WO2008047654A1 - Composition for formation of film, method for production of patterned film, and insulation film for electronic device - Google Patents

Composition for formation of film, method for production of patterned film, and insulation film for electronic device Download PDF

Info

Publication number
WO2008047654A1
WO2008047654A1 PCT/JP2007/069795 JP2007069795W WO2008047654A1 WO 2008047654 A1 WO2008047654 A1 WO 2008047654A1 JP 2007069795 W JP2007069795 W JP 2007069795W WO 2008047654 A1 WO2008047654 A1 WO 2008047654A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
component
photosensitive composition
alkoxysilane
condensate
Prior art date
Application number
PCT/JP2007/069795
Other languages
French (fr)
Japanese (ja)
Inventor
Taku Sasaki
Kenichi Azuma
Shigeru Nakamura
Yasunari Kusaka
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to JP2008539762A priority Critical patent/JPWO2008047654A1/en
Publication of WO2008047654A1 publication Critical patent/WO2008047654A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature

Definitions

  • the present invention relates to a film-forming composition comprising a condensate of alkoxysilane and an acid generator that generates an acid by stimulation such as heat or light, and more specifically, has excellent storage stability.
  • the present invention relates to a film-forming composition capable of obtaining a film having excellent insulating performance, a method for producing a pattern film using the composition, and an insulating film for electronic equipment.
  • a passivation film, a gate insulating film, and the like are configured by a fine pattern formation method.
  • a photosensitive resin composition containing a condensate of alkoxysilane or the like is used.
  • Patent Document 1 as an example of a photosensitive resin composition used for pattern formation, (1) an alkali-soluble siloxane polymer, that is, a condensate of alkoxysilane, and (2) a reaction accelerator by light A photosensitive resin composition comprising as a main component a compound that generates water and (3) a solvent is disclosed.
  • an alkali-soluble siloxane polymer obtained by removing water and catalyst from a reaction solution obtained by hydrolytic condensation by adding water and a catalyst to alkoxysilane is used. It has been.
  • Patent Document 1 As a raw material of a condensate of alkoxysilane, methyltrimethoxysilane 40; 100 Monore 0/0, phenylalanine trimethoxysilane 0-40 mole 0/0, and Jimechirujime Tokishishiran It is preferable to use a composition consisting of 0 to 40 mol%! /, And! /.
  • Patent Document 1 Japanese Patent Laid-Open No. 06-148895
  • the photosensitive resin composition of Patent Document 1 depending on the type and blending amount of the alkoxysilane constituting the alkoxysilane condensate, the photosensitive resin composition may deteriorate and gel when stored for a long period of time. It was. That is, the photosensitive resin composition of Patent Document 1 was not sufficient in storage stability. [0006] In addition, when a photosensitive resin composition is exposed and cured to form a cured product film, the obtained cured product film is also required to have excellent insulating performance. However, the conventional photosensitive resin composition has insufficient storage stability or V of the insulation performance of the cured film after curing, or the performance of deviation.
  • An object of the present invention is to provide a film-forming composition capable of obtaining a film having excellent storage stability and excellent insulating performance in view of the above-described state of the prior art, and a pattern using the same.
  • An object of the present invention is to provide a film manufacturing method and an insulating film for electronic equipment.
  • the component (X) composed of phenyltriethoxysilane and / or phenyltrimethoxysilane, and the component (Y) composed of methyltriethoxysilane and / or methyltrimethoxysilane , Triethoxysilane and / or component (Z) consisting of trimethoxysilane are reacted at a ratio in the region surrounded by solid line P1 connecting coordinates A17, A28, A29 and A18 in the ternary diagram of FIG.
  • a film-forming composition comprising the alkoxysilane condensate (A) obtained above and an acid generator (B) that generates an acid by external stimulation.
  • (A) is the ratio of component (X), component (Y), and component (Z) in the region surrounded by the solid line P2 connecting coordinates A2, A2 8, A29, and A30 in the ternary diagram of Fig. 8. It is a condensate of alkoxysilane obtained by reacting with
  • (A) is the ratio of component (X), component (Y), and component (Z) in the region surrounded by the solid line P3 connecting coordinates A31, A 28, A29 and A33 in the ternary diagram of Fig. 9. It is a condensate of alkoxysilane obtained by reacting with
  • a method for producing a patterned film using the film-forming composition of the present invention wherein the film-forming composition generates an acid when exposed to light.
  • the film-forming composition generates an acid when exposed to light.
  • the insulating film for electronic devices according to the present invention is formed using the film forming composition of the present invention.
  • the film-forming composition according to the present invention comprises components (X) to (Z) in a ratio within a region surrounded by a solid line P1 connecting coordinates A17, A28, A29 and A18 in the ternary diagram of FIG. ) Is obtained, it is excellent in storage stability. Furthermore, in the present invention, since the film-forming composition further contains an acid generator (B) that generates an acid by an external stimulus such as light or heat, for example, the film-forming composition is given an external stimulus. By giving and generating an acid and curing it, a film having excellent insulating performance can be obtained.
  • a photosensitive composition layer comprising a photosensitive composition as the film forming composition of the present invention is formed on a substrate, and the photosensitive composition layer is selectively formed.
  • the photosensitive composition layer in the exposed portion is insoluble in the developer, and then the photosensitive composition layer is developed with the image solution. Therefore, even if a photosensitive composition stored for a long time is used, A good pattern film can be formed. Furthermore, at the time of development, the photosensitive composition layer in the unexposed area can be easily removed, and a pattern film excellent in insulation performance can be obtained.
  • the insulating film for electronic devices according to the present invention is formed using the film forming composition of the present invention, it has excellent insulating performance.
  • FIG. 1 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the alkoxysilane condensate (A) used in the present invention. It is a figure which shows the area
  • FIGS. 2 (a) to 2 (c) are cross-sectional views of each step for explaining a method for producing a patterned film using the photosensitive composition according to the present invention.
  • FIG. 3 is a front sectional view showing a semiconductor element provided with a passivation film and an interlayer insulating film made of the photosensitive composition according to the present invention.
  • FIG. 4 shows the composition of the alkoxysilane condensate used in Examples and Comparative Examples.
  • FIG. 3 is a three-component diagram in which the blending ratio of each component (X) to (Z) of the alkoxysilane composition used is plotted.
  • FIG. 5 is a diagram in which the storage stability evaluation results are plotted in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. is there.
  • FIG. 6 is a diagram plotting the evaluation results of developability in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. .
  • FIG. 7 is a diagram in which the evaluation results of the insulating performance are plotted in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. .
  • FIG. 8 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the alkoxysilane condensate (A) used in the present invention.
  • FIG. 5 is a diagram showing a preferred ratio of the blending ratio of? /.
  • FIG. 9 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the condensate (A) of alkoxysilane used in the present invention. It is a figure showing a more preferable ratio of the blending ratio of! /.
  • the inventors of the present application have shown that the components (X) to (Z) made of a specific alkoxysilane are connected to coordinates A17, A28, A29 and A18 in the ternary diagram of FIG.
  • the inventors have found that a film having improved storage stability and excellent insulation performance can be obtained, and the present invention has been made.
  • the film-forming composition according to the present invention contains an alkoxysilane condensate (A) and an acid generator (B) that generates an acid by an external stimulus.
  • the external stimulus examples include heat, light such as visible light or ultraviolet light, ultrasonic waves, and microwaves.
  • the film-forming composition of the present invention is a photosensitive composition that is sensitized by exposure.
  • the external stimulus is heat, it is a film forming composition containing a thermal acid generator.
  • the film-forming composition of the present invention is a photosensitive composition that is exposed to light when exposed to light
  • a photoacid generator that generates an acid when exposed to light is used as the acid generator (B).
  • the alkoxysilane condensate (A) includes a component (X) composed of phenyltriethoxysilane and / or phenyltrimethoxysilane, and a component composed of methyltriethoxysilane and / or methyltrimethoxysilane ( Y) and triethoxysilane and / or component (Z), which also has trimethoxysilane force, in the ternary diagram of Fig. 1, the ratio in the area surrounded by solid line P1 connecting coordinates A17, A28, A29 and A18 It was obtained by reacting with
  • the alkoxysilane condensate (A) comprises component (X), component (Y) and component (Z), and the coordinates A17, A28, A29 and A18 shown in Table 1 below in the ternary diagram. It was obtained by reacting at a ratio within the area surrounded by the connected straight lines.
  • Unit is mol% by weight
  • the component (X) is preferably phenyltriethoxysilane.
  • the component (Y) is preferably methyltriethoxysilane.
  • the component (Z) is preferably triethoxysilane.
  • component (X) is less reactive than component (Y) and component (Z), and component (Y) is less reactive than component (Z).
  • Component (X) is poor in reactivity, and in the alkoxysilane condensate (A) obtained by using a large amount of component (X), the condensation reaction of SiOH groups does not easily proceed during storage.
  • component (Z) the alkoxysilane condensate (A) obtained by using a large amount of highly reactive component (Z), the condensation reaction of SiOH groups tends to proceed during storage. Therefore, in order to increase the storage stability of the photosensitive composition, it is preferable to reduce the proportion of component (Y) or component (Z) and increase the proportion of component (X).
  • component (X) is less reactive than component (Y) and component (Z), and component (Y) is less reactive than component (Z).
  • component (X) is less reactive than component (Y) and component (Z)
  • component (Y) is less reactive than component (Z).
  • the higher the proportion of component (X) used the more SiOH groups remain in the alkoxysilane condensate (A) obtained by condensation, so that the photosensitive composition is cured by exposure.
  • the insulating performance tends to be lowered.
  • the blending ratio of component (Y) and component (Z) is increased and the blending ratio of component (X) is decreased.
  • the alkoxysilane condensate (A) obtained by condensation which easily completes the condensation reaction, the abundance of SiOH groups can be reduced, so that the insulating performance of the cured film of the photosensitive composition is improved. It tends to be.
  • the component (Y) and the component (Z) are mixed in a low proportion of the component (X).
  • the blending ratio of the component (X) in which the blending ratio of the component (Y) is high is low.
  • a solid line connecting coordinates A17, A28, A29 and A18 in the three-component diagram in order to improve the storage stability of the photosensitive composition and obtain a cured product film excellent in insulation performance, a solid line connecting coordinates A17, A28, A29 and A18 in the three-component diagram.
  • the alkoxysilane condensate (A) obtained by reacting the components (X) to (Z) at a ratio in the region surrounded by P1 is used.
  • the alkoxysilane condensate (A) comprises a component (X), a component (Y), and a component (Z).
  • it is preferably an alkoxysilane condensate obtained by reacting at a ratio in the region surrounded by the solid line P2 connecting the coordinates A2, A28, A29 and A30 shown in Table 2 below. ,.
  • this alkoxysilane condensate is used, the insulation performance is further enhanced.
  • Unit is mol% by weight
  • the above-mentioned alkoxysilane condensate (A) comprises a component (X), a component (Y), and a component (Z), as shown in FIG.
  • it is preferably an alkoxysilane condensate obtained by reacting at a ratio in a region surrounded by a solid line P3 connecting coordinates A31, A28, A29 and A33 shown in Table 3 below.
  • this alkoxysilane condensate is used, the insulation performance is further enhanced.
  • the alkoxysilane condensate (A) is obtained by condensing two or more types of alkoxysilanes.
  • the weight average molecular weight of the alkoxysilane condensate (A) is preferably 500 or more.
  • the alkoxysilane condensate (A) may be any alkoxysilane having another functional group or an alkoxy group having a different number of alkoxy groups as long as the components (X) to (Z) are reacted in the above-described ratio.
  • Alkoxysilanes other than components (X) to (Z) such as silane may be used as long as they are in a small amount.
  • the photosensitive composition further contains a photoacid generator that generates an acid upon exposure, in addition to the alkoxysilane condensate (A).
  • the acid generator (B) that generates an acid when exposed to light is not particularly limited! /, But is trade name “TPS-105” (CAS No. 66003-78— manufactured by Midori Chemical Co., Ltd.). 9), “TPS—109” (CAS No. 144317—44—2), “MDS—105” (CAS No. 116808—67—4), “MDS—205” (CAS No. 81416—37—7) ), “DTS—105” (CAS No. 111281
  • the acid generator (B) may be used alone or in combination of two or more.
  • a sensitizer may be further added to increase sensitivity.
  • the sensitizer is not particularly limited, and specific examples include benzophenone, p, p'-tetramethyldiaminobenzophenone, p, p'-tetraethylaminobenzophenone, 2-chloro-pentane xanthone.
  • the content ratio of the acid generator (B) that generates an acid when exposed to light is in the range of 0.05 to 50 parts by weight with respect to 100 parts by weight of the alkoxysilane condensate (A). It is desirable. If the acid generator (B) is less than 0.05 parts by weight, the sensitivity may not be sufficient, and formation of a film such as a pattern film may be difficult. When the acid generator (B) exceeds 50 parts by weight, it is difficult to uniformly apply the photosensitive composition, and a residue may be formed after development.
  • An appropriate solvent may be further added to the photosensitive composition.
  • a solvent By adding a solvent, a photosensitive composition that can be easily applied can be provided.
  • the solvent is not particularly limited as long as it can dissolve the alkoxysilane condensate (A), but is not limited to aromatics such as benzene, xylene, tolylene, ethynolebenzene, styrene, trimethylolenebenzene, and jetylbenzene.
  • Hydrocarbon compounds cyclohexane, cyclohexene, dipentene, n pentane, isopentane, n hexane, isohexane, n heptane, isoheptane, n-octane, isooctane, n nonane, isononane, n-decane, isodecane, tetrahydronaphthalene, saturated or unsaturated hydrocarbon compounds such as Sukuwaran; Jefferies Chinoreetenore, di n propyl Honoré ether Honoré, di isopropyl Honoré ether Honoré, Jibuchinoree Tenore, E Chino repromicin Pinot les ether Honoré, Ziv Eni Honoré ether Honoré, diethylene glycidyl Kono resume Noreeate Nore, Diethylene Glycol / Leche / Leete / Le, Diethylene Glyco / Resibut
  • the mixing ratio of the solvent may be appropriately selected so that, for example, when the photosensitive composition is applied on a substrate to form the photosensitive composition layer, the solvent is uniformly applied.
  • the concentration of the photosensitive composition is 0.5 to 70 wt%, more preferably 2 to 50 wt% in terms of solid content. About%.
  • additives may be further added to the photosensitive composition.
  • additives include fillers, pigments, dyes, leveling agents, silane coupling agents, antifoaming agents, antistatic agents, UV absorbers, pH adjusters, dispersants, dispersion aids, surface modification agents. Quality agents, plasticizers, plasticizers, sagging inhibitors and the like.
  • a step of forming a photosensitive composition layer on a substrate, a step of exposing the photosensitive composition layer, and a step of developing the photosensitive composition layer is done in this order.
  • the photosensitive composition layer selected from the step of forming a photosensitive composition layer comprising the photosensitive composition as the film-forming composition of the present invention on the substrate and the pattern to be formed is selected.
  • a step of making the photosensitive composition layer in the exposed portion insoluble in the developer, developing the photosensitive composition layer with the developer, and removing the photosensitive composition layer in the unexposed portion in this order is done.
  • a photosensitive film comprising a photosensitive composition as a film forming composition of the present invention on a substrate.
  • Composition layer 1 is formed.
  • the method of forming the photosensitive composition layer 1 is not particularly limited.
  • a method of forming the photosensitive composition layer 1 by applying the photosensitive composition onto the substrate 2 shown in FIG. are listed.
  • a general coating method can be used, for example, dip coating, roll coating, bar coating, brush coating, spray coating, spin coating, extrusion coating. Work, gravure coating, etc. can be used.
  • a silicon substrate, a glass substrate, a metal plate, a plastic plate, or the like is used depending on the application.
  • the standard thickness of the photosensitive composition layer 1 is 10 nm to 10 m, which varies depending on the application.
  • the photosensitive composition layer 1 coated on the substrate 2 is heat-treated to dry the solvent. This is desirable.
  • the heat treatment temperature is generally 40 ° C to 200 ° C. It is appropriately selected depending on the pressure.
  • the photosensitive composition layer 1 is exposed.
  • a photomask 3 or the like corresponding to the pattern shape is used. Exposed photosensitive composition layer
  • the alkoxysilane condensate (A) is crosslinked by the action of the acid generated from the photoacid generator.
  • the photosensitive composition layer 1 A is cured.
  • the photosensitive composition layer 1 A in the exposed area becomes insoluble in the current image solution.
  • the light source for irradiating active energy rays such as ultraviolet rays and visible light at the time of exposure is not particularly limited, but an ultrahigh pressure mercury lamp, a deep UV lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metallometer, A ride lamp, an excimer laser, or the like can be used. These light sources are appropriately selected according to the photosensitive wavelength of the constituent components of the photosensitive composition.
  • the irradiation energy of light is generally in the range of 10 to 3000 mj / cm 2 , although it depends on the desired film thickness and constituents of the photosensitive composition.
  • the photosensitive composition layer 1 A in the exposed area may not be sufficiently cured, and if it is greater than 3000 mj / cm 2 , the exposure time may be too long, Production efficiency may be reduced
  • the photosensitive composition layers 1A and IB are developed with a developer.
  • the photosensitive composition layer 1B in the unexposed area is dissolved and removed in the developer, and the pattern film 1C is obtained.
  • the photosensitive composition layers 1A and IB are developed with a developing solution, whereby the unexposed portion of the photosensitive composition layer 1B is dissolved in the developing solution.
  • the photosensitive composition layer 1 A in the exposed area remains on the substrate 2.
  • the pattern film 1C is obtained. This pattern is a negative pattern because the photosensitive composition layer 1B in the unexposed area is removed.
  • the development is not only the operation of immersing the photosensitive composition layer 1 A in the exposed area or the photosensitive composition layer 1 B in the unexposed area in a developer such as an alkaline aqueous solution, but also the photosensitive composition.
  • Material 1A, IB Various operations for treating the photosensitive composition layers 1A and IB with the developer, such as an operation of washing the surface with the developer or an operation of spraying the developer onto the surface of the photosensitive composition layers 1A and IB, are included. .
  • the developer is a solution that dissolves the photosensitive composition 1B in the unexposed area after the photosensitive composition layer 1 is selectively exposed. Since the photosensitive composition layer 1A in the exposed area is cured! /, It does not dissolve in the developer.
  • the developer is not limited to an aqueous alkaline solution, and an acidic aqueous solution or various solvents may be used. Examples of the solvent include the various solvents described above. Examples of the acidic aqueous solution include oxalic acid, formic acid, acetic acid and the like.
  • an alkali solution is preferably used because it does not require an explosion-proof facility and the burden on the facility due to corrosion or the like is small.
  • aqueous alkali solutions such as an aqueous solution of tetramethyl ammonium hydroxide, an aqueous solution of sodium silicate, an aqueous solution of sodium hydroxide, and an aqueous solution of potassium hydroxide.
  • the time required for the development is preferably in the range of 1 second to 10 minutes because it can be efficiently developed and the production efficiency is increased depending on the thickness of the photosensitive composition layer and the type of solvent. It is preferable to wash the pattern film with distilled water after development to remove the developer such as an alkaline aqueous solution remaining on the film.
  • the entire surface of the photosensitive composition layer 1 on the substrate 2 may be exposed.
  • a cured product film in which the entire surface of the photosensitive composition layer 1 on the substrate 2 is cured can be obtained.
  • a thermal acid generator that generates acid when heat-treated may be used instead of the photoacid generator that generates acid when exposed.
  • the film-forming composition containing the thermal acid generator can be configured in the same manner as the photosensitive composition described above, except that the acid generator (B) is different.
  • the thermal acid generator is not particularly limited, and examples thereof include onium salt.
  • the thermal acid generator is preferably at least one selected from the group consisting of a diazonium salt, an ammonium salt, a phosphonium salt, an iodine salt, a sulfonium salt, a selenonium salt, an arsonium salt, and a sulfonic acid ester.
  • Specific examples of the thermal acid generator include diazodium salts (SI Schlesinger, Photogr. Sci. Eng., 18, 387 (1974), TS Bal et al, Polymer, 21, 423 (1980). (Specified), ammoyuum salt (specified in US Pat. Nos.
  • onion salt anti-anions include BF _, CF SO _, CF SO _, CF SO— and CH 2 SO—.
  • the compounds exemplified as the photoacid generator can also be used as a thermal acid generator. These thermal acid generators may be used alone or in combination of two or more.
  • the content ratio of the thermal acid generator is based on 100 parts by weight of the alkoxysilane condensate (A).
  • the range of 0.05 to 50 parts by weight is desirable. If the thermal acid generator is less than 0.05 parts by weight, sufficient acid may not be generated. If it exceeds 50 parts by weight, it becomes difficult to uniformly apply the film-forming composition, and the film thickness becomes large. May be non-uniform.
  • the film-forming composition layer formed on the substrate 2 is exposed in the above-described pattern film manufacturing process. Without heat treatment.
  • the film-forming composition layer is heat-treated to form an acid generator (B).
  • the film-forming composition layer may be cured by the action of the generated acid.
  • membrane formation is used for various uses.
  • the “film formed using the film-forming composition” is a film obtained by introducing an external stimulus such as heat or light to the film-forming composition and introducing a crosslinked structure. Means.
  • the film-forming composition according to the present invention is used in various apparatuses! /, And the force S suitably used for forming a film such as a pattern film, and the above-mentioned film on an insulating film of an electronic device.
  • a film forming composition is preferably used.
  • the shape stability of the insulating film can be effectively increased.
  • insulating films for such electronic devices include, for example, TFT protective insulating films for protecting thin film transistors (TFTs) in liquid crystal display elements, and protecting filters for color filters! For example, an insulating film is used.
  • the film-forming composition according to the present invention is more preferably used to constitute an interlayer insulating film or a passivation film of a semiconductor element.
  • FIG. 3 is a front sectional view schematically showing a semiconductor element including a passivation film and an interlayer insulating film made of the film forming composition according to the present invention.
  • a gate electrode 13 is provided at the center of the upper surface of the substrate 12.
  • a gate insulating film 14 is formed on the upper surface of the substrate 12 so as to cover the gate electrode 13.
  • a source electrode 15 and a drain electrode 16 are provided on the gate insulating film 14.
  • a semiconductor layer 17 is formed on the gate insulating film 14 so as to cover part of the source electrode 15 and part of the drain electrode 16
  • a semiconductor layer 17 is formed on the gate insulating film 14 so as to cover part of the source electrode 15 and part of the drain electrode 16
  • a passivation film 18 is formed so as to be covered by the semiconductor layer 17 of the source electrode 15 and the drain electrode 16 and to cover the semiconductor layer 17 and the portion.
  • the gate insulating film 14 and the passivation film 18 are films formed using the film forming composition according to the present invention.
  • the film-forming composition according to the present invention is also used as an insulating protective film for various electronic devices such as a TFT protective film for organic EL elements, an interlayer protective film for IC chips, and an insulating layer for sensors. obtain.
  • Methyltriethoxysilane was used as the component (Z), and triethoxysilane was used as the component (Z).
  • phenylalanine triethoxysilane 50 mol weight 0/0 were prepared alkoxysilane composition containing methyl triethoxysilane 50 mol weight 0/0.
  • the obtained alkoxysilane composition 2 was placed in a 100 ml flask equipped with a cooling tube.
  • the alkoxysilane condensate (A2) the same as in Example 1 except that the blending ratio of each component (X) to (Z) constituting the alkoxysilane composition was changed to the ratio shown in Table 4 below. (A 16) to (A21) were obtained.
  • alkoxysilane condensates (A2) and (A16) to (A21) thus obtained are used.
  • a photosensitive composition was obtained in the same manner as in Example 1 except that.
  • the alkoxysilane condensates (A27) to (A27) are the same as in Example 1 except that the proportions of the components (X) to (Z) constituting the alkoxysilane composition were changed to the ratios shown in Table 4 below. (A33) was obtained.
  • a photosensitive composition was obtained in the same manner as in Example 1, except that each of the thus obtained alkoxysilane condensates (A27) to (A33) was used.
  • the alkoxysilane condensates (A3) to (A3) are the same as in Example 1 except that the proportions of the components (X) to (Z) constituting the alkoxysilane composition are set to the ratios shown in Table 4 below. (A15) was obtained.
  • a photosensitive composition was obtained in the same manner as in Example 1, except that the alkoxysilane condensates (A3) to (A15) thus obtained were used.
  • FIG. 4 shows the alkoxysilane condensate used in Examples 1 to 15 and Comparative Examples 1 to 13.
  • the weight average molecular weight in terms of polystyrene of each photosensitive composition immediately after preparation that is, the condensate of alkoxysilane immediately after synthesis was measured.
  • the weight average molecular weight in terms of polystyrene of the condensate of alkoxysilane after each photosensitive composition was stored frozen at 20 ° C. for 7 days was measured.
  • the storage stability was evaluated as “X” when the value exceeded 2 times. Further, when the gel was formed after 7 days, the storage stability was evaluated as “X”.
  • FIG. 5 shows a plot of the storage stability evaluation results in a three-component diagram in which the blending ratio of each component (X) (Z) of the alkoxysilane composition shown in FIG. 4 is plotted. .
  • the storage stability evaluation result is “ ⁇ ” or “ ⁇ ”.
  • each photosensitive composition is rotated on this substrate at a rotational speed of 1250 rpm.
  • the ultraviolet 365nm wavelength to coating ultraviolet lOOmW / cm 2 so that irradiation energy is 500 mj / cm 2 Irradiated at illuminance for 0.5 seconds.
  • the coating film was heated on a hot plate at 100 ° C for 2 minutes. Thereafter, the coating film was immersed in a 2.38% aqueous solution of tetramethylammonium hydroxide and developed.
  • FIG. 6 shows a plot of evaluation results of developability in a three-component diagram in which the blending ratio of each component (X) to (Z) of the alkoxysilane composition shown in FIG. 4 is plotted. .
  • the evaluation result of developability was “ ⁇ ” or “ ⁇ ”.
  • the coating film was irradiated with ultraviolet rays having a wavelength of 365 nm at an ultraviolet illuminance of 100 mW / cm 2 for 0.5 seconds so that the irradiation energy was 500 mj / cm 2 .
  • ultraviolet rays After irradiating with ultraviolet rays, it was heated on a hot plate at 100 ° C for 2 minutes, and further heated on a hot plate at 200 ° C for 60 minutes. Then, aluminum was vapor-deposited on the coating film again.
  • a leakage current was measured when a voltage of 3 MV / cm was applied between the deposited aluminum.
  • the leakage current is 10 X 10_ 7 A / cm 2 or less " ⁇ " greater than 10 X 10- 7 A / cm 2 or less, and 15 X 10- 7 A / cm 2 or less in the case The symbol "”, exceed 15 X 10- 7 a / cm 2 , the force, one 25 X 10- 7 a / cm 2 or less in the case as " ⁇ ", "X” and if it exceeds 25 X 10- 7 a / cm 2, The insulation performance was evaluated.
  • Example 12 A30 14x 10 " 7 ⁇
  • FIG. 7 shows a diagram in which the evaluation results of the insulating performance are plotted in the three-component diagram in which the blending ratios of the components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. .
  • the evaluation result of the insulation performance was “ ⁇ ”, “ ⁇ ”, or “ ⁇ ”.
  • the areas where the storage stability and developability evaluation results were both “ ⁇ ” or “ ⁇ ” and the insulation performance evaluation results were “ ⁇ ” or “ ⁇ ” are the solid lines shown in FIG. It was an area surrounded by P2. Furthermore, the regions where the storage stability and developability evaluation results were both “ ⁇ ” or “ ⁇ ” and the insulation performance evaluation results were “ ⁇ ” are surrounded by the solid line P3 shown in FIG. It was an area.
  • phenyltrimethoxysilane was used as component (X) and component (Y) was used.
  • Example 20 A25 953 1444 1.52 ⁇ ⁇
  • Example 21 A26 1 132 2241 1.98 ⁇
  • each film-forming composition was spin-coated on the glass substrate at a rotational speed of 1250 rpm for 20 seconds. After coating, the film was dried for 2 minutes on a hot plate at 100 ° C to form a coating film. [0108] Next, the film-forming composition was cured by heating on a 200 ° C hot plate for 60 minutes. Thereafter, aluminum was deposited again on the coating film.
  • the leakage current was measured when a voltage of 3 MV / cm was applied between the deposited aluminum, and the same as in Examples 1 to 15 and Comparative Examples;! In this way, (3) insulation performance was evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

