processing, such as sealing using, are performed. Specific examples of the layer formation and processing include film formation processing, vapor deposition processing, sealing plate adhesion processing, and the like.
 また、例えば、TFT-LCDを製造する場合は、積層体10のガラス基板16の第2主面16b上に、レジスト液を用いて、CVD法およびスパッター法など、一般的な成膜法により形成される金属膜および金属酸化膜等にパターン形成して薄膜トランジスタ(TFT)を形成するTFT形成工程と、別の積層体10のガラス基板16の第2主面16b上に、レジスト液をパターン形成に用いてカラーフィルタ(CF)を形成するCF形成工程と、TFT形成工程で得られたTFT付き積層体とCF形成工程で得られたCF付き積層体とを積層する貼合わせ工程等の各種工程を有する。 Further, for example, when manufacturing a TFT-LCD, it is formed on the second main surface 16b of the glass substrate 16 of the laminate 10 by a general film forming method such as a CVD method and a sputtering method using a resist solution. Forming a thin film transistor (TFT) by patterning a metal film and a metal oxide film to be formed, and forming a resist solution on the second main surface 16b of the glass substrate 16 of another laminate 10 Various processes such as a CF forming process for forming a color filter (CF) and a laminating process for laminating a laminated body with TFT obtained in the TFT forming process and a laminated body with CF obtained in the CF forming process are used. Have.
 TFT形成工程やCF形成工程では、周知のフォトリソグラフィ技術やエッチング技術等を用いて、ガラス基板16の第2主面16bにTFTやCFを形成する。この際、パターン形成用のコーティング液としてレジスト液が用いられる。
 なお、TFTやCFを形成する前に、必要に応じて、ガラス基板16の第2主面16bを洗浄してもよい。洗浄方法としては、周知のドライ洗浄やウェット洗浄を用いることができる。
In the TFT formation process and the CF formation process, the TFT and the CF are formed on the second main surface 16b of the glass substrate 16 by using a well-known photolithography technique, etching technique, or the like. At this time, a resist solution is used as a coating solution for pattern formation.
In addition, before forming TFT and CF, you may wash | clean the 2nd main surface 16b of the glass substrate 16 as needed. As a cleaning method, known dry cleaning or wet cleaning can be used.
 貼合わせ工程では、TFT付き積層体の薄膜トランジスタ形成面と、CF付き積層体のカラーフィルタ形成面とを対向させて、シール剤(例えば、セル形成用紫外線硬化型シール剤)を用いて貼り合わせる。その後、TFT付き積層体とCF付き積層体とで形成されたセル内に、液晶材を注入する。液晶材を注入する方法としては、例えば、減圧注入法、滴下注入法がある。 In the laminating step, the thin film transistor forming surface of the laminated body with TFT and the color filter forming surface of the laminated body with CF are opposed to each other, and are bonded using a sealant (for example, an ultraviolet curable sealant for cell formation). Thereafter, a liquid crystal material is injected into a cell formed by the laminate with TFT and the laminate with CF. Examples of the method for injecting the liquid crystal material include a reduced pressure injection method and a drop injection method.
[分離工程]
 分離工程は、上記部材形成工程で得られた電子デバイス用部材付き積層体22から、樹脂層14とガラス基板16との界面または樹脂層14を剥離面として、電子デバイス用部材20が積層したガラス基板16(部材付ガラス基板)と、支持板12とに分離して、電子デバイス用部材20およびガラス基板16を含む部材付ガラス基板24を得る工程である。
 剥離時のガラス基板16上の電子デバイス用部材20が必要な全構成部材の形成の一部である場合には、分離後、残りの構成部材をガラス基板16上に形成することもできる。
[Separation process]
The separation step is a glass in which the electronic device member 20 is laminated from the laminate 22 with the electronic device member obtained in the member forming step, using the interface between the resin layer 14 and the glass substrate 16 or the resin layer 14 as a release surface. This is a step of separating the substrate 16 (the glass substrate with a member) and the support plate 12 to obtain the member-equipped glass substrate 24 including the electronic device member 20 and the glass substrate 16.
When the electronic device member 20 on the glass substrate 16 at the time of peeling is a part of the formation of all the necessary constituent members, the remaining constituent members can be formed on the glass substrate 16 after separation.
 分離された部材付ガラス基板24の第1主面16aには樹脂が付着している場合も、付着していない場合もある。上記のように、剥離面がガラス基板16の第1主面16aと樹脂層14の界面である場合は、部材付ガラス基板24の第1主面16aには樹脂が付着していない。剥離面が樹脂層14の内部である場合(すなわち、樹脂層の凝集破壊により剥離が生じた場合)、部材付ガラス基板24の第1主面16aには樹脂が付着している。部部分的に界面剥離と凝集破壊剥離とが生じた場合には、部材付ガラス基板24の第1主面16aに樹脂が付着している部分と樹脂が付着していない部分とが生じる。
 分離された支持板12の樹脂層14が存在していた表面には、樹脂が付着している。剥離面がガラス基板16の第1主面16aと樹脂層14の界面である場合は、上記樹脂層付き支持板18とほぼ同じ構成の樹脂が付着した支持板12となる。樹脂層14の凝集破壊により生じた樹脂付着支持板の場合には、樹脂層14と接していた表面のほぼ全面に樹脂が付着した支持板となり、樹脂が付着していない面は少ない。
 なお、図2(D)は樹脂層14が凝集破壊した場合を示し、ガラス基板16の樹脂層14と接した表面には樹脂層14の一部の樹脂が付着している。
The resin may or may not adhere to the first main surface 16a of the separated glass substrate 24 with a member. As described above, when the peeling surface is the interface between the first main surface 16a of the glass substrate 16 and the resin layer 14, the resin does not adhere to the first main surface 16a of the glass substrate 24 with a member. When the peeling surface is inside the resin layer 14 (that is, when peeling occurs due to cohesive failure of the resin layer), the resin adheres to the first main surface 16a of the glass substrate 24 with a member. When interfacial peeling and cohesive fracture peeling occur partially, a portion where the resin is attached to the first main surface 16a of the glass substrate with member 24 and a portion where the resin is not attached are generated.
The resin adheres to the surface where the resin layer 14 of the separated support plate 12 was present. When the peeling surface is the interface between the first main surface 16a of the glass substrate 16 and the resin layer 14, the support plate 12 is provided with a resin having substantially the same structure as the support plate 18 with the resin layer. In the case of a resin-attached support plate generated by cohesive failure of the resin layer 14, the support plate has a resin attached to almost the entire surface in contact with the resin layer 14, and there are few surfaces to which no resin is attached.
FIG. 2D shows a case where the resin layer 14 is coherently broken, and a part of the resin of the resin layer 14 is attached to the surface of the glass substrate 16 in contact with the resin layer 14.
 ガラス基板16と支持板12と、を剥離する方法は、特に限定されない。具体的には、例えば、ガラス基板16と樹脂層14との界面に鋭利な刃物状のものを差し込み、剥離のきっかけを与えた上で、水と圧縮空気との混合流体を吹き付けたりして剥離することができる。好ましくは、電子デバイス用部材付き積層体22の支持板12が上側、電子デバイス用部材20側が下側となるように定盤上に設置し、電子デバイス用部材20側を定盤上に真空吸着し(両面に支持板が積層されている場合は順次行う)、この状態でまず刃物をガラス基板16-樹脂層14界面に刃物を侵入させる。そして、その後に支持板12側を複数の真空吸着パッドで吸着し、刃物を差し込んだ箇所付近から順に真空吸着パッドを上昇させる。そうすると樹脂層14とガラス基板16との界面や樹脂層14の凝集破壊面へ空気層が形成され、その空気層が界面や凝集破壊面の全面に広がり、支持板12を容易に剥離することができる。
 また、支持板12は、新たなガラス基板と積層して、本発明の積層体10を製造することができる。分離された支持板12の表面に樹脂層14が破壊されることなく付着している場合は、この樹脂層が付着している支持板12を上記樹脂層付き支持板18として使用し、新たに積層体10を上記と同様に製造することができる。また、樹脂層の凝集破壊により分離された支持板12の場合は、付着した樹脂を除去して樹脂が付着していない支持板12とし、この樹脂が付着していない支持板12を使用して上記と同様に新たに積層体10を製造することができる。この新たな積層体10の製造方法としては、前述した本発明の製造方法が好ましい。
The method for peeling the glass substrate 16 and the support plate 12 is not particularly limited. Specifically, for example, a sharp blade-like object is inserted into the interface between the glass substrate 16 and the resin layer 14 and given a trigger for peeling, and then the peeling is performed by spraying a mixed fluid of water and compressed air. can do. Preferably, the electronic device member-attached laminate 22 is placed on the surface plate so that the support plate 12 is on the upper side and the electronic device member 20 side is on the lower side, and the electronic device member 20 side is vacuum-adsorbed on the surface plate. (In the case where support plates are laminated on both surfaces, the steps are sequentially performed). In this state, the blade is first inserted into the glass substrate 16-resin layer 14 interface. Thereafter, the support plate 12 side is sucked by a plurality of vacuum suction pads, and the vacuum suction pads are raised in order from the vicinity of the place where the blade is inserted. As a result, an air layer is formed on the interface between the resin layer 14 and the glass substrate 16 or on the cohesive failure surface of the resin layer 14, and the air layer spreads over the entire interface or cohesive failure surface, so that the support plate 12 can be easily peeled off. it can.
Moreover, the support plate 12 can be laminated | stacked with a new glass substrate, and the laminated body 10 of this invention can be manufactured. When the resin layer 14 is attached to the surface of the separated support plate 12 without being destroyed, the support plate 12 to which the resin layer is attached is used as the support plate 18 with the resin layer, and newly The laminated body 10 can be manufactured similarly to the above. Further, in the case of the support plate 12 separated by cohesive failure of the resin layer, the attached resin is removed to form a support plate 12 to which no resin is attached, and the support plate 12 to which this resin is not attached is used. The laminated body 10 can be newly manufactured similarly to the above. As a manufacturing method of this new laminated body 10, the manufacturing method of this invention mentioned above is preferable.
