WO2012157543A1 - Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition - Google Patents

Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition Download PDF

Info

Publication number
WO2012157543A1
WO2012157543A1 PCT/JP2012/062094 JP2012062094W WO2012157543A1 WO 2012157543 A1 WO2012157543 A1 WO 2012157543A1 JP 2012062094 W JP2012062094 W JP 2012062094W WO 2012157543 A1 WO2012157543 A1 WO 2012157543A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkoxysilane
condensate
independently
photosensitive composition
group
Prior art date
Application number
PCT/JP2012/062094
Other languages
French (fr)
Japanese (ja)
Inventor
毅 小川
本城 啓司
赤松 佳則
山中 一広
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2012157543A1 publication Critical patent/WO2012157543A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups

Definitions

  • the present invention relates to a condensate using a specific alkoxysilane, a photosensitive composition and a method for producing the same, and a negative resist pattern formed of a photosensitive resin composition on a substrate such as a glass substrate or a silicon substrate.
  • the present invention relates to a method for forming a mold resist pattern.
  • liquid crystal displays touch panels, organic EL, etc.
  • various protective films or insulating films are used.
  • An epoxy resin film formed by a wet method is mainly used as a protective film for protecting the color filter of the liquid crystal.
  • the insulating film there is an insulating film for TFT in a TFT (Thin Film Transistor) liquid crystal display, and a SiN film formed mainly by a CVD (Chemical Vapor Deposition) method is used.
  • a CVD Chemical Vapor Deposition
  • the protective film and insulating film have higher heat resistance to cope with the recent increase in response speed of TFT liquid crystal displays and higher brightness of backlight light sources, compared to the conventional materials described above.
  • a condensate obtained by hydrolysis and condensation reaction of alkoxysilane (hereinafter sometimes simply referred to as a condensate) has excellent heat resistance, transparency in the visible light region, and adhesion to glass substrates and silicon substrates. It is known as a material.
  • the condensate has a high solubility in organic solvents by specifying the type and composition of alkoxysilane used as a raw material and devising a manufacturing method, so that wet film formation is possible. Alternatively, it is a promising material for use as an insulating film.
  • the content of silicon in the condensate is large, it becomes a promising material as a hard mask as well as various insulating films.
  • an organic polymer is used as an insulating film of an integrated circuit, it is difficult to distinguish and etch the resist and the insulating film because they are the same organic material as the resist film to which a fine pattern is transferred. Therefore, an inorganic layer may be provided between the resist and the insulating film, and this layer is called a hard mask.
  • a resist film is formed on a substrate such as a glass substrate or a silicon substrate, and the resist film is irradiated and exposed through a photomask having a pattern.
  • This is a technique for forming a resist pattern to which a mask pattern is transferred.
  • it is necessary to form a resist pattern on these films and then perform etching to form a pattern.
  • Patent Document 1 discloses a negative resist material characterized by containing a resin having a silanol group and a compound that generates an acid upon irradiation with high energy rays.
  • Patent Document 2 discloses (1) an alkali-soluble siloxane polymer having a methyl group directly connected to silicon and a silanol group and having a silanol content of 0.1 to 2.0 (provided that the silanol content is red silicon silanol groups and 1271cm -1 of 900 cm -1 due to external spectroscopy -. pointing absorbance ratio or Abs of the absorption peak by methyl group (900cm -1) / Abs (1271cm -1)) (2) by the action of radiation
  • produces a reaction accelerator is disclosed.
  • Patent Document 3 discloses a component (X) composed of phenyltriethoxysilane or phenyltrimethoxysilane, a component (Y) composed of methyltriethoxysilane or methyltrimethoxysilane, and a component composed of triethoxysilane or trimethoxysilane. Formation of a film containing an alkoxysilane condensate (A) obtained by reacting (Z) with a specific ratio, and an acid generator (B) that generates an acid by an external stimulus such as light or heat A composition for use, a method for producing a pattern film using the composition, and an insulating film for electronic devices are disclosed.
  • the condensate obtained by hydrolysis and condensation reaction of alkoxysilane has the following two problems.
  • the first problem is the storage stability of the condensate. This is because the silanol (Si—OH) group remaining in the condensate undergoes a condensation reaction gradually during the storage period, and the condensation proceeds and the molecular weight increases.
  • the condensate changes in physical properties such as viscosity and solubility in an organic solvent, and it is difficult to uniformly form a wet film, making it difficult to obtain a desired film.
  • the second problem is that it is difficult to obtain a hard film having a film thickness of 1.5 ⁇ m or more.
  • a protective film or an insulating film in the field of liquid crystal display or the like often requires a thickness, a pencil hardness HB of 1.5 ⁇ m or more, and preferably a hardness of 2H or more.
  • the condensate needs to be heated and fired at a high temperature after wet film formation, and finally, it is difficult to obtain a film having a film thickness of 1.5 ⁇ m or more without cracks at the film hardness.
  • the condensate obtained by hydrolysis and condensation reaction of alkoxysilane is excellent in storage stability, which was difficult with the condensate obtained by hydrolysis and condensation of alkoxysilane by the conventional method.
  • the film thickness when the condensate is a hard film solving the problem of not generating cracks in the film of 1.5 ⁇ m or more, excellent in storage stability, and using the condensate to form a film on the substrate.
  • a photosensitive composition obtained by adding a photoacid generator that generates acid by the action of high energy rays to the condensate of the present invention, and applying the photosensitive composition onto a substrate to form a resist film, followed by photolithography Therefore, there is a demand for a negative resist pattern forming method for forming a negative resist pattern by irradiating a high energy beam.
  • the present inventors have used three types of alkoxysilanes having a specific structure as raw materials, used them at specific composition ratios, water, organic After the hydrolysis and condensation reaction are performed by adding a solvent and an acid catalyst, the acid catalyst is removed by extraction with water, and the condensate obtained by further removing the organic solvent is excellent in storage stability and the solvent is removed.
  • the substrate when applied to the substrate, it was found that after heating and firing, a hard film having a film thickness of 1.5 ⁇ m or more and having no crack of pencil hardness HB or more can be obtained, and the present invention was completed.
  • the present invention is as follows.
  • a water-soluble organic solvent B as a reaction solvent, preferably an alcohol
  • the condensation reaction is preferably performed using acetic acid.
  • the condensate present in the reaction solution after the condensation reaction is extracted with a water-insoluble organic solvent C that is immiscible with water, and then acetic acid contained in the organic solvent C is removed by washing with water. After removing a trace amount of water dissolved in the organic solvent C, the organic solvent C is removed by distillation under reduced pressure to obtain the desired condensate.
  • a photosensitive composition can be produced by adding a photoacid generator and an organic solvent A to the condensate of Invention 1.
  • the photosensitive composition is produced by dissolving the condensate of the invention 1 in an organic solvent A capable of dissolving the condensate, and adding a photoacid generator that generates acid by the action of high energy rays. it can.
  • a photosensitive composition comprising the condensate of the invention 1, a photoacid generator and an organic solvent A.
  • the photosensitive composition of the invention 6 or the invention 7 is obtained by the method for producing a photosensitive composition of any one of the inventions 8 to 11 shown below.
  • invention 11 The method for producing a photosensitive composition according to any one of inventions 8 to 10, wherein the acid catalyst is acetic acid.
  • a film is obtained by wet-forming a film on a substrate such as a glass substrate or a silicon substrate and pre-baking the substrate.
  • a substrate such as a glass substrate or a silicon substrate
  • acid is generated from the photoacid generator in the irradiated part
  • condensation of silanol groups proceeds in the irradiated part film, resulting in a condensate in the irradiated part.
  • the condensation further accelerates and becomes insoluble in the alkali developer, and only the unirradiated portion of the film dissolves in the alkali developer and is developed to form a negative resist pattern to which the photomask pattern is transferred.
  • the thin film is heated and baked at a high temperature to reduce the silanol groups remaining in the negative resist pattern, thereby obtaining a display protective film or insulating film, a semiconductor hard mask or insulating film.
  • invention 12 The film formed by coating the photosensitive composition of the invention 6 or 7 on a substrate is irradiated with high energy rays to generate an acid in the irradiated part to further accelerate the condensation of the condensate in the irradiated part, thereby A method for forming a negative pattern, wherein the negative pattern is formed by removing a film in an unirradiated portion after insoluble in a developer.
  • invention 13 The method of forming a negative pattern according to the invention 12, wherein the high energy rays to be irradiated are electromagnetic waves having a wavelength of 400 nm or less or electron beams.
  • the condensate of the present invention is excellent in storage stability, and when coated on a substrate such as a glass substrate or a silicon substrate to form a film, after firing, it has cracks with a film thickness of 1.5 ⁇ m or more and a pencil hardness of HB or more. It is easy to obtain no membrane. For example, when the condensate of the present invention was wet-coated as a solution to form a thin film, the occurrence of cracks was not confirmed even when the film thickness was 1.5 ⁇ m or more, and the pencil hardness was H or more.
  • the condensate of the present invention has high heat resistance, high transparency in visible light, excellent adhesion to a glass substrate or silicon substrate, and low water absorption.
  • Condensate The condensate of the present invention was subjected to hydrolysis and condensation reactions using various alkoxysilanes having a specific structure as raw materials, using them in specific ratios, adding water, an organic solvent B and an acid catalyst. Thereafter, the acid catalyst was removed by extraction with water, and the organic solvent B was further removed.
  • the present invention relates to general formula (1): Si (OR 1 ) 4 (In formula (1), each R 1 is independently a methyl group or an ethyl group.)
  • alkoxysilane B represented by general formula (3): (R 2 ) 2 Si (OR 1 ) 2 (In Formula (3), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.
  • the alkoxysilane C represented by the formula (1) is represented by a molar ratio, and the alkoxysilane A: alkoxysilane B: alkoxysilane C is
  • the condensate of the present invention is a complex three-dimensional network structure formed by hydrolysis and condensation reaction of various alkoxysilanes having a specific structure.
  • the condensate obtained from the alkoxysilane B represented by the general formula (2) in which R 2 is a phenyl group and the alkoxysilane C represented by the general formula (3) in which R 2 is a methyl group includes:
  • the structure shown below is considered to be included.
  • a bond shown by a wavy line in the structure means that a network of siloxane bonds continues beyond that.
  • a condensate that is excellent in storage stability by using alkoxysilanes A to C and that can form a hard film having a film thickness of 1.5 ⁇ m or more and a pencil hardness of H or more without cracks at the time of film formation.
  • it is preferable to perform condensation in the range of alkoxysilane A: alkoxysilane B: alkoxysilane C 0 to 70:30 to 100: 0 to 70 in terms of molar ratio.
  • mol% from 0% to 70% alkoxysilane A, from 30% to less than 100 mol% alkoxysilane B, and from 0% to 70% alkoxysilane C.
  • alkoxysilane A or alkoxysilane C as an essential composition.
  • alkoxysilanes A to C are mixed and used at a molar percentage ratio within a shaded range surrounded by five points A, B, C, D and E shown in FIG.
  • the condensate is dissolved in an organic solvent A, preferably a polar solvent, and wet-formed on a substrate such as a glass substrate or a silicon substrate.
  • an organic solvent A preferably a polar solvent
  • the organic solvent A is removed to form a film. If this film is heated and fired, it can be used as a protective film or insulating film for displays or semiconductors, or as a hard mask or insulating film in the field of semiconductor manufacturing.
  • the reaction vessel is preferably provided with a condenser.
  • the time required for the condensation reaction is usually 3 to 5 hours.
  • the temperature of the reaction solution is lowered to room temperature (20 ° C.), and in order to remove the condensate present in the reaction system, contact extraction is performed with an organic solvent C that is not miscible with water, that is, a water-insoluble solvent. Acetic acid contained in the organic solvent C is removed by washing with water.
  • the solid desiccant is removed by filtration.
  • the target condensate is obtained by removing the organic solvent C under reduced pressure.
  • water may be simultaneously removed under reduced pressure in the process of removing the organic solvent C under reduced pressure without using a solid desiccant.
  • the molar equivalent of water used in the hydrolysis and condensation reaction for obtaining the condensate of the present invention is 1.5 to 5 times the total molar equivalent of the alkoxy groups of the raw material alkoxysilane.
  • the amount is less than 1.5 times equivalent, hydrolysis is not efficiently performed and a condensate having poor storage stability is obtained.
  • productivity is extremely lowered, which is not preferable.
  • the organic solvent B is preferably an alcohol, such as ethanol, normal propanol, isopropanol or butanol.
  • the organic solvent C used for extracting the condensate present in the reaction system after the condensation reaction and dissolving the condensate and immiscible with water is diethyl.
  • ether isopropyl ether or dibutyl ether.
  • the solid desiccant used for removing water from the organic solvent C after the condensation reaction in order to obtain the condensate or photosensitive composition of the present invention includes magnesium sulfate.
  • Photosensitive composition and method for producing the same a photoacid generator for generating an acid by the action of high energy rays by dissolving the condensate of the present invention in an organic solvent A in which the condensate can be dissolved, preferably a polar solvent. It is set as the photosensitive composition by adding.
  • Examples of the organic solvent A used in the photosensitive composition of the present invention include propylene glycol monomethyl acetate (hereinafter abbreviated as PGMEA), propylene glycol monomethyl ether, cyclohexanone, ⁇ -butyrolactone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethyl.
  • Examples include formamide or N-methylpyrrolidone.
  • a photoacid generator that generates acid by the action of high energy rays used in the photosensitive composition of the present invention, that is, generates acid by absorbing high energy rays to be irradiated
  • triphenyl is used.
  • Sulfonium trifluoromethanesulfonate manufactured by BASF USA, trade name, Irgacure PAG121, Irgacure PAG103, Irgacure CGI1380, Irgacure CGI725, Midori Chemical Co., Ltd., trade names, PAI-101, PAI-106, NAI-105, NAI-106 , TAZ-110, TAZ-204, manufactured by San Apro Co., Ltd., trade name, CPI-200K, CPI-210S, CPI-101A, CPI-110A, CPI-100P, CPI-110P, CPI-100TF, HS-1, S-1A, HS-1P, HS-1N, HS-1TF, HS-1NF
  • the solution-like photosensitive composition is wet-deposited on a substrate such as a glass substrate or a silicon substrate. For example, after coating on the substrate, pre-baking, that is, heating, the organic solvent A is removed to obtain a resist film. This resist film is formed into a negative resist pattern by photolithography.
  • the resist film is irradiated with high energy rays through a photomask on which a pattern is formed, and an acid is generated from the photoacid generator in the irradiated part to further promote the condensation reaction of the resist film in the irradiated part, If only the resist film of the part is insolubilized in the developer and then developed with the developer, the unirradiated part is dissolved in the developer, and only the irradiated part remains on the substrate, forming a negative resist pattern. .
  • the temperature at the time of thermal firing is preferably a high temperature in order to obtain a thin film with high hardness, but the upper temperature limit depends on the manufacturing process of the display and semiconductor. For example, in an overcoat film forming process in a general liquid crystal display, the upper limit of the heating temperature is 250 ° C.
  • Examples of the developer used in the method for forming a negative resist pattern using the photosensitive composition of the present invention include tetramethylammonium hydroxide aqueous solution.
  • the high energy ray used in the method of forming a negative resist pattern using the composition of the present invention is a high pressure mercury lamp having a wavelength of ultraviolet energy or less, specifically a high energy ray having a wavelength of 400 nm or less.
  • the weight average molecular weight (Mw) of the condensate was measured in terms of tetrahydrofuran and polystyrene as a solvent using GPC.
  • the thickness of the resist film formed on the silicon substrate was measured using a stylus type surface shape measuring machine, and the pencil hardness of the film formed on the silicon substrate was measured using a scratch hardness tester. The measurement equipment used in this example is shown below.
  • the resist film on the silicon substrate was irradiated with ultraviolet light having a wavelength of 365 nm for 1 minute using a mask aligner (mask alignment apparatus, manufactured by SUSS Microtech Co., Ltd., model number, MA6) and a patterned photomask.
  • the silicon substrate was taken out from the mask aligner, and contact-developed for 20 seconds using a tetramethylammonium hydroxide aqueous solution having a concentration of 2.38% by mass.
  • a negative resist pattern including a line having a minimum width of 10 ⁇ m was formed on the substrate.
  • the silicon substrate was put in an oven at 250 ° C. for 1 hour, and the negative resist pattern was heated and baked.
  • a silicon substrate with a negative resist pattern having a thickness of 7.0 ⁇ m was obtained. No crack was observed in the resist film on the silicon substrate, the pencil hardness was HB, and a good negative resist pattern was obtained.
  • the resist film was irradiated with ultraviolet light in the same procedure.
  • a negative resist pattern including a line having a minimum width of 10 ⁇ m was formed.
  • the substrate was heated and baked in an oven at 250 ° C. for 1 hour, a silicon substrate with a negative resist pattern having a film thickness of 3.1 ⁇ m was obtained. Cracks were not observed in the resist pattern on the silicon substrate, the pencil hardness of the pattern was H, and a good negative resist pattern was obtained.
  • the resist film was irradiated with ultraviolet light in the same procedure.
  • a negative resist pattern including a line having a minimum width of 10 ⁇ m was formed.
  • the substrate was heated and baked in an oven at 250 ° C. for 1 hour.
  • a silicon substrate with a negative resist pattern having a film thickness of 5.0 ⁇ m was obtained. Cracks were not observed in the resist pattern on the silicon substrate, the pencil hardness of the pattern was H, and a good negative resist pattern was obtained.
  • a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm with a spin coater at a rotation speed of 1000 rpm and a holding time of 10 seconds, and then the silicon substrate was brought to 150 ° C. And prebaked for 2 minutes.
  • the condensate of the present invention can be used, for example, as a protective film and an insulating film in the display field such as a liquid crystal display, a touch panel, and an organic EL (Electro Luminescence).
  • a protective film and an insulating film in the display field such as a liquid crystal display, a touch panel, and an organic EL (Electro Luminescence).
  • the condensate of the present invention since the condensate of the present invention has a relatively large silicon content, it can be used for hard masks and various insulating films in semiconductor manufacturing.
  • a photoacid generator that generates acid by the action of high energy rays and an organic solvent A are added to the condensate of the present invention to form a photosensitive composition, and the composition is wet on a substrate such as a glass substrate or a silicon substrate.
  • Apply and form a resist film irradiate high energy rays using a phytomask by photolithography to generate acid in the irradiated part, further promote condensation of the resist film in the irradiated part to make it insoluble in alkali, By developing with, a negative resist pattern to which the photomask pattern is transferred can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Disclosed is a condensation product of alkoxy silanes, which is obtained by condensing an alkoxy silane A represented by Si(OR1)4, an alkoxy silane B represented by (R2)Si(OR1)3 and an alkoxy silane C represented by (R2)2Si(OR1)2 at a molar ratio of alkoxy silane A:alkoxy silane B:alkoxy silane C within the range of 0-70:30-100:0-70. In this connection, R1 represents a methyl group or an ethyl group, and R2 represents a methyl group, an ethyl group or a phenyl group. This condensation product has excellent storage stability. A film derived from this condensation product is hard and does not suffer from cracking even if the film thickness thereof is 1.5 μm or more.