Disclosed are: a composition for forming a film, which has excellent storage stability and image-developing property and can produce a patterned film having excellent insulation performance; a method for producing a patterned film by using the composition; and an insulation film for an electronic device. Specifically disclosed are: a composition for forming a film, which comprises (A) an alkoxysilane condensation product produced by reacting a component (X) comprising phenyl ethoxysilane and/or phenyl trimethoxysilane, a component (Y) comprising methyl triethoxysilane and/or methyl trimethoxysilane and a component (Z) comprising triethoxysilane and/or trimethoxysilane at any ratio falling within an area enclosed with a solid line P1 connecting coordinate points A17, A28, A29 and A18 in the three-component phase diagram shown in Fig. 1, and (B) an acid generator which can generate an acid upon being exposed to an external stimulation such as light or heat; a method for producing a patterned film by using the composition; and an insulation film for an electronic device.

Description

明 細 書  Specification
膜形成用組成物、これを用いたパターン膜の製造方法及び電子機器用 絶縁膜  Film forming composition, pattern film manufacturing method using the same, and insulating film for electronic equipment
技術分野  Technical field
[0001] 本発明は、アルコキシシランの縮合物と、熱や光などの刺激により酸を発生する酸 発生剤とを含む膜形成用組成物であって、より詳細には、貯蔵安定性に優れており、 かつ絶縁性能に優れた膜を得ることを可能とする膜形成用組成物、これを用いたパ ターン膜の製造方法及び電子機器用絶縁膜に関する。  [0001] The present invention relates to a film-forming composition comprising a condensate of alkoxysilane and an acid generator that generates an acid by stimulation such as heat or light, and more specifically, has excellent storage stability. In addition, the present invention relates to a film-forming composition capable of obtaining a film having excellent insulating performance, a method for producing a pattern film using the composition, and an insulating film for electronic equipment.
背景技術  Background art
[0002] 半導体などの電子デバイスの製造に際しては、パッシベーシヨン膜やゲート絶縁膜 などが、微細パターン形成法により構成されている。これらの膜を構成するのに、例 えばアルコキシシランの縮合物などを含む感光性樹脂組成物が用いられて!/、る。  In the manufacture of electronic devices such as semiconductors, a passivation film, a gate insulating film, and the like are configured by a fine pattern formation method. For forming these films, for example, a photosensitive resin composition containing a condensate of alkoxysilane or the like is used.
[0003] 下記の特許文献 1には、パターン形成に用いられる感光性樹脂組成物の一例とし て、 (1)アルカリ可溶性シロキサンポリマー、すなわちアルコキシシランの縮合物と、 ( 2)光によって反応促進剤を発生する化合物と、(3)溶剤とを主成分とする感光性樹 脂組成物が開示されている。特許文献 1では、(1)アルコキシシランの縮合物として、 アルコキシシランに水および触媒を加えて加水分解縮合させた反応溶液から、水お よび触媒を除去して得られたアルカリ可溶性シロキサンポリマーが用いられている。  [0003] In Patent Document 1 below, as an example of a photosensitive resin composition used for pattern formation, (1) an alkali-soluble siloxane polymer, that is, a condensate of alkoxysilane, and (2) a reaction accelerator by light A photosensitive resin composition comprising as a main component a compound that generates water and (3) a solvent is disclosed. In Patent Document 1, (1) as a condensate of alkoxysilane, an alkali-soluble siloxane polymer obtained by removing water and catalyst from a reaction solution obtained by hydrolytic condensation by adding water and a catalyst to alkoxysilane is used. It has been.
[0004] 特許文献 1では、(1)アルコキシシランの縮合物の原料としては、メチルトリメトキシ シラン 40〜; 100モノレ0 /0、フエニルトリメトキシシラン 0〜40モル0 /0、およびジメチルジメ トキシシラン 0〜40モル%からなる組成物を用いることが好まし!/、とされて!/、る。 [0004] In Patent Document 1, (1) As a raw material of a condensate of alkoxysilane, methyltrimethoxysilane 40; 100 Monore 0/0, phenylalanine trimethoxysilane 0-40 mole 0/0, and Jimechirujime Tokishishiran It is preferable to use a composition consisting of 0 to 40 mol%! /, And! /.
特許文献 1:特開平 06— 148895号公報  Patent Document 1: Japanese Patent Laid-Open No. 06-148895
発明の開示  Disclosure of the invention
[0005] しかしながら、特許文献 1の感光性樹脂組成物では、アルコキシシランの縮合物を 構成するアルコキシランの種類及び配合量によっては、長期間保管された際に劣化 し、ゲル化することがあった。すなわち、特許文献 1の感光性樹脂組成物は、貯蔵安 定 1·生が充分ではなかった。 [0006] また、感光性樹脂組成物を露光し、硬化させて硬化物膜を形成したときに、得られ た硬化物膜においては、絶縁性能に優れていることも求められている。し力もながら、 従来の感光性樹脂組成物では、貯蔵安定性あるいは硬化後の硬化物膜の絶縁性 能の V、ずれかの性能が充分ではなかった。 However, in the photosensitive resin composition of Patent Document 1, depending on the type and blending amount of the alkoxysilane constituting the alkoxysilane condensate, the photosensitive resin composition may deteriorate and gel when stored for a long period of time. It was. That is, the photosensitive resin composition of Patent Document 1 was not sufficient in storage stability. [0006] In addition, when a photosensitive resin composition is exposed and cured to form a cured product film, the obtained cured product film is also required to have excellent insulating performance. However, the conventional photosensitive resin composition has insufficient storage stability or V of the insulation performance of the cured film after curing, or the performance of deviation.
[0007] 本発明の目的は、上述した従来技術の現状に鑑み、貯蔵安定性に優れており、か つ絶縁性能に優れた膜を得ることができる膜形成用組成物、これを用いたパターン 膜の製造方法及び電子機器用絶縁膜を提供することにある。  An object of the present invention is to provide a film-forming composition capable of obtaining a film having excellent storage stability and excellent insulating performance in view of the above-described state of the prior art, and a pattern using the same. An object of the present invention is to provide a film manufacturing method and an insulating film for electronic equipment.
[0008] 本発明によれば、フエニルトリエトキシシラン及び/又はフエニルトリメトキシシランか らなる成分 (X)と、メチルトリエトキシシラン及び/又はメチルトリメトキシシランからな る成分 (Y)と、トリエトキシシラン及び/又はトリメトキシシランからなる成分 (Z)とを、 図 1の三成分図において座標 A17, A28, A29及び A18を結んだ実線 P1で囲まれ た領域内の比率で反応させて得られたアルコキシシランの縮合物 (A)、及び外的刺 激により酸を発生する酸発生剤 (B)を含有することを特徴とする、膜形成用組成物が 提供される。  [0008] According to the present invention, the component (X) composed of phenyltriethoxysilane and / or phenyltrimethoxysilane, and the component (Y) composed of methyltriethoxysilane and / or methyltrimethoxysilane , Triethoxysilane and / or component (Z) consisting of trimethoxysilane are reacted at a ratio in the region surrounded by solid line P1 connecting coordinates A17, A28, A29 and A18 in the ternary diagram of FIG. There is provided a film-forming composition comprising the alkoxysilane condensate (A) obtained above and an acid generator (B) that generates an acid by external stimulation.
[0009] 本発明に係る膜形成用組成物のある特定の局面では、アルコキシシランの縮合物  [0009] In a specific aspect of the film-forming composition according to the present invention, a condensate of alkoxysilane
(A)は、成分 (X)、成分 (Y)及び成分 (Z)を、図 8の三成分図において座標 A2, A2 8, A29及び A30を結んだ実線 P2で囲まれた領域内の比率で反応させて得られた アルコキシシランの縮合物である。  (A) is the ratio of component (X), component (Y), and component (Z) in the region surrounded by the solid line P2 connecting coordinates A2, A2 8, A29, and A30 in the ternary diagram of Fig. 8. It is a condensate of alkoxysilane obtained by reacting with
[0010] 本発明に係る膜形成用組成物の他の特定の局面では、アルコキシシランの縮合物  [0010] In another specific aspect of the film-forming composition according to the present invention, a condensate of alkoxysilane
(A)は、成分 (X)、成分 (Y)及び成分 (Z)を、図 9の三成分図において座標 A31 , A 28, A29及び A33を結んだ実線 P3で囲まれた領域内の比率で反応させて得られた アルコキシシランの縮合物である。  (A) is the ratio of component (X), component (Y), and component (Z) in the region surrounded by the solid line P3 connecting coordinates A31, A 28, A29 and A33 in the ternary diagram of Fig. 9. It is a condensate of alkoxysilane obtained by reacting with
[0011] また、本発明によれば、本発明の膜形成用組成物を用いたパターン膜の製造方法 であって、膜形成用組成物が、露光されると酸を発生する光酸発生剤を酸発生剤 (B )として含有する感光性組成物であり、基板上に、感光性組成物からなる感光性組成 物層を形成する工程と、形成するパターンに応じて感光性組成物層を選択的に露光 し、光酸発生剤から発生した酸の作用により、露光部の感光性組成物層を硬化し、 露光部の感光性組成物層を現像液に不溶にする工程と、露光部の感光性組成物層 を現像液に不溶にした後、感光性組成物層を現像液で現像し、未露光部の感光性 組成物層を除去する工程とを備えることを特徴とする、パターン膜の製造方法が提供 される。 [0011] Further, according to the present invention, there is provided a method for producing a patterned film using the film-forming composition of the present invention, wherein the film-forming composition generates an acid when exposed to light. In the form of a photosensitive composition layer on the substrate, and a photosensitive composition layer according to the pattern to be formed. A step of selectively exposing and curing the photosensitive composition layer of the exposed portion by the action of an acid generated from the photoacid generator, and making the photosensitive composition layer of the exposed portion insoluble in a developer; Photosensitive composition layer And a step of developing the photosensitive composition layer with the developing solution and removing the photosensitive composition layer in the unexposed areas. Is done.
[0012] 本発明に係る電子機器用絶縁膜は、本発明の膜形成用組成物を用いて形成され ている。  The insulating film for electronic devices according to the present invention is formed using the film forming composition of the present invention.
(発明の効果)  (The invention's effect)
[0013] 本発明に係る膜形成用組成物は、図 1の三成分図において座標 A17, A28, A29 及び A18を結んだ実線 P1で囲まれた領域内の比率で成分 (X)〜(Z)を反応させて 得られたアルコキシシランの縮合物 (A)を含有するので、貯蔵安定性に優れて!/、る。 さらに、本発明では、膜形成用組成物が、光や熱などの外的刺激により酸を発生す る酸発生剤(B)をさらに含有するので、例えば膜形成用組成物に外的刺激を与えて 酸を発生させて、硬化させることにより、絶縁性能に優れた膜を得ることができる。  [0013] The film-forming composition according to the present invention comprises components (X) to (Z) in a ratio within a region surrounded by a solid line P1 connecting coordinates A17, A28, A29 and A18 in the ternary diagram of FIG. ) Is obtained, it is excellent in storage stability. Furthermore, in the present invention, since the film-forming composition further contains an acid generator (B) that generates an acid by an external stimulus such as light or heat, for example, the film-forming composition is given an external stimulus. By giving and generating an acid and curing it, a film having excellent insulating performance can be obtained.
[0014] 本発明に係るパターン膜の製造方法では、本発明の膜形成用組成物としての感光 性組成物からなる感光性組成物層を基板上に形成し、感光性組成物層を選択的に 露光し、露光部の感光性組成物層を現像液に不溶にした後、感光性組成物層を現 像液で現像するので、長期間保管された感光性組成物を用いたとしても、良好なパ ターン膜を形成することができる。さらに、現像の際に、未露光部の感光性組成物層 を容易に除去することができ、絶縁性能に優れたパターン膜を得ることができる。  In the method for producing a patterned film according to the present invention, a photosensitive composition layer comprising a photosensitive composition as the film forming composition of the present invention is formed on a substrate, and the photosensitive composition layer is selectively formed. The photosensitive composition layer in the exposed portion is insoluble in the developer, and then the photosensitive composition layer is developed with the image solution. Therefore, even if a photosensitive composition stored for a long time is used, A good pattern film can be formed. Furthermore, at the time of development, the photosensitive composition layer in the unexposed area can be easily removed, and a pattern film excellent in insulation performance can be obtained.
[0015] 本発明に係る電子機器用絶縁膜は、本発明の膜形成用組成物を用いて形成され ているので、絶縁性能に優れている。  [0015] Since the insulating film for electronic devices according to the present invention is formed using the film forming composition of the present invention, it has excellent insulating performance.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は、成分 (X)〜(Z)の三成分図であって、本発明で用いられるアルコキシシ ランの縮合物 (A)を構成する各成分 (X)〜(Z)の配合割合の領域を示す図である。  FIG. 1 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the alkoxysilane condensate (A) used in the present invention. It is a figure which shows the area | region of the mixture ratio of (Z).
[図 2]図 2 (a)〜(c)は、本発明に係る感光性組成物を用いてパターン膜を製造する 方法を説明するための各工程の断面図である。  [FIG. 2] FIGS. 2 (a) to 2 (c) are cross-sectional views of each step for explaining a method for producing a patterned film using the photosensitive composition according to the present invention.
[図 3]図 3は、本発明に係る感光性組成物からなるパッシベーシヨン膜および層間絶 縁膜を備える半導体素子を示す正面断面図である。  FIG. 3 is a front sectional view showing a semiconductor element provided with a passivation film and an interlayer insulating film made of the photosensitive composition according to the present invention.
[図 4]図 4は、実施例及び比較例で用いたアルコキシシランの縮合物を構成するのに 使用したアルコキシシラン組成物の各成分 (X)〜(Z)の配合割合をプロットした三成 分図を示すである。 [FIG. 4] FIG. 4 shows the composition of the alkoxysilane condensate used in Examples and Comparative Examples. FIG. 3 is a three-component diagram in which the blending ratio of each component (X) to (Z) of the alkoxysilane composition used is plotted.
[図 5]図 5は、図 4に示すアルコキシシラン組成物の各配合成分 (X)〜(Z)の配合割 合をプロットした三成分図において、貯蔵安定性の評価結果をプロットした図である。  FIG. 5 is a diagram in which the storage stability evaluation results are plotted in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. is there.
[図 6]図 6は、図 4に示すアルコキシシラン組成物の各配合成分 (X)〜(Z)の配合割 合をプロットした三成分図において、現像性の評価結果をプロットした図である。  [FIG. 6] FIG. 6 is a diagram plotting the evaluation results of developability in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. .
[図 7]図 7は、図 4に示すアルコキシシラン組成物の各配合成分 (X)〜(Z)の配合割 合をプロットした三成分図において、絶縁性能の評価結果をプロットした図である。 FIG. 7 is a diagram in which the evaluation results of the insulating performance are plotted in the three-component diagram in which the blending ratios of the blending components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. .
[図 8]図 8は、成分 (X)〜(Z)の三成分図であって、本発明で用いられるアルコキシシ ランの縮合物 (A)を構成する各成分 (X)〜(Z)の配合割合の好まし!/、領域を示す図 である。  FIG. 8 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the alkoxysilane condensate (A) used in the present invention. FIG. 5 is a diagram showing a preferred ratio of the blending ratio of? /.
[図 9]図 9は、成分 (X)〜(Z)の三成分図であって、本発明で用いられるアルコキシシ ランの縮合物 (A)を構成する各成分 (X)〜(Z)の配合割合のより好まし!/、領域を示 す図である。  FIG. 9 is a three-component diagram of components (X) to (Z), and each component (X) to (Z) constituting the condensate (A) of alkoxysilane used in the present invention. It is a figure showing a more preferable ratio of the blending ratio of! /.
符号の説明 Explanation of symbols