 なお、積層体から部材付ガラス基板を分離する際においては、イオナイザによる吹き付けや湿度を制御することにより、樹脂層の欠片が部材付ガラス基板に静電吸着することをより抑制することができる。 In separating the glass substrate with a member from the laminate, it is possible to further suppress electrostatic adsorption of the pieces of the resin layer to the glass substrate with a member by controlling the spraying with the ionizer and the humidity.
[清浄化処理工程]
 清浄化処理工程は、上記分離工程で得られた部材付ガラス基板24中のガラス基板16の剥離面(第1主面16a)に清浄化処理を施す工程である。該工程を実施することにより、剥離面に付着した樹脂や樹脂層、剥離面に付着した上記部材形成工程で発生する金属片やホコリなどの不純物を除去することができ、剥離面の清浄性を維持することができる。結果として、ガラス基板16の剥離面に貼り付けられる位相差フィルムや偏光フィルムなどの粘着性が向上する。
 より具体的には、本工程を実施することにより、図2(E)に示すように、図2(D)でガラス基板16の表面上に付着していた樹脂層の一部が除去される。
[Cleaning process]
The cleaning treatment step is a step of performing a cleaning treatment on the peeling surface (first main surface 16a) of the glass substrate 16 in the member-attached glass substrate 24 obtained in the separation step. By carrying out this step, it is possible to remove impurities such as resin and resin layer adhering to the release surface, metal pieces and dust generated in the member forming step adhering to the release surface, and improving the cleanliness of the release surface. Can be maintained. As a result, the tackiness of a retardation film, a polarizing film or the like attached to the release surface of the glass substrate 16 is improved.
More specifically, by performing this step, as shown in FIG. 2E, a part of the resin layer adhering to the surface of the glass substrate 16 in FIG. 2D is removed. .
 清浄化処理の方法は、剥離面に付着した樹脂やホコリなどを除去することができれば、特にその方法は制限されない。例えば、付着物を熱的に分解する方法や、プラズマ照射または光照射(例えば、UV照射処理)によって剥離面上の不純物を除去する方法や、溶媒を用いて洗浄処理する方法などが挙げられる。特に、不純物の除去性がより優れる点で、溶媒を用いた洗浄処理方法が好ましい。 The cleaning treatment method is not particularly limited as long as the resin or dust attached to the release surface can be removed. For example, there are a method of thermally decomposing the deposit, a method of removing impurities on the peeled surface by plasma irradiation or light irradiation (for example, UV irradiation treatment), and a cleaning method using a solvent. In particular, a cleaning method using a solvent is preferable in terms of more excellent impurity removability.
 溶媒を用いた洗浄処理方法において使用される溶媒の種類は、使用される樹脂層を構成する樹脂の種類により適宜最適な溶媒が選択される。
 例えば、sp値、すなわち溶解度パラメータが7~15(単位:cal1/2cm-3/2)の溶剤を含む薬液を用いて洗浄処理を行うことが好ましい。より具体的には、メタノール、エタノール、プロパノール、アセトン、キシレン、ヘキサン、イソパラフィン等を含む薬液を用いることが好ましい。さらに、環境負荷の観点からアルコール系洗浄液(例えば、メタノール、エタノール、プロパノール)を含有する洗浄液を用いることが好ましい。これらの溶媒は単独で、または、組み合わせて用いられる。
 なお、必要に応じて、電子デバイス用部材20が溶媒と接触しないように、シーリングやマスキング処理を実施してもよい。また、エアブローまたは加熱乾燥など溶剤除去処理を併せて実施するのが望ましい。
As the type of the solvent used in the cleaning treatment method using a solvent, an optimal solvent is appropriately selected depending on the type of resin constituting the resin layer to be used.
For example, the cleaning treatment is preferably performed using a chemical solution containing a solvent having an sp value, that is, a solubility parameter of 7 to 15 (unit: cal 1/2 cm −3/2 ). More specifically, it is preferable to use a chemical solution containing methanol, ethanol, propanol, acetone, xylene, hexane, isoparaffin and the like. Furthermore, it is preferable to use a cleaning solution containing an alcohol-based cleaning solution (for example, methanol, ethanol, propanol) from the viewpoint of environmental load. These solvents are used alone or in combination.
In addition, you may implement sealing and a masking process so that the member 20 for electronic devices may not contact a solvent as needed. It is also desirable to carry out a solvent removal process such as air blowing or heat drying.
 上述した部材付ガラス基板24の製造方法は、携帯電話やPDAのようなモバイル端末に使用される小型の表示装置の製造に好適である。表示装置は主としてLCDまたはOLEDであり、LCDとしては、TN型、STN型、FE型、TFT型、MIM型、IPS型、VA型等を含む。基本的にパッシブ駆動型、アクティブ駆動型のいずれの表示装置の場合でも適用することができる。 The above-described method for manufacturing the glass substrate 24 with a member is suitable for manufacturing a small display device used for a mobile terminal such as a mobile phone or a PDA. The display device is mainly an LCD or an OLED, and the LCD includes a TN type, STN type, FE type, TFT type, MIM type, IPS type, VA type, and the like. Basically, the present invention can be applied to both passive drive type and active drive type display devices.
 上記方法で製造された部材付ガラス基板24としては、ガラス基板と表示装置用部材を有する表示装置用パネル、ガラス基板と太陽電池用部材を有する太陽電池、ガラス基板と薄膜2次電池用部材を有する薄膜2次電池、ガラス基板と電子デバイス用部材を有する電子部品などが挙げられる。表示装置用パネルとしては、液晶パネル、有機ELパネル、プラズマディスプレイパネル、フィールドエミッションパネルなどを含む。 As the glass substrate 24 with a member manufactured by the above method, a panel for a display device having a glass substrate and a member for a display device, a solar cell having a glass substrate and a member for a solar cell, a glass substrate and a member for a thin film secondary battery. Examples thereof include a thin film secondary battery, an electronic component having a glass substrate and an electronic device member. Examples of the display device panel include a liquid crystal panel, an organic EL panel, a plasma display panel, a field emission panel, and the like.
 以下に、実施例等により本発明を具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples.
 以下の実施例1~6、比較例1~3では、ガラス基板として、無アルカリホウケイ酸ガラスからなるガラス板(縦200mm、横200mm、板厚0.3mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。また、支持板としては、同じく無アルカリホウケイ酸ガラスからなるガラス板(縦240mm、横240mm、板厚0.4mm、線膨張係数38×10-7/℃、旭硝子社製商品名「AN100」)を使用した。 In Examples 1 to 6 and Comparative Examples 1 to 3 below, a glass plate made of non-alkali borosilicate glass (length 200 mm, width 200 mm, plate thickness 0.3 mm, linear expansion coefficient 38 × 10 −7 / The product name “AN100” manufactured by Asahi Glass Co., Ltd. was used. Further, as the support plate, a glass plate made of non-alkali borosilicate glass (240 mm long, 240 mm wide, 0.4 mm thick, linear expansion coefficient 38 × 10 −7 / ° C., trade name “AN100” manufactured by Asahi Glass Co., Ltd.) It was used.
<製造例1>硬化性シリコーン樹脂(S1)を含む液状物の製造
 オルガノシロキシ単位(A-1)を構成する化合物としてフェニルトリメトキシシラン100質量部と、オルガノシロキシ単位(B-1)を構成する化合物としてジメチルジエトキシシラン225質量部に対して、トルエン230質量部を加えた。ついで10℃以下に保ちながら、この混合物中に0.5質量%の水酸化ナトリウム水溶液140質量部を滴下して加え、10℃で3時間、50℃で3時間撹拌した。その後70℃で2時間保持してアルコールを除去したのち、75℃で10時間撹拌した。
 得られた反応液に、トルエン150質量部を加えて希釈したところ、2層分離した。下層の水酸化ナトリウム水溶液層を分液ロートで除去した。上層のトルエン層のpHが7以下になるまで水洗したのち、孔径0.5マイクロメートルのメンブレンフィルターにて濾過した。得られた液を70℃で加熱減圧により有機溶媒を除去し、硬化性シリコーン樹脂(S1)を得た。
 得られた硬化性シリコーン樹脂(S1)は、GPC(ゲルパーミエーションクロマトグラフィー)による重量平均分子量(ポリスチレン換算)が、55000であった。またFT-IR(赤外分光光度計)により、Si-OH基由来の3200~3600cm-1の吸収が確認された。
 次に、硬化性シリコーン樹脂(S1)100質量部を1-メトキシ-2-プロパノールアセテート200質量部に溶解させて硬化性シリコーン樹脂(S1)を含む液状物を作製した。
<Production Example 1> Production of liquid containing curable silicone resin (S1) 100 parts by mass of phenyltrimethoxysilane and organosiloxy unit (B-1) as a compound constituting organosiloxy unit (A-1) As a compound to be added, 230 parts by mass of toluene was added to 225 parts by mass of dimethyldiethoxysilane. Subsequently, 140 mass parts of 0.5 mass% sodium hydroxide aqueous solution was dripped and added to this mixture, keeping at 10 degrees C or less, and it stirred at 10 degreeC for 3 hours and 50 degreeC for 3 hours. Thereafter, the mixture was kept at 70 ° C. for 2 hours to remove the alcohol, and then stirred at 75 ° C. for 10 hours.
When the obtained reaction solution was diluted by adding 150 parts by mass of toluene, two layers were separated. The lower sodium hydroxide aqueous solution layer was removed with a separatory funnel. After washing with water until the pH of the upper toluene layer became 7 or less, it was filtered with a membrane filter having a pore diameter of 0.5 micrometers. The organic solvent was removed from the obtained liquid by heating under reduced pressure at 70 ° C. to obtain a curable silicone resin (S1).
The obtained curable silicone resin (S1) had a weight average molecular weight (in terms of polystyrene) of 55000 by GPC (gel permeation chromatography). Further, absorption of 3200 to 3600 cm −1 derived from Si—OH group was confirmed by FT-IR (infrared spectrophotometer).