Description

縮合物、感光性組成物およびその製造方法、およびそれを用いたネガ型レジストパターンの形成方法Condensate, photosensitive composition, method for producing the same, and method for forming negative resist pattern using the same
 本発明は特定のアルコキシシランを用いた縮合物、感光性組成物およびその製造方法、および当該感光性樹脂組成物からなるネガ型レジストパターンを、ガラス基板またはシリコン基板等の基体上に形成するネガ型レジストパターンの形成方法に関する。 The present invention relates to a condensate using a specific alkoxysilane, a photosensitive composition and a method for producing the same, and a negative resist pattern formed of a photosensitive resin composition on a substrate such as a glass substrate or a silicon substrate. The present invention relates to a method for forming a mold resist pattern.
発明の背景Background of the Invention
 液晶ディスプレイ、タッチパネル、有機EL等においては、様々な保護膜または絶縁膜が使われる。 In liquid crystal displays, touch panels, organic EL, etc., various protective films or insulating films are used.
 液晶のカラーフィルターを保護する保護膜には、主に湿式法により成膜されたエポキシ樹脂膜が用いられる。 An epoxy resin film formed by a wet method is mainly used as a protective film for protecting the color filter of the liquid crystal.
 一方、絶縁膜には、TFT(Thin Film Transistor)液晶ディスプレイにおけるTFT用の絶縁膜があり、主にCVD(Chemical Vapor Deposition)法により成膜されたSiN膜が用いられる。 On the other hand, as the insulating film, there is an insulating film for TFT in a TFT (Thin Film Transistor) liquid crystal display, and a SiN film formed mainly by a CVD (Chemical Vapor Deposition) method is used.
 保護膜や絶縁膜には、前記従来の材料に対し、近年のTFT液晶ディスプレイの応答速度の高速化、バックライト光源の高輝度化に対応するためのさらに高い耐熱性を有し、ディスプレイ画面の大面積化に対応するための成膜の容易さおよびコストの優位さを有する湿式成膜可能な材料が求められている。 The protective film and insulating film have higher heat resistance to cope with the recent increase in response speed of TFT liquid crystal displays and higher brightness of backlight light sources, compared to the conventional materials described above. There is a demand for a material capable of wet film formation that has an advantage of film formation and cost advantages to cope with an increase in area.
 例えば、アルコキシシランの加水分解および縮合反応によって得られる縮合物(以後、単に縮合物と呼ぶことがある)は、耐熱性、可視光域における透明性、ガラス基板およびシリコン基板への密着性に優れた材料として公知である。 For example, a condensate obtained by hydrolysis and condensation reaction of alkoxysilane (hereinafter sometimes simply referred to as a condensate) has excellent heat resistance, transparency in the visible light region, and adhesion to glass substrates and silicon substrates. It is known as a material.
 当該縮合物は、原料として用いるアルコキシシランの種類や組成を特定し製造方法を工夫することで、有機溶剤に対し高い溶解性を示し、湿式成膜が可能となるので、半導体およびディスプレイにおける保護膜または絶縁膜として用いるのに有望な材料である。 The condensate has a high solubility in organic solvents by specifying the type and composition of alkoxysilane used as a raw material and devising a manufacturing method, so that wet film formation is possible. Alternatively, it is a promising material for use as an insulating film.
 また、縮合物中のシリコンの含有量が多いと、各種絶縁膜はもとより、ハードマスクとしても有望な材料となる。例えば、集積回路の絶縁膜として有機系高分子を用いた場合、微細パターンを転写するレジスト膜と同じ有機材料であるため、レジストと絶縁膜を区別しエッチングすることは難しい。そこで、レジストと当該絶縁膜の間に、無機物の層を設けることがあり、この層をハードマスクと呼ぶ。 Also, if the content of silicon in the condensate is large, it becomes a promising material as a hard mask as well as various insulating films. For example, when an organic polymer is used as an insulating film of an integrated circuit, it is difficult to distinguish and etch the resist and the insulating film because they are the same organic material as the resist film to which a fine pattern is transferred. Therefore, an inorganic layer may be provided between the resist and the insulating film, and this layer is called a hard mask.
 ディスプレイや半導体の分野においては、基体上に薄膜を様々な形状に加工することが多く、その際にはフォトリソグラフィーが用いられる。フォトリソグラフィーは、ガラス基板またはシリコン基板等の基体上にレジスト膜を形成し、パターンを有するフォトマスクを介してレジスト膜を照射露光し、露光部と未露光部の現像液に対する溶解度差で、フォトマスクのパターンが転写されたレジストパターンを形成する技術である。保護膜または絶縁膜にパターン形成する場合は、これら膜上にレジストパタ-ンを形成した後、エッチングしてパターンを形成する必要がある。 In the field of displays and semiconductors, thin films are often processed into various shapes on a substrate, and photolithography is used at that time. In photolithography, a resist film is formed on a substrate such as a glass substrate or a silicon substrate, and the resist film is irradiated and exposed through a photomask having a pattern. This is a technique for forming a resist pattern to which a mask pattern is transferred. In the case of forming a pattern on the protective film or the insulating film, it is necessary to form a resist pattern on these films and then perform etching to form a pattern.
 現在、前述の保護膜または絶縁膜に用いる材料に、フォトリソグラフィーでパターン形成可能な前記縮合物を用いたレジスト材料等が開発されており、これらを用いれば、レジスト塗布およびエッチングの両工程を省略できることから、製造工程の短縮とコスト低減が期待される。 Currently, a resist material using the condensate that can be patterned by photolithography has been developed as the material used for the protective film or insulating film, and if these are used, both steps of resist coating and etching can be omitted. Therefore, shortening of the manufacturing process and cost reduction are expected.
 例えば、特許文献1には、シラノール基を有する樹脂と、高エネルギー線の照射により酸を発生する化合物とを含有していることを特徴とするネガ型レジスト材料が開示されている。 For example, Patent Document 1 discloses a negative resist material characterized by containing a resin having a silanol group and a compound that generates an acid upon irradiation with high energy rays.
 特許文献2には、(1)シリコンに直結したメチル基、およびシラノール基を有し、かつシラノール含有率が0.1~2.0であるアルカリ可溶性シロキサンポリマー(但し、シラノール含有率は、赤外分光分析による900cm-1のシラノール基と1271cm-1のシリコン-メチル基による吸収ピークの吸光度比すなわちAbs(900cm-1)/Abs(1271cm-1)をさす。)(2)放射線の作用によって反応促進剤を発生する化合物(3)溶剤を主成分とする感光性樹脂組成物が開示されている。 Patent Document 2 discloses (1) an alkali-soluble siloxane polymer having a methyl group directly connected to silicon and a silanol group and having a silanol content of 0.1 to 2.0 (provided that the silanol content is red silicon silanol groups and 1271cm -1 of 900 cm -1 due to external spectroscopy -. pointing absorbance ratio or Abs of the absorption peak by methyl group (900cm -1) / Abs (1271cm -1)) (2) by the action of radiation The photosensitive resin composition which has as a main component the compound (3) solvent which generate | occur | produces a reaction accelerator is disclosed.
 特許文献3には、フェニルトリエトキシシランまたはフェニルトリメトキシシランからなる成分(X)と、メチルトリエトキシシランまたはメチルトリメトキシシランからなる成分(Y)と、トリエトキシシランまたはトリメトキシシランからなる成分(Z)とを、特定の比率で反応させて得られたアルコキシシランの縮合物(A)、及び光や熱などの外的刺激により酸を発生する酸発生剤(B)を含有する膜形成用組成物、これを用いたパターン膜の製造方法及び電子機器用絶縁膜が開示されている。 Patent Document 3 discloses a component (X) composed of phenyltriethoxysilane or phenyltrimethoxysilane, a component (Y) composed of methyltriethoxysilane or methyltrimethoxysilane, and a component composed of triethoxysilane or trimethoxysilane. Formation of a film containing an alkoxysilane condensate (A) obtained by reacting (Z) with a specific ratio, and an acid generator (B) that generates an acid by an external stimulus such as light or heat A composition for use, a method for producing a pattern film using the composition, and an insulating film for electronic devices are disclosed.
 また、アルコキシシランの加水分解、および縮合反応によって得られる縮合物には、以下に記述する2つの課題がある。 Also, the condensate obtained by hydrolysis and condensation reaction of alkoxysilane has the following two problems.
 1つ目の課題は、縮合物の保存安定性であり、これは縮合物中に残存するシラノール(Si-OH)基が保存期間中に徐々に縮合反応し、縮合が進行し分子量が大きくなった縮合物は、その粘性や有機溶剤への溶解度といった物性が変化し、一様に湿式成膜することが困難となり、所望の膜が得難いことである。 The first problem is the storage stability of the condensate. This is because the silanol (Si—OH) group remaining in the condensate undergoes a condensation reaction gradually during the storage period, and the condensation proceeds and the molecular weight increases. The condensate changes in physical properties such as viscosity and solubility in an organic solvent, and it is difficult to uniformly form a wet film, making it difficult to obtain a desired film.
 2つ目の課題は、膜厚、1.5μm以上の硬い膜が得難いことである。特に、液晶ディスプレイ分野等の保護膜または絶縁膜には、厚み、1.5μm以上の鉛筆硬度HB以上、好ましくは2H以上の硬さが要求されることが多い。縮合物は、湿式成膜後に高温で加熱焼成を行う必要があり、最終的に、前記膜硬度にて、膜厚、1.5μm以上のクラックのない膜が得難いことである。 The second problem is that it is difficult to obtain a hard film having a film thickness of 1.5 μm or more. In particular, a protective film or an insulating film in the field of liquid crystal display or the like often requires a thickness, a pencil hardness HB of 1.5 μm or more, and preferably a hardness of 2H or more. The condensate needs to be heated and fired at a high temperature after wet film formation, and finally, it is difficult to obtain a film having a film thickness of 1.5 μm or more without cracks at the film hardness.
 以上に記述したようにアルコキシシランの加水分解、および縮合反応によって得られる、保護膜または絶縁膜に利用される縮合物において、保存安定性に優れることおよび厚み1.5μm以上、の鉛筆硬度HB以上、好ましくは2H以上の硬い膜を得ることの2つの課題をともに解決するものはない。 As described above, in the condensate obtained by hydrolysis and condensation reaction of alkoxysilane and used for a protective film or insulating film, it has excellent storage stability and a pencil hardness of HB of 1.5 μm or more and a hardness of HB or more. However, there is no one that solves the two problems of obtaining a hard film of preferably 2H or more.
特開平2-129642号公報Japanese Patent Laid-Open No. 2-129642 特開平10-246960号公報JP-A-10-246960 国際公開WO2008/047654のパンフレットPamphlet of International Publication WO2008 / 047654
 上記のような状況の下、アルコキシシランの加水分解および縮合反応によって得られる縮合物において、従来の手法によるアルコキシシランの加水分解および縮合によって得られる縮合物では困難であった保存安定性に優れること、および縮合物を硬い膜とした際の膜厚、1.5μm以上の膜にクラックを発生させないことという課題を解決し、保存安定性に優れ、尚且つ縮合物を使用して基板上へ膜を形成する際、加熱焼成後、膜厚、1.5μm以上で、鉛筆硬度HB以上の硬さでクラックがない優れた膜を得るための縮合物が求められている。 Under the circumstances as described above, the condensate obtained by hydrolysis and condensation reaction of alkoxysilane is excellent in storage stability, which was difficult with the condensate obtained by hydrolysis and condensation of alkoxysilane by the conventional method. , And the film thickness when the condensate is a hard film, solving the problem of not generating cracks in the film of 1.5 μm or more, excellent in storage stability, and using the condensate to form a film on the substrate There is a need for a condensate for obtaining an excellent film having a film thickness of 1.5 μm or more, a pencil hardness of HB or more, and no cracks after heating and baking.
 また、本発明の縮合物に高エネルギー線の作用により酸を発生する光酸発生剤を添加した感光性組成物、当該感光性組成物を基体上へ塗布しレジスト膜を形成した後、フォトリソグラフィーにより、高エネルギー線を照射することでネガ型レジストパターンを形成するネガ型レジストパターンの形成方法が求められている。 Further, a photosensitive composition obtained by adding a photoacid generator that generates acid by the action of high energy rays to the condensate of the present invention, and applying the photosensitive composition onto a substrate to form a resist film, followed by photolithography Therefore, there is a demand for a negative resist pattern forming method for forming a negative resist pattern by irradiating a high energy beam.
 本発明者らは、各種アルコキシシランを原料にして得られる縮合物に関して検討した結果、特定の構造を有する3種類のアルコキシシランを原料に用いて、それらを特定の組成比で用い、水、有機溶剤、酸触媒を加えて、加水分解および縮合反応を行った後、水による抽出で酸触媒を除去し、さらに有機溶剤を除去して得られた縮合物は保存安定性に優れ、且つ溶剤を加え基体に塗布すれば、加熱焼成後、基体上に膜厚、1.5μm以上で鉛筆硬度HB以上のクラックのない硬質な膜が得られることを見出し、本発明を完成するに至った。 As a result of studies on condensates obtained from various alkoxysilanes as raw materials, the present inventors have used three types of alkoxysilanes having a specific structure as raw materials, used them at specific composition ratios, water, organic After the hydrolysis and condensation reaction are performed by adding a solvent and an acid catalyst, the acid catalyst is removed by extraction with water, and the condensate obtained by further removing the organic solvent is excellent in storage stability and the solvent is removed. In addition, when applied to the substrate, it was found that after heating and firing, a hard film having a film thickness of 1.5 μm or more and having no crack of pencil hardness HB or more can be obtained, and the present invention was completed.