1···感光性組成物層  1 ... Photosensitive composition layer
1Α···露光部の感光性組成物層  1Α ···· Photosensitive composition layer in exposed area
1Β· · ·未露光部の感光性組成物層  1Β · · · Photosensitive composition layer in unexposed area
1C…パターン膜  1C ... Pattern film
2· 基板  2. Board
3···フォトマスク  3 ... Photomask
11···半導体素子  11 ... Semiconductor element
12···基板  12 ... Board
13···ゲート電極  13 ... Gate electrode
14···ゲート絶縁膜  14 ... Gate insulation film
15···ソース電極  15 ... Source electrode
16···ドレイン電極  16 ... Drain electrode
17···半導体層 18· · ·パッシベーシヨン膜 17 ... Semiconductor layer 18 · · · Passivation membrane
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下、本発明の詳細を説明する。  [0018] Details of the present invention will be described below.
本願発明者らは、上記課題を達成するために、特定のアルコキシシランからなる成 分(X)〜(Z)を図 1の三成分図において座標 A17, A28, A29及び A18を結んだ実 線 P1で囲まれた領域内の比率で反応させて得られたアルコキシシランの縮合物 (A) と、外的刺激により酸を発生する酸発生剤 (B)とを含有する構成によって、膜形成用 組成物の貯蔵安定性が高められ、かつ絶縁性能に優れた膜を得ることができることを 見出し、本発明をなすに至った。  In order to achieve the above-mentioned problems, the inventors of the present application have shown that the components (X) to (Z) made of a specific alkoxysilane are connected to coordinates A17, A28, A29 and A18 in the ternary diagram of FIG. A film containing a condensate of alkoxysilane (A) obtained by reacting at a ratio in the region surrounded by P1 and an acid generator (B) that generates acid by external stimulation. The inventors have found that a film having improved storage stability and excellent insulation performance can be obtained, and the present invention has been made.
[0019] 本発明に係る膜形成用組成物は、アルコキシシランの縮合物 (A)と、外的刺激によ り酸を発生する酸発生剤 (B)とを含有する。  The film-forming composition according to the present invention contains an alkoxysilane condensate (A) and an acid generator (B) that generates an acid by an external stimulus.
[0020] 上記外的刺激としては、熱、可視光又は紫外光などの光、超音波、マイクロ波など が挙げられる。外的刺激が光である場合には、本発明の膜形成用組成物は、露光に より感光する感光性組成物である。外的刺激が熱である場合には、熱酸発生剤を含 む膜形成用組成物である。これらを項を分けて詳述する。  [0020] Examples of the external stimulus include heat, light such as visible light or ultraviolet light, ultrasonic waves, and microwaves. When the external stimulus is light, the film-forming composition of the present invention is a photosensitive composition that is sensitized by exposure. When the external stimulus is heat, it is a film forming composition containing a thermal acid generator. These will be described in detail by dividing the terms.
[0021] (膜形成用組成物としての感光性組成物)  (Photosensitive composition as a film-forming composition)
本発明の膜形成用組成物が露光されると感光する感光性組成物である場合には、 上記酸発生剤 (B)として、露光されると酸を発生する光酸発生剤が用いられる。  When the film-forming composition of the present invention is a photosensitive composition that is exposed to light when exposed to light, a photoacid generator that generates an acid when exposed to light is used as the acid generator (B).
[0022] 上記アルコキシシランの縮合物(A)は、フエニルトリエトキシシラン及び/又はフエ ニルトリメトキシシランからなる成分 (X)と、メチルトリエトキシシラン及び/又はメチル トリメトキシシランからなる成分 (Y)と、トリエトキシシラン及び/又はトリメトキシシラン 力もなる成分(Z)とを、図 1の三成分図において座標 A17, A28, A29及び A18を 結んだ実線 P1で囲まれた領域内の比率で反応させて得られたものである。  [0022] The alkoxysilane condensate (A) includes a component (X) composed of phenyltriethoxysilane and / or phenyltrimethoxysilane, and a component composed of methyltriethoxysilane and / or methyltrimethoxysilane ( Y) and triethoxysilane and / or component (Z), which also has trimethoxysilane force, in the ternary diagram of Fig. 1, the ratio in the area surrounded by solid line P1 connecting coordinates A17, A28, A29 and A18 It was obtained by reacting with
[0023] すなわち、上記アルコキシシランの縮合物 (A)は、成分 (X)、成分 (Y)及び成分 (Z )を、三成分図において下記表 1に示す座標 A17, A28, A29及び A18を結んだ直 線で囲まれた領域内の比率で反応させて得られたものである。  [0023] That is, the alkoxysilane condensate (A) comprises component (X), component (Y) and component (Z), and the coordinates A17, A28, A29 and A18 shown in Table 1 below in the ternary diagram. It was obtained by reacting at a ratio within the area surrounded by the connected straight lines.
[0024] [表 1] 成分 (X) 成分 (Y) 成分 )[0024] [Table 1] Ingredient (X) Ingredient (Y) Ingredient)
A17 62.5 37.5 0 A17 62.5 37.5 0
A28 1 99 0  A28 1 99 0
A29 12.5 75 12.5  A29 12.5 75 12.5
A18 37.5 50 12.5  A18 37.5 50 12.5
単位はモル重量%  Unit is mol% by weight
[0025] 上記成分 (X)は、好ましくはフエニルトリエトキシシランである。上記成分 (Y)は、好 ましくはメチルトリエトキシシランである。上記成分 (Z)は、好ましくはトリエトキシシラン である。 [0025] The component (X) is preferably phenyltriethoxysilane. The component (Y) is preferably methyltriethoxysilane. The component (Z) is preferably triethoxysilane.
[0026] 後述の実験例から明らかなように、上記アルコキシシランの縮合物 (A)を得る際に、 成分 (X)の配合割合が高いほど、感光性組成物の貯蔵安定性が高められる傾向に ある。また、成分 (Y)の配合割合が低いほど、感光性組成物の貯蔵安定性が高めら れる傾向にある。特に、成分 (Z)の配合割合が低いほど、感光性組成物の貯蔵安定 性が高められる傾向が顕著である。  As is clear from the experimental examples described later, when obtaining the above alkoxysilane condensate (A), the higher the proportion of component (X), the higher the storage stability of the photosensitive composition. It is in. Also, the lower the blending ratio of component (Y), the higher the storage stability of the photosensitive composition tends to be. In particular, the lower the blending ratio of component (Z), the more prominent the storage stability of the photosensitive composition is.
[0027] これは、成分 (X)は成分 (Y)及び成分 (Z)よりも反応性が低ぐ成分 (Y)は成分 (Z )よりも反応性が低いためである。成分 (X)は反応性に乏し 成分 (X)を多く用いて 得られたアルコキシシランの縮合物 (A)では、保存時に SiOH基の縮合反応が進行 し難い。一方、成分 (Z)は反応性が高ぐ成分 (Z)を多く用いて得られたアルコキシシ ランの縮合物 (A)では、保存時に SiOH基の縮合反応が進行し易い。よって、感光 性組成物の貯蔵安定性を高めるは、成分 (Y)、または成分 (Z)の配合割合を低くし、 成分 (X)の配合割合を高くすることが好ましレ、。  [0027] This is because component (X) is less reactive than component (Y) and component (Z), and component (Y) is less reactive than component (Z). Component (X) is poor in reactivity, and in the alkoxysilane condensate (A) obtained by using a large amount of component (X), the condensation reaction of SiOH groups does not easily proceed during storage. On the other hand, in the case of component (Z), the alkoxysilane condensate (A) obtained by using a large amount of highly reactive component (Z), the condensation reaction of SiOH groups tends to proceed during storage. Therefore, in order to increase the storage stability of the photosensitive composition, it is preferable to reduce the proportion of component (Y) or component (Z) and increase the proportion of component (X).
[0028] また、成分 (X)は成分 (Y)及び成分 (Z)よりも反応性が低く、成分 (Y)は成分(Z)よ りも反応性が低い。そのため、使用する成分 (X)の比率が高いほど、縮合して得られ たアルコキシシランの縮合物 (A)において、 SiOH基が比較的多く残存するので、露 光して感光性組成物の硬化物膜を形成したときに絶縁性能が低下する傾向にある。 一方、成分 (Y)及び成分 (Z)の配合割合を高くし、成分 (X)の配合割合を低くすると 、縮合反応が完結し易ぐ縮合して得られたアルコキシシランの縮合物 (A)において 、 SiOH基の存在量を低減することができるので、感光性組成物の硬化物膜の絶縁 性能が高められる傾向にある。 [0028] In addition, component (X) is less reactive than component (Y) and component (Z), and component (Y) is less reactive than component (Z). For this reason, the higher the proportion of component (X) used, the more SiOH groups remain in the alkoxysilane condensate (A) obtained by condensation, so that the photosensitive composition is cured by exposure. When a material film is formed, the insulating performance tends to be lowered. On the other hand, when the blending ratio of component (Y) and component (Z) is increased and the blending ratio of component (X) is decreased. In the alkoxysilane condensate (A) obtained by condensation, which easily completes the condensation reaction, the abundance of SiOH groups can be reduced, so that the insulating performance of the cured film of the photosensitive composition is improved. It tends to be.
[0029] 従って、感光性組成物の硬化物膜の絶縁性能を高めるは、成分 (X)の配合割合が 低ぐ成分 (Y)及び成分 (Z)の配合割合が高いことが好ましい。また、パターン膜の 絶縁性能を高めるには、成分 (Y)の配合割合が高ぐ成分 (X)の配合割合が低いこ とが好ましい。 [0029] Therefore, in order to improve the insulation performance of the cured film of the photosensitive composition, it is preferable that the component (Y) and the component (Z) are mixed in a low proportion of the component (X). In order to improve the insulation performance of the pattern film, it is preferable that the blending ratio of the component (X) in which the blending ratio of the component (Y) is high is low.
[0030] よって、本発明では、感光性組成物の貯蔵安定性を高め、かつ絶縁性能に優れた 硬化物膜を得るために、三成分図において座標 A17, A28, A29及び A18を結ん だ実線 P1で囲まれた領域内の比率で成分 (X)〜(Z)を反応させて得られたアルコキ シシランの縮合物 (A)が用いられる。  Therefore, in the present invention, in order to improve the storage stability of the photosensitive composition and obtain a cured product film excellent in insulation performance, a solid line connecting coordinates A17, A28, A29 and A18 in the three-component diagram. The alkoxysilane condensate (A) obtained by reacting the components (X) to (Z) at a ratio in the region surrounded by P1 is used.
[0031] なお、後述の実験例から明らかなように、上記アルコキシシランの縮合物 (A)を得る 際に、成分 (Y)の配合割合が高い場合、感光性組成物の現像性が低下する傾向に ある。特に成分 (Y)のみを単独で使用した場合には、パターン膜を形成したときに、 現像後に残渣を生じ、良好なパターユング性能を得ることができない。よって、充分 な現像性を得るためには、成分 (Y)の配合割合は高すぎないことが必要であり、成 分 (Y)の配合割合は 99モル重量%以下とされる。  [0031] As will be apparent from the experimental examples described later, when obtaining the above-mentioned alkoxysilane condensate (A), if the blending ratio of component (Y) is high, the developability of the photosensitive composition decreases. There is a tendency. In particular, when only component (Y) is used alone, when a pattern film is formed, a residue is generated after development, and good patterning performance cannot be obtained. Therefore, in order to obtain sufficient developability, it is necessary that the proportion of component (Y) is not too high, and the proportion of component (Y) is 99 mol% or less.
[0032] また、後述の実験例から明らかなように、上記アルコキシシランの縮合物 (A)は、成 分 (X)と、成分 (Y)と、成分 (Z)とを、図 8の三成分図において下記の表 2に示す座 標 A2, A28, A29及び A30を結んだ実線 P2で囲まれた領域内の比率で反応させ て得られたアルコキシシランの縮合物であることが好ましレ、。このアルコキシシランの 縮合物を用いた場合には、絶縁性能がより一層高められる。  [0032] As is clear from the experimental examples described later, the alkoxysilane condensate (A) comprises a component (X), a component (Y), and a component (Z). In the composition diagram, it is preferably an alkoxysilane condensate obtained by reacting at a ratio in the region surrounded by the solid line P2 connecting the coordinates A2, A28, A29 and A30 shown in Table 2 below. ,. When this alkoxysilane condensate is used, the insulation performance is further enhanced.
[0033] [表 2] 成分 (X) 成分 (Y) 成分 )[0033] [Table 2] Ingredient (X) Ingredient (Y) Ingredient)
A2 25 75 0 A2 25 75 0
A28 1 99 0  A28 1 99 0
A29 12.5 75 12.5  A29 12.5 75 12.5
A30 25 62.5 12.5  A30 25 62.5 12.5
単位はモル重量%  Unit is mol% by weight
[0034] さらに、後述の実験例から明らかなように、上記アルコキシシランの縮合物(A)は、 成分 (X)と、成分 (Y)と、成分(Z)とを、図 9の三成分図において下記の表 3に示す 座標 A31 , A28, A29及び A33を結んだ実線 P3で囲まれた領域内の比率で反応さ せて得られたアルコキシシランの縮合物であることが好まし 、。このアルコキシシラン の縮合物を用いた場合には、絶縁性能がさらに一層高められる。 [0034] Further, as will be apparent from the experimental examples described below, the above-mentioned alkoxysilane condensate (A) comprises a component (X), a component (Y), and a component (Z), as shown in FIG. In the figure, it is preferably an alkoxysilane condensate obtained by reacting at a ratio in a region surrounded by a solid line P3 connecting coordinates A31, A28, A29 and A33 shown in Table 3 below. When this alkoxysilane condensate is used, the insulation performance is further enhanced.
[0035] [表 3]  [0035] [Table 3]
Figure imgf000010_0001
Figure imgf000010_0001
[0036] 上記アルコキシシランの縮合物 (A)は、 2種以上のアルコキシシランが縮合してレ、る ものである。アルコキシシランの縮合物 (A)の重量平均分子量は、 500以上が好まし レ、。アルコキシシランの縮合物(A)は、上記成分(X)〜(Z)を上述した比率で反応さ せたものであればよぐ他の官能基を有するアルコキシシラン又はアルコキシ基の数 が異なるアルコキシシラン等の成分(X)〜(Z)以外のアルコキシシランは、少量であ れば用いられていてもよい。アルコキシシランの縮合物(A)は、 1種のみが単独で用 レ、られてもよく、 2種以上が併用されてもよい。 [0037] 感光性組成物は、上記アルコキシシランの縮合物 (A)に加えて、露光されると酸を 発生する光酸発生剤をさらに含有する。 [0036] The alkoxysilane condensate (A) is obtained by condensing two or more types of alkoxysilanes. The weight average molecular weight of the alkoxysilane condensate (A) is preferably 500 or more. The alkoxysilane condensate (A) may be any alkoxysilane having another functional group or an alkoxy group having a different number of alkoxy groups as long as the components (X) to (Z) are reacted in the above-described ratio. Alkoxysilanes other than components (X) to (Z) such as silane may be used as long as they are in a small amount. As for the alkoxysilane condensate (A), only one type may be used alone, or two or more types may be used in combination. The photosensitive composition further contains a photoacid generator that generates an acid upon exposure, in addition to the alkoxysilane condensate (A).
[0038] 上記露光されると酸を発生する酸発生剤(B)としては、特に限定されな!/、が、ミドリ 化学社製の商品名「TPS— 105」(CAS No. 66003— 78— 9)、「TPS— 109」 (C AS No. 144317— 44— 2)、「MDS— 105」(CAS No. 116808— 67— 4)、「 MDS— 205」 (CAS No. 81416— 37— 7)、「DTS— 105」(CAS No. 111281 [0038] The acid generator (B) that generates an acid when exposed to light is not particularly limited! /, But is trade name “TPS-105” (CAS No. 66003-78— manufactured by Midori Chemical Co., Ltd.). 9), “TPS—109” (CAS No. 144317—44—2), “MDS—105” (CAS No. 116808—67—4), “MDS—205” (CAS No. 81416—37—7) ), “DTS—105” (CAS No. 111281
— 12— 0)、「NDS— 105」(CAS No. 195057— 83— 1)、「NDS— 165」(CAS No. 316821— 98— 4)等のスノレホニゥム塩ィ匕合物、「DPI— 105」(CAS No. 6— 12—0), “NDS—105” (CAS No. 195057—83—1), “NDS—165” (CAS No. 316821—98—4), etc. (CAS No. 6
6003— 76— 7)、「DPI— 106」(CAS No. 214534— 44— 8)、「DPI— 109」 (C AS No. 194999— 82— 1)、「DPI— 201」(CAS No. 6293— 66— 9)、「: BI— 1 05」(CAS No. 154557— 16— 1)、「MPI— 105」(CAS No. 115298— 63— 0)、「MPI— 106」(CAS No. 260061— 46— 9)、「MPI— 109」(CAS No. 26 0061—47— 0)、「: BBI— 105」(CAS No. 84563— 54— 2)、「: BBI— 106」 (CA S No. 185195— 30— 6)、「: BBI— 109」(CAS No. 194999— 85— 4)、「: BBI6003—76—7), “DPI—106” (CAS No. 214534—44—8), “DPI—109” (C AS No. 194999—82—1), “DPI—201” (CAS No. 6293 — 66— 9), “: BI— 1 05” (CAS No. 154557—16— 1), “MPI—105” (CAS No. 115298—63—0), “MPI—106” (CAS No. 260061) — 46— 9), “MPI—109” (CAS No. 26 0061—47—0), “: BBI—105” (CAS No. 84563—54—2), “: BBI—106” (CA S No 185195—30—6), “: BBI—109” (CAS No. 194999—85—4), “: BBI