Next, 100 parts by mass of the curable silicone resin (S1) was dissolved in 200 parts by mass of 1-methoxy-2-propanol acetate to prepare a liquid containing the curable silicone resin (S1).
<製造例2~5>硬化性シリコーン樹脂(S2)~(S5)と、各液状物の製造
 硬化性シリコーン樹脂(S2)~(S5)について、製造例1と同様にして、表1に示す組成比で製造した。ついで得られた硬化性シリコーン樹脂(S2)~(S5)を1-メトキシ-2-プロパノールアセテートに溶解させて硬化性シリコーン樹脂(S2)~(S5)を各々含む液状物を作製した。
<Production Examples 2 to 5> Curable silicone resins (S2) to (S5) and production of each liquid material The curable silicone resins (S2) to (S5) are shown in Table 1 in the same manner as in Production Example 1. Manufactured at a composition ratio. Subsequently, the curable silicone resins (S2) to (S5) obtained were dissolved in 1-methoxy-2-propanol acetate to prepare liquid materials each containing the curable silicone resins (S2) to (S5).
 なお、以下の表1中、「シラノール基」欄は、硬化性シリコーン樹脂(S1)~(S5)中にシラノール基が含まれるか否かを意味する。また、表1中、(B-2)単位のモル%は「0」として計算した。 In Table 1 below, the “silanol group” column means whether or not silanol groups are contained in the curable silicone resins (S1) to (S5). In Table 1, the mol% of the (B-2) unit was calculated as “0”.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<実施例1>
 初めに、板厚0.4mmの支持板を純水洗浄した後、さらにUV洗浄して清浄化した。
 次に、支持板の第1主面上に、硬化性シリコーン樹脂(S1)を含む液状物を、スピンコータにて塗工した(塗工量30g/m2)。
 次に、これを180℃にて10分間大気中で加熱硬化して、支持板上の組成物の層中の溶剤を除去した。その後、さらに450℃にて60分間大気中で加熱硬化して、支持板の第1主面に厚さ2μmの樹脂層を形成した。
<Example 1>
First, a support plate having a thickness of 0.4 mm was cleaned with pure water, and further cleaned by UV cleaning.
Next, a liquid material containing the curable silicone resin (S1) was applied onto the first main surface of the support plate using a spin coater (coating amount 30 g / m 2 ).
Next, this was heat-cured at 180 ° C. for 10 minutes in the air to remove the solvent in the composition layer on the support plate. Thereafter, it was further heat-cured at 450 ° C. for 60 minutes in the air to form a resin layer having a thickness of 2 μm on the first main surface of the support plate.
 その後、ガラス基板と、支持板の樹脂層面と、を、室温下で真空プレスにより貼り合わせ、その後350℃で10分間加熱処理を行い、支持板の端部をガラス基板と同じ寸法に切断除去して面取し、積層体Aを得た。
 得られた積層体Aにおいては、支持板とガラス基板は、樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
Then, the glass substrate and the resin layer surface of the support plate are bonded together by vacuum press at room temperature, and then heat treatment is performed at 350 ° C. for 10 minutes, and the end of the support plate is cut and removed to the same dimensions as the glass substrate. The laminate A was obtained by chamfering.
In the obtained laminate A, the support plate and the glass substrate were in close contact with the resin layer without generating bubbles, no distorted defects, and good smoothness.
 次に、積層体Aを大気下で450℃60分間加熱処理をおこない、室温まで冷却したところ、積層体Aの支持板とガラス基板の分離や樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、積層体Aの4箇所のうち1箇所のコーナー部におけるガラス基板と支持板の樹脂層の界面に厚さ0.1mmのステンレス製刃物を挿入させて剥離の切欠部を形成しながら、ガラス基板と支持板それぞれの剥離面でない面に真空吸着パッドを吸着させ、互いにガラス基板と支持板が分離する方向に外力を加えて、ガラス基板と支持板を破損すること無く分離した。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行った。具体的には、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げた。
 なお、樹脂層の主要部は支持板と共にガラス基板から分離され、該結果より、支持板の層と樹脂層の界面の剥離強度(y)が、樹脂層とガラス基板の界面の剥離強度(x)または樹脂層の凝集破壊強度(z)よりも高いことが確認された。
Next, the laminate A was heated at 450 ° C. for 60 minutes in the atmosphere and cooled to room temperature. As a result, changes in appearance such as separation of the support plate and glass substrate of the laminate A, foaming and whitening of the resin layer were recognized. I couldn't.
And while forming the notch part of peeling by inserting the stainless steel cutting tool of thickness 0.1mm in the interface of the resin layer of the glass substrate and support plate in the corner part of one place among four places of the laminated body A, glass The vacuum suction pad was adsorbed on the surface of the substrate and the support plate that were not the peeling surfaces, and an external force was applied in the direction in which the glass substrate and the support plate were separated from each other, thereby separating the glass substrate and the support plate without damaging them. Here, the cutter was inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Specifically, the vacuum suction pad was pulled up while spraying a static eliminating fluid continuously from the ionizer toward the formed gap.
The main part of the resin layer is separated from the glass substrate together with the support plate, and as a result, the peel strength (y) at the interface between the support plate layer and the resin layer is determined as the peel strength at the interface between the resin layer and the glass substrate (x Or higher than the cohesive fracture strength (z) of the resin layer.
 続いて、分離したガラス基板の剥離面をアルコール溶液(日本アルコール販売社製、ネオコールR7)によるブラシ洗浄を1分間おこなった後エアブローし、清浄化した。
 上記アルコール溶液は、エタノールを86.6質量%、ノルマルプロピルアルコール(NPA)を9.5質量%、メタノールを2.6質量%、イソプロピルアルコール(IPA)を1.5質量%含むものである。
 清浄化後のガラス板の表面を顕微鏡で観察したところ、酸化物や樹脂などの異物、および、傷は見られなかった。
Subsequently, the separated surface of the separated glass substrate was cleaned by brushing with an alcohol solution (manufactured by Nippon Alcohol Sales Co., Neocor R7) for 1 minute, and then air blown to clean it.
The alcohol solution contains 86.6% by mass of ethanol, 9.5% by mass of normal propyl alcohol (NPA), 2.6% by mass of methanol, and 1.5% by mass of isopropyl alcohol (IPA).
When the surface of the glass plate after cleaning was observed with a microscope, foreign substances such as oxides and resins and scratches were not observed.
<実施例2>
 実施例1と同様の方法で、支持板の第1主面上に、硬化性シリコーン樹脂(S2)の加熱硬化物からなる厚さ1.5μmの樹脂層を形成した。
 続いて、実施例1と同様の方法で、積層体Bを得た。
 得られた積層体Bにおいては、支持板とガラス基板は、樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
 次に、積層体Bを実施例1と同様の加熱処理をおこなったところ、積層体Bの支持板とガラス基板の分離や樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、積層体Bを実施例1と同様の方法で、ガラス基板と支持板を破損すること無く分離した。
 続いて、実施例1と同様の方法で、分離したガラス基板の剥離面を清浄化した。
 清浄化後のガラス板の表面を顕微鏡で観察したところ、酸化物や樹脂などの異物、および、傷は見られなかった。
<Example 2>
In the same manner as in Example 1, a 1.5 μm thick resin layer made of a heat-cured product of the curable silicone resin (S2) was formed on the first main surface of the support plate.
Subsequently, a layered product B was obtained in the same manner as in Example 1.
In the obtained laminate B, the support plate and the glass substrate were in close contact with the resin layer without generating bubbles, no distortion defects, and good smoothness.
Next, when the laminate B was subjected to the same heat treatment as in Example 1, no change in appearance such as separation of the support plate of the laminate B and the glass substrate, foaming or whitening of the resin layer was observed.
And the laminated body B was isolate | separated by the method similar to Example 1, without damaging a glass substrate and a support plate.
Subsequently, the separation surface of the separated glass substrate was cleaned by the same method as in Example 1.
When the surface of the glass plate after cleaning was observed with a microscope, foreign substances such as oxides and resins and scratches were not observed.
<実施例3>
 実施例1と同様の方法で、支持板の第1主面上に、硬化性シリコーン樹脂(S3)の加熱硬化物からなる厚さ2μmの樹脂層を形成した。
 続いて、実施例1と同様の方法で、積層体Cを得た。
 得られた積層体Cにおいては、支持板とガラス基板は、樹脂層と気泡を発生することなく密着しており、歪み状欠点もなく、平滑性も良好であった。
 次に、積層体Cを実施例1と同様の加熱処理をおこなったところ、積層体Cの支持板とガラス基板の分離や樹脂層の発泡や白化など外観上の変化は認められなかった。
 そして、積層体Cを実施例1と同様の方法で、ガラス基板と支持板を破損すること無く分離した。
 続いて、実施例1と同様の方法で、分離したガラス基板の剥離面を清浄化した。
 清浄化後のガラス板の表面を顕微鏡で観察したところ、酸化物や樹脂などの異物、および、傷は見られなかった。
<Example 3>
In the same manner as in Example 1, a 2 μm thick resin layer made of a heat-cured product of the curable silicone resin (S3) was formed on the first main surface of the support plate.
Subsequently, a laminate C was obtained in the same manner as in Example 1.
In the obtained laminate C, the support plate and the glass substrate were in close contact with the resin layer without generating bubbles, no distorted defects, and good smoothness.
Next, when the laminate C was subjected to the same heat treatment as in Example 1, no change in appearance such as separation of the support plate of the laminate C and the glass substrate, foaming or whitening of the resin layer was observed.
And the laminated body C was isolate | separated by the method similar to Example 1, without damaging a glass substrate and a support plate.
Subsequently, the separation surface of the separated glass substrate was cleaned by the same method as in Example 1.
When the surface of the glass plate after cleaning was observed with a microscope, foreign substances such as oxides and resins and scratches were not observed.