 具体的には、本発明は以下のとおりである。 Specifically, the present invention is as follows.
[発明1]
一般式(1):Si(OR14
(式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
で表されるアルコキシシランAと、
一般式(2):(R2)Si(OR13
(式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランBと
一般式(3):(R22Si(OR12
(式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランCを
モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70の範囲で縮合させたアルコキシシランの縮合物。
[Invention 1]
General formula (1): Si (OR 1 ) 4
(In formula (1), each R 1 is independently a methyl group or an ethyl group.)
An alkoxysilane A represented by:
General formula (2): (R 2 ) Si (OR 1 ) 3
(In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
And the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
(In Formula (3), R 1 is each independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
An alkoxysilane condensate obtained by condensing alkoxysilane C represented by the following formula in terms of molar ratio: alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70.
 発明1の縮合物を得るためには、原料のアルコキシシランA~Cの他に、アルコキシシランA~Cを加水分解するための水、反応溶剤としての水溶性の有機溶剤B、好ましくはアルコール、縮合反応を進行させるための触媒として、好ましくは酢酸を用いて縮合反応させる。縮合反応後に反応溶液中に存在する縮合物を、水と混和しない非水溶性の有機溶剤Cによって抽出し、次いで、その有機溶剤C中に含まれる酢酸を水で洗浄することで除去し、さらには有機溶剤C中に溶解している微量の水を除去した後、有機溶剤Cを、減圧留去すること等で除去して目的とする縮合物が得られる。 In order to obtain the condensate of the invention 1, in addition to the raw material alkoxysilanes A to C, water for hydrolyzing the alkoxysilanes A to C, a water-soluble organic solvent B as a reaction solvent, preferably an alcohol, As a catalyst for proceeding the condensation reaction, the condensation reaction is preferably performed using acetic acid. The condensate present in the reaction solution after the condensation reaction is extracted with a water-insoluble organic solvent C that is immiscible with water, and then acetic acid contained in the organic solvent C is removed by washing with water. After removing a trace amount of water dissolved in the organic solvent C, the organic solvent C is removed by distillation under reduced pressure to obtain the desired condensate.
[発明2]
一般式(1):Si(OR14
(式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
で表されるアルコキシシランAと、
一般式(2):(R2)Si(OR13
(式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランBと
一般式(3):(R22Si(OR12
(式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランCからなり、
モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70であるアルコキシシラン混合物Dに、水、水溶性の有機溶剤Bおよび酸触媒を加え縮合前混合物とする第1の工程と、
縮合前混合物を加水分解および縮合させ反応系に縮合物を生成させる第2の工程と、
反応系から酸触媒を水で抽出除去する工程および縮合物を非水溶性の有機溶剤Cで抽出して縮合物溶液を得る工程を有する第3の工程と、
縮合物溶液から有機溶剤Cを除去する第4の工程を有することを特徴とする、アルコキシシランの縮合物の製造方法。
[Invention 2]
General formula (1): Si (OR 1 ) 4
(In formula (1), each R 1 is independently a methyl group or an ethyl group.)
An alkoxysilane A represented by:
General formula (2): (R 2 ) Si (OR 1 ) 3
(In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
And the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
(In Formula (3), R 1 is each independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
Consisting of an alkoxysilane C represented by
Expressed as a molar ratio, water, water-soluble organic solvent B, and acid catalyst are added to alkoxysilane mixture D in which alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70. A first step of making the mixture before condensation;
A second step of hydrolyzing and condensing the pre-condensation mixture to produce a condensate in the reaction system;
A third step comprising a step of extracting and removing the acid catalyst from the reaction system with water and a step of extracting the condensate with a water-insoluble organic solvent C to obtain a condensate solution;
A method for producing a condensate of alkoxysilane, comprising a fourth step of removing the organic solvent C from the condensate solution.
 尚、アルコキシシラン混合物Dは、モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70とした、アルコキシシランA、アルコキシシランBおよびアルコキシシランCの混合物である。 The alkoxysilane mixture D is expressed in terms of molar ratio: alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70, alkoxysilane A, alkoxysilane B and alkoxysilane C mixture.
[発明3]
アルコキシシラン混合物Dが有するアルコキシ基のモル数の1.5倍以上、5倍以下のモル数の水を用いることを特徴とする、発明2の縮合物の製造方法。
[Invention 3]
The method for producing a condensate according to Invention 2, wherein water is used in a number of moles of 1.5 to 5 times the number of moles of alkoxy groups of the alkoxysilane mixture D.
[発明4]
有機溶剤Bがアルコールであることを特徴とする、発明2または発明3の縮合物の製造方法。
[Invention 4]
The method for producing the condensate of Invention 2 or Invention 3, wherein the organic solvent B is an alcohol.
[発明5]
酸触媒が酢酸であることを特徴とする、発明2~4のいずれか1つの縮合物の製造方法。
[Invention 5]
The method for producing a condensate according to any one of Inventions 2 to 4, wherein the acid catalyst is acetic acid.
 次いで、発明1の縮合物に、光酸発生剤と有機溶剤Aを加えることで感光性組成物を製造できる。具体的には、発明1の縮合物を、縮合物を溶解可能な有機溶剤Aに溶解させ、高エネルギー線の作用で酸を発生する光酸発生剤を添加することで感光性組成物を製造できる。 Next, a photosensitive composition can be produced by adding a photoacid generator and an organic solvent A to the condensate of Invention 1. Specifically, the photosensitive composition is produced by dissolving the condensate of the invention 1 in an organic solvent A capable of dissolving the condensate, and adding a photoacid generator that generates acid by the action of high energy rays. it can.
[発明6]
発明1の縮合物、光酸発生剤および有機溶剤Aを含む感光性組成物。
[Invention 6]
A photosensitive composition comprising the condensate of the invention 1, a photoacid generator and an organic solvent A.
[発明7]
有機溶剤Aが極性溶剤であることを特徴とする、発明6の感光性組成物。
[Invention 7]
The photosensitive composition of invention 6, wherein the organic solvent A is a polar solvent.
 発明6または発明7の感光性組成物は、以下に示す発明8~11のいずれか1つの感光性組成物の製造方法によって得られる。 The photosensitive composition of the invention 6 or the invention 7 is obtained by the method for producing a photosensitive composition of any one of the inventions 8 to 11 shown below.
[発明8]
一般式(1):Si(OR14
(式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
で表されるアルコキシシランAと、
一般式(2):(R2)Si(OR13
(式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランBと
一般式(3):(R22Si(OR12
(式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランCからなり、
モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70であるアルコキシシラン混合物Dに、水、水溶性の有機溶剤Bおよび酸触媒を加え縮合前混合物とする第1の工程と、
縮合前混合物を加水分解および縮合させ反応系に縮合物を生成させる第2の工程と、
反応系から酸触媒を水で抽出除去し工程および縮合物を非水溶性の有機溶剤Cで抽出して縮合物溶液を得る工程を有する第3の工程と、
縮合物溶液から有機溶剤Cを除去する第4の工程と
光酸発生剤および有機溶剤Aを加える第5の工程を有することを特徴とする、感光性組成物の製造方法。
[Invention 8]
General formula (1): Si (OR 1 ) 4
(In formula (1), each R 1 is independently a methyl group or an ethyl group.)
An alkoxysilane A represented by:
General formula (2): (R 2 ) Si (OR 1 ) 3
(In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
And the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
(In Formula (3), R 1 is each independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
Consisting of an alkoxysilane C represented by
Expressed as a molar ratio, water, water-soluble organic solvent B, and acid catalyst are added to alkoxysilane mixture D in which alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70. A first step of making the mixture before condensation;
A second step of hydrolyzing and condensing the pre-condensation mixture to produce a condensate in the reaction system;
A third step having a step of extracting and removing the acid catalyst from the reaction system with water and a step of extracting the condensate with a water-insoluble organic solvent C to obtain a condensate solution;
A method for producing a photosensitive composition, comprising a fourth step of removing the organic solvent C from the condensate solution and a fifth step of adding the photoacid generator and the organic solvent A.
[発明9]
アルコキシシラン混合物Dが有するアルコキシ基のモル数の1.5倍以上、5倍以下のモル数の水を用いることを特徴とする、発明8の感光性組成物の製造方法。
[Invention 9]
The method for producing a photosensitive composition according to Invention 8, wherein water is used in an amount of 1.5 to 5 times the number of moles of the alkoxy group of the alkoxysilane mixture D.
[発明10]
有機溶剤Bがアルコールであることを特徴とする、発明8または発明9の感光性組成物の製造方法。
[Invention 10]
The method for producing a photosensitive composition according to Invention 8 or 9, wherein the organic solvent B is alcohol.
[発明11]
酸触媒が酢酸であることを特徴とする、発明8~10のいずれか1つの感光性組成物の製造方法。
[Invention 11]
The method for producing a photosensitive composition according to any one of inventions 8 to 10, wherein the acid catalyst is acetic acid.
 発明6または発明7の感光性組成物を用いて、ガラス基板またはシリコン基板等の基体上に湿式成膜し、基板をプリベークすることで膜が得られる。この膜に対して、フォトマスクを介して高エネルギー線を照射することで、照射部の光酸発生剤より酸が発生し、照射部の膜でシラノール基の縮合が進行し照射部の縮合物の縮合がさらに促進して、アルカリ現像液に対して不溶となり、アルカリ現像液に未照射部の膜のみが溶けることで現像され、フォトマスクのパターンが転写したネガ型レジストパターンが形成される。 Using the photosensitive composition of Invention 6 or Invention 7, a film is obtained by wet-forming a film on a substrate such as a glass substrate or a silicon substrate and pre-baking the substrate. By irradiating this film with high energy rays through a photomask, acid is generated from the photoacid generator in the irradiated part, and condensation of silanol groups proceeds in the irradiated part film, resulting in a condensate in the irradiated part. The condensation further accelerates and becomes insoluble in the alkali developer, and only the unirradiated portion of the film dissolves in the alkali developer and is developed to form a negative resist pattern to which the photomask pattern is transferred.
 この後、薄膜を高温下に加熱焼成することで、ネガ型レジストパターン中に残存するシラノール基を低減させることで、ディスプレイの保護膜または絶縁膜、半導体のハードマスクまたは絶縁膜が得られる。 Thereafter, the thin film is heated and baked at a high temperature to reduce the silanol groups remaining in the negative resist pattern, thereby obtaining a display protective film or insulating film, a semiconductor hard mask or insulating film.
[発明12]
発明6または発明7の感光性組成物を基体上に塗布して形成した膜に高エネルギー線を照射して、照射部に酸を発生させて照射部の縮合物の縮合をさらに促進させてアルカリ現像液に不溶とした後、未照射部の膜を除去してネガ型パターンを形成することを特徴とする、ネガ型パターンの形成方法。
[Invention 12]
The film formed by coating the photosensitive composition of the invention 6 or 7 on a substrate is irradiated with high energy rays to generate an acid in the irradiated part to further accelerate the condensation of the condensate in the irradiated part, thereby A method for forming a negative pattern, wherein the negative pattern is formed by removing a film in an unirradiated portion after insoluble in a developer.
[発明13]
照射する高エネルギー線が波長400nm以下の電磁波、または電子線であることを特徴とする、発明12のネガ型パターンの形成方法。
[Invention 13]
The method of forming a negative pattern according to the invention 12, wherein the high energy rays to be irradiated are electromagnetic waves having a wavelength of 400 nm or less or electron beams.
 本発明の縮合物は保存安定性に優れ、尚且つ、ガラス基板またはシリコン基板等の基体上へ塗布し膜とした際に、焼成後に、膜厚1.5μm以上で鉛筆硬度HB以上のクラックのない膜を得ることが容易である。例えば、本発明の縮合物は、溶液として湿式塗布し薄を形成した際、膜厚が1.5μm以上であっても、クラックの発生が確認されず、鉛筆硬度H以上を示した。 The condensate of the present invention is excellent in storage stability, and when coated on a substrate such as a glass substrate or a silicon substrate to form a film, after firing, it has cracks with a film thickness of 1.5 μm or more and a pencil hardness of HB or more. It is easy to obtain no membrane. For example, when the condensate of the present invention was wet-coated as a solution to form a thin film, the occurrence of cracks was not confirmed even when the film thickness was 1.5 μm or more, and the pencil hardness was H or more.