— 110」(CAS No. 213740— 80— 8)、「: BBI— 201」(CAS No. 142342- 33 —4)等のョードニゥム塩化合物、ミドリ化学社製の商品名「NAI— 106」(ナフタルイミ ド カンファスノレホン酸塩、 CAS No. 83697— 56— 7)、「NAI— 100」(CAS No . 83697— 53— 4)、「NAI— 1002」(CAS No. 76656— 48— 9)、「NAI— 1004 」(CAS No. 83697— 60— 3)、「NAI—皿」 (CAS No. 5551— 72— 4)、「N AI— 105」(CAS No. 85342— 62— 7)、「NAI— 109」(CAS No. 171417— 9 1— 7)、「NI—皿」 (CAS No. 131526— 99— 3)、「NI— 105」(CAS No. 85 342— 63— 8)、「NDI—皿」 (CAS No. 141714— 82— 1)、「NDI— 105」 (CA S No. 133710— 62— 0)、「NDI— 106」(CAS No. 210218— 57— 8)、「NDI— 110 ”(CAS No. 213740—80—8),“: BBI—201 ”(CAS No. 142342-33—4), etc., and the trade name“ NAI-106 ”(Naphtalimi) manufactured by Midori Chemical Co., Ltd. Docamphors nolephonate, CAS No. 83697—56—7), “NAI—100” (CAS No. 83697—53—4), “NAI—1002” (CAS No. 76656—48—9), “ NAI—1004 ”(CAS No. 83697—60—3),“ NAI—dish ”(CAS No. 5551—72—4),“ N AI—105 ”(CAS No. 85342—62—7),“ NAI— — 109 ”(CAS No. 171417—9 1—7),“ NI—dish ”(CAS No. 131526—99—3),“ NI—105 ”(CAS No. 85 342—63—8),“ NDI —Dish ”(CAS No. 141714—82—1),“ NDI—105 ”(CA S No. 133710—62—0),“ NDI—106 ”(CAS No. 210218—57—8),“ NDI
— 109」 (CAS No. 307531— 76— 6)、 「PAI— 01」 (CAS No. 17512— 88— 8)、 「PAI—皿」 (CAS No. 82424— 53— 1)、 「PAI— 106」 (CAS No. 2024 19— 88— 3)、 「PAI— 1001」 (CAS No. 193222— 02— 5)、 「SI—皿」 (CAS—109 ”(CAS No. 307531—76—6),“ PAI—01 ”(CAS No. 17512—88—8),“ PAI—dish ”(CAS No. 82424—53—1),“ PAI—106 (CAS No. 2024 19—88—3), “PAI—1001” (CAS No. 193222—02—5), “SI—Dish” (CAS
No. 55048— 39— 0)、 「SI— 105」 (CAS No. 34684— 40— 7)、 「SI— 106」 ( CAS No. 179419— 32— 0)、 「SI— 109」 (CAS No. 252937— 66— 9)、 「PI — 105」(CAS No. 41580— 58— 9)、「PI— 106」(CAS No. 83697— 51— 2) 、チバスぺシャリティケミカルズ社製の商品名「CGI1397」、「CGI1325」、「CGI138 0」、「CGI1311」、「CGI263」、「CGI268」等のスルホン酸エステル系化合物、ミドリ ィ匕学社製の商品名「DTS200」(CAS No. 203573— 06— 2)、ローディアジヤノ ン社製の商品名「RHODORSIL PHOTOINITIATOR— 2074」(CAS No. 17 8233— 72— 2)等の BF4 を対イオンとする化合物等が挙げられる。酸発生剤(B) は、単独で用いられてもよぐ 2種以上が併用されてもよい。 No. 55048—39—0), “SI—105” (CAS No. 34684—40—7), “SI—106” (CAS No. 179419—32—0), “SI—109” (CAS No. 252937— 66— 9), “PI — 105 ”(CAS No. 41580—58—9),“ PI-106 ”(CAS No. 83697—51—2), trade names“ CGI1397 ”,“ CGI1325 ”,“ CGI138 ”manufactured by Ciba Specialty Chemicals Sulfonic acid ester compounds such as “0”, “CGI1311”, “CGI263”, “CGI268”, trade name “DTS200” (CAS No. 203573-06-2) manufactured by Midori Sogakusha, Rhodia Janon Examples thereof include compounds having BF4 as a counter ion such as “RHODORSIL PHOTOINITIATOR-2074” (CAS No. 17 8233-72-2). The acid generator (B) may be used alone or in combination of two or more.
[0039] これらの感光剤である酸発生剤(B)に加え、より感度を高めるために、さらに増感剤 をカロえてもよい。 [0039] In addition to the acid generator (B), which is a sensitizer, a sensitizer may be further added to increase sensitivity.
[0040] 上記増感剤としては、特に限定されず、具体的には、ベンゾフエノン、 p, p' —テト ラメチルジァミノべンゾフエノン、 p, p' —テトラエチルァミノべンゾフエノン、 2—クロ口 チ才キサントン、アントロン、 9ーェトキシアントラセン、アントラセン、ピレン、ペリレン、 フエノチアジン、ベンジル、アタリジン才レンジ、ベンゾフラビン、セトフラビン一 T、 9, 10 ジフエ二ルアントラセン、 9 フルォレノン、ァセトフエノン、フエナントレン、 2 二 トロフルオレン、 5 ニトロァセナフテン、ベンゾキノン、 2 クロ口一 4 二トロア二リン 、 Ν ァセチノレー ρ 二トロア二リン、 ρ 二トロア二リン、 Ν ァセチノレー 4一二トロー 1—ナフチルァミン、ピタラミド、アントラキノン、 2—ェチルアントラキノン、 2— tert—  [0040] The sensitizer is not particularly limited, and specific examples include benzophenone, p, p'-tetramethyldiaminobenzophenone, p, p'-tetraethylaminobenzophenone, 2-chloro-pentane xanthone. , Anthrone, 9-ethoxyanthracene, anthracene, pyrene, perylene, phenothiazine, benzyl, ataridin-age range, benzoflavin, cetoflavin I T, 9, 10 diphenylanthracene, 9 fluorenone, acetophenone, phenanthrene, 2 trofluorene, 5 Nitroacenaphthene, benzoquinone, 2 Black mouth 4 Nitroline 2, ァ Acetenole ρ Nitroarine, ρ Nitroaline, ァ Acetenole 4 1 2 Throat 1-Naphthylamine, Pitalamide, Anthraquinone, 2-Ethyl Anthraquinone, 2-tert-
9一べンズアンスロン、ジベンザノレアセトン、 1 , 2 ナフトキノン、 3, 3' —力ノレボニノレ ビス(5, 7—ジメトキシカルボユルクマリン)及びコロネン等が挙げられ、好ましく用 いられる。 9 Ones anthrone, dibenzanolacetone, 1,2 naphthoquinone, 3,3′-force nolevonolebis (5,7-dimethoxycarbourecoumarin), coronene and the like are mentioned and preferably used.
[0041] 上記露光されると酸を発生する酸発生剤(B)の含有割合は、アルコキシシランの縮 合物(A) 100重量部に対して、 0. 05〜50重量部の範囲であることが望ましい。酸発 生剤(B)が 0. 05重量部未満であると、感度が十分でないことがあり、パターン膜など の膜の形成が困難なことがある。酸発生剤(B)が 50重量部を超えると、感光性組成 物を均一に塗布することが困難となり、さらに現像後に残渣が生じることがある。  [0041] The content ratio of the acid generator (B) that generates an acid when exposed to light is in the range of 0.05 to 50 parts by weight with respect to 100 parts by weight of the alkoxysilane condensate (A). It is desirable. If the acid generator (B) is less than 0.05 parts by weight, the sensitivity may not be sufficient, and formation of a film such as a pattern film may be difficult. When the acid generator (B) exceeds 50 parts by weight, it is difficult to uniformly apply the photosensitive composition, and a residue may be formed after development.
[0042] 感光性組成物には、適宜の溶剤がさらに添加され得る。溶剤を添加することにより、 容易に塗布し得る感光性組成物を提供することができる。 [0043] 上記溶剤としては、アルコキシシランの縮合物 (A)を溶解し得る限り、特に限定され ないが、ベンゼン、キシレン、トノレェン、ェチノレベンゼン、スチレン、トリメチノレベンゼン 、ジェチルベンゼンなどの芳香族炭化水素化合物;シクロへキサン、シクロへキセン、 ジペンテン、 n ペンタン、イソペンタン、 n へキサン、イソへキサン、 n ヘプタン、 イソヘプタン、 n—オクタン、イソオクタン、 n ノナン、イソノナン、 n—デカン、イソデカ ン、テトラヒドロナフタレン、スクヮランなどの飽和または不飽和炭化水素化合物;ジェ チノレエーテノレ、ジー n プロピノレエーテノレ、ジーイソプロピノレエーテノレ、ジブチノレエ ーテノレ、ェチノレプロピノレエーテノレ、ジフエニノレエーテノレ、ジエチレングリコーノレジメチ ノレエーテノレ、ジエチレングリコー/レジェチ/レエーテ/レ、ジエチレングリコー/レジブチ ノレエーテノレ、ジエチレングリコーノレメチノレエチノレエーテノレ、ジプロピレングリコーノレジ メチノレエーテノレ、ジプロピレングリコーノレジェチノレエーテノレ、ジプロピレングリコーノレ ジブチノレエーテノレ、ジプロピレングリコーノレメチノレエチノレエーテノレ、エチレングリコー ノレジメチノレエーテノレ、エチレングリコーノレジェチノレエーテノレ、エチレングリコーノレジプ 口ピノレエーテノレ、エチレングリコーノレメチノレエチノレエーテノレ、テトラヒドロフラン、 1 , 4 ジォキサン、プロピレングリコールモノメチルエーテルアセテート、エチレングリコー ノレモノェチノレエーテノレアセテート、ジプロピレングリコーノレメチノレエーテノレアセテート 、ジエチレングリコールモノェチルエーテルアセテート、ェチルシクロへキサン、メチ ノレシクロへキサン、 p メンタン、 o メンタン、 m メンタン;ジプロピルエーテル、ジ ブチルエーテルなどのエーテル類;アセトン、メチルェチルケトン、メチルイソブチル ケトン、ジェチルケトン、ジプロピルケトン、メチルアミルケトン、シクロペンタノン、シク 口へキサノン、シクロへプタノンなどのケトン類;酢酸ェチル、酢酸メチル、酢酸ブチル 、酢酸プロピル、酢酸シクロへキシル、酢酸メチルセ口ソルブ、酢酸ェチルセ口ソルブ 、酢酸ブチルセ口ソルブ、乳酸ェチル、乳酸プロピル、乳酸ブチル、乳酸イソァミル、 ステアリン酸ブチルなどのエステル類などが挙げられる。これらの溶剤は、単独で用 いられてもよく、 2種以上が併用されてもよい。 [0042] An appropriate solvent may be further added to the photosensitive composition. By adding a solvent, a photosensitive composition that can be easily applied can be provided. [0043] The solvent is not particularly limited as long as it can dissolve the alkoxysilane condensate (A), but is not limited to aromatics such as benzene, xylene, tolylene, ethynolebenzene, styrene, trimethylolenebenzene, and jetylbenzene. Hydrocarbon compounds: cyclohexane, cyclohexene, dipentene, n pentane, isopentane, n hexane, isohexane, n heptane, isoheptane, n-octane, isooctane, n nonane, isononane, n-decane, isodecane, tetrahydronaphthalene, saturated or unsaturated hydrocarbon compounds such as Sukuwaran; Jefferies Chinoreetenore, di n propyl Honoré ether Honoré, di isopropyl Honoré ether Honoré, Jibuchinoree Tenore, E Chino repromicin Pinot les ether Honoré, Ziv Eni Honoré ether Honoré, diethylene glycidyl Kono resume Noreeate Nore, Diethylene Glycol / Leche / Leete / Le, Diethylene Glyco / Resibut Noreate Nore, Diethylene Glyco Nole Mechinole Ethinoreate Nore, Dipropylene Glycono Resin Nore Dibutinoreethenore, Dipropylene Glyconoremethinoleetinoreetenore, Ethylene Glyco Norremethinoleetenore, Ethylene Glyconore Jetinoreetenore, Ethylene Glycolenoresip Tenole, Tetrahydrofuran, 1,4 Dioxane, Propylene glycol monomethyl ether acetate, Ethylene glycol Noreno ethinoreate Tenole acetate, Dipro Pyreneglycolole methinoreethenole acetate, diethylene glycol monoethyl ether acetate, ethylcyclohexane, methenorecyclohexane, p-menthane, o-menthane, m-menthane; ethers such as dipropylether, dibutylether; acetone, methylethyl Ketones, methyl isobutyl ketone, jetyl ketone, dipropyl ketone, methyl amyl ketone, cyclopentanone, cyclohexanone, cycloheptanone and other ketones; ethyl acetate, methyl acetate, butyl acetate, propyl acetate, cyclohexyl acetate, Examples thereof include esters such as methyl acetate solvate, ethyl acetate sorb, butyl acetate solvate, ethyl acetate, propyl lactate, butyl lactate, isoamyl lactate, and butyl stearate. These solvents may be used alone or in combination of two or more.
[0044] 上記溶剤の配合割合は、例えば基板上に感光性組成物を塗工し、感光性組成物 層を形成する際に、均一に塗工されるように適宜選択すればよい。好ましくは、感光 性組成物の濃度は、固形分濃度で、 0. 5〜70重量%、より好ましくは、 2〜50重量 %程度とされる。 [0044] The mixing ratio of the solvent may be appropriately selected so that, for example, when the photosensitive composition is applied on a substrate to form the photosensitive composition layer, the solvent is uniformly applied. Preferably, the concentration of the photosensitive composition is 0.5 to 70 wt%, more preferably 2 to 50 wt% in terms of solid content. About%.
[0045] 感光性組成物には、必要に応じて、他の添加剤をさらに添加してもよい。このような 添加剤としては、充填剤、顔料、染料、レべリング剤、シランカップリング剤、消泡剤、 帯電防止剤、紫外線吸収剤、 pH調整剤、分散剤、分散助剤、表面改質剤、可塑剤 、可塑促進剤、タレ防止剤などが挙げられる。  [0045] If necessary, other additives may be further added to the photosensitive composition. Such additives include fillers, pigments, dyes, leveling agents, silane coupling agents, antifoaming agents, antistatic agents, UV absorbers, pH adjusters, dispersants, dispersion aids, surface modification agents. Quality agents, plasticizers, plasticizers, sagging inhibitors and the like.
[0046] 本発明に係るパターン膜の製造方法では、基板上に感光性組成物層を形成する 工程と、感光性組成物層を露光する工程と、感光性組成物層を現像する工程とが、 この順で行われる。具体的には、基板上に、本発明の膜形成用組成物としての感光 性組成物からなる感光性組成物層を形成する工程と、形成するパターンに応じて感 光性組成物層を選択的に露光し、光酸発生剤から発生した酸の作用により、露光部 にお V、て感光性組成物層を硬化し、露光部の感光性組成物層を現像液に不溶にす る工程と、露光部の感光性組成物層を現像液に不溶にした後、感光性組成物層を 現像液で現像し、未露光部の前記感光性組成物層を除去する工程とが、この順で行 われる。  [0046] In the method for producing a patterned film according to the present invention, a step of forming a photosensitive composition layer on a substrate, a step of exposing the photosensitive composition layer, and a step of developing the photosensitive composition layer. This is done in this order. Specifically, the photosensitive composition layer selected from the step of forming a photosensitive composition layer comprising the photosensitive composition as the film-forming composition of the present invention on the substrate and the pattern to be formed is selected. Step of curing the photosensitive composition layer in the exposed area by the action of the acid generated from the photoacid generator and making the photosensitive composition layer in the exposed area insoluble in the developer. And a step of making the photosensitive composition layer in the exposed portion insoluble in the developer, developing the photosensitive composition layer with the developer, and removing the photosensitive composition layer in the unexposed portion in this order. Is done.
[0047] 本発明に係るパターン膜の製造方法では、先ず、例えば図 2 (a)に示すように、基 板上に、本発明の膜形成用組成物としての感光性組成物からなる感光性組成物層 1 を形成する。  In the method for producing a patterned film according to the present invention, first, as shown in, for example, FIG. 2 (a), a photosensitive film comprising a photosensitive composition as a film forming composition of the present invention on a substrate. Composition layer 1 is formed.
[0048] 上記感光性組成物層 1を形成する方法としては、特に限定されないが、例えば感 光性組成物を図 2に示す基板 2上に付与し、感光性組成物層 1を形成する方法が挙 げられる。この場合の具体的な方法としては、一般的な塗工方法を用いることができ 、例えば、浸漬塗工、ロール塗工、バー塗工、刷毛塗工、スプレー塗工、スピン塗工 、押出塗工、グラビア塗工などを使用することができる。感光性組成物が塗工される 基板 2としては、シリコン基板、ガラス基板、金属板、プラスチックス板などが用途に応 じて用いられる。感光性組成物層 1の厚さは、用途によって異なる力 10nm〜10 mが目安となる。  [0048] The method of forming the photosensitive composition layer 1 is not particularly limited. For example, a method of forming the photosensitive composition layer 1 by applying the photosensitive composition onto the substrate 2 shown in FIG. Are listed. As a specific method in this case, a general coating method can be used, for example, dip coating, roll coating, bar coating, brush coating, spray coating, spin coating, extrusion coating. Work, gravure coating, etc. can be used. As the substrate 2 to which the photosensitive composition is applied, a silicon substrate, a glass substrate, a metal plate, a plastic plate, or the like is used depending on the application. The standard thickness of the photosensitive composition layer 1 is 10 nm to 10 m, which varies depending on the application.
[0049] 基板 2上に塗工された感光性組成物層 1は、アルコキシシランの縮合物 (A)を溶解 させるために溶剤を用いた場合には、その溶剤を乾燥させるために加熱処理するこ とが望ましい。加熱処理温度は、一般には 40°C〜200°Cであり、溶剤の沸点や蒸気 圧に応じて適宜選択される。 [0049] When a solvent is used to dissolve the alkoxysilane condensate (A), the photosensitive composition layer 1 coated on the substrate 2 is heat-treated to dry the solvent. This is desirable. The heat treatment temperature is generally 40 ° C to 200 ° C. It is appropriately selected depending on the pressure.
[0050] 次に、図 2 (b)に示すように、感光性組成物層 1を露光する。露光に際しては、例え ばパターン形状に応じたフォトマスク 3等が用いられる。露光された感光性組成物層[0050] Next, as shown in FIG. 2 (b), the photosensitive composition layer 1 is exposed. For exposure, for example, a photomask 3 or the like corresponding to the pattern shape is used. Exposed photosensitive composition layer
1Aでは、光酸発生剤から酸が発生する。一方、露光されていない感光性組成物層 1In 1A, an acid is generated from the photoacid generator. On the other hand, the unexposed photosensitive composition layer 1
Bでは、光酸発生剤から酸は発生しない。 In B, no acid is generated from the photoacid generator.
[0051] 露光された感光性組成物層 1 Aでは、光酸発生剤から発生した酸の作用により、ァ ルコキシシランの縮合物 (A)が架橋する。アルコキシシランの縮合物 (A)が架橋する と、感光性組成物層 1 Aは硬化する。その結果、露光部の感光性組成物層 1 Aは現 像液に不溶になる。 [0051] In the exposed photosensitive composition layer 1A, the alkoxysilane condensate (A) is crosslinked by the action of the acid generated from the photoacid generator. When the alkoxysilane condensate (A) is crosslinked, the photosensitive composition layer 1 A is cured. As a result, the photosensitive composition layer 1 A in the exposed area becomes insoluble in the current image solution.