<実施例4>
 本例では、実施例1で得た積層体Aを用いてOLEDを製造する。
 まず、積層体Aにおけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下450℃60分間加熱処理し脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜してゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下450℃60分間加熱処理し水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq3)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有する積層体A(以下、パネルAという。)が、本発明の電子デバイス用部材付き積層体(支持板付き表示装置用パネル)である。
 続いて、パネルAの封止体側を定盤に真空吸着させたうえで、パネルAのコーナー部のガラス基板と樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板と樹脂層の界面に剥離のきっかけを与える。そして、パネルAの支持板表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、樹脂層付き支持板を剥離することができる。
 続いて、実施例1と同様の方法で分離したガラス基板の剥離面を清浄化し、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板と、を組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 4>
In this example, an OLED is manufactured using the laminate A obtained in Example 1.
First, silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in the laminate A by plasma CVD. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, then molybdenum is formed by a sputtering method, and etching is performed using a photolithography method. A gate electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after heat treatment is performed at 450 ° C. for 60 minutes in a hydrogen atmosphere, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by a sputtering method. Next, another glass substrate is pasted on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. According to the above procedure, an organic EL structure is formed on a glass substrate, and a laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is an electronic device of the present invention. It is a laminated body with a member for use (panel for display apparatuses with a support plate).
Subsequently, after the panel A sealing body side is vacuum-adsorbed on the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the resin layer at the corner of panel A, and the glass substrate Gives the interface between the resin layer and the resin layer. And after adsorb | sucking the support plate surface of the panel A with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate is left, and the support plate with a resin layer can be peeled off.
Subsequently, the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells. The glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED. The OLED obtained in this way does not have a problem in characteristics.
<実施例5>
 本例では、実施例1で得た積層体Aを用いてLCDを製造する。
 まず、2枚の積層体Aを準備して、片方の積層体A1におけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜する。次に、イオンドーピング装置により低濃度のホウ素をアモルファスシリコン層に注入し、窒素雰囲気下450℃60分間加熱処理し脱水素処理をおこなう。次に、レーザアニール装置によりアモルファスシリコン層の結晶化処理をおこなう。次に、フォトリソグラフィ法を用いたエッチングおよびイオンドーピング装置より、低濃度のリンをアモルファスシリコン層に注入し、N型およびP型のTFTエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法により酸化シリコン膜を成膜しゲート絶縁膜を形成した後に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、フォトリソグラフィ法とイオンドーピング装置により、高濃度のホウ素とリンをN型、P型それぞれの所望のエリアに注入し、ソースエリアおよびドレインエリアを形成する。次に、ガラス基板の第2主面側に、プラズマCVD法による酸化シリコンの成膜で層間絶縁膜を、スパッタリング法によりアルミニウムの成膜およびフォトリソグラフィ法を用いたエッチングによりTFT電極を形成する。次に、水素雰囲気下450℃60分間加熱処理し水素化処理をおこなった後に、プラズマCVD法による窒素シリコンの成膜で、パッシベーション層を形成する。次に、ガラス基板の第2主面側に、紫外線硬化性樹脂を塗布し、フォトリソグラフィ法により平坦化層およびコンタクトホールを形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、フォトリソグラフィ法を用いたエッチングにより画素電極を形成する。
 次に、もう片方の積層体A2を大気雰囲気下450℃60分間加熱処理する。次に、積層体Aにおけるガラス基板の第2主面上に、スパッタリング法によりクロムを成膜し、フォトリソグラフィ法を用いたエッチングにより遮光層を形成する。次に、ガラス基板の第2主面側に、ダイコート法によりカラーレジストを塗布し、フォトリソグラフィ法および熱硬化によりカラーフィルタ層を形成する。次に、スパッタリング法により酸化インジウム錫を成膜し、対向電極を形成する。次に、ガラス基板の第2主面側に、ダイコート法により紫外線硬化樹脂液を塗布し、フォトリソグラフィ法および熱硬化により柱状スペーサを形成する。次に、ロールコート法によりポリイミド樹脂液を塗布し、熱硬化により配向層を形成し、ラビングをおこなう。
 次に、ディスペンサ法によりシール用樹脂液を枠状に描画し、枠内にディスペンサ法により液晶を滴下した後に、上記で画素電極が形成された積層体A1を用いて、2枚の積層体Aのガラス基板の第2主面側同士を貼り合わせ、紫外線硬化および熱硬化によりLCDパネルを得る。
<Example 5>
In this example, an LCD is manufactured using the laminate A obtained in Example 1.
First, two laminates A are prepared, and silicon nitride, silicon oxide, and amorphous silicon are formed in this order on the second main surface of the glass substrate in one laminate A1 by plasma CVD. Next, low concentration boron is injected into the amorphous silicon layer by an ion doping apparatus, and a dehydrogenation process is performed by heating at 450 ° C. for 60 minutes in a nitrogen atmosphere. Next, the amorphous silicon layer is crystallized by a laser annealing apparatus. Next, low concentration phosphorus is implanted into the amorphous silicon layer by an etching and ion doping apparatus using a photolithography method, thereby forming N-type and P-type TFT areas. Next, after a silicon oxide film is formed on the second main surface side of the glass substrate by a plasma CVD method and a gate insulating film is formed, molybdenum is formed by a sputtering method, and the gate is etched by photolithography. An electrode is formed. Next, high concentration boron and phosphorus are implanted into desired areas of the N-type and P-type by photolithography and an ion doping apparatus, thereby forming a source area and a drain area. Next, an interlayer insulating film is formed on the second main surface side of the glass substrate by silicon oxide film formation by plasma CVD, and a TFT electrode is formed by aluminum film formation by sputtering and etching using photolithography. Next, after heat treatment is performed at 450 ° C. for 60 minutes in a hydrogen atmosphere, a passivation layer is formed by film formation of nitrogen silicon by a plasma CVD method. Next, an ultraviolet curable resin is applied to the second main surface side of the glass substrate, and a planarization layer and a contact hole are formed by photolithography. Next, a film of indium tin oxide is formed by a sputtering method, and a pixel electrode is formed by etching using a photolithography method.
Next, the other laminate A2 is heat-treated at 450 ° C. for 60 minutes in an air atmosphere. Next, a chromium film is formed on the second main surface of the glass substrate in the laminate A by a sputtering method, and a light-shielding layer is formed by etching using a photolithography method. Next, a color resist is applied to the second main surface side of the glass substrate by a die coating method, and a color filter layer is formed by a photolithography method and heat curing. Next, a film of indium tin oxide is formed by a sputtering method to form a counter electrode. Next, an ultraviolet curable resin liquid is applied to the second main surface side of the glass substrate by a die coating method, and columnar spacers are formed by a photolithography method and thermal curing. Next, a polyimide resin solution is applied by a roll coating method, an alignment layer is formed by thermosetting, and rubbing is performed.
Next, the sealing resin liquid is drawn in a frame shape by the dispenser method, and after the liquid crystal is dropped in the frame by the dispenser method, two laminates A are used by using the laminate A1 in which the pixel electrodes are formed as described above. The second principal surface sides of the glass substrates are bonded together, and an LCD panel is obtained by ultraviolet curing and thermal curing.
 続いて、積層体A1の第2主面を定盤に真空吸着させ、積層体A2のコーナー部のガラス基板と樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板の第1主面と樹脂層の剥離性表面との剥離のきっかけを与える。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。そして、積層体A2の支持板の第2主面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。その結果、定盤上に、積層体A1の支持板が付いたLCDの空セルのみを残し、支持板を剥離することができる。 Subsequently, the second main surface of the laminate A1 is vacuum-adsorbed on a surface plate, and a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the resin layer at the corner of the laminate A2, and the glass substrate This provides a trigger for peeling between the first main surface and the peelable surface of the resin layer. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. And after adsorb | sucking the 2nd main surface of the support plate of laminated body A2 with a vacuum suction pad, a suction pad is raised. As a result, the support plate can be peeled off leaving only the empty cells of the LCD with the support plate of the laminate A1 on the surface plate.