 さらに、本発明の縮合物は耐熱性が高く、可視光において高い透明性を有し、ガラス基板またはシリコン基板への密着性に優れ、且つ低吸水性を示す。 Furthermore, the condensate of the present invention has high heat resistance, high transparency in visible light, excellent adhesion to a glass substrate or silicon substrate, and low water absorption.
一般式(1):Si(OR14で表されるアルコキシシランAと、一般式(2):(R2)Si(OR13で表されるアルコキシシランBと一般式(3):(R22Si(OR12で表されるアルコキシシランCの好適なモル比を表すグラフである。General formula (1): alkoxysilane A represented by Si (OR 1 ) 4 , general formula (2): alkoxysilane B represented by (R 2 ) Si (OR 1 ) 3 and general formula (3) : Is a graph showing a preferred molar ratio of alkoxysilane C represented by (R 2 ) 2 Si (OR 1 ) 2 .
詳細な説明Detailed description
 本発明の縮合物、感光性組成物およびその製造方法、およびそれを用いたネガ型パターンの形成方法について以下、詳細に説明する。 Hereinafter, the condensate, the photosensitive composition of the present invention, a method for producing the same, and a method for forming a negative pattern using the same will be described in detail.
1.縮合物
 本発明の縮合物は、特定の構造を有する各種アルコキシシランを原料に用いて、それらを特定の割合で用い、水、有機溶剤Bおよび酸触媒を加えて加水分解および縮合反応を行った後、水による抽出で酸触媒を除去し、さらに有機溶剤Bを除去したものである。
1. Condensate The condensate of the present invention was subjected to hydrolysis and condensation reactions using various alkoxysilanes having a specific structure as raw materials, using them in specific ratios, adding water, an organic solvent B and an acid catalyst. Thereafter, the acid catalyst was removed by extraction with water, and the organic solvent B was further removed.
 即ち、本発明は、一般式(1):Si(OR14
(式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
で表されるアルコキシシランAと、
一般式(2):(R2)Si(OR13
(式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランBと
一般式(3):(R22Si(OR12
(式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
で表されるアルコキシシランCを
 モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70の範囲で縮合させたアルコキシシランの縮合物を提供する。
That is, the present invention relates to general formula (1): Si (OR 1 ) 4
(In formula (1), each R 1 is independently a methyl group or an ethyl group.)
An alkoxysilane A represented by:
General formula (2): (R 2 ) Si (OR 1 ) 3
(In Formula (2), R 1 is independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
And alkoxysilane B represented by general formula (3): (R 2 ) 2 Si (OR 1 ) 2
(In Formula (3), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
The alkoxysilane C represented by the formula (1) is represented by a molar ratio, and the alkoxysilane A: alkoxysilane B: alkoxysilane C is condensed in the range of 0 to 70:30 to 100: 0 to 70. To do.
 本発明の縮合物は、特定の構造を有する各種アルコキシシランが加水分解および縮合反応したことで複雑に3次元ネットワーク構造を形成したものである。 The condensate of the present invention is a complex three-dimensional network structure formed by hydrolysis and condensation reaction of various alkoxysilanes having a specific structure.
 例えば、R2がフェニル基である一般式(2)で表されるアルコキシシランB、R2がメチル基である一般式(3)で表されるアルコキシシランCより得られた縮合物には、以下に示す構造が含まれているものと思われる。構造中に波線で図示した結合手は、その先においてもシロキサン結合のネットワークが続いていることを意味する。 For example, the condensate obtained from the alkoxysilane B represented by the general formula (2) in which R 2 is a phenyl group and the alkoxysilane C represented by the general formula (3) in which R 2 is a methyl group includes: The structure shown below is considered to be included. A bond shown by a wavy line in the structure means that a network of siloxane bonds continues beyond that.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本発明において、アルコキシシランA~Cを用いて保存安定性に優れ、さらには成膜時に膜厚、1.5μm以上、鉛筆硬度H以上の硬質な膜がクラックを伴うことなく形成可能な縮合物を得るためには、モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70の範囲で縮合させることが好ましい。さらに、好ましくは、モル%で表して、0%以上、70%以下のアルコキシシランAと、30%以上、100モル%未満のアルコキシシランBと、0%以上、70%以上のアルコキシシランCからなるアルコキシシランの混合物を縮合させたアルコキシシランの縮合物であり、硬質な膜を得るためには、アルコキシシランAまたはアルコキシシランCを必須の組成物として用いることが好ましい。 In the present invention, a condensate that is excellent in storage stability by using alkoxysilanes A to C and that can form a hard film having a film thickness of 1.5 μm or more and a pencil hardness of H or more without cracks at the time of film formation. In order to obtain the above, it is preferable to perform condensation in the range of alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70 in terms of molar ratio. Further, preferably, expressed in terms of mol%, from 0% to 70% alkoxysilane A, from 30% to less than 100 mol% alkoxysilane B, and from 0% to 70% alkoxysilane C. In order to obtain a hard film, it is preferable to use alkoxysilane A or alkoxysilane C as an essential composition.
 アルコキシシランAが70モル%より多いと、固形分が析出しやすくなり、保存安定性に劣る、また縮合物より得られる膜が硬質となり、膜厚を1.5μm以上の膜とした際、クラックが入りやすい。アルコキシシランBが30モル%より少ないと硬質な膜が得がたい。アルコキシシランCが70モル%より多いと、硬質な膜を得がたい。さらに、好ましくは、モル比であらわして、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~40:30~90:0~50の範囲である。 If the amount of alkoxysilane A is more than 70 mol%, the solid content tends to precipitate, the storage stability is poor, the film obtained from the condensate becomes hard, and cracks occur when the film thickness is 1.5 μm or more. Is easy to enter. If the alkoxysilane B is less than 30 mol%, it is difficult to obtain a hard film. When the amount of alkoxysilane C is more than 70 mol%, it is difficult to obtain a hard film. Further, preferably, the molar ratio of alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 40:30 to 90: 0 to 50.
 さらに、好ましくは、アルコキシシランA~Cを図1に示したA、B、C、D、Eの5点で囲まれた網掛けの範囲内のモル百分率の比で混合して使用する。 Further, preferably, alkoxysilanes A to C are mixed and used at a molar percentage ratio within a shaded range surrounded by five points A, B, C, D and E shown in FIG.
 図1中の各点におけるアルコキシシランA~Cのそれぞれのモル比は、AがアルコキシシランA:アルコキシシランB:アルコキシシランC=40:30:30、BがアルコキシシランA:アルコキシシランB:アルコキシシランC=0:50:50、CがアルコキシシランA:アルコキシシランB:アルコキシシランC=0:90:10、DがアルコキシシランA:アルコキシシランB:アルコキシシランC=20:80:0、EがアルコキシシランA:アルコキシシランB:アルコキシシランC=40:60:0である。 The molar ratios of alkoxysilanes A to C at each point in FIG. 1 are as follows: A is alkoxysilane A: alkoxysilane B: alkoxysilane C = 40: 30: 30, B is alkoxysilane A: alkoxysilane B: alkoxy Silane C = 0: 50: 50, C is alkoxysilane A: alkoxysilane B: alkoxysilane C = 0: 90: 10, D is alkoxysilane A: alkoxysilane B: alkoxysilane C = 20: 80: 0, E Is alkoxysilane A: alkoxysilane B: alkoxysilane C = 40: 60: 0.
 原料のアルコキシシランが、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70のモル比から外れている場合、得られる縮合物は、上記のように(1)保存安定性が劣る、(2)クラックのない、膜厚1.5μm以上の膜を形成することが困難になる、または(3)高温での加熱焼成後に十分な膜硬度が得られなくなり、ディスプレイおよび半導体用途の保護膜や絶縁膜としては実用し難い。さらに、好ましくは、図1に示したA、B、C、D、Eの5点で囲まれた網掛け部の範囲内である。 When the raw material alkoxysilane is out of the molar ratio of alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70, the resulting condensate is (1 ) Storage stability is inferior, (2) It is difficult to form a film having a thickness of 1.5 μm or more without cracks, or (3) Sufficient film hardness cannot be obtained after heating and baking at high temperature. It is difficult to put into practical use as a protective film or insulating film for displays and semiconductor applications. Furthermore, it is preferably within the range of the shaded portion surrounded by five points A, B, C, D, and E shown in FIG.
 この縮合物を有機溶剤A、好ましくは極性溶剤に溶解させ、ガラス基板またはシリコン基板等の基体上に湿式成膜する。例えば、当該基体上に塗布した後、プリベーク、即ち加熱して有機溶剤Aを除去し膜とする。この膜を加熱焼成すれば、ディスプレイまたは半導体の保護膜または絶縁膜、或いは半導体製造分野のハードマスクまたは絶縁膜として使用可能となる。 The condensate is dissolved in an organic solvent A, preferably a polar solvent, and wet-formed on a substrate such as a glass substrate or a silicon substrate. For example, after coating on the substrate, pre-baking, that is, heating, the organic solvent A is removed to form a film. If this film is heated and fired, it can be used as a protective film or insulating film for displays or semiconductors, or as a hard mask or insulating film in the field of semiconductor manufacturing.
2.縮合物の製造方法
 本発明の縮合物の製造においては、前記アルコキシシランA~Cを室温にて反応容器に仕込んだ後、アルコキシシランA~Cを加水分解するための水、反応溶剤として有機溶剤B、好ましくは、アルコール、縮合反応を進行させるための酸触媒、好ましくは、酢酸を加え縮合前混合物として反応器内へ仕込み、次いで反応溶液を90°Cに加熱しながら内容物を撹拌し、加水分解および縮合反応を進行させ縮合物を生成する。
2. Method for Producing Condensate In the production of the condensate of the present invention, water for hydrolyzing alkoxysilanes A to C after the above-mentioned alkoxysilanes A to C are charged in a reaction vessel at room temperature, an organic solvent as a reaction solvent B, preferably an alcohol, an acid catalyst for proceeding the condensation reaction, preferably acetic acid is added to the reactor as a pre-condensation mixture, and the contents are stirred while the reaction solution is heated to 90 ° C., The hydrolysis and condensation reaction proceeds to produce a condensate.
 この際、反応系中の未反応原料、水、アルコール、酢酸が反応系外へと留去される事を防ぐため、反応容器にはコンデンサーを具備させることが好ましい。縮合反応に必要な時間は通常3~5時間である。縮合反応後に反応溶液を室温(20℃)まで降温させた後、反応系中に存在する縮合物を取り出すために、水と混和しない有機溶剤C、即ち非水溶性溶剤で接触抽出し、次いでその有機溶剤C中に含まれる酢酸を水で洗浄して除去する。 At this time, in order to prevent unreacted raw materials, water, alcohol and acetic acid in the reaction system from being distilled out of the reaction system, the reaction vessel is preferably provided with a condenser. The time required for the condensation reaction is usually 3 to 5 hours. After the condensation reaction, the temperature of the reaction solution is lowered to room temperature (20 ° C.), and in order to remove the condensate present in the reaction system, contact extraction is performed with an organic solvent C that is not miscible with water, that is, a water-insoluble solvent. Acetic acid contained in the organic solvent C is removed by washing with water.
 さらに固体乾燥剤を用いて有機溶剤C中に溶解している微量の水を除去した後、固体乾燥剤をろ過によって除去する。最後に有機溶剤Cを減圧除去することで目的とする縮合物を得る。或いは固体乾燥剤を用いずに、有機溶剤Cを減圧除去する過程にて、水を同時に減圧除去してもよい。 Further, after removing a trace amount of water dissolved in the organic solvent C using a solid desiccant, the solid desiccant is removed by filtration. Finally, the target condensate is obtained by removing the organic solvent C under reduced pressure. Alternatively, water may be simultaneously removed under reduced pressure in the process of removing the organic solvent C under reduced pressure without using a solid desiccant.
 尚、本発明の縮合物を得るための加水分解および縮合反応において使用する水のモル当量は、原料のアルコキシシランが有するアルコキシ基の合計モル当量の1.5~5倍である。1.5倍当量を下回ると加水分解が効率よく行われず、保存安定性に乏しい縮合物となる。5倍モル当量を上回った場合は、生産性が極端に低下するので好ましくない。 The molar equivalent of water used in the hydrolysis and condensation reaction for obtaining the condensate of the present invention is 1.5 to 5 times the total molar equivalent of the alkoxy groups of the raw material alkoxysilane. When the amount is less than 1.5 times equivalent, hydrolysis is not efficiently performed and a condensate having poor storage stability is obtained. When it exceeds 5 times the molar equivalent, productivity is extremely lowered, which is not preferable.
 本発明の縮合物または感光性組成物を得るための加水分解および縮合反応において、有機溶剤Bはアルコールが好適であり、エタノール、ノルマルプロパノール、イソプロパノールまたはブタノールが挙げられる。 In the hydrolysis and condensation reaction for obtaining the condensate or photosensitive composition of the present invention, the organic solvent B is preferably an alcohol, such as ethanol, normal propanol, isopropanol or butanol.
 本発明の縮合物または感光性組成物を得るために、縮合反応後に反応系中に存在する縮合物を抽出するために用いられる、縮合物を溶解し水と混和しない有機溶剤Cとしては、ジエチルエーテル、イソプロピルエーテルまたはジブチルエーテルが挙げられる。 In order to obtain the condensate or photosensitive composition of the present invention, the organic solvent C used for extracting the condensate present in the reaction system after the condensation reaction and dissolving the condensate and immiscible with water is diethyl. There may be mentioned ether, isopropyl ether or dibutyl ether.