[0052] 露光する際に、紫外線や可視光などの活性エネルギー線を照射するための光源と しては、特に限定されないが、超高圧水銀灯、 Deep UV ランプ、高圧水銀灯、低 圧水銀灯、メタルノ、ライドランプ、エキシマレーザーなどを使用することができる。これ らの光源は、感光性組成物の構成成分の感光波長に応じて適宜選択される。光の 照射エネルギーは、所望とする膜厚や感光性組成物の構成成分にもよるが、一般に 、 10〜3000mj/cm2の範囲である。 10mj/cm2よりも小さいと、露光部の感光性 組成物層 1 Aが充分に硬化しない場合があり、 3000mj/cm2より大きいと露光時間 が長すぎることがあり、パターン膜の時間あたりの製造効率が低下するおそれがある [0052] The light source for irradiating active energy rays such as ultraviolet rays and visible light at the time of exposure is not particularly limited, but an ultrahigh pressure mercury lamp, a deep UV lamp, a high pressure mercury lamp, a low pressure mercury lamp, a metallometer, A ride lamp, an excimer laser, or the like can be used. These light sources are appropriately selected according to the photosensitive wavelength of the constituent components of the photosensitive composition. The irradiation energy of light is generally in the range of 10 to 3000 mj / cm 2 , although it depends on the desired film thickness and constituents of the photosensitive composition. If it is less than 10 mj / cm 2 , the photosensitive composition layer 1 A in the exposed area may not be sufficiently cured, and if it is greater than 3000 mj / cm 2 , the exposure time may be too long, Production efficiency may be reduced
[0053] 次に、感光性組成物層 1A、 IBを現像液で現像する。現像液で現像することにより 、未露光部の感光性組成物層 1Bが現像液に溶解して除去され、パターン膜 1Cが得 られる。 Next, the photosensitive composition layers 1A and IB are developed with a developer. By developing with the developer, the photosensitive composition layer 1B in the unexposed area is dissolved and removed in the developer, and the pattern film 1C is obtained.
[0054] 感光性組成物層 1を選択的に露光した後に、感光性組成物層 1A、 IBを現像液で 現像することにより、未露光部の感光性組成物層 1Bが現像液に溶解して除去され、 露光部の感光性組成物層 1 Aが基板 2上に残る。その結果、パターン膜 1Cが得られ る。このパターンは、未露光部の感光性組成物層 1Bが除去されることから、ネガ型パ ターンと!/、われるものである。  [0054] After the photosensitive composition layer 1 is selectively exposed, the photosensitive composition layers 1A and IB are developed with a developing solution, whereby the unexposed portion of the photosensitive composition layer 1B is dissolved in the developing solution. The photosensitive composition layer 1 A in the exposed area remains on the substrate 2. As a result, the pattern film 1C is obtained. This pattern is a negative pattern because the photosensitive composition layer 1B in the unexposed area is removed.
[0055] ここで、現像とは、アルカリ水溶液等の現像液に、露光部の感光性組成物層 1 Aや 未露光部の感光性組成物層 1Bを浸漬する操作の他、該感光性組成物層 1A、 IBの 表面を現像液で洗い流す操作、あるいは現像液を上記感光性組成物層 1A、 IBの 表面に噴射する操作など、現像液で感光性組成物層 1A、 IBを処理する様々な操 作を含むものとする。 Here, the development is not only the operation of immersing the photosensitive composition layer 1 A in the exposed area or the photosensitive composition layer 1 B in the unexposed area in a developer such as an alkaline aqueous solution, but also the photosensitive composition. Material 1A, IB Various operations for treating the photosensitive composition layers 1A and IB with the developer, such as an operation of washing the surface with the developer or an operation of spraying the developer onto the surface of the photosensitive composition layers 1A and IB, are included. .
[0056] なお、現像液とは、感光性組成物層 1を選択的に露光した後に、未露光部の感光 性組成物 1Bを溶解する液である。露光部の感光性組成物層 1Aは硬化して!/、るため 、現像液に溶解しない。現像液としては、アルカリ水溶液に限らず、酸性水溶液や各 種溶媒を用いてもよい。溶媒としては、前述した各種溶剤が挙げられる。酸性水溶液 としては、シユウ酸、ギ酸、酢酸等が挙げられる。  [0056] The developer is a solution that dissolves the photosensitive composition 1B in the unexposed area after the photosensitive composition layer 1 is selectively exposed. Since the photosensitive composition layer 1A in the exposed area is cured! /, It does not dissolve in the developer. The developer is not limited to an aqueous alkaline solution, and an acidic aqueous solution or various solvents may be used. Examples of the solvent include the various solvents described above. Examples of the acidic aqueous solution include oxalic acid, formic acid, acetic acid and the like.
[0057] 現像液としては、防爆設備が不要であり、腐蝕等による設備負担も少ないので、ァ ルカリ水溶液が好ましく用いられる。例えば、テトラメチルアンモニゥムヒドロキシド水 溶液、珪酸ナトリウム水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液などの アルカリ水溶液が挙げられる。現像に要する時間は、感光性組成物層の厚みや溶剤 の種類にもよる力 効率良く現像でき製造効率が高められるため、 1秒〜 10分の範 囲が好ましい。現像後にパターン膜を蒸留水で洗浄し、膜上に残存しているアルカリ 水溶液等の現像液を除去することが好ましレ、。  As the developer, an alkali solution is preferably used because it does not require an explosion-proof facility and the burden on the facility due to corrosion or the like is small. Examples thereof include aqueous alkali solutions such as an aqueous solution of tetramethyl ammonium hydroxide, an aqueous solution of sodium silicate, an aqueous solution of sodium hydroxide, and an aqueous solution of potassium hydroxide. The time required for the development is preferably in the range of 1 second to 10 minutes because it can be efficiently developed and the production efficiency is increased depending on the thickness of the photosensitive composition layer and the type of solvent. It is preferable to wash the pattern film with distilled water after development to remove the developer such as an alkaline aqueous solution remaining on the film.
[0058] なお、上記露光に際しては、基板 2上の感光性組成物層 1の全面を露光してもよい 。この場合、基板 2上の感光性組成物層 1の全面が硬化された硬化物膜を得ることが できる。  In the above exposure, the entire surface of the photosensitive composition layer 1 on the substrate 2 may be exposed. In this case, a cured product film in which the entire surface of the photosensitive composition layer 1 on the substrate 2 is cured can be obtained.
[0059] (熱酸発生剤を含む膜形成用組成物)  [0059] (Film-forming composition containing thermal acid generator)
本発明に係る膜形成用組成物では、露光されると酸を発生する光酸発生剤に代え て、熱処理されると酸を発生する熱酸発生剤を用いてもよい。熱酸発生剤を含む膜 形成用組成物は、酸発生剤(B)が異なることを除いては、上述した感光性組成物と 同様に構成され得る。  In the film-forming composition according to the present invention, a thermal acid generator that generates acid when heat-treated may be used instead of the photoacid generator that generates acid when exposed. The film-forming composition containing the thermal acid generator can be configured in the same manner as the photosensitive composition described above, except that the acid generator (B) is different.
上記熱酸発生剤としては、特に限定されないが、例えばォニゥム塩等が挙げられる The thermal acid generator is not particularly limited, and examples thereof include onium salt.
Yes
[0060] 上記熱酸発生剤としては、ジァゾニゥム塩、アンモニゥム塩、ホスホニゥム塩、ョード ユウム塩、スルホニゥム塩、セレノニゥム塩、アルソニゥム塩及びスルホン酸エステル 力もなる群から選択された少なくとも 1種がより好ましい。 [0061] 上記熱酸発生剤の具体例としては、ジァゾ二ゥム塩(S. I. Schlesinger, Photogr . Sci. Eng. , 18, 387 (1974)、T. S. Bal et al, Polymer, 21 , 423 (1980) (こ 明記)、アンモユウム塩(米国特許第 4069055号、同 4069056号、同再発行 2799 2号の各明細書および特開平 4— 365049号公報に明記)、ホスホニゥム塩(D. C. Necker et al, Macromolecules, 17, 2468 (1984)、 C. S . Wen et al, Teh , Proc. Conf. Rad, Curing ASIA, p478 Tokyo, Oct (1988)、米国特許第 4 069055号、同 4069056号の各明細書に明記)、ョードニゥム塩 (J. V. Crivello e t al, Macromorecules, 10 (6ハ l d07 (1977)、 Chem. & Eng. News, Nov. 28 , p31 (1988)、欧州特許 104143号、米国特許第 339049号、同 410201号の 各明細書、特開平 2— 150848号、同 2— 296514号の各公報に明記)、スルホユウ ム塩 (J. V. Crivello et al, Polymer J. 17, 73 (1985)、 J. V. Crivello et al . J. Org. Chem. , 43, 3055 (1978)、 W. R. Watt et al, J. Polymer Sci. , Polymer Chem. Ed. , 22, 1789 (1984)、 J. V. Crivello et al, PolymerBul 1. , 14, 279 (1985)、 J. V. Crivello et al, Macromorecules, 14 (5) , 1141 (1981)、 J. V. Crivel. lo et al, J. Polymer Sci. , Polymer Chem. Ed. , 1 7, 2877 (1979)、欧州特許 370693号、同 3902114号、同 233567号、同 29744 3号、同 297442号、米国特許第 4933377号、同皿 811号、同 410201号、同 33 9049号、同 4760013号、同 4734444号、同 2833827号、独国特許第 2904626 号、同 3604580号、同 3604581号の各明細書に明記、セレノ二ゥム塩 (J. V. Criv ello et al, Macromorecules, 10 (6) , 1307 (1977) , J. V. Crivello et al, J . Polymer Sci. , Polymer Chem. Ed. , 17, 1047 (1979)に明記)、およびァ ノレソニゥム塩(C. S. Wen et al, Teh, Proc. Conf. Rad. Curing ASIA, p47 8 Tokyo, Oct (1988)に明記)が挙げられる。ォニゥム塩の対ァニオンの例として は、 BF _、 CF SO _、 C F SO _、 C F SO—および CH SO—などが挙げられる[0060] The thermal acid generator is preferably at least one selected from the group consisting of a diazonium salt, an ammonium salt, a phosphonium salt, an iodine salt, a sulfonium salt, a selenonium salt, an arsonium salt, and a sulfonic acid ester. [0061] Specific examples of the thermal acid generator include diazodium salts (SI Schlesinger, Photogr. Sci. Eng., 18, 387 (1974), TS Bal et al, Polymer, 21, 423 (1980). (Specified), ammoyuum salt (specified in US Pat. Nos. 4069055, 4069056, Reissue 2799 2 and JP-A-4-365049), phosphonium salt (DC Necker et al, Macromolecules, 17, 2468 (1984), C. S. Wen et al, Teh, Proc. Conf. Rad, Curing ASIA, p478 Tokyo, Oct (1988), U.S. Pat.Nos. 4,069055, 4069056 ), Jodhnyum salt (JV Crivello et al, Macromorecules, 10 (6 Hard 07 (1977), Chem. & Eng. News, Nov. 28, p31 (1988), European Patent No. 104143, US Patent No. 339049, 410201, JP-A-2-150848, JP-A-2-296514), Sulfurium salt (JV Crivello et al, Polymer J. 17, 73 (1985), JV Crivello et al. J. Org. Chem., 43, 3055 (1978), WR Watt et a l, J. Polymer Sci., Polymer Chem. Ed., 22, 1789 (1984), JV Crivello et al, PolymerBul 1., 14, 279 (1985), JV Crivello et al, Macromorecules, 14 (5), 1141 (1981), JV Crivel. Lo et al, J. Polymer Sci., Polymer Chem. Ed., 17, 2877 (1979), European Patents 370693, 3902114, 233567, 29744 3, No. 297442, U.S. Pat.No. 4,933,377, No. 811, No. 410201, No. 33 9049, No. 4760013, No. 4734444, No. 2833827, German Patent Nos. 2904626, No. 3604580, No. Selenonium salt (JV Crivello et al, Macromorecules, 10 (6), 1307 (1977), JV Crivello et al, J. Polymer Sci., Polymer Chem. Ed., 17, 1047 (Specified in (1979)), and anoresonium salt (specified in CS Wen et al, Teh, Proc. Conf. Rad. Curing ASIA, p47 8 Tokyo, Oct (1988)). Examples of onion salt anti-anions include BF _, CF SO _, CF SO _, CF SO— and CH 2 SO—.
4 3 3 4 9 3 8 17 3 3 3 4 3 3 4 9 3 8 17 3 3 3
。また、光酸発生剤として例示した化合物についても熱酸発生剤として用いることが できる。これらの熱酸発生剤は、単独で用いられてもよぐ 2種以上が併用されてもよ い。  . The compounds exemplified as the photoacid generator can also be used as a thermal acid generator. These thermal acid generators may be used alone or in combination of two or more.
[0062] 上記熱酸発生剤の含有割合は、アルコキシシランの縮合物 (A) 100重量部に対し て、 0. 05〜50重量部の範囲が望ましい。熱酸発生剤が 0. 05重量部未満であると、 充分な酸が発生しないことがあり、 50重量部を超えると、膜形成用組成物を均一に 塗布することが困難となり、膜厚が不均一となることがある。 [0062] The content ratio of the thermal acid generator is based on 100 parts by weight of the alkoxysilane condensate (A). The range of 0.05 to 50 parts by weight is desirable. If the thermal acid generator is less than 0.05 parts by weight, sufficient acid may not be generated. If it exceeds 50 parts by weight, it becomes difficult to uniformly apply the film-forming composition, and the film thickness becomes large. May be non-uniform.
[0063] 膜形成用組成物を硬化させて硬化物膜を形成するに際しては、上述したパターン 膜の製造工程にお V、て、基板 2上に形成された膜形成用組成物層を露光せずに、 熱処理すればよい。 [0063] When the film-forming composition is cured to form a cured product film, the film-forming composition layer formed on the substrate 2 is exposed in the above-described pattern film manufacturing process. Without heat treatment.
[0064] すなわち、基板 2上に、本発明の膜形成用組成物からなる膜形成用組成物層を形 成した後、該膜形成用組成物層を熱処理し、酸発生剤(B)から発生した酸の作用に より、膜形成用組成物層を硬化させればよい。  [0064] That is, after a film-forming composition layer comprising the film-forming composition of the present invention is formed on the substrate 2, the film-forming composition layer is heat-treated to form an acid generator (B). The film-forming composition layer may be cured by the action of the generated acid.
[0065] (膜形成用組成物の用途)  [0065] (Use of film-forming composition)
膜形成用組成物を用いて形成された膜は、様々な用途に用いられる。ここで、「膜 形成用組成物を用いて形成された膜」とは、熱や光などの外的刺激を膜形成用組成 物に与えて架橋構造を導入して得られた膜であることを意味する。  The film | membrane formed using the composition for film | membrane formation is used for various uses. Here, the “film formed using the film-forming composition” is a film obtained by introducing an external stimulus such as heat or light to the film-forming composition and introducing a crosslinked structure. Means.
[0066] 本発明に係る膜形成用組成物は、様々な装置にお!/、て、ノ ターン膜などの膜を形 成するのに好適に用いられる力 S、電子機器の絶縁膜に上記膜形成用組成物が好適 に用いられる。電子機器の絶縁膜として、上記膜形成用組成物を用いて形成された 膜を用いることにより、絶縁膜の形状安定性を効果的に高めることができる。このよう な電子機器の絶縁膜の例としては、例えば、液晶表示素子において、薄膜トランジス タ (TFT)を保護するための TFT保護絶縁膜や、カラーフィルタにお!/、てフィルタを 保護する保護絶縁膜などが挙げられる。  [0066] The film-forming composition according to the present invention is used in various apparatuses! /, And the force S suitably used for forming a film such as a pattern film, and the above-mentioned film on an insulating film of an electronic device. A film forming composition is preferably used. By using a film formed using the film forming composition as an insulating film of an electronic device, the shape stability of the insulating film can be effectively increased. Examples of insulating films for such electronic devices include, for example, TFT protective insulating films for protecting thin film transistors (TFTs) in liquid crystal display elements, and protecting filters for color filters! For example, an insulating film is used.
[0067] また、本発明に係る膜形成用組成物は、半導体素子の層間絶縁膜、あるいはパッ シベーシヨン膜を構成するのにより好適に用いられる。  [0067] The film-forming composition according to the present invention is more preferably used to constitute an interlayer insulating film or a passivation film of a semiconductor element.
[0068] 図 3は、本発明に係る膜形成用組成物からなるパッシベーシヨン膜および層間絶縁 膜を備える半導体素子を模式的に示す正面断面図である。  FIG. 3 is a front sectional view schematically showing a semiconductor element including a passivation film and an interlayer insulating film made of the film forming composition according to the present invention.