 次に、第1主面にカラーフィルタが形成されたガラス基板の第2主面を定盤に真空吸着させ、積層体A1のコーナー部のガラス基板と樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板の第1主面と樹脂層の剥離性表面との剥離のきっかけを与える。そして、積層体A1の支持基板の第2主面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。その結果、定盤上にLCDセルのみを残し、樹脂層が固定された支持板を剥離することができる。続いて、実施例1と同様の方法で剥離面を清浄化する。こうして、厚さ0.1mmのガラス基板で構成される複数のLCDのセルが得られる。 Next, the second main surface of the glass substrate on which the color filter is formed on the first main surface is vacuum-adsorbed on the surface plate, and a thickness of 0. 0 is formed at the interface between the glass substrate and the resin layer at the corner portion of the laminate A1. A 1 mm stainless steel blade is inserted to give a trigger for peeling between the first main surface of the glass substrate and the peelable surface of the resin layer. And after adsorb | sucking the 2nd main surface of the support substrate of laminated body A1 with a vacuum suction pad, a suction pad is raised. As a result, only the LCD cell is left on the surface plate, and the support plate to which the resin layer is fixed can be peeled off. Subsequently, the peeled surface is cleaned by the same method as in Example 1. Thus, a plurality of LCD cells composed of a glass substrate having a thickness of 0.1 mm are obtained.
 続いて、切断する工程により、複数のLCDのセルに分断する。完成された各々のLCDセルに偏光板を貼付する工程を実施し、続いてモジュール形成工程を実施してLCDを得る。こうして得られるLCDは、特性上問題は生じない。 Subsequently, it is divided into a plurality of LCD cells by a cutting process. A step of attaching a polarizing plate to each completed LCD cell is performed, and then a module forming step is performed to obtain an LCD. The LCD obtained in this way does not have a problem in characteristics.
<実施例6>
 本例では、実施例1で得た積層体Aを用いてOLEDを製造する。
 まず、積層体Aにおけるガラス基板の第2主面上に、スパッタリング法によりモリブデンを成膜し、フォトリソグラフィ法を用いたエッチングによりゲート電極を形成する。次に、プラズマCVD法により、ガラス基板の第2主面側にさらに窒化ケイ素を成膜してゲート絶縁膜を形成し、続いてスパッタリング法により酸化インジウムガリウム亜鉛を成膜してフォトリソグラフィ法を用いたエッチングにより酸化物半導体層を形成する。次に、プラズマCVD法により、ガラス基板の第2主面側にさらに窒化ケイ素を成膜してチャネル保護層を形成し、続いてスパッタリング法によりモリブデンを成膜してフォトリソグラフィ法を用いたエッチングによりソース電極およびドレイン電極を形成する。次に、大気中で450℃にて60分間加熱処理を行う。次に、ガラス基板の第2主面側にさらにプラズマCVD法により窒化ケイ素を成膜してパッシベーション層を形成し、続いてスパッタリング法により酸化インジウム錫を成膜してフォトリソグラフィ法を用いたエッチングにより、画素電極を形成する。
 続いて、蒸着法により、ガラス基板の第2主面側に、正孔注入層として4,4’,4”-トリス(3-メチルフェニルフェニルアミノ)トリフェニルアミン、正孔輸送層としてビス[(N-ナフチル)-N-フェニル]ベンジジン、発光層として8-キノリノールアルミニウム錯体(Alq3)に2,6-ビス[4-[N-(4-メトキシフェニル)-N-フェニル]アミノスチリル]ナフタレン-1,5-ジカルボニトリル(BSN-BCN)を40体積%混合したもの、電子輸送層としてAlq3をこの順に成膜する。次に、スパッタリング法によりアルミニウムを成膜し、フォトリソグラフィ法を用いたエッチングにより対向電極を形成する。次に、ガラス基板の第2主面側に、紫外線硬化型の接着層を介してもう一枚のガラス基板を貼り合わせて封止する。上記手順によって、ガラス基板上に有機EL構造体を形成する。ガラス基板上に有機EL構造体を有する積層体A(以下、パネルAという。)が、本発明の電子デバイス用部材付き積層体(支持板付き表示装置用パネル)である。
 続いて、パネルAの封止体側を定盤に真空吸着させたうえで、パネルAのコーナー部のガラス基板と樹脂層との界面に、厚さ0.1mmのステンレス製刃物を差し込み、ガラス基板と樹脂層の界面に剥離のきっかけを与える。そして、パネルAの支持板表面を真空吸着パッドで吸着した上で、吸着パッドを上昇させる。ここで刃物の差し込みは、イオナイザ(キーエンス社製)から除電性流体を当該界面に吹き付けながら行う。次に、形成した空隙へ向けてイオナイザからは引き続き除電性流体を吹き付けながら真空吸着パッドを引き上げる。その結果、定盤上に有機EL構造体が形成されたガラス基板のみを残し、樹脂層付き支持板を剥離することができる。
 続いて、実施例1と同様の方法で分離したガラス基板の剥離面を清浄化し、分離されたガラス基板をレーザーカッタまたはスクライブ-ブレイク法を用いて切断し、複数のセルに分断した後、有機EL構造体が形成されたガラス基板と対向基板と、を組み立てて、モジュール形成工程を実施してOLEDを作製する。こうして得られるOLEDは、特性上問題は生じない。
<Example 6>
In this example, an OLED is manufactured using the laminate A obtained in Example 1.
First, a film of molybdenum is formed on the second main surface of the glass substrate in the stacked body A by a sputtering method, and a gate electrode is formed by etching using a photolithography method. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a gate insulating film, and then an indium gallium zinc oxide film is formed by a sputtering method to perform a photolithography method. An oxide semiconductor layer is formed by the etching used. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by plasma CVD to form a channel protective layer, and then molybdenum is formed by sputtering and etching using a photolithography method is performed. Thus, a source electrode and a drain electrode are formed. Next, heat treatment is performed in the atmosphere at 450 ° C. for 60 minutes. Next, a silicon nitride film is further formed on the second main surface side of the glass substrate by a plasma CVD method to form a passivation layer, followed by an indium tin oxide film formed by a sputtering method and etching using a photolithography method. Thus, a pixel electrode is formed.
Subsequently, by vapor deposition, 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine is formed on the second main surface side of the glass substrate, and bis [ (N-naphthyl) -N-phenyl] benzidine, 2,6-bis [4- [N- (4-methoxyphenyl) -N-phenyl] aminostyryl] to 8-quinolinol aluminum complex (Alq 3 ) as the light emitting layer A mixture of 40% by volume of naphthalene-1,5-dicarbonitrile (BSN-BCN) and Alq 3 as an electron transport layer are formed in this order, and then aluminum is formed by a sputtering method. Next, another glass substrate is pasted on the second main surface side of the glass substrate through an ultraviolet curable adhesive layer. According to the above procedure, an organic EL structure is formed on a glass substrate, and a laminate A (hereinafter referred to as panel A) having the organic EL structure on the glass substrate is an electronic device of the present invention. It is a laminated body with a member for use (panel for display apparatuses with a support plate).
Subsequently, after the panel A sealing body side is vacuum-adsorbed on the surface plate, a stainless steel knife having a thickness of 0.1 mm is inserted into the interface between the glass substrate and the resin layer at the corner of panel A, and the glass substrate Gives the interface between the resin layer and the resin layer. And after adsorb | sucking the support plate surface of the panel A with a vacuum suction pad, a suction pad is raised. Here, the blade is inserted while spraying a static eliminating fluid on the interface from an ionizer (manufactured by Keyence Corporation). Next, the vacuum suction pad is pulled up while the static elimination fluid is continuously sprayed from the ionizer toward the formed gap. As a result, only the glass substrate on which the organic EL structure is formed on the surface plate is left, and the support plate with a resin layer can be peeled off.
Subsequently, the separation surface of the glass substrate separated by the same method as in Example 1 was cleaned, the separated glass substrate was cut using a laser cutter or a scribe-break method, and divided into a plurality of cells. The glass substrate on which the EL structure is formed and the counter substrate are assembled, and a module forming process is performed to manufacture an OLED. The OLED obtained in this way does not have a problem in characteristics.
<比較例1>
 実施例1と同様の方法で、支持板の第1主面上に、硬化性シリコーン樹脂(S4)の加熱硬化物からなる厚さ1μmの樹脂層を形成した。
 続いて、実施例1と同様の方法でガラス基板と、支持板の樹脂層面と、を、室温下で真空プレスしたところ、樹脂層が硬く、ガラス基板と支持板の樹脂層面で一部積層していない部分がみられた。その後、350℃で10分間加熱処理を行ったところ、ガラス基板と支持板の樹脂層面全面で分離し、積層体が形成されなかった。
<Comparative Example 1>
In the same manner as in Example 1, a 1 μm-thick resin layer made of a heat-cured product of the curable silicone resin (S4) was formed on the first main surface of the support plate.
Subsequently, when the glass substrate and the resin layer surface of the support plate were vacuum-pressed at room temperature in the same manner as in Example 1, the resin layer was hard and partially laminated on the glass substrate and the resin layer surface of the support plate. The part which was not seen was seen. Then, when heat processing were performed for 10 minutes at 350 degreeC, it isolate | separated on the whole resin layer surface of a glass substrate and a support plate, and the laminated body was not formed.
<比較例2>
 実施例1と同様の方法で、支持板の第1主面上に、硬化性シリコーン樹脂(S5)の加熱硬化物からなる厚さ1μmの樹脂層を形成した。樹脂層の表面は目視による観察でムラが確認されるほどの平坦度であった。
 続いて、実施例1と同様の方法でガラス基板と、支持板の樹脂層面と、を、室温下で真空プレスしたところ、ガラス基板と支持板の樹脂層面全面で分離し、積層体が形成されなかった。
<Comparative example 2>
In the same manner as in Example 1, a 1 μm thick resin layer made of a heat-cured product of the curable silicone resin (S5) was formed on the first main surface of the support plate. The surface of the resin layer was so flat that unevenness was confirmed by visual observation.
Subsequently, when the glass substrate and the resin layer surface of the support plate were vacuum-pressed at room temperature in the same manner as in Example 1, the glass substrate and the entire resin layer surface of the support plate were separated to form a laminate. There wasn't.
<比較例3>
 実施例1と同様の方法で、支持板の第1主面上に、硬化性シリコーン樹脂(S6)の加熱硬化物からなる厚さ1μmの樹脂層を形成した。
 続いて、実施例1と同様の方法でガラス基板と、支持板の樹脂層面と、を、室温下で真空プレスしたところ、樹脂層が硬く、ガラス基板と支持板の樹脂層面で一部積層していない部分がみられた。その後、350℃で10分間加熱処理を行ったところ、ガラス基板と支持板の樹脂層面全面で分離し、積層体が形成されなかった。
 