 本発明の縮合物または感光性組成物を得るために、縮合反応後に有機溶剤Cから水を除去するために用いられる固体乾燥剤としては、硫酸マグネシウムが挙げられる。 The solid desiccant used for removing water from the organic solvent C after the condensation reaction in order to obtain the condensate or photosensitive composition of the present invention includes magnesium sulfate.
3.感光性組成物およびその製造方法
 次に本発明の縮合物を当該縮合物が溶解可能な有機溶剤A、好ましくは極性溶剤に溶解させ、高エネルギー線の作用で酸を発生する光酸発生剤を添加することで感光性組成物とする。
3. Photosensitive composition and method for producing the same Next, a photoacid generator for generating an acid by the action of high energy rays by dissolving the condensate of the present invention in an organic solvent A in which the condensate can be dissolved, preferably a polar solvent. It is set as the photosensitive composition by adding.
 本発明の感光性組成物に用いる有機溶剤Aとしては、プロピレングリコールモノメチルアセテート(以後、PGMEAと略する)、プロピレングリコールモノメチルエーテル、シクロヘキサノン、γ-ブチロラクトン、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミドまたはN-メチルピロリドンが挙げられる。 Examples of the organic solvent A used in the photosensitive composition of the present invention include propylene glycol monomethyl acetate (hereinafter abbreviated as PGMEA), propylene glycol monomethyl ether, cyclohexanone, γ-butyrolactone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethyl. Examples include formamide or N-methylpyrrolidone.
 本発明の感光性組成物に用いる高エネルギー線の作用により酸を発生する、即ち、照射する高エネルギー線を吸収することで酸を発生させる光酸発生剤としては、具体的には、トリフェニルスルホニウムトルフルオロメタンスルホネート、米国BASF社製、商品名、Irgacure PAG121、Irgacure PAG103、Irgacure CGI1380、Irgacure CGI725、みどり化学株式会社製、商品名、PAI-101,PAI-106、NAI-105、NAI-106、TAZ-110、TAZ-204、サンアプロ株式会社製、商品名、CPI-200K、CPI-210S、CPI-101A、CPI-110A、CPI-100P、CPI-110P、CPI-100TF、HS-1、HS-1A、HS-1P、HS-1N、HS-1TF、HS-1NF、HS-1MS、HS-1CS、LW-S1、LW-S1NF、株式会社三和ケミカル製、商品名、TFE-トリアジン、TME-トリアジンまたはMP-トリアジンが挙げられる。 As a photoacid generator that generates acid by the action of high energy rays used in the photosensitive composition of the present invention, that is, generates acid by absorbing high energy rays to be irradiated, specifically, triphenyl is used. Sulfonium trifluoromethanesulfonate, manufactured by BASF USA, trade name, Irgacure PAG121, Irgacure PAG103, Irgacure CGI1380, Irgacure CGI725, Midori Chemical Co., Ltd., trade names, PAI-101, PAI-106, NAI-105, NAI-106 , TAZ-110, TAZ-204, manufactured by San Apro Co., Ltd., trade name, CPI-200K, CPI-210S, CPI-101A, CPI-110A, CPI-100P, CPI-110P, CPI-100TF, HS-1, S-1A, HS-1P, HS-1N, HS-1TF, HS-1NF, HS-1MS, HS-1CS, LW-S1, LW-S1NF, manufactured by Sanwa Chemical Co., Ltd., trade name, TFE-triazine, Mention may be made of TME-triazine or MP-triazine.
4.ネガ型レジストパターンの形成方法
 前記溶液状の感光性組成物を、ガラス基板またはシリコン基板等の基体上に湿式成膜する。例えば、当該基体上に塗布した後、プリベーク、即ち加熱して有機溶剤Aを除去することでレジスト膜を得る。このレジスト膜を、フォトリソグラフィーにより、ネガ型レジストパターンとする。具体的には、パターンが成形されたフォトマスクを介して高エネルギー線をレジスト膜に照射し、照射部の光酸発生剤より酸を発生させ照射部のレジスト膜の縮合反応をさらに進め、照射部のレジスト膜のみを現像液に対して不溶化させた後、現像液で現像すれば、未照射部は現像液に溶解し、照射部のみが基板上に残り、ネガ型レジストパターンが形成される。
4). Method for Forming Negative Resist Pattern The solution-like photosensitive composition is wet-deposited on a substrate such as a glass substrate or a silicon substrate. For example, after coating on the substrate, pre-baking, that is, heating, the organic solvent A is removed to obtain a resist film. This resist film is formed into a negative resist pattern by photolithography. Specifically, the resist film is irradiated with high energy rays through a photomask on which a pattern is formed, and an acid is generated from the photoacid generator in the irradiated part to further promote the condensation reaction of the resist film in the irradiated part, If only the resist film of the part is insolubilized in the developer and then developed with the developer, the unirradiated part is dissolved in the developer, and only the irradiated part remains on the substrate, forming a negative resist pattern. .
 この後、ネガ型レジストパターンを加熱焼成し、パターン中に残存するシラノール基を縮合させる。熱焼成時の温度としては、高硬度な薄膜を得るためには高温であることが好ましいが、温度上限がディスプレイや半導体の製造プロセスに依存する。例えば、一般的な液晶ディスプレイにおけるオーバーコートの成膜工程において、加熱温度の上限は250°Cである。 Thereafter, the negative resist pattern is heated and baked to condense silanol groups remaining in the pattern. The temperature at the time of thermal firing is preferably a high temperature in order to obtain a thin film with high hardness, but the upper temperature limit depends on the manufacturing process of the display and semiconductor. For example, in an overcoat film forming process in a general liquid crystal display, the upper limit of the heating temperature is 250 ° C.
 本発明の感光性組成物を用いてネガ型レジストパターンを形成する方法において用いられる現像液としては、テトラメチルアンモニウムハイドロキサイド水溶液等が挙げられる。 Examples of the developer used in the method for forming a negative resist pattern using the photosensitive composition of the present invention include tetramethylammonium hydroxide aqueous solution.
 本発明の組成物を用いてネガ型レジストパターンを形成する方法において用いられる高エネルギー線としては、波長が紫外領域以下、具体的には波長400nm以下の領域の高エネルギー線である、高圧水銀ランプによる紫外線光、g線(波長436nm)、h線(波長405nm)、i線(波長365nm)、KrFエキシマレーザ(波長248nm)、ArFエキシマレーザ(波長193nm)または極端紫外光(波長13.5nm)、あるいは電子線が挙げられる。 The high energy ray used in the method of forming a negative resist pattern using the composition of the present invention is a high pressure mercury lamp having a wavelength of ultraviolet energy or less, specifically a high energy ray having a wavelength of 400 nm or less. UV light, g-line (wavelength 436 nm), h-line (wavelength 405 nm), i-line (wavelength 365 nm), KrF excimer laser (wavelength 248 nm), ArF excimer laser (wavelength 193 nm) or extreme ultraviolet light (wavelength 13.5 nm) Or an electron beam.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
 縮合物の重量平均分子量(Mw)は、GPCを用い、溶媒にテトラヒドロフラン、ポリスチレン換算で測定した。シリコン基板上に成膜したレジスト膜の厚みは触針式表面形状測定機、シリコン基板上に形成した膜の鉛筆硬度は、引っかき硬度試験機を用いて測定した。本実施例で用いた測定機器を以下に示す。 The weight average molecular weight (Mw) of the condensate was measured in terms of tetrahydrofuran and polystyrene as a solvent using GPC. The thickness of the resist film formed on the silicon substrate was measured using a stylus type surface shape measuring machine, and the pencil hardness of the film formed on the silicon substrate was measured using a scratch hardness tester. The measurement equipment used in this example is shown below.
GPC:東ソー株式会社製、製品名、HLC-8320GPC、カラム、東ソー株式会社製、製品名、TSKgelGMHXL
触針式表面形状測定機:米国Veeco社製、製品名、Dektak8
電動鉛筆引っかき硬度試験機:株式会社安田精機製作所製、型番No.553-M
GPC: manufactured by Tosoh Corporation, product name, HLC-8320GPC, column, manufactured by Tosoh Corporation, product name, TSKgelGMHXL
Stylus type surface profile measuring machine: manufactured by Veeco, USA, product name, Dektak8
Electric pencil scratch hardness tester: Yasuda Seiki Seisakusho Co., Ltd. 553-M
実施例1
[縮合物の合成]
 フッ素樹脂製の撹拌羽、ジムロート型還流器を具備した容積1Lの3つ口フラスコに、アルコキシシランAとしてのSi(OEt)4を16.22g、アルコキシシランBとしてのPhSi(OMe)3を90.10g、アルコキシシランCとしてのMe2Si(OMe)2を27.39g仕込んだ。モル比は、アルコキシシランA:アルコキシシランB:アルコキシシランC=10:60:30であった。
Example 1
[Synthesis of condensate]
In a 1 L three-necked flask equipped with a fluororesin stirring blade and a Dimroth type reflux condenser, 16.22 g of Si (OEt) 4 as alkoxysilane A and 90 of PhSi (OMe) 3 as alkoxysilane B were added. .10 g and 27.39 g of Me 2 Si (OMe) 2 as alkoxysilane C were charged. The molar ratio was alkoxysilane A: alkoxysilane B: alkoxysilane C = 10: 60: 30.
 次いでイソプロパノールを102.87g、水を78.56g、酢酸を0.06g、フラスコ内に仕込んだ後、フラスコを90°Cに加温し、加水分解および縮合反応を行った。3時間後、反応液(反応系)を室温に戻し、フラスコ内にイソプロピルエーテルを200ml、水を200ml入れ撹拌した。その後、2層分離した反応液の上層側を回収し、水200mlで3回洗浄した。次いで、イソプロピルエーテル中に溶解した微量の水分を硫酸マグネシウムで除去した後、硫酸マグネシウムを濾別した。エバポレーターにてイソプロピルエーテルを減圧留去したところ、目的とする縮合物が無色の粘性液体として得られた。収量、74.82g、Mw=990であった。得られた縮合物を5°Cにて1ヶ月間保管したが、Mwに変化は認められず、縮合物は保存安定性に優れていた。 Next, 102.87 g of isopropanol, 78.56 g of water, 0.06 g of acetic acid, and 0.06 g of acetic acid were charged into the flask, and then the flask was heated to 90 ° C. to perform hydrolysis and condensation reaction. After 3 hours, the reaction solution (reaction system) was returned to room temperature, and 200 ml of isopropyl ether and 200 ml of water were placed in the flask and stirred. Thereafter, the upper layer side of the reaction solution separated into two layers was collected and washed with 200 ml of water three times. Next, after removing a trace amount of water dissolved in isopropyl ether with magnesium sulfate, the magnesium sulfate was filtered off. When isopropyl ether was distilled off under reduced pressure using an evaporator, the desired condensate was obtained as a colorless viscous liquid. Yield, 74.82 g, Mw = 990. The obtained condensate was stored at 5 ° C. for 1 month, but no change was observed in Mw, and the condensate was excellent in storage stability.
[縮合物を用いたネガ型レジストパターンの形成]
 上記の縮合物5.20gをPGMEA4.70gに溶解させ、光酸発生剤である5-P-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl)acetonitrile(米国BASF社製、商品名、Irgacure PAG121)を0.05g添加し、感光性組成物とした。これを用いて、直径100mmのシリコン基板上に回転速度1000rpm、保持時間10秒でスピンコーターにて上記感光性組成物によるレジスト膜を成膜した後、基板を150°Cにて1分間加熱しプリベークした。
[Formation of negative resist pattern using condensate]
5.20 g of the above condensate was dissolved in 4.70 g of PGMEA, and the photoacid generator 5-P-toluenesulfoxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitile (trade name, manufactured by BASF, USA) , Irgacure PAG121) was added to give a photosensitive composition. Using this, a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm with a spin coater at a rotation speed of 1000 rpm and a holding time of 10 seconds, and then the substrate was heated at 150 ° C. for 1 minute. Pre-baked.
 次いで、マスクアライナ(マスクアライメント装置、ズースマイクロテック株式会社製、型番、MA6)とパターン形成されたフォトマスクを用いて、シリコン基板上のレジスト膜に、波長365nmの紫外線を1分間照射した。シリコン基板をマスクアライナより取り出し、濃度、2.38質量%のテトラメチルアンモニウムハイドロキサイド水溶液を用いて、20秒間接触現像させた。基板上には最小10μm幅のラインを含むネガ型レジストパターンが形成された。その後、シリコン基板を250°Cのオーブン内にて1時間入れて、ネガ型レジストパターンを加熱焼成したところ、厚さ、7.0μmのネガ型レジストパターン付きシリコン基板が得られた。シリコン基板上のレジスト膜にはクラックは認められず、鉛筆硬度はHBを示し、良好なネガ型レジストパターンが得られた。 Next, the resist film on the silicon substrate was irradiated with ultraviolet light having a wavelength of 365 nm for 1 minute using a mask aligner (mask alignment apparatus, manufactured by SUSS Microtech Co., Ltd., model number, MA6) and a patterned photomask. The silicon substrate was taken out from the mask aligner, and contact-developed for 20 seconds using a tetramethylammonium hydroxide aqueous solution having a concentration of 2.38% by mass. A negative resist pattern including a line having a minimum width of 10 μm was formed on the substrate. Thereafter, the silicon substrate was put in an oven at 250 ° C. for 1 hour, and the negative resist pattern was heated and baked. As a result, a silicon substrate with a negative resist pattern having a thickness of 7.0 μm was obtained. No crack was observed in the resist film on the silicon substrate, the pencil hardness was HB, and a good negative resist pattern was obtained.
実施例2
[縮合物の合成]
 実施例1で用いたのと同様の三口フラスコに、アルコキシシランAとしてのSi(OEt)4を31.69g、アルコキシシランBとしてのPhSi(OMe)3を60.12g、アルコキシシランCとしてのMe2Si(OMe)2を36.52g仕込んだ。モル比は、アルコキシシランA:アルコキシシランB:アルコキシシランC=20:40:40であった。
Example 2
[Synthesis of condensate]
In a three-necked flask similar to that used in Example 1, 31.69 g of Si (OEt) 4 as alkoxysilane A, 60.12 g of PhSi (OMe) 3 as alkoxysilane B, and Me as alkoxysilane C 36.52 g of 2 Si (OMe) 2 was charged. The molar ratio was alkoxysilane A: alkoxysilane B: alkoxysilane C = 20: 40: 40.