[0069] 図 3に示す半導体素子 11では、基板 12の上表面の中央にゲート電極 13が設けら れている。ゲート電極 13を覆うように、基板 12の上表面にゲート絶縁膜 14が形成さ れている。ゲート絶縁膜 14上に、ソース電極 15とドレイン電極 16とが設けられている 。ソース電極 15の一部及びドレイン電極 16の一部を覆うように、ゲート絶縁膜 14上 に半導体層 17が形成されている。さらに、ソース電極 15及びドレイン電極 16の半導 体層 17により覆われて!/、な!/、部分と半導体層 17とを覆うように、パッシベーシヨン膜 18が形成されている。半導体素子 11では、上記ゲート絶縁膜 14及びパッシベーショ ン膜 18が、本発明に係る膜形成用組成物を用いて形成された膜である。 In the semiconductor element 11 shown in FIG. 3, a gate electrode 13 is provided at the center of the upper surface of the substrate 12. A gate insulating film 14 is formed on the upper surface of the substrate 12 so as to cover the gate electrode 13. A source electrode 15 and a drain electrode 16 are provided on the gate insulating film 14. On the gate insulating film 14 so as to cover part of the source electrode 15 and part of the drain electrode 16 A semiconductor layer 17 is formed. Further, a passivation film 18 is formed so as to be covered by the semiconductor layer 17 of the source electrode 15 and the drain electrode 16 and to cover the semiconductor layer 17 and the portion. In the semiconductor element 11, the gate insulating film 14 and the passivation film 18 are films formed using the film forming composition according to the present invention.
[0070] 本発明に係る膜形成用組成物は、例えば、有機 EL素子の TFT保護膜、 ICチップ の層間保護膜、センサの絶縁層などの様々な電子機器用絶縁保護膜としても用いら れ得る。 [0070] The film-forming composition according to the present invention is also used as an insulating protective film for various electronic devices such as a TFT protective film for organic EL elements, an interlayer protective film for IC chips, and an insulating layer for sensors. obtain.
[0071] 以下、本発明の実施例及び比較例を挙げることにより、本発明を明らかにする。な お、本発明は以下の実施例に限定されるものではな!/、。  Hereinafter, the present invention will be clarified by giving examples and comparative examples of the present invention. The present invention is not limited to the following examples! /.
[0072] 先ず、実施例;!〜 15及び比較例;!〜 13の感光性組成物を用意した。実施例;!〜 1[0072] First, photosensitive compositions of Examples;! To 15 and Comparative Examples;! To 13 were prepared. Example;! ~ 1
5及び比較例;!〜 13では、成分(X)としてフエニルトリエトキシシランを用い、成分 (Y5 and Comparative Examples;! To 13 use phenyltriethoxysilane as component (X) and
)としてメチルトリエトキシシランを用い、成分 (Z)としてトリエトキシシランを用いた。 ) Methyltriethoxysilane was used as the component (Z), and triethoxysilane was used as the component (Z).
[0073] (実施例 1) [0073] (Example 1)
フエニルトリエトキシシラン 50モル重量0 /0と、メチルトリエトキシシラン 50モル重量0 /0 とを配合したアルコキシシラン組成物を用意した。 And phenylalanine triethoxysilane 50 mol weight 0/0, were prepared alkoxysilane composition containing methyl triethoxysilane 50 mol weight 0/0.
[0074] しかる後、冷却管をつけた 100mlのフラスコに、得られたアルコキシシラン組成物 2Thereafter, the obtained alkoxysilane composition 2 was placed in a 100 ml flask equipped with a cooling tube.
6g、シユウ酸 0. 06g、水 6· 7g、及びジエチレングリコール 17gを加えた。半円形型 のメカニカルスターラーを用いて溶液を撹拌し、マントルヒーターで 30°C · 6時間反応 させた。その後、エバポレーターを用いて水との縮合反応で生成したエタノールと残 留水とを除去し、アルコキシシランの縮合物 (A1)を得た。 6 g, oxalic acid 0.06 g, water 6.7 g, and diethylene glycol 17 g were added. The solution was stirred using a semi-circular mechanical stirrer and reacted with a mantle heater at 30 ° C for 6 hours. Thereafter, ethanol and residual water produced by the condensation reaction with water were removed using an evaporator to obtain an alkoxysilane condensate (A1).
[0075] 上記アルコキシシランの縮合物 (A1) 100重量部と、光酸発生剤(B1)としての DT[0075] 100 parts by weight of the above-mentioned alkoxysilane condensate (A1) and DT as a photoacid generator (B1)
S 200 (ミドリ化学社製) 2重量部とを混合し、膜形成用組成物としての感光性組成 物を得た。 2 parts by weight of S 200 (Midori Chemical Co., Ltd.) was mixed to obtain a photosensitive composition as a film forming composition.
[0076] (実施例 2〜8) [0076] (Examples 2 to 8)
アルコキシシラン組成物を構成する各成分 (X)〜(Z)の配合割合を、下記表 4に示 す比率としたこと以外は実施例 1と同様にして、アルコキシシランの縮合物 (A2)、 (A 16)〜(A21)を得た。  The alkoxysilane condensate (A2), the same as in Example 1 except that the blending ratio of each component (X) to (Z) constituting the alkoxysilane composition was changed to the ratio shown in Table 4 below. (A 16) to (A21) were obtained.
このようにして得られた各アルコキシシランの縮合物(A2)、 (A16)〜(A21)を用 いたこと以外は実施例 1と同様にして、感光性組成物を得た。 The alkoxysilane condensates (A2) and (A16) to (A21) thus obtained are used. A photosensitive composition was obtained in the same manner as in Example 1 except that.
[0077] (実施例 9〜; 15) [0077] (Examples 9 to 15)
アルコキシシラン組成物を構成する各成分 (X)〜(Z)の配合割合を、下記表 4に示 す比率としたこと以外は実施例 1と同様にして、アルコキシシランの縮合物 (A27)〜( A33)を得た。  The alkoxysilane condensates (A27) to (A27) are the same as in Example 1 except that the proportions of the components (X) to (Z) constituting the alkoxysilane composition were changed to the ratios shown in Table 4 below. (A33) was obtained.
このようにして得られた各アルコキシシランの縮合物(A27)〜(A33)のを用いたこ と以外は実施例 1と同様にして、感光性組成物を得た。  A photosensitive composition was obtained in the same manner as in Example 1, except that each of the thus obtained alkoxysilane condensates (A27) to (A33) was used.
[0078] (比較例;!〜 13) [0078] (Comparative Example ;! to 13)
アルコキシシラン組成物を構成する各成分 (X)〜(Z)の配合割合を、下記表 4に示 す比率としたこと以外は実施例 1と同様にして、アルコキシシランの縮合物 (A3)〜( A15)を得た。  The alkoxysilane condensates (A3) to (A3) are the same as in Example 1 except that the proportions of the components (X) to (Z) constituting the alkoxysilane composition are set to the ratios shown in Table 4 below. (A15) was obtained.
このようにして得られたアルコキシシランの縮合物 (A3)〜(A15)を用いたこと以外 は実施例 1と同様にして、感光性組成物を得た。  A photosensitive composition was obtained in the same manner as in Example 1, except that the alkoxysilane condensates (A3) to (A15) thus obtained were used.
[0079] [表 4] [0079] [Table 4]
成分 (X) 成分 (Y) 成分 ) Ingredient (X) Ingredient (Y) Ingredient)
アルコキシシランの  Of alkoxysilane
フエニルトリエ卜キシシラン メチルトリエトキシシラン トリエトキシシラン 縮合物  Phenyltrioxysilane Methyltriethoxysilane Triethoxysilane Condensate
(モル重量%) (モル重量0/ 0) (モル重量%) 実施例 1 A1 50 50 ― (Mole weight%) (Mole weight 0/0 ) (Mole weight%) Example 1 A1 50 50 ―
実施例 2 A2 25 75 ―  Example 2 A2 25 75 ―
実施例 3 A16 10 90 ―  Example 3 A16 10 90 ―
実施例 4 A17 62.5 37.5 ―  Example 4 A17 62.5 37.5 ―
実施例 5 A18 37.5 50 12.5  Example 5 A18 37.5 50 12.5
実施例 6 A19 37.5 56.25 6.25  Example 6 A19 37.5 56.25 6.25
実施例 7 A20 50 43.75 6.25  Example 7 A20 50 43.75 6.25
実施例 8 A21 25 68.2 6.8  Example 8 A21 25 68.2 6.8
実施例 9 A27 5 95 ―  Example 9 A27 5 95 ―
実施例 10 A28 1 99 ―  Example 10 A28 1 99 ―
実施例 1 1 A29 12.5 75 12.5  Example 1 1 A29 12.5 75 12.5
実施例 12 A30 25 62.5 12.5  Example 12 A30 25 62.5 12.5
実施例 13 A31 20 80 ―  Example 13 A31 20 80 ―
実施例 14 A32 20 73.75 6.25  Example 14 A32 20 73.75 6.25
実施例 15 A33 20 67.5 12.5  Example 15 A33 20 67.5 12.5
比較例 1 A3 100 ― ―  Comparative Example 1 A3 100 ― ―
比較例 2 A4 75 25 ―  Comparative Example 2 A4 75 25 ―
比較例 3 A5 75 ― 25  Comparative Example 3 A5 75 ― 25
比較例 4 A6 50 25 25  Comparative Example 4 A6 50 25 25
比較例 5 A7 50 ― 50  Comparative Example 5 A7 50 ― 50
比較例 6 A8 25 50 25  Comparative Example 6 A8 25 50 25
比較例 7 A9 25 25 50  Comparative Example 7 A9 25 25 50
比較例 8 A10 25 ― 75  Comparative Example 8 A10 25 ― 75
比較例 9 A1 1 一 100 ―  Comparative Example 9 A1 1 1 100-
比較例 10 A12 ― 75 25  Comparative Example 10 A12 ― 75 25
比較例 1 1 A13 ― 50 50  Comparative Example 1 1 A13 ― 50 50
比較例 12 A14 ― 25 75  Comparative Example 12 A14 ― 25 75
比較例 13 A15 ― ― 100  Comparative Example 13 A15 ― ― 100
[0080] また、図 4に、実施例 1〜; 15及び比較例 1〜; 13で用いたアルコキシシランの縮合物 Further, FIG. 4 shows the alkoxysilane condensate used in Examples 1 to 15 and Comparative Examples 1 to 13.
(A1)〜(A21), (A27)〜(A33)を構成するのに使用したアルコキシシラン組成物 の各成分 (X)〜(Z)の配合割合をプロットした三成分図を示した。  A three-component diagram in which the blending ratio of each component (X) to (Z) of the alkoxysilane composition used to constitute (A1) to (A21) and (A27) to (A33) is shown.
[0081] (実施例;!〜 15及び比較例 1〜 13の感光性組成物の評価) 実施例 1〜; 15及び比較例 1〜; 13の各感光性組成物について、貯蔵安定性、現像 性及び絶縁性能を評価した。 [0081] (Evaluation of photosensitive compositions of Examples;! To 15 and Comparative Examples 1 to 13) The photosensitive compositions of Examples 1 to 15 and Comparative Examples 1 to 13 were evaluated for storage stability, developability, and insulation performance.
[0082] (1)貯蔵安定性の評価 [0082] (1) Evaluation of storage stability
先ず、調製した直後の各感光性組成物、すなわち合成した直後のアルコキシシラ ンの縮合物のポリスチレン換算における重量平均分子量を測定した。次に、各感光 性組成物を 20°Cで 7日間冷凍保存した後のアルコキシシランの縮合物のポリスチ レン換算における重量平均分子量を測定した。  First, the weight average molecular weight in terms of polystyrene of each photosensitive composition immediately after preparation, that is, the condensate of alkoxysilane immediately after synthesis was measured. Next, the weight average molecular weight in terms of polystyrene of the condensate of alkoxysilane after each photosensitive composition was stored frozen at 20 ° C. for 7 days was measured.
[0083] 7日後の重量平均分子量が、合成直後の重量平均分子量に比べて 1. 5倍以下で ある場合を「〇」、 1. 5倍を超え、かつ 2倍以下の場合を「△」、 2倍を超える場合を「 X」として、貯蔵安定性を評価した。また、 7日後にゲル化していた場合は「 X」として 、貯蔵安定性を評価した。 [0083] “◯” when the weight average molecular weight after 7 days is 1.5 times or less compared to the weight average molecular weight immediately after the synthesis, “△” when the weight average molecular weight is more than 5 times and less than 2 times. The storage stability was evaluated as “X” when the value exceeded 2 times. Further, when the gel was formed after 7 days, the storage stability was evaluated as “X”.
結果を下記表 5に示す。  The results are shown in Table 5 below.
[0084] [表 5] [0084] [Table 5]
アルコキシシランの 合成直後の 7日後の 7 days after the synthesis of alkoxysilane
Mw2/ w1 評価結果 縮合物 重量平均分子量 Mw1 重量平均分子量 Mw2  Mw2 / w1 Evaluation result Condensate Weight average molecular weight Mw1 Weight average molecular weight Mw2
実施例 1 A1 835 1 149 1.38 〇 実施例 2 A2 957 1799 1.88 Δ 実施例 3 A16 1090 2018 1.85 厶 実施例 4 A17 757 1021 1.35 〇 実施例 5 A18 1276 2449 1.92 △ 実施例 6 A19 987 1441 1.46 〇 実施例 7 A20 892 1266 1.42 〇 実施例 8 A21 1 103 2083 1.89 Δ 実施例 9 A27 1065 2004 1.88 △ 実施例 10 A28 1095 1978 1.81 Δ 実施例 1 1 A29 1324 2415 1.82 Δ 実施例 12 A30 1213 21 14 1.74 △ 実施例 13 A31 1010 1879 1.86 △ 実施例 14 A32 1 184 2190 1.85 △ 実施例 15 A33 1267 2243 1.77 △ 比較例 1 A3 617 829 1.34 〇 比較例 2 A4 723 918 1.27 〇 比較例 3 A5 883 1 148 1.30 〇 比較例 4 A6 1 1 16 1874 1.68 Δ 比較例 5 A7 1329 2213 1.67 Δ 比較例 6 A8 1717 3880 2.26 X 比較例 7 A9 2135 9394 4.40 X 比較例 8 A10 2695 ゲル化 ― X 比較例 9 A1 1 1217 5414 4.45 X 比較例 10 A12 1808 ゲル化 ― X 比較例 1 1 A13 2871 ゲル化 ― X 比較例 12 A14 4236 ゲル化 ― X 比較例 13 A15 7009 ゲル化 ― X  Example 1 A1 835 1 149 1.38 ○ Example 2 A2 957 1799 1.88 Δ Example 3 A16 1090 2018 1.85 実 施 Example 4 A17 757 1021 1.35 ○ Example 5 A18 1276 2449 1.92 △ Example 6 A19 987 1441 1.46 〇 Implementation Example 7 A20 892 1266 1.42 〇 Example 8 A21 1 103 2083 1.89 Δ Example 9 A27 1065 2004 1.88 △ Example 10 A28 1095 1978 1.81 Δ Example 1 1 A29 1324 2415 1.82 Δ Example 12 A30 1213 21 14 1.74 △ Example 13 A31 1010 1879 1.86 △ Example 14 A32 1 184 2190 1.85 △ Example 15 A33 1267 2243 1.77 △ Comparative example 1 A3 617 829 1.34 〇 Comparative example 2 A4 723 918 1.27 〇 Comparative example 3 A5 883 1 148 1.30 〇 Comparative Example 4 A6 1 1 16 1874 1.68 Δ Comparative Example 5 A7 1329 2213 1.67 Δ Comparative Example 6 A8 1717 3880 2.26 X Comparative Example 7 A9 2135 9394 4.40 X Comparative Example 8 A10 2695 Gelation ― X Comparative Example 9 A1 1 1217 5414 4.45 X Comparative Example 10 A12 1808 Gelation ― X Comparative Example 1 1 A13 2871 Gelation ― X Comparative Example 12 A14 4236 Gelation ― X Comparative Example 13 A15 7009 Gelation ― X
[0085] また、図 5に、図 4に示すアルコキシシラン組成物の各成分 (X) (Z)の配合割合 をプロットした三成分図において、貯蔵安定性の評価結果をプロットした図を示した。 図 5の破線 Qで囲まれた領域では、貯蔵安定性の評価結果が「〇」又は「△」であつFIG. 5 shows a plot of the storage stability evaluation results in a three-component diagram in which the blending ratio of each component (X) (Z) of the alkoxysilane composition shown in FIG. 4 is plotted. . In the area surrounded by the broken line Q in Fig. 5, the storage stability evaluation result is “◯” or “△”.
7 ϋ 7 ϋ
[0086] (2)現像性の評価  [0086] (2) Evaluation of developability
シリコンウェハー基板を用い、この基板上に各感光性組成物を回転数 1250rpm Using a silicon wafer substrate, each photosensitive composition is rotated on this substrate at a rotational speed of 1250 rpm.
20秒でスピン塗工した。塗工後、 100°Cのホットプレートで 2分間乾燥させ、塗膜を形 成した。 Spin coated in 20 seconds. After coating, dry on a 100 ° C hot plate for 2 minutes to form a coating film Made.
[0087] 次に、所定のパターンを有するフォトマスクを介して、紫外線照射装置を用い、塗膜 に 365nmの波長の紫外線を、照射エネルギーが 500mj/cm2となるように lOOmW /cm2の紫外線照度で 0. 5秒間照射した。紫外線を照射した後、塗膜を 100°Cのホ ットプレートで 2分間加熱した。しかる後、テトラメチルアンモニゥムヒドロキシドの 2. 3 8 %水溶液に、塗膜を浸漬して現像した。 [0087] Next, through a photomask having a predetermined pattern, using an ultraviolet irradiation apparatus, the ultraviolet 365nm wavelength to coating, ultraviolet lOOmW / cm 2 so that irradiation energy is 500 mj / cm 2 Irradiated at illuminance for 0.5 seconds. After irradiating with ultraviolet rays, the coating film was heated on a hot plate at 100 ° C for 2 minutes. Thereafter, the coating film was immersed in a 2.38% aqueous solution of tetramethylammonium hydroxide and developed.
[0088] 現像時における未露光部の感光性組成物の溶解の有無と、そのパターンユングの 解像度とを観察した。未露光部が溶解し、かつパターンユングの解像度が 15 πι以 下の場合を「〇」、未露光部が溶解し、かつパターンユングの解像度が 15 mを超え る場合を「△」、未露光部が溶解せず残渣が生じた場合を「 X」として、現像性を評価 した。  [0088] The presence or absence of dissolution of the photosensitive composition in the unexposed area during development and the resolution of the pattern Jung were observed. “◯” if the unexposed area is dissolved and the resolution of the pattern Jung is 15 πι or less, “△” if the unexposed area is dissolved and the resolution of the pattern Jung exceeds 15 m, “Unexposed” The developability was evaluated as “X” when the residue did not dissolve and a residue was formed.
結果を下記表 6に示す。  The results are shown in Table 6 below.
[0089] [表 6] [0089] [Table 6]
アルコキシシランの 解像度 Resolution of alkoxysilane
溶解の有無 評価結果  Evaluation result of dissolution
縮合物 ( jU m)  Condensate (jU m)
実施例 1 A1 溶解 10 〇  Example 1 A1 dissolution 10 〇
実施例 2 A2 溶解 8 〇  Example 2 A2 dissolution 8 〇
実施例 3 A16 溶解 6 〇  Example 3 A16 dissolution 6 〇
実施例 4 A17 溶解 10 〇  Example 4 A17 Dissolution 10 〇
実施例 5 A18 溶解 8 〇  Example 5 A18 dissolution 8 〇
実施例 6 A19 溶解 8 〇  Example 6 A19 dissolution 8 〇
実施例 7 A20 溶解 9 〇  Example 7 A20 dissolution 9
実施例 8 A21 溶解 a 〇  Example 8 A21 Dissolution a ○
実施例 9 A27 溶解 7 〇  Example 9 A27 dissolution 7
実施例 10 A28 溶解 6 〇  Example 10 A28 dissolution 6 〇