<Comparative Example 3>
In the same manner as in Example 1, a 1 μm-thick resin layer made of a heat-cured product of the curable silicone resin (S6) was formed on the first main surface of the support plate.
Subsequently, when the glass substrate and the resin layer surface of the support plate were vacuum-pressed at room temperature in the same manner as in Example 1, the resin layer was hard and partially laminated on the glass substrate and the resin layer surface of the support plate. The part which was not seen was seen. Then, when heat processing were performed for 10 minutes at 350 degreeC, it isolate | separated on the whole resin layer surface of a glass substrate and a support plate, and the laminated body was not formed.
<比較例4>
 支持板(縦200mm、横200mm、厚さ0.4mm)を純水洗浄、UV洗浄等で清浄化した後、該支持板上に、無溶剤付加反応型剥離紙用シリコーン(信越シリコーン株式会社製 KNS-320A)100質量部と白金系触媒(信越シリコーン株式会社製 CAT-PL-56)2質量部の混合物をスピンコータにて塗工し(塗工量10g/m2)、180℃にて30分間大気中で加熱硬化して膜厚16μmのシリコーン樹脂層を得た。
 ガラス基板(縦200mm、横200mm、厚さ0.3mm)のシリコーン樹脂層と接触させる側の面を純水洗浄、UV洗浄等で清浄化した後、支持板のシリコーン樹脂層形成面と、ガラス基板と、を、室温下真空プレスにて貼り合わせ、付加重合型シリコーン樹脂層を有するガラス積層体Pを得た。
 まず、積層体Pにおけるガラス基板の第2主面上に、プラズマCVD法により窒化シリコン、酸化シリコン、アモルファスシリコンの順に成膜した。次に、窒素雰囲気下450℃にて60分間加熱処理し脱水素処理をおこなった。脱水素処理後の積層体Pを目視で観察すると、面内の一部および積層体の端部において樹脂の揮発による発泡部が見られ、実施例1と同様の方法で積層体Aの4箇所のうち1箇所のコーナー部におけるガラス基板と支持板の樹脂層の界面に厚さ0.1mmのステンレス製刃物を挿入させて剥離の切欠部を形成しながら、ガラス基板と支持板それぞれの剥離面でない面に真空吸着パッドを吸着させ、互いにガラス基板と支持板が分離する方向に外力を加えて、ガラス基板と支持板を分離すると、ガラス基板の剥離面、すなわち第1主面上の一部に樹脂の付着が認められた。
 次に、樹脂が付着したガラス基板の剥離面に対して、実施例1で実施したアルコール溶液(日本アルコール販売社製、ネオコールR7)によるブラシ洗浄を行ったが、樹脂の付着を除去することはできなかった。
<Comparative Example 4>
After cleaning the support plate (length 200mm, width 200mm, thickness 0.4mm) with pure water cleaning, UV cleaning, etc., the solvent-free addition reaction type release paper silicone (manufactured by Shin-Etsu Silicone Co., Ltd.) A mixture of 100 parts by weight of KNS-320A and 2 parts by weight of a platinum catalyst (CAT-PL-56 manufactured by Shin-Etsu Silicone Co., Ltd.) was applied with a spin coater (coating amount 10 g / m 2 ), and 30 at 180 ° C. A silicone resin layer having a film thickness of 16 μm was obtained by heating and curing in the air for a minute.
After the surface of the glass substrate (length 200 mm, width 200 mm, thickness 0.3 mm) to be brought into contact with the silicone resin layer is cleaned by pure water cleaning, UV cleaning, etc., the surface of the support plate where the silicone resin layer is formed, and glass The substrate was bonded with a vacuum press at room temperature to obtain a glass laminate P having an addition polymerization type silicone resin layer.
First, on the 2nd main surface of the glass substrate in the laminated body P, it formed into a film in order of the silicon nitride, the silicon oxide, and the amorphous silicon by plasma CVD method. Next, heat treatment was performed at 450 ° C. for 60 minutes in a nitrogen atmosphere to perform dehydrogenation treatment. When the laminate P after the dehydrogenation treatment is visually observed, foamed portions due to the volatilization of the resin are seen at a part of the surface and at the end of the laminate, and four places of the laminate A in the same manner as in Example 1. Of each of the glass substrate and the support plate while forming a notch for peeling by inserting a stainless steel knife having a thickness of 0.1 mm into the interface between the glass layer and the resin layer of the support plate at one corner portion. When the vacuum suction pad is adsorbed on the surface that is not, and the glass substrate and the support plate are separated by applying an external force in the direction in which the glass substrate and the support plate are separated from each other, a separation surface of the glass substrate, that is, a part on the first main surface Resin adhesion was observed.
Next, brush cleaning was performed on the release surface of the glass substrate to which the resin was adhered with the alcohol solution (Necoal R7, manufactured by Nippon Alcohol Sales Co., Ltd.), which was performed in Example 1. could not.
 実施例4~6は、本発明の樹脂層を有する積層体のため、電子デバイスを高温で形成してもデバイス特性への影響がみられない。これは積層体の樹脂層における揮発成分による影響がなかったためと推察される。
 一方、本発明の樹脂層ではない比較例4は電子デバイスを高温で形成すると発泡が見られ、揮発成分が発生していると思われる。また、ガラス基板に付着した樹脂を除去することができない。
Since Examples 4 to 6 are laminates having the resin layer of the present invention, no influence on the device characteristics is observed even when the electronic device is formed at a high temperature. This is presumably because there was no influence of volatile components in the resin layer of the laminate.
On the other hand, in Comparative Example 4 which is not a resin layer of the present invention, foaming is observed when an electronic device is formed at a high temperature, and it is considered that a volatile component is generated. Moreover, the resin adhering to the glass substrate cannot be removed.
 本出願は、2011年10月18日出願の日本特許出願2011-228792に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2011-228792 filed on Oct. 18, 2011, the contents of which are incorporated herein by reference.
 10  積層体
 12  支持板
 14  樹脂層
 14a 樹脂層の第1主面
 16  ガラス基板
 16a ガラス基板の第1主面
 16b ガラス基板の第2主面
 18  樹脂層付き支持板
 20  電子デバイス用部材
 22  電子デバイス用部材付き積層体
 24  部材付ガラス基板
DESCRIPTION OF SYMBOLS 10 Laminated body 12 Support plate 14 Resin layer 14a 1st main surface of resin layer 16 Glass substrate 16a 1st main surface of glass substrate 16b 2nd main surface of glass substrate 18 Support plate with resin layer 20 Electronic device member 22 Electronic device Laminated body with members for glass 24 Glass substrate with members