 次いで、イソプロパノールを102.13g、水を77.24g、酢酸を0.06g、三口フラスコ内に仕込み、実施例1と同様の手順で縮合物を合成した。目的の縮合物は無色の粘性液体として得られ、収量、67.77g、Mw=1130であった。得られた縮合物を5°Cにて1ヶ月間保管したが、Mwに変化は認められず、縮合物は保存安定性に優れていた。 Next, 102.13 g of isopropanol, 77.24 g of water and 0.06 g of acetic acid were charged into a three-necked flask, and a condensate was synthesized in the same procedure as in Example 1. The desired condensate was obtained as a colorless viscous liquid, yield, 67.77 g, Mw = 1130. The obtained condensate was stored at 5 ° C. for 1 month, but no change was observed in Mw, and the condensate was excellent in storage stability.
[縮合物を用いたネガ型レジストパターンの形成]
 上記の縮合物5.67gをPGMEA5.30gに溶かし、実施例1と同様の光酸発生剤(米国BASF社製、商品名、Irgacure PAG121)を0.05g添加し、感光性組成物とした。当該感光性組成物を用いて、直径100mmのシリコン基板上に回転速度1000rpm、保持時間20秒でスピンコーターにて上記感光性組成物によるレジスト膜を成膜した後、シリコン基板を150℃にて1分間加熱しプリベークした。
[Formation of negative resist pattern using condensate]
5.67 g of the above condensate was dissolved in 5.30 g of PGMEA, and 0.05 g of the same photoacid generator (trade name, Irgacure PAG121, manufactured by BASF, USA) as in Example 1 was added to obtain a photosensitive composition. Using the photosensitive composition, a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm with a spin coater at a rotation speed of 1000 rpm and a holding time of 20 seconds, and then the silicon substrate was heated at 150 ° C. Pre-baked by heating for 1 minute.
 次いで、実施例1と同じ装置を用い、同様の手順で、レジスト膜に紫外光の照射を行ったところ、最小10μm幅のラインを含むネガ型レジストパターンが形成された。その後、基板を250°Cのオーブン内にて1時間、加熱焼成したところ、膜厚、3.1μmのネガ型レジストパターン付きシリコン基板が得られた。シリコン基板上のレジストパターンにはクラックは認められず、パターンの鉛筆硬度はHを示し、良好なネガ型レジストパターンが得られた。 Then, using the same apparatus as in Example 1, the resist film was irradiated with ultraviolet light in the same procedure. As a result, a negative resist pattern including a line having a minimum width of 10 μm was formed. Then, when the substrate was heated and baked in an oven at 250 ° C. for 1 hour, a silicon substrate with a negative resist pattern having a film thickness of 3.1 μm was obtained. Cracks were not observed in the resist pattern on the silicon substrate, the pencil hardness of the pattern was H, and a good negative resist pattern was obtained.
実施例3
[縮合物の合成]
 実施例1で用いたのと同様の三口フラスコに、アルコキシシランAとしてのSi(OEt)4を17.23g、アルコキシシランBとしてのPhSi(OMe)3を130.18g、アルコキシシランCとしてのMe2Si(OMe)2を9.93g仕込んだ。モル比は、アルコキシシランA:アルコキシシランB:アルコキシシランC=10:80:10であった。
Example 3
[Synthesis of condensate]
In a three-necked flask similar to that used in Example 1, 17.23 g of Si (OEt) 4 as alkoxysilane A, 130.18 g of PhSi (OMe) 3 as alkoxysilane B, and Me as alkoxysilane C were used. 2 9.93 g of Si (OMe) 2 was charged. The molar ratio was alkoxysilane A: alkoxysilane B: alkoxysilane C = 10: 80: 10.
 次いで、イソプロパノールを118.20g、水を89.02g、酢酸を0.06g、三口フラスコ内に仕込み、実施例1と同様の手順で縮合物を合成した。目的の縮合物は無色の粘性液体として得られ、収量、93.43g、Mw=970であった。得られた縮合物を5°Cにて1ヶ月間保管したが、Mwに変化は認められず、縮合物は保存安定性に優れていた。 Next, 118.20 g of isopropanol, 89.02 g of water and 0.06 g of acetic acid were charged into a three-necked flask, and a condensate was synthesized in the same procedure as in Example 1. The desired condensate was obtained as a colorless viscous liquid, yield, 93.43 g, Mw = 970. The obtained condensate was stored at 5 ° C. for 1 month, but no change was observed in Mw, and the condensate was excellent in storage stability.
[縮合物を用いたネガ型レジストパターンの形成]
 上記の縮合物2.04をPGMEA、2.02gに溶かし、実施例1と同様の光酸発生剤(米国BASF社製、商品名、Irgacure PAG121)を0.02g添加し、感光性組成物とした。当該感光性組成物を用いて、直径100mmのシリコン基板上に回転速度1000rpm、保持時間10秒でスピンコーターにて上記感光性組成物によるレジスト膜を成膜した後、シリコン基板を150℃にて30秒間加熱しプリベークした。
[Formation of negative resist pattern using condensate]
The above condensate 2.04 was dissolved in 2.02 g of PGMEA, 0.02 g of the same photoacid generator (trade name, Irgacure PAG121, manufactured by BASF, USA) as in Example 1 was added, and the photosensitive composition and did. Using the photosensitive composition, a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm with a spin coater at a rotation speed of 1000 rpm and a holding time of 10 seconds, and then the silicon substrate was heated at 150 ° C. Pre-baked by heating for 30 seconds.
 次いで、実施例1と同じ装置を用い、同様の手順で、レジスト膜に紫外光の照射を行ったところ、最小10μm幅のラインを含むネガ型レジストパターンが形成された。その後、基板を250°Cのオーブン内にて1時間、加熱焼成したところ、膜厚、5.0μmのネガ型レジストパターン付きシリコン基板が得られた。シリコン基板上のレジストパターンにはクラックは認められず、パターンの鉛筆硬度はHを示し、良好なネガ型レジストパターンが得られた。 Then, using the same apparatus as in Example 1, the resist film was irradiated with ultraviolet light in the same procedure. As a result, a negative resist pattern including a line having a minimum width of 10 μm was formed. Thereafter, the substrate was heated and baked in an oven at 250 ° C. for 1 hour. As a result, a silicon substrate with a negative resist pattern having a film thickness of 5.0 μm was obtained. Cracks were not observed in the resist pattern on the silicon substrate, the pencil hardness of the pattern was H, and a good negative resist pattern was obtained.
比較例1
[縮合物の合成]
 実施例1で用いたのと同様の三口フラスコに、アルコキシシランAとしてのSi(OEt)4を126.09g、アルコキシシランBとしてのPhSi(OMe)3を30.03g、アルコキシシランCとしてMe2Si(OEt)2を22.47g仕込んだ。モル比は、アルコキシシランA:アルコキシシランB:アルコキシシランC=66:17:17であった。
Comparative Example 1
[Synthesis of condensate]
In a three-necked flask similar to that used in Example 1, 126.09 g of Si (OEt) 4 as alkoxysilane A, 30.03 g of PhSi (OMe) 3 as alkoxysilane B, and Me 2 as alkoxysilane C were used. 22.47 g of Si (OEt) 2 was charged. The molar ratio was alkoxysilane A: alkoxysilane B: alkoxysilane C = 66: 17: 17.
 次いで、イソプロパノールを152.28g、水を114.64g、酢酸、0.07gを三口フラスコ内に仕込み、実施例1と同様の手順で縮合物を合成した。目的の縮合物が無色の粘性液体として得られ、収量、66.01g、Mw=9363であった。得られた縮合物を5°Cにて保管したところ、1週間後には、縮合物のゲル化が認められ、ゲル体はテトラヒドロフランに対して不溶であり、Mwは測定できなかった。このように縮合物は保存安定性に劣っていた。 Next, 152.28 g of isopropanol, 114.64 g of water, acetic acid and 0.07 g were charged into a three-necked flask, and a condensate was synthesized in the same procedure as in Example 1. The desired condensate was obtained as a colorless viscous liquid, yield, 66.01 g, Mw = 9363. When the obtained condensate was stored at 5 ° C., gelation of the condensate was observed after 1 week, the gel body was insoluble in tetrahydrofuran, and Mw could not be measured. Thus, the condensate was inferior in storage stability.
[縮合物を用いたネガ型レジストパターンの形成]
 上記の縮合物8.29gをPGMEA8.21gに溶かし、実施例1と同様の光酸発生剤(米国、BASF社製、商品名、Irgacure PAG121)を0.10g添加し、感光性組成物とした。当該感光性組成物を用いて、直径100mmのシリコン基板上に回転速度2500rpm、保持時間30秒でスピンコートにて上記感光性組成物によるレジスト膜を成膜した後、シリコン基板を150℃にて30秒間加熱しプリベークした。
[Formation of negative resist pattern using condensate]
8.29 g of the above condensate was dissolved in 8.21 g of PGMEA, and 0.10 g of the same photoacid generator (trade name, Irgacure PAG121, manufactured by BASF, USA) as in Example 1 was added to obtain a photosensitive composition. . Using the photosensitive composition, a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm by spin coating at a rotational speed of 2500 rpm and a holding time of 30 seconds, and then the silicon substrate was heated at 150 ° C. Pre-baked by heating for 30 seconds.
 次いで、実施例1と同様の装置を用い、同様の手順で、レジスト膜に紫外光の照射を行ったところ、最小10μm幅のラインを含むネガ型レジストパターンが形成された。その後、基板を250°Cのオーブン内にて1時間、加熱焼成したところ、膜厚1.3μmのネガ型レジストパターン付き基板が得られたものの、パターンにはクラックが発生していた。このように、膜厚1.3μmのパターンをクラックなく形成できなかった。 Then, when the resist film was irradiated with ultraviolet light in the same procedure using the same apparatus as in Example 1, a negative resist pattern including a line having a minimum width of 10 μm was formed. Thereafter, when the substrate was heated and fired in an oven at 250 ° C. for 1 hour, a substrate with a negative resist pattern having a film thickness of 1.3 μm was obtained, but cracks were generated in the pattern. Thus, a pattern having a film thickness of 1.3 μm could not be formed without cracks.
比較例2
[縮合物の合成]
 実施例1で用いたのと同様の三口フラスコに、アルコキシシランAとしてのSi(OEt)4を26.31g、アルコキシシランBとしてのPhSi(OMe)3を23.97g、アルコキシシランCとしてのMe2Si(OMe)2を120.08g仕込んだ。モル比は、アルコキシシランA:アルコキシシランB:アルコキシシランC=10:10:80であった。
Comparative Example 2
[Synthesis of condensate]
In the same three-necked flask as used in Example 1, 26.31 g of Si (OEt) 4 as alkoxysilane A, 23.97 g of PhSi (OMe) 3 as alkoxysilane B, and Me as alkoxysilane C 2 120.08 g of 2Si (OMe) 2 was charged. The molar ratio was alkoxysilane A: alkoxysilane B: alkoxysilane C = 10: 10: 80.
 次いで、イソプロパノールを138.55g、水を103.40g、酢酸を0.06g、三口フラスコに仕込み、実施例1と同様の手順で縮合物を合成した。目的の縮合物が無色の粘性液体として得られ、収量、90.22g、Mw=1071であった。得られた縮合物を5°Cにて1ヶ月間保管したが、Mwに変化は認められなかった。 Next, 138.55 g of isopropanol, 103.40 g of water and 0.06 g of acetic acid were charged into a three-necked flask, and a condensate was synthesized in the same procedure as in Example 1. The desired condensate was obtained as a colorless viscous liquid, yield, 90.22 g, Mw = 1071. The obtained condensate was stored at 5 ° C. for 1 month, but no change was observed in Mw.
[縮合物を用いたネガ型レジストパターンの形成]
 上記の縮合物3.11gをPGMEA3.08gに溶かし、実施例1と同様の光酸発生剤(米国、BASF社製、商品名、Irgacure PAG121)を0.03g添加し、感光性組成物とした。
[Formation of negative resist pattern using condensate]
3.11 g of the above condensate was dissolved in 3.08 g of PGMEA, and 0.03 g of a photoacid generator similar to Example 1 (USSF, trade name, Irgacure PAG121) was added to obtain a photosensitive composition. .
 当該感光性組成物を用いて、直径100mmのシリコン基板上に回転速度1000rpm、保持時間10秒でスピンコーターにて上記感光性組成物によるレジスト膜を成膜した後、シリコン基板を150°Cにて2分間加熱しプリベークした。 Using the photosensitive composition, a resist film made of the photosensitive composition was formed on a silicon substrate having a diameter of 100 mm with a spin coater at a rotation speed of 1000 rpm and a holding time of 10 seconds, and then the silicon substrate was brought to 150 ° C. And prebaked for 2 minutes.
 次いで、実施例1と同様の装置を用い、同様の手順で、レジスト膜に紫外光の照射を行ったところ、最小10μm幅のラインを含むネガ型レジストパターンが形成された。その後、基板を250°Cのオーブン内にて1時間、加熱焼成したところ、膜厚5.4μmのパターン付き基板が得られた。基板上の薄膜にクラックは認められなかったものの、鉛筆硬度は7B以下を示し、極めて軟質な膜であり、所望の硬度は得られなかった。 Then, when the resist film was irradiated with ultraviolet light in the same procedure using the same apparatus as in Example 1, a negative resist pattern including a line having a minimum width of 10 μm was formed. Then, when the board | substrate was heat-baked for 1 hour in 250 degreeC oven, the board | substrate with a pattern with a film thickness of 5.4 micrometers was obtained. Although no crack was observed in the thin film on the substrate, the pencil hardness was 7B or less, which was an extremely soft film, and the desired hardness was not obtained.
 本発明の縮合物は、たとえば、液晶ディスプレイ、タッチパネル、有機EL(Electro Luminescence)といったディスプレイ分野の保護膜および絶縁膜に使用することができる。 The condensate of the present invention can be used, for example, as a protective film and an insulating film in the display field such as a liquid crystal display, a touch panel, and an organic EL (Electro Luminescence).
 また、本発明の縮合物は、比較的シリコン含有量が多いことから、半導体製造におけるハードマスクや各種絶縁膜に利用できる。 Moreover, since the condensate of the present invention has a relatively large silicon content, it can be used for hard masks and various insulating films in semiconductor manufacturing.
 また、本発明の縮合物に高エネルギー線の作用により酸を発生する光酸発生剤および有機溶剤Aを添加し感光性組成物とし、当該組成物をガラス基板またはシリコン基板等の基体上に湿式塗布しレジスト膜を形成し、フォトリソグラフィーにより、フィトマスクを用いて高エネルギー線を照射し照射部に酸を発生させ、照射部のレジスト膜の縮合をさらに促進させアルカリ不溶とした後、アルカリ水溶液で現像することで、フォトマスクのパターンが転写したネガ型レジストパターンとして用いることができる。 In addition, a photoacid generator that generates acid by the action of high energy rays and an organic solvent A are added to the condensate of the present invention to form a photosensitive composition, and the composition is wet on a substrate such as a glass substrate or a silicon substrate. Apply and form a resist film, irradiate high energy rays using a phytomask by photolithography to generate acid in the irradiated part, further promote condensation of the resist film in the irradiated part to make it insoluble in alkali, By developing with, a negative resist pattern to which the photomask pattern is transferred can be used.