実施例 1 1 A29 溶解 7 〇  Example 1 1 A29 dissolution 7
実施例 12 A30 溶解 8 〇  Example 12 A30 dissolution 8 〇
実施例 13 A31 溶解 7 〇  Example 13 A31 dissolution 7
実施例 14 A32 溶解 7 〇  Example 14 A32 dissolution 7
実施例 15 A33 溶解 7 〇  Example 15 A33 dissolution 7
比較例 1 A3 溶解 15 〇  Comparative Example 1 A3 dissolution 15 〇
比較例 2 A4 溶解 15 〇  Comparative Example 2 A4 dissolution 15 〇
比較例 3 A5 溶解 10 〇  Comparative Example 3 A5 Dissolution 10 〇
比較例 4 A6 溶解 10 〇  Comparative Example 4 A6 Dissolution 10 〇
比較例 5 A7 溶解 9 O  Comparative Example 5 A7 Dissolved 9 O
比較例 6 A8 溶解 8 〇  Comparative Example 6 A8 Dissolution 8 〇
比較例 7 A9 溶解 7 〇  Comparative Example 7 A9 Dissolution 7 〇
比較例 8 A10 溶解 6 〇  Comparative Example 8 A10 Dissolution 6 〇
比較例 9 A1 1 残渣発生 7 X  Comparative Example 9 A1 1 Residue generation 7 X
比較例 10 A12 溶解 7 O  Comparative Example 10 A12 Dissolved 7 O
比較例 1 1 A13 溶解 7 〇  Comparative Example 1 1 A13 Dissolution 7 〇
比較例 12 A14 溶解 6 〇  Comparative Example 12 A14 Dissolution 6 〇
比較例 13 A15 溶解 5 o  Comparative Example 13 A15 Dissolution 5 o
[0090] また、図 6に、図 4に示すアルコキシシラン組成物の各成分(X)〜(Z)の配合割合 をプロットした三成分図において、現像性の評価結果をプロットした図を示した。図 6 の破線 Rで囲まれた領域では、現像性の評価結果が「〇」又は「△」であった。 [0090] FIG. 6 shows a plot of evaluation results of developability in a three-component diagram in which the blending ratio of each component (X) to (Z) of the alkoxysilane composition shown in FIG. 4 is plotted. . In the area surrounded by the broken line R in FIG. 6, the evaluation result of developability was “◯” or “△”.
[0091] (3)絶縁性能の評価  [0091] (3) Evaluation of insulation performance
表層にアルミニウムが蒸着されたガラス基板を用レ、、このガラス基板上に各感光性 組成物を回転数 1250rpm、 20秒でスピン塗工した。塗工後、 100°Cのホットプレー トで 2分間乾燥させ、塗膜を形成した。 Use a glass substrate with aluminum deposited on the surface, and each photosensitive material on this glass substrate The composition was spin-coated at a rotation speed of 1250 rpm for 20 seconds. After coating, the film was dried for 2 minutes on a 100 ° C hot plate to form a coating film.
[0092] 次に、紫外線照射装置を用い、塗膜に 365nmの波長の紫外線を、照射エネルギ 一が 500mj/cm2となるように 100mW/cm2の紫外線照度で 0. 5秒間照射した。 紫外線を照射した後、 100°Cのホットプレートで 2分間加熱し、さらに、 200°Cのホット プレートで 60分間加熱した。その後、再び塗膜上にアルミニウムを蒸着した。 Next, using an ultraviolet irradiation device, the coating film was irradiated with ultraviolet rays having a wavelength of 365 nm at an ultraviolet illuminance of 100 mW / cm 2 for 0.5 seconds so that the irradiation energy was 500 mj / cm 2 . After irradiating with ultraviolet rays, it was heated on a hot plate at 100 ° C for 2 minutes, and further heated on a hot plate at 200 ° C for 60 minutes. Then, aluminum was vapor-deposited on the coating film again.
[0093] 硬化した感光性組成物層において、蒸着したアルミニウム間に 3MV/cmの電圧 を印加したときのリーク電流を測定した。リーク電流が 10 X 10_7A/cm2以下の場合 を「◎」、 10 X 10— 7A/cm2以下を超え、かつ 15 X 10— 7A/cm2以下の場合を「〇」 、 15 X 10— 7A/cm2を超え、力、つ 25 X 10— 7A/cm2以下の場合を「△」、 25 X 10— 7 A/cm2を超える場合を「 X」として、絶縁性能を評価した。 [0093] In the cured photosensitive composition layer, a leakage current was measured when a voltage of 3 MV / cm was applied between the deposited aluminum. Where the leakage current is 10 X 10_ 7 A / cm 2 or less "◎" greater than 10 X 10- 7 A / cm 2 or less, and 15 X 10- 7 A / cm 2 or less in the case The symbol "", exceed 15 X 10- 7 a / cm 2 , the force, one 25 X 10- 7 a / cm 2 or less in the case as "△", "X" and if it exceeds 25 X 10- 7 a / cm 2, The insulation performance was evaluated.
結果を下記表 7に示す。  The results are shown in Table 7 below.
[0094] [表 7] [0094] [Table 7]
アルコキシシランの リ-ク電流 Leak current of alkoxysilane
評価結果  Evaluation results
縮合物 A/cm2 Condensate A / cm 2
実施例 1 A1 24X10"7 Δ Example 1 A1 24X10 " 7 Δ
実施例 2 A2 14 X 10一7Example 2 A2 14 X 10 1 7
実施例 3 A16 6.2X10— 7Example 3 A16 6.2X10-7 7
実施例 4 A17 25X 10"7 Δ Example 4 A17 25X 10 " 7 Δ
実施例 5 A18 20X 10"7 Δ Example 5 A18 20X 10 " 7 Δ
実施例 6 A19 18 10"7 Δ Example 6 A19 18 10 " 7 Δ
実施例 7 A20 25X 10 Δ  Example 7 A20 25X 10 Δ
実施例 8 A21 14X 10一7Example 8 A21 14X 10 1 7
実施例 9 A27 4 X 10-7Example 9 A27 4 X 10 -7
実施例 10 A28 3X 10—7Example 10 A28 3X 10- 7
実施例 11 A29 6 10"7Example 11 A29 6 10 " 7
実施例 12 A30 14x 10"7Example 12 A30 14x 10 " 7
実施例 13 A31 9X 10—7Example 13 A31 9X 10- 7
実施例 14 A32 8X 10— 7Example 14 A32 8X 10— 7
実施例 15 A33 9X 10—7Example 15 A33 9X 10- 7
比較例 1 A3 715X 10 X  Comparative Example 1 A3 715X 10 X
比較例 2 A4 91 X 10— 7 X Comparative Example 2 A4 91 X 10— 7 X
比較例 3 A5 127x10 X  Comparative Example 3 A5 127x10 X
比較例 4 A6 29X 10"7 X Comparative Example 4 A6 29X 10 " 7 X
比較例 5 A7 34X 10—7 X Comparative Example 5 A7 34X 10— 7 X
比較例 6 A8 17X 10"7Comparative Example 6 A8 17X 10 " 7
比較例 7 A9 17 X 10— 7 Δ Comparative Example 7 A9 17 X 10— 7 Δ
比較例 8 A10 19 10"7 Δ Comparative Example 8 A10 19 10 " 7 Δ
比較例 9 A11 2X10"7Comparative Example 9 A11 2X10 " 7
比較例 10 A12 2X 10—7Comparative Example 10 A12 2X 10— 7
比較例 11 A13 3X10—7Comparative Example 11 A13 3X10— 7
比較例 12 A14 3X10—7Comparative Example 12 A14 3X10-7 7
比較例 13 A15 3X10—7Comparative Example 13 A15 3X10-7 7
[0095] また、図 7に、図 4に示すアルコキシシラン組成物の各成分 (X)〜(Z)の配合割合 をプロットした三成分図において、絶縁性能の評価結果をプロットした図を示した。図 7の破線 Sで囲まれた領域では、絶縁性能の評価結果が「◎」、「〇」又は「△」であつ た。  [0095] FIG. 7 shows a diagram in which the evaluation results of the insulating performance are plotted in the three-component diagram in which the blending ratios of the components (X) to (Z) of the alkoxysilane composition shown in FIG. 4 are plotted. . In the region surrounded by the broken line S in Fig. 7, the evaluation result of the insulation performance was “◎”, “◯”, or “△”.
[0096] 図 5〜図 7に示すように、貯蔵安定性、現像性及び絶縁性能の評価結果が 、ずれ も「◎」、「〇」又は「△」であった領域は、図 1に示す実線 P1で囲まれた領域であった[0096] As shown in FIG. 5 to FIG. 7, the evaluation results of storage stability, developability, and insulation performance differed. The area that was also “◎”, “◯”, or “△” was the area surrounded by the solid line P1 shown in FIG.
。また、貯蔵安定性及び現像性の評価結果がいずれも「〇」又は「△」であり、かつ絶 縁性能の評価結果が「◎」又は「〇」であった領域は、図 8に示す実線 P2で囲まれた 領域であった。さらに、貯蔵安定性及び現像性の評価結果がいずれも「〇」又は「△」 であり、かつ絶縁性能の評価結果が「◎」であった領域は、図 9に示す実線 P3で囲ま れた領域であった。 . The areas where the storage stability and developability evaluation results were both “◯” or “△” and the insulation performance evaluation results were “◎” or “◯” are the solid lines shown in FIG. It was an area surrounded by P2. Furthermore, the regions where the storage stability and developability evaluation results were both “◯” or “△” and the insulation performance evaluation results were “◎” are surrounded by the solid line P3 shown in FIG. It was an area.
[0097] (実施例 16) [0097] (Example 16)
光酸発生剤(B1)としての DTS— 200 (ミドリ化学社製) 2重量部に代えて、光酸発 生剤(B2)としての NAI— 105 (ミドリ化学社製) 0. 5重量部を用いたこと以外は実施 例 6と同様にして、感光性組成物を得た。  Instead of 2 parts by weight of DTS-200 (made by Midori Chemical) as photoacid generator (B1), 0.5 part by weight of NAI-105 (made by Midori Chemical) as photoacid generator (B2) A photosensitive composition was obtained in the same manner as in Example 6 except that it was used.
[0098] (実施例 16の感光性組成物の評価) [0098] (Evaluation of photosensitive composition of Example 16)
実施例 16の感光性組成物につ!/、て、上記実施例 1〜 15及び比較例 1〜; 13と同様 にして、(1)貯蔵安定性、(2)現像性及び (3)絶縁性能を評価した。  In the same manner as in Examples 1 to 15 and Comparative Examples 1 to 13 above: (1) Storage stability, (2) Developability and (3) Insulation Performance was evaluated.
結果を下記表 8に示す。  The results are shown in Table 8 below.
[0099] [表 8] [0099] [Table 8]
Figure imgf000028_0001
Figure imgf000028_0001
[0100] (実施例 17〜21)  [0100] (Examples 17 to 21)
実施例 17〜21では、成分 (X)としてフエニルトリメトキシシランを用い、成分 (Y)とし  In Examples 17 to 21, phenyltrimethoxysilane was used as component (X) and component (Y) was used.
[0101] アルコキシシラン組成物を構成する各成分 (X)〜(Z)の配合割合を、下記表 9に示 す比率としたこと以外は実施例 1と同様にして、アルコキシシランの縮合物 (A22)〜( A26)を得た。 このようにして得られたアルコキシシランの縮合物(A22)〜(A26)を用いたこと以 外は実施例 1と同様にして、感光性組成物を得た。 [0101] An alkoxysilane condensate (Example 1) except that the proportions of components (X) to (Z) constituting the alkoxysilane composition were changed to the ratios shown in Table 9 below. A22) to (A26) were obtained. A photosensitive composition was obtained in the same manner as in Example 1, except that the alkoxysilane condensates (A22) to (A26) thus obtained were used.
[0102] [表 9] [0102] [Table 9]
Figure imgf000029_0001
Figure imgf000029_0001
[0103] (実施例 17〜21の感光性組成物の評価)  (Evaluation of photosensitive compositions of Examples 17 to 21)
実施例 17〜21の各感光性組成物につ V、て、上記実施例 1〜 15及び比較例 1〜 1 3と同様にして、(1)貯蔵安定性、(2)現像性及び (3)絶縁性能を評価した。  For each photosensitive composition of Examples 17 to 21, V, and in the same manner as in Examples 1 to 15 and Comparative Examples 1 to 13 above, (1) storage stability, (2) developability and (3 ) The insulation performance was evaluated.
結果を下記表 10に示す。  The results are shown in Table 10 below.
[0104] [表 10] [0104] [Table 10]
アルコキシシラン 合成直後の 7日後の Alkoxysilane 7 days after synthesis
Mw2/Mw1  Mw2 / Mw1
の縮合物 評価結果 重量平均分子量 Mw1 重量平均分子量 Mw2  Evaluation result Weight average molecular weight Mw1 Weight average molecular weight Mw2
 Saving
実施例 17 A22  Example 17 A22
蔵 1371 2632 1.92 厶 安 実施例 18 A23 890 1267 1.42 o 定  Storage 1371 2632 1.92 厶 Safety Example 18 A23 890 1267 1.42 o Fixed
実施例 19 A24 1460 2840 1.95 厶 性  Example 19 A24 1460 2840 1.95
実施例 20 A25 953 1444 1.52 厶 実施例 21 A26 1 132 2241 1.98 Δ  Example 20 A25 953 1444 1.52 実 施 Example 21 A26 1 132 2241 1.98 Δ
アルコキシシラン 解像度  Alkoxysilane resolution
溶解の有無 評価結果  Evaluation result of dissolution
の縮合物 ( m)  Condensate of (m)
実施例 17 A22 7  Example 17 A22 7
現 溶解 〇  Current dissolution 〇
像 実施例 18 A23 溶解 10 〇  Image Example 18 A23 Dissolution 10 〇
 Sex
実施例 19 A24 溶解 8 〇  Example 19 A24 dissolution 8 〇
実施例 20 A25 溶解 8 〇  Example 20 A25 dissolution 8 〇
実施例 21 A26 溶解 8 〇  Example 21 A26 dissolution 8 〇
アルコキシシラン リ-ク電流  Alkoxysilane leak current
評価結果  Evaluation results
の縮合物 A/cm2 Condensate of A / cm 2
絶 実施例 17 A22 4.5 X 10"7 Example 17 A22 4.5 X 10 " 7
縁 ◎  Edge ◎
実施例 18 A23  Example 18 A23
性 20 X 10— 7 Δ 20 X 10— 7 Δ
能 実施例 19 A24 18 X 10"7 Δ Example 19 A24 18 X 10 " 7 Δ
実施例 20 A25 21 X 10"7Example 20 A25 21 X 10 " 7
実施例 21 A26 1 1 X 10— 7Example 21 A26 1 1 X 10— 7
[0105] (実施例 22) [Example 22]
実施例 1で得られたアルコキシシランの縮合物(A1) 100重量部と、熱酸発生剤(B 3)としての PAI— 101 (ミドリ化学社製) 1重量部とを混合し、膜形成用組成物を得た 100 parts by weight of the alkoxysilane condensate (A1) obtained in Example 1 and 1 part by weight of PAI-101 (Midori Chemical Co., Ltd.) as a thermal acid generator (B 3) are mixed to form a film. Got the composition
Yes
[0106] (実施例 23〜36及び比較例 14〜26)  (Examples 23 to 36 and Comparative Examples 14 to 26)
実施例 1で得られたアルコキシシランの縮合物 (A1) 100重量部の代わりに、下記 表 11に示す実施例 2〜; 15及び比較例 1〜; 13で得られたアルコキシシランの縮合物( A2)〜(A21) , (A27)〜(A33)の!/、ずれか 100重量部を用いたこと以外は実施例 22と同様にして、膜形成用組成物を得た。  Condensate of alkoxysilane obtained in Example 1 (A1) Instead of 100 parts by weight, the condensate of alkoxysilane obtained in Examples 2 to 15 and Comparative Examples 1 to 13 shown in Table 11 below ( A film-forming composition was obtained in the same manner as in Example 22 except that 100 parts by weight of A2) to (A21) and (A27) to (A33) were used.
[0107] (実施例 22〜 36及び比較例 14〜 26の膜形成用組成物の評価) (Evaluation of film-forming compositions of Examples 22 to 36 and Comparative Examples 14 to 26)
表層にアルミニウムが蒸着されたガラス基板を用い、このガラス基板上に各膜形成 用組成物を回転数 1250rpm、 20秒でスピン塗工した。塗工後、 100°Cのホットプレ ートで 2分間乾燥させ、塗膜を形成した。 [0108] 次に、 200°Cのホットプレートで 60分間加熱し、膜形成用組成物を硬化させた。そ の後、再び塗膜上にアルミユウムを蒸着した。 A glass substrate with aluminum deposited on the surface layer was used, and each film-forming composition was spin-coated on the glass substrate at a rotational speed of 1250 rpm for 20 seconds. After coating, the film was dried for 2 minutes on a hot plate at 100 ° C to form a coating film. [0108] Next, the film-forming composition was cured by heating on a 200 ° C hot plate for 60 minutes. Thereafter, aluminum was deposited again on the coating film.
[0109] 硬化した膜形成用組成物層において、蒸着したアルミニウム間に 3MV/cmの電 圧を印加したときのリーク電流を測定し、上記実施例 1〜 15及び比較例;!〜 13と同 様にして、(3)絶縁性能を評価した。 [0109] In the cured film-forming composition layer, the leakage current was measured when a voltage of 3 MV / cm was applied between the deposited aluminum, and the same as in Examples 1 to 15 and Comparative Examples;! In this way, (3) insulation performance was evaluated.
結果を下記の表 11に示す。  The results are shown in Table 11 below.
[0110] [表 11] [0110] [Table 11]
アルコキシシラン リ-ク電流 Alkoxysilane leak current
評価結果 縮合物 A/cm2 Evaluation result Condensate A / cm 2
実施例 22 Α1 22X10—7 Δ 実施例 23 Α2 14X10"7 〇 実施例 24 Α16 7X10"7 ◎ 実施例 25 Α17 22 X 10— 7 Δ 実施例 26 Α18 18 10"7 △ 実施例 27 Α19 16 10"7 Δ 実施例 28 Α20 25X10 Δ 実施例 29 Α21 13X10 〇 実施例 30 Α27 4 10 O"7 ◎ 実施例 31 Α28 3X10—7 ◎ 実施例 32 Α29 5X10"7 ◎ 実施例 33 Α30 14X 10—7 O 実施例 34 Α31 9X 10— 7 ◎ 実施例 35 Α32 9x 10"7 ◎ 実施例 36 Α33 8x10 ◎ 比較例 14 A3 826 X10"7 X 比較例 15 Α4 90x10 X 比較例 16 Α5 135x10 X 比較例 17 Α6 33x 10"7 X 比較例 18 Α7 37X 10"7 X 比較例 19 Α8 16X 10 Δ 比較例 20 Α9 17 X 10— 7 Δ 比較例 21 Α10 18X10 厶 比較例 22 Α11 ◎ 比較例 23 Α12 2X 10—7 ◎ 比較例 24 Α13 3X10 ◎ 比較例 25 Α14 3 10"7 ◎ 比較例 26 Α15 ◎ Example 22 Α1 22X10- 7 Δ Example 23 Α2 14X10 "7 〇 Example 24 Α16 7X10" 7 ◎ Example 25 Α17 22 X 10- 7 Δ Example 26 Α18 18 10 "7 △ Example 27 Α19 16 10" 7 delta example 28 .alpha.20 25 × 10 delta example 29 Α21 13X10 〇 example 30 Α27 4 10 O "7 ◎ example 31 Α28 3X10- 7 ◎ example 32 Α29 5X10" 7 ◎ example 33 Α30 14X 10- 7 O performed example 34 Α31 9X 10- 7 ◎ example 35 Α32 9x 10 "7 ◎ example 36 Α33 8x10 ◎ Comparative example 14 A3 826 X10" 7 X Comparative example 15 Α4 90x10 X Comparative example 16 Α5 135x10 X Comparative example 17 alpha6 33x 10 "7 X Comparative example 18 Α7 37X 10" 7 X Comparative example 19 Α8 16X 10 Δ Comparative example 20 Α9 17 X 10- 7 Δ Comparative example 21 alpha10 18 × 10厶Comparative example 22 alpha 11 ◎ Comparative example 23 Α12 2X 10- 7 ◎ comparison Example 24 Α13 3X10 ◎ Comparative example 25 Α14 3 10 " 7 ◎ Comparative example 26 Α15 ◎