Claims (15)

  1.  支持板の層と樹脂層とガラス基板の層と、をこの順で備え、
     前記支持板の層と前記樹脂層の界面の剥離強度(y)が、前記樹脂層と前記ガラス基板の界面の剥離強度(x)または前記樹脂層の凝集破壊強度(z)よりも高く、
     前記樹脂層の樹脂が架橋シリコーン樹脂であり、
     前記架橋シリコーン樹脂が、式(1)で表されるオルガノシロキシ単位(A-1)と、式(2)で表されるオルガノシロキシ単位(B-1)と、を含み、
     全オルガノシロキシ単位に対する(A-1)+(B-1)の割合が70~100モル%であり、かつ(A-1)と(B-1)の合計に対する(A-1)の割合が15~50モル%の架橋シリコーン樹脂である、積層体。
    Figure JPOXMLDOC01-appb-C000001
    (前記式(1)中、R1は水素原子または炭素原子数1~4のアルキル基を表す。前記式(2)中、R6およびR7は、それぞれ独立に、炭素原子数1~4のアルキル基を表す。)
    A support plate layer, a resin layer, and a glass substrate layer are provided in this order,
    The peel strength (y) at the interface between the support plate layer and the resin layer is higher than the peel strength (x) at the interface between the resin layer and the glass substrate or the cohesive fracture strength (z) of the resin layer,
    The resin of the resin layer is a crosslinked silicone resin,
    The crosslinked silicone resin contains an organosiloxy unit (A-1) represented by the formula (1) and an organosiloxy unit (B-1) represented by the formula (2).
    The ratio of (A-1) + (B-1) to all organosiloxy units is 70 to 100 mol%, and the ratio of (A-1) to the total of (A-1) and (B-1) is A laminate comprising 15 to 50 mol% of a crosslinked silicone resin.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. In the formula (2), R 6 and R 7 each independently represents 1 to 4 carbon atoms. Represents an alkyl group of
  2.  前記架橋シリコーン樹脂が、さらに、式(3)で表されるオルガノシロキシ単位(A-2)および式(4)で表されるオルガノシロキシ単位(B-2)のいずれか少なくとも一方を含み、[(A-1)+(A-2)+(B-1)+(B-2)]に対する[(A-1)+(B-2)]の割合が15~50モル%である、請求項1に記載の積層体。
    Figure JPOXMLDOC01-appb-C000002
    (前記式(3)中、R1は水素原子または炭素原子数1~4のアルキル基を表し、R2は炭素原子数1~4のアルキル基を表す。前記式(4)中、R6は、炭素原子数1~4のアルキル基を表す。)
    The crosslinked silicone resin further contains at least one of an organosiloxy unit (A-2) represented by the formula (3) and an organosiloxy unit (B-2) represented by the formula (4); The ratio of [(A-1) + (B-2)] to (A-1) + (A-2) + (B-1) + (B-2)] is 15 to 50 mol%. Item 2. The laminate according to Item 1.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (3), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms. In the formula (4), R 6 Represents an alkyl group having 1 to 4 carbon atoms.)
  3.  前記式(1)および式(3)において式(9)で表わされるフェニル基(X)と、前記式(2)および(4)においてR6および/またはR7で表されるアルキル基(Y)の比が、[(X)]/[(X)+(Y)]=10~40モル%である、請求項2に記載の積層体。
    Figure JPOXMLDOC01-appb-C000003
    (前記式(9)中、R1は水素原子または炭素原子数1~4のアルキル基を表す。)
    The phenyl group (X) represented by the formula (9) in the above formulas (1) and (3), and the alkyl group represented by R 6 and / or R 7 in the above formulas (2) and (4) (Y The laminate according to claim 2, wherein the ratio of () is [(X)] / [(X) + (Y)] = 10 to 40 mol%.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (9), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
  4.  全オルガノシロキシ単位に対する[(A-1)+(A-2)+(B-1)+(B-2)]の割合が95~100モル%である、請求項2または3に記載の積層体。 The laminate according to claim 2 or 3, wherein the ratio of [(A-1) + (A-2) + (B-1) + (B-2)] to all organosiloxy units is 95 to 100 mol%. body.
  5.  前記式(1)~(4)で表されるオルガノシロキシ単位がいずれもオルガノアルコキシシラン化合物に由来する単位である、請求項1~4のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein all of the organosiloxy units represented by the formulas (1) to (4) are units derived from an organoalkoxysilane compound.
  6.  前記樹脂層の厚さが1~5μmである、請求項1~5のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the resin layer has a thickness of 1 to 5 µm.
  7.  前記支持板がガラス板である、請求項1~6のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 6, wherein the support plate is a glass plate.
  8.  前記支持板と前記ガラス基板との25~300℃における平均線膨張係数の差が0~500×10-7/℃である、請求項1~7のいずれか1項に記載の積層体。 The laminate according to any one of claims 1 to 7, wherein a difference in average linear expansion coefficient between the support plate and the glass substrate at 25 to 300 ° C is 0 to 500 × 10 -7 / ° C.
  9.  架橋硬化して架橋シリコーン樹脂となる硬化性シリコーン樹脂の膜を支持板の表面に形成し、
     前記支持板の表面上で前記硬化性シリコーン樹脂を架橋硬化させて架橋シリコーン樹脂の膜を形成し、次いで、
     前記架橋シリコーン樹脂の膜の表面にガラス基板を積層して、支持板の層と樹脂層とガラス基板の層と、をこの順で備えた積層体を製造する積層体の製造方法。
    架橋シリコーン樹脂:式(1)で表されるオルガノシロキシ単位(A-1)と、式(2)で表されるオルガノシロキシ単位(B-1)とを含み、全オルガノシロキシ単位に対する(A-1)+(B-1)の割合が70~100モル%であり、かつ(A-1)と(B-1)の合計に対する(A-1)の割合が15~50モル%の架橋シリコーン樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (前記式(1)中、R1は水素原子または炭素原子数1~4のアルキル基を表す。前記式(2)中、R6およびR7は、それぞれ独立に、炭素原子数1~4のアルキル基を表す。)
    A film of a curable silicone resin that is crosslinked and cured to form a crosslinked silicone resin is formed on the surface of the support plate,
    Crosslinking and curing the curable silicone resin on the surface of the support plate to form a crosslinked silicone resin film,
    A method for producing a laminate, comprising: laminating a glass substrate on a surface of the crosslinked silicone resin film, and producing a laminate comprising a support plate layer, a resin layer, and a glass substrate layer in this order.
    Cross-linked silicone resin: An organosiloxy unit (A-1) represented by the formula (1) and an organosiloxy unit (B-1) represented by the formula (2), and (A- 1) A crosslinked silicone having a ratio of + (B-1) of 70 to 100 mol% and a ratio of (A-1) to the total of (A-1) and (B-1) of 15 to 50 mol% resin.
    Figure JPOXMLDOC01-appb-C000004
    (In the formula (1), R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. In the formula (2), R 6 and R 7 each independently represents 1 to 4 carbon atoms. Represents an alkyl group of
  10.  前記硬化性シリコーン樹脂がオルガノアルコキシシラン化合物の混合物の部分加水分解縮合物からなり、該硬化性シリコーン樹脂および溶媒を含む溶液を前記支持板の表面に塗布して、前記溶媒を除去することにより硬化性シリコーン樹脂の膜を形成する、請求項9に記載の積層体の製造方法。 The curable silicone resin is composed of a partially hydrolyzed condensate of a mixture of organoalkoxysilane compounds, and a solution containing the curable silicone resin and a solvent is applied to the surface of the support plate and cured by removing the solvent. The manufacturing method of the laminated body of Claim 9 which forms the film | membrane of a conductive silicone resin.
  11.  前記部分加水分解縮合物の重量平均分子量が1万~20万である、請求項10に記載の積層体の製造方法。 The method for producing a laminate according to claim 10, wherein the partial hydrolysis-condensation product has a weight average molecular weight of 10,000 to 200,000.
  12.  前記部分加水分解縮合物の重量平均分子量が1万~10万である、請求項10に記載の積層体の製造方法。 The method for producing a laminate according to claim 10, wherein the partial hydrolysis-condensation product has a weight average molecular weight of 10,000 to 100,000.
  13.  請求項1~8のいずれか1項に記載の積層体中の前記ガラス基板上に電子デバイス用部材を形成して、電子デバイス用部材付き積層体を製造し、
     前記電子デバイス用部材付き積層体から、前記樹脂層のガラス基板側界面または前記樹脂層内部を剥離面として、電子デバイス用部材付きガラス基板と樹脂層付き支持板と、に分離し、次いで、
     前記電子デバイス用部材付きガラス基板の剥離面を清浄化する
    電子デバイス用部材付きガラス基板の製造方法。
    An electronic device member is formed on the glass substrate in the laminate according to any one of claims 1 to 8, to produce a laminate with an electronic device member,
    From the laminate with the electronic device member, the glass substrate side interface of the resin layer or the inside of the resin layer is separated into the glass substrate with the electronic device member and the support plate with the resin layer, and then,
    The manufacturing method of the glass substrate with a member for electronic devices which cleans the peeling surface of the said glass substrate with a member for electronic devices.
  14.  前記清浄化が溶媒を用いた洗浄である、請求項13に記載の電子デバイス用部材付きガラス基板の製造方法。 The method for producing a glass substrate with a member for an electronic device according to claim 13, wherein the cleaning is cleaning using a solvent.
  15.  前記洗浄が、溶解度パラメータが7~15の溶媒を使用した洗浄である、請求項14に記載の電子デバイス用部材付きガラス基板の製造方法。 The method for producing a glass substrate with a member for an electronic device according to claim 14, wherein the cleaning is cleaning using a solvent having a solubility parameter of 7 to 15.
PCT/JP2012/076641 2011-10-18 2012-10-15 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto WO2013058217A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013539636A JP5924344B2 (en) 2011-10-18 2012-10-15 LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
CN201280051485.6A CN103889712B (en) 2011-10-18 2012-10-15 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto
KR1020147010179A KR101973826B1 (en) 2011-10-18 2012-10-15 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011228792 2011-10-18
JP2011-228792 2011-10-18