Claims (13)

  1. 一般式(1):Si(OR14
    (式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
    で表されるアルコキシシランAと、
     一般式(2):(R2)Si(OR13
    (式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランBと
     一般式(3):(R22Si(OR12
    (式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランCを
     モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70の範囲で縮合させたアルコキシシランの縮合物。
    General formula (1): Si (OR 1 ) 4
    (In formula (1), each R 1 is independently a methyl group or an ethyl group.)
    An alkoxysilane A represented by:
    General formula (2): (R 2 ) Si (OR 1 ) 3
    (In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    And alkoxysilane B represented by the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
    (In Formula (3), R 1 is each independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    An alkoxysilane C condensate obtained by condensation in the range of alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70.
  2. 一般式(1):Si(OR14
    (式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
    で表されるアルコキシシランAと、
     一般式(2):(R2)Si(OR13
    (式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランBと
     一般式(3):(R22Si(OR12
    (式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランCからなり、
     モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70であるアルコキシシラン混合物Dに、水、水溶性の有機溶剤Bおよび酸触媒を加え縮合前混合物とする第1の工程と、
     縮合前混合物を加水分解および縮合させ反応系に縮合物を生成させる第2の工程と、
     反応系から酸触媒を水で抽出除去する工程および縮合物を非水溶性の有機溶剤Cで抽出して縮合物溶液を得る工程を有する第3の工程と、
     縮合物溶液から有機溶剤Cを除去する第4の工程を有することを特徴とする、アルコキシシランの縮合物の製造方法。
    General formula (1): Si (OR 1 ) 4
    (In formula (1), each R 1 is independently a methyl group or an ethyl group.)
    An alkoxysilane A represented by:
    General formula (2): (R 2 ) Si (OR 1 ) 3
    (In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    And alkoxysilane B represented by the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
    (In Formula (3), R 1 is each independently a methyl group or an ethyl group, and R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    Consisting of an alkoxysilane C represented by
    Expressed as a molar ratio, water, water-soluble organic solvent B, and acid catalyst are added to alkoxysilane mixture D in which alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70. A first step of making the mixture before condensation;
    A second step of hydrolyzing and condensing the pre-condensation mixture to produce a condensate in the reaction system;
    A third step comprising a step of extracting and removing the acid catalyst from the reaction system with water and a step of extracting the condensate with a water-insoluble organic solvent C to obtain a condensate solution;
    A method for producing a condensate of alkoxysilane, comprising a fourth step of removing the organic solvent C from the condensate solution.
  3. アルコキシシラン混合物Dが有するアルコキシ基のモル数の1.5倍以上、5倍以下のモル数の水を用いることを特徴とする、請求項2に記載の縮合物の製造方法。 The method for producing a condensate according to claim 2, wherein water having a mole number of 1.5 to 5 times the number of moles of the alkoxy group of the alkoxysilane mixture D is used.
  4. 有機溶剤Bがアルコールであることを特徴とする、請求項2または請求項3に記載の縮合物の製造方法。 The method for producing a condensate according to claim 2 or 3, wherein the organic solvent B is an alcohol.
  5. 酸触媒が酢酸であることを特徴とする、請求項2乃至請求項4のいずれか1項に記載の縮合物の製造方法。 The method for producing a condensate according to any one of claims 2 to 4, wherein the acid catalyst is acetic acid.
  6. 請求項1に記載の縮合物、光酸発生剤および有機溶剤Aを含む感光性組成物。 A photosensitive composition comprising the condensate according to claim 1, a photoacid generator and an organic solvent A.
  7. 有機溶剤Aが極性溶剤であることを特徴とする、請求項6に記載の感光性組成物。 The photosensitive composition according to claim 6, wherein the organic solvent A is a polar solvent.
  8. 一般式(1):Si(OR14
    (式(1)中、R1はそれぞれ独立にメチル基またはエチル基である。)
    で表されるアルコキシシランAと、
     一般式(2):(R2)Si(OR13
    (式(2)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランBと
     一般式(3):(R22Si(OR12
    (式(3)中、R1はそれぞれ独立にメチル基またはエチル基であり、R2はそれぞれ独立にメチル基、エチル基またはフェニル基である。)
    で表されるアルコキシシランCからなり、
     モル比で表して、アルコキシシランA:アルコキシシランB:アルコキシシランC=0~70:30~100:0~70であるアルコキシシラン混合物Dに、水、水溶性の有機溶剤Bおよび酸触媒を加え縮合前混合物とする第1の工程と、
     縮合前混合物を加水分解および縮合させ反応系に縮合物を生成させる第2の工程と、
     反応系から酸触媒を水で抽出除去し工程および縮合物を非水溶性の有機溶剤Cで抽出して縮合物溶液を得る工程を有する第3の工程と、
     縮合物溶液から有機溶剤Cを除去する第4の工程と
     光酸発生剤および有機溶剤Aを加える第5の工程を有することを特徴とする、感光性組成物の製造方法。
    General formula (1): Si (OR 1 ) 4
    (In formula (1), each R 1 is independently a methyl group or an ethyl group.)
    An alkoxysilane A represented by:
    General formula (2): (R 2 ) Si (OR 1 ) 3
    (In formula (2), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    And alkoxysilane B represented by the general formula (3): (R 2 ) 2 Si (OR 1 ) 2
    (In Formula (3), each R 1 is independently a methyl group or an ethyl group, and each R 2 is independently a methyl group, an ethyl group, or a phenyl group.)
    Consisting of an alkoxysilane C represented by
    Expressed as a molar ratio, water, water-soluble organic solvent B, and acid catalyst are added to alkoxysilane mixture D in which alkoxysilane A: alkoxysilane B: alkoxysilane C = 0 to 70:30 to 100: 0 to 70. A first step of making the mixture before condensation;
    A second step of hydrolyzing and condensing the pre-condensation mixture to produce a condensate in the reaction system;
    A third step having a step of extracting and removing the acid catalyst from the reaction system with water and a step of extracting the condensate with a water-insoluble organic solvent C to obtain a condensate solution;
    A method for producing a photosensitive composition, comprising a fourth step of removing the organic solvent C from the condensate solution and a fifth step of adding the photoacid generator and the organic solvent A.
  9. アルコキシシラン混合物Dが有するアルコキシ基のモル数の1.5倍以上、5倍以下のモル数の水を用いることを特徴とする、請求項8に記載の感光性組成物の製造方法。 The method for producing a photosensitive composition according to claim 8, wherein water is used in an amount of 1.5 to 5 times the number of moles of the alkoxy group of the alkoxysilane mixture D.
  10. 有機溶剤Bがアルコールであることを特徴とする、請求項8または請求項9に記載の感光性組成物の製造方法。 The method for producing a photosensitive composition according to claim 8 or 9, wherein the organic solvent B is an alcohol.
  11. 酸触媒が酢酸であることを特徴とする、請求項8乃至請求項10のいずれか1項に記載の感光性組成物の製造方法。 The method for producing a photosensitive composition according to claim 8, wherein the acid catalyst is acetic acid.
  12. 請求項6または請求項7に記載の感光性組成物を基体上に塗布して形成した膜に高エネルギー線を照射して、照射部に酸を発生させて照射部の縮合物の縮合をさらに促進させてアルカリ現像液不溶とした後、未照射部の膜を除去してネガ型パターンを形成することを特徴とする、ネガ型パターンの形成方法。 A film formed by applying the photosensitive composition according to claim 6 or 7 onto a substrate is irradiated with high energy rays to generate an acid in the irradiated portion, thereby further condensing the condensate in the irradiated portion. A method of forming a negative pattern, wherein the negative pattern is formed by removing an unirradiated portion film after being promoted to be insoluble in an alkali developer.
  13. 照射する高エネルギー線が波長400nm以下の電磁波、または電子線であることを特徴とする、請求項12に記載のネガ型パターンの形成方法。 The method for forming a negative pattern according to claim 12, wherein the high-energy radiation to be irradiated is an electromagnetic wave having a wavelength of 400 nm or less, or an electron beam.
PCT/JP2012/062094 2011-05-13 2012-05-11 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition WO2012157543A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011108337 2011-05-13
JP2011-108337 2011-05-13
JP2012-107161 2012-05-09
JP2012107161A JP2012254968A (en) 2011-05-13 2012-05-09 Condensate, photosensitive composition and production method thereof, and method for forming negative resist pattern using the same

Publications (1)

Publication Number Publication Date
WO2012157543A1 true WO2012157543A1 (en) 2012-11-22

Family

ID=47176863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062094 WO2012157543A1 (en) 2011-05-13 2012-05-11 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition

Country Status (2)

Country Link
JP (1) JP2012254968A (en)
WO (1) WO2012157543A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6166682B2 (en) * 2014-03-26 2017-07-19 富士フイルム株式会社 Coloring composition, cured film, color filter, pattern forming method, color filter manufacturing method, solid-state imaging device, and image display device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044224A (en) * 1990-04-20 1992-01-08 Shin Etsu Chem Co Ltd Purification of polymer
JPH06148895A (en) * 1992-11-06 1994-05-27 Toray Ind Inc Photosensitive resin composition and pattern forming method using that
JPH10246960A (en) * 1997-03-05 1998-09-14 Toray Ind Inc Photosensitive resin composition, and pattern forming method using it
JP2002037887A (en) * 2000-05-16 2002-02-06 Jsr Corp Method of producing organic silicone polymer, composition for film forming, method of forming film and silicic film
JP2004060077A (en) * 2002-07-26 2004-02-26 Takemoto Oil & Fat Co Ltd Paper-coating liquid and coated paper
JP2005126592A (en) * 2003-10-24 2005-05-19 Jsr Corp Purification method of polysiloxane
JP2005183472A (en) * 2003-12-16 2005-07-07 Mitsubishi Electric Corp Magnetic resistance sensor element
WO2008047654A1 (en) * 2006-10-12 2008-04-24 Sekisui Chemical Co., Ltd. Composition for formation of film, method for production of patterned film, and insulation film for electronic device
JP2009215343A (en) * 2008-03-07 2009-09-24 Adeka Corp Thermosetting resin
JP2011022173A (en) * 2009-07-13 2011-02-03 Chisso Corp Positive photosensitive composition
WO2011030569A1 (en) * 2009-09-08 2011-03-17 竹本油脂株式会社 Irregular-shaped microparticles, process for production of irregular-shaped microparticles, and cosmetics and resin compositions containing irregular-shaped microparticles
JP2011253035A (en) * 2010-06-02 2011-12-15 Toray Ind Inc Photosensitive siloxane composition, cured film formed from the same, and element having cured film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044224A (en) * 1990-04-20 1992-01-08 Shin Etsu Chem Co Ltd Purification of polymer
JPH06148895A (en) * 1992-11-06 1994-05-27 Toray Ind Inc Photosensitive resin composition and pattern forming method using that
JPH10246960A (en) * 1997-03-05 1998-09-14 Toray Ind Inc Photosensitive resin composition, and pattern forming method using it
JP2002037887A (en) * 2000-05-16 2002-02-06 Jsr Corp Method of producing organic silicone polymer, composition for film forming, method of forming film and silicic film
JP2004060077A (en) * 2002-07-26 2004-02-26 Takemoto Oil & Fat Co Ltd Paper-coating liquid and coated paper
JP2005126592A (en) * 2003-10-24 2005-05-19 Jsr Corp Purification method of polysiloxane
JP2005183472A (en) * 2003-12-16 2005-07-07 Mitsubishi Electric Corp Magnetic resistance sensor element
WO2008047654A1 (en) * 2006-10-12 2008-04-24 Sekisui Chemical Co., Ltd. Composition for formation of film, method for production of patterned film, and insulation film for electronic device
JP2009215343A (en) * 2008-03-07 2009-09-24 Adeka Corp Thermosetting resin
JP2011022173A (en) * 2009-07-13 2011-02-03 Chisso Corp Positive photosensitive composition
WO2011030569A1 (en) * 2009-09-08 2011-03-17 竹本油脂株式会社 Irregular-shaped microparticles, process for production of irregular-shaped microparticles, and cosmetics and resin compositions containing irregular-shaped microparticles
JP2011253035A (en) * 2010-06-02 2011-12-15 Toray Ind Inc Photosensitive siloxane composition, cured film formed from the same, and element having cured film

Also Published As

Publication number Publication date
JP2012254968A (en) 2012-12-27

Similar Documents

Publication Publication Date Title
US11634610B2 (en) Siloxane polymer compositions and their use
JP5929679B2 (en) Silane composition, cured film thereof, and method for forming negative resist pattern using the same
JP5632387B2 (en) Wet-etchable anti-reflection coating
JP6323225B2 (en) Positive photosensitive resin composition, film production method using the same, and electronic component
JP5412037B2 (en) Siloxane resin, method for preparing siloxane resin, and antireflection coating composition
JP5766440B2 (en) Siloxane polymer composition and method of using the same
JP6137862B2 (en) Negative photosensitive siloxane composition
JP5654479B2 (en) Switchable anti-reflective coating
JP5631738B2 (en) Novel siloxane polymer composition
TW201339249A (en) Di-t-butoxydiacetoxysilane-based silsesquioxane resins as hard-mask antireflective coating material and method of making
WO2012157543A1 (en) Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition
KR20180077064A (en) Resin composition, method for producing resin composition, film formation method, and cured product
KR20100131915A (en) Radiation-sensitive composition, protective film and inter layer insulating film, and process for forming the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786554

Country of ref document: EP

Kind code of ref document: A1