Publications (1)

Publication Number Publication Date
WO2013058217A1 true WO2013058217A1 (en) 2013-04-25

Family

ID=48140864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076641 WO2013058217A1 (en) 2011-10-18 2012-10-15 Laminate, method for producing laminate, and method for producing glass substrate having member for electronic devices attached thereto

Country Status (5)

Country Link
JP (1) JP5924344B2 (en)
KR (1) KR101973826B1 (en)
CN (1) CN103889712B (en)
TW (1) TW201318843A (en)
WO (1) WO2013058217A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116694A (en) * 2013-12-17 2015-06-25 旭硝子株式会社 Method for manufacturing support substrate with resin layer, method for manufacturing glass laminate, and method for manufacturing electronic device
JP2015116698A (en) * 2013-12-17 2015-06-25 旭硝子株式会社 Method for manufacturing glass laminate and method for manufacturing electronic device
WO2015119210A1 (en) * 2014-02-07 2015-08-13 旭硝子株式会社 Glass laminate
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
JP2017030324A (en) * 2015-08-06 2017-02-09 旭硝子株式会社 Glass laminate and method for producing the same
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
CN111629899A (en) * 2018-01-17 2020-09-04 Agc株式会社 Laminate, method for manufacturing laminate, and method for manufacturing electronic device
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104450A1 (en) * 2014-12-26 2016-06-30 旭硝子株式会社 Glass laminate, method for producing electronic device, method for producing glass laminate, and glass plate package
KR101574923B1 (en) * 2015-01-20 2015-12-04 김영수 Apparatus of display having detachable window and method of detachable the window
JP7115511B2 (en) * 2019-06-06 2022-08-09 Agc株式会社 LAMINATED SUBSTRATE, ELECTRONIC DEVICE MANUFACTURING METHOD, AND LAMINATED SUBSTRATE MANUFACTURING METHOD

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542971A (en) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー Polymer coated glass thin film substrate
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2009215343A (en) * 2008-03-07 2009-09-24 Adeka Corp Thermosetting resin
JP2012012573A (en) * 2010-06-04 2012-01-19 Shin-Etsu Chemical Co Ltd Temporary adhesive composition, and method of producing thin wafer
JP2012086527A (en) * 2010-10-22 2012-05-10 Asahi Glass Co Ltd Support, glass substrate laminate, panel for display device with support, organopolysiloxane composition, and method for manufacturing panel for display device
JP2012144616A (en) * 2011-01-11 2012-08-02 Shin-Etsu Chemical Co Ltd Temporary adhesive composition, and method for manufacturing thin wafer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2213744B (en) * 1987-12-17 1991-09-18 Courtaulds Films & Packaging Production of polymeric films
KR950018079A (en) * 1993-12-31 1995-07-22 김충세 Silicone crosslinkable acrylic resin with excellent impact resistance, silicone crosslinkable curing composition and paint composition containing the same
KR100548880B1 (en) * 1997-12-31 2006-05-12 주식회사 케이씨씨 Thermosetting Silicone Crosslinked Resin Composition
WO2007129554A1 (en) * 2006-05-08 2007-11-15 Asahi Glass Company, Limited Thin-sheet glass laminate, process for manufacturing display apparatus using the laminate, and supporting glass substrate
EP2250221A1 (en) * 2008-03-04 2010-11-17 Dow Corning Corporation Silicone composition, silicone adhesive, coated and laminated substrates
JP5467792B2 (en) * 2008-04-24 2014-04-09 日東電工株式会社 Flexible substrate
TW201033000A (en) * 2009-01-09 2010-09-16 Asahi Glass Co Ltd Glass laminate and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002542971A (en) * 1999-04-30 2002-12-17 ショット・ディスプレイ・グラース・ゲーエムベーハー Polymer coated glass thin film substrate
WO2007018028A1 (en) * 2005-08-09 2007-02-15 Asahi Glass Company, Limited Thin sheet glass laminate and method for manufacturing display using thin sheet glass laminate
JP2009215343A (en) * 2008-03-07 2009-09-24 Adeka Corp Thermosetting resin
JP2012012573A (en) * 2010-06-04 2012-01-19 Shin-Etsu Chemical Co Ltd Temporary adhesive composition, and method of producing thin wafer
JP2012086527A (en) * 2010-10-22 2012-05-10 Asahi Glass Co Ltd Support, glass substrate laminate, panel for display device with support, organopolysiloxane composition, and method for manufacturing panel for display device
JP2012144616A (en) * 2011-01-11 2012-08-02 Shin-Etsu Chemical Co Ltd Temporary adhesive composition, and method for manufacturing thin wafer

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10543662B2 (en) 2012-02-08 2020-01-28 Corning Incorporated Device modified substrate article and methods for making
US10014177B2 (en) 2012-12-13 2018-07-03 Corning Incorporated Methods for processing electronic devices
US10086584B2 (en) 2012-12-13 2018-10-02 Corning Incorporated Glass articles and methods for controlled bonding of glass sheets with carriers
US9340443B2 (en) 2012-12-13 2016-05-17 Corning Incorporated Bulk annealing of glass sheets
US10538452B2 (en) 2012-12-13 2020-01-21 Corning Incorporated Bulk annealing of glass sheets
US9889635B2 (en) 2012-12-13 2018-02-13 Corning Incorporated Facilitated processing for controlling bonding between sheet and carrier
US10510576B2 (en) 2013-10-14 2019-12-17 Corning Incorporated Carrier-bonding methods and articles for semiconductor and interposer processing
JP2015116694A (en) * 2013-12-17 2015-06-25 旭硝子株式会社 Method for manufacturing support substrate with resin layer, method for manufacturing glass laminate, and method for manufacturing electronic device
JP2015116698A (en) * 2013-12-17 2015-06-25 旭硝子株式会社 Method for manufacturing glass laminate and method for manufacturing electronic device
US11123954B2 (en) 2014-01-27 2021-09-21 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
US10046542B2 (en) 2014-01-27 2018-08-14 Corning Incorporated Articles and methods for controlled bonding of thin sheets with carriers
JPWO2015119210A1 (en) * 2014-02-07 2017-03-23 旭硝子株式会社 Glass laminate
WO2015119210A1 (en) * 2014-02-07 2015-08-13 旭硝子株式会社 Glass laminate
CN105980150A (en) * 2014-02-07 2016-09-28 旭硝子株式会社 Glass laminate
US11192340B2 (en) 2014-04-09 2021-12-07 Corning Incorporated Device modified substrate article and methods for making
US11167532B2 (en) 2015-05-19 2021-11-09 Corning Incorporated Articles and methods for bonding sheets with carriers
US11660841B2 (en) 2015-05-19 2023-05-30 Corning Incorporated Articles and methods for bonding sheets with carriers
US11905201B2 (en) 2015-06-26 2024-02-20 Corning Incorporated Methods and articles including a sheet and a carrier
KR20170017729A (en) 2015-08-06 2017-02-15 아사히 가라스 가부시키가이샤 Glass laminate and method for producing same
JP2017030324A (en) * 2015-08-06 2017-02-09 旭硝子株式会社 Glass laminate and method for producing the same
KR102526047B1 (en) * 2015-08-06 2023-04-27 에이지씨 가부시키가이샤 Glass laminate and method for producing same
US11097509B2 (en) 2016-08-30 2021-08-24 Corning Incorporated Siloxane plasma polymers for sheet bonding
US11535553B2 (en) 2016-08-31 2022-12-27 Corning Incorporated Articles of controllably bonded sheets and methods for making same
US11331692B2 (en) 2017-12-15 2022-05-17 Corning Incorporated Methods for treating a substrate and method for making articles comprising bonded sheets
CN111629899A (en) * 2018-01-17 2020-09-04 Agc株式会社 Laminate, method for manufacturing laminate, and method for manufacturing electronic device

Also Published As

Publication number Publication date
TWI562887B (en) 2016-12-21
JP5924344B2 (en) 2016-05-25
CN103889712B (en) 2015-07-08
KR101973826B1 (en) 2019-08-26
TW201318843A (en) 2013-05-16
JPWO2013058217A1 (en) 2015-04-02
CN103889712A (en) 2014-06-25
KR20140079783A (en) 2014-06-27

Similar Documents

Publication Publication Date Title
JP5924344B2 (en) LAMINATE, METHOD FOR PRODUCING LAMINATE, AND METHOD FOR PRODUCING GLASS SUBSTRATE WITH ELECTRONIC DEVICE MEMBER
JP6443350B2 (en) Glass laminate
JP6136909B2 (en) Manufacturing method of support substrate with resin layer, manufacturing method of glass laminate, manufacturing method of electronic device
WO2015156395A1 (en) Glass laminate, method for producing same and method for manufacturing electronic device
TWI641479B (en) Glass laminated body and manufacturing method thereof
JP6252490B2 (en) GLASS LAMINATE, PROCESS FOR PRODUCING THE SAME, AND SUPPORT SUBSTRATE WITH SILICONE RESIN LAYER
TWI613073B (en) Glass laminate, method of manufacturing the same, and support substrate with oxy-resin layer
JP2013084526A (en) Manufacturing method of electronic device and manufacturing method of carrier substrate with resin layer
WO2014192560A1 (en) Resin-layer-equipped support substrate and method for producing same, glass laminate and method for producing same, and method for producing electronic device
WO2015146920A1 (en) Glass laminate
CN104854055A (en) Electronic device manufacturing method, and glass laminate manufacturing method
JP6610560B2 (en) Glass laminate, method for producing the same, and method for producing electronic device
JP2016035832A (en) Method of manufacturing electronic device, method of manufacturing glass laminate
WO2016104450A1 (en) Glass laminate, method for producing electronic device, method for producing glass laminate, and glass plate package
KR102526047B1 (en) Glass laminate and method for producing same
WO2014050833A1 (en) Glass laminate and manufacturing method for same, and support substrate having silicone resin layer attached thereto and manufacturing method for same
WO2015016113A1 (en) Electronic device manufacturing method
TWI656967B (en) Glass laminated body, manufacturing method thereof, and manufacturing method of electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12842486

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539636

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147010179

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12842486

Country of ref document: EP

Kind code of ref document: A1