Claims

請求の範囲 The scope of the claims
[1] フエニルトリエトキシシラン及び/又はフエニルトリメトキシシランからなる成分 (X)と 、メチルトリエトキシシラン及び/又はメチルトリメトキシシランからなる成分 (Y)と、トリ エトキシシラン及び/又はトリメトキシシランからなる成分(Z)とを、図 1の三成分図に おいて座標 A17, A28, A29及び A18を結んだ実線 P1で囲まれた領域内の比率 で反応させて得られたアルコキシシランの縮合物 (A)、及び外的刺激により酸を発生 する酸発生剤 (B)を含有することを特徴とする、膜形成用組成物。  [1] Component (X) composed of phenyltriethoxysilane and / or phenyltrimethoxysilane, Component (Y) composed of methyltriethoxysilane and / or methyltrimethoxysilane, triethoxysilane and / or triethoxysilane Alkoxysilane obtained by reacting methoxysilane component (Z) with the ratio in the area surrounded by solid line P1 connecting coordinates A17, A28, A29 and A18 in the ternary diagram of Fig. 1. A film-forming composition comprising: a condensate (A); and an acid generator (B) that generates an acid by external stimulation.
[2] 前記アルコキシシランの縮合物 (A)が、前記成分 (X)と、前記成分 (Y)と、前記成 分(Z)とを、図 8の三成分図において座標 A2, A28, A29及び A30を結んだ実線 P 2で囲まれた領域内の比率で反応させて得られたアルコキシシランの縮合物である、 請求項 1に記載の膜形成用組成物。  [2] The alkoxysilane condensate (A) comprises the component (X), the component (Y), and the component (Z) as coordinates A2, A28, A29 in the ternary diagram of FIG. 2. The film-forming composition according to claim 1, wherein the composition is an alkoxysilane condensate obtained by reacting at a ratio in a region surrounded by a solid line P 2 connecting A30 and A30.
[3] 前記アルコキシシランの縮合物 (A)が、前記成分 (X)と、前記成分 (Y)と、前記成 分(Z)とを、図 9の三成分図において座標 A31 , A28, A29及び A33を結んだ実線 P3で囲まれた領域内の比率で反応させて得られたアルコキシシランの縮合物である 、請求項 1に記載の膜形成用組成物。  [3] The condensate (A) of the alkoxysilane comprises the component (X), the component (Y), and the component (Z) as coordinates A31, A28, A29 in the ternary diagram of FIG. 2. The film-forming composition according to claim 1, which is a condensate of alkoxysilane obtained by reacting at a ratio in a region surrounded by a solid line P3 connecting A33 and A33.
[4] 請求項 1〜3のいずれ力、 1項に記載の膜形成用組成物を用いたパターン膜の製造 方法であって、  [4] A method for producing a patterned film using the force according to any one of claims 1 to 3, and the film forming composition according to claim 1,
前記膜形成用組成物が、露光されると酸を発生する光酸発生剤を前記酸発生剤( B)として含有する感光性組成物であり、  The film-forming composition is a photosensitive composition containing, as the acid generator (B), a photoacid generator that generates an acid when exposed.
基板上に、前記感光性組成物からなる感光性組成物層を形成する工程と、 形成するパターンに応じて前記感光性組成物層を選択的に露光し、前記光酸発生 剤から発生した酸の作用により、露光部の前記感光性組成物層を硬化し、露光部の 前記感光性組成物層を現像液に不溶にする工程と、  A step of forming a photosensitive composition layer comprising the photosensitive composition on a substrate, and selectively exposing the photosensitive composition layer according to a pattern to be formed, thereby generating an acid generated from the photoacid generator. By the action of curing the photosensitive composition layer of the exposed portion, making the photosensitive composition layer of the exposed portion insoluble in a developer,
露光部の前記感光性組成物層を現像液に不溶にした後、前記感光性組成物層を 現像液で現像し、未露光部の前記感光性組成物層を除去する工程とを備えることを 特徴とする、パターン膜の製造方法。  A step of making the photosensitive composition layer in an exposed area insoluble in a developer, developing the photosensitive composition layer with a developer, and removing the photosensitive composition layer in an unexposed area. A method for producing a patterned film, which is characterized.
[5] 請求項;!〜 3のいずれか 1項に記載の膜形成用組成物を用いて形成された電子機 器用絶縁膜。 [5] An insulating film for an electronic device formed by using the film-forming composition according to any one of claims;! To 3.
PCT/JP2007/069795 2006-10-12 2007-10-11 Composition for formation of film, method for production of patterned film, and insulation film for electronic device WO2008047654A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008539762A JPWO2008047654A1 (en) 2006-10-12 2007-10-11 Film forming composition, pattern film manufacturing method using the same, and electronic device insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006278912 2006-10-12
JP2006-278912 2006-10-12

Publications (1)

Publication Number Publication Date
WO2008047654A1 true WO2008047654A1 (en) 2008-04-24

Family

ID=39313892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069795 WO2008047654A1 (en) 2006-10-12 2007-10-11 Composition for formation of film, method for production of patterned film, and insulation film for electronic device

Country Status (3)

Country Link
JP (1) JPWO2008047654A1 (en)
TW (1) TW200830052A (en)
WO (1) WO2008047654A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010008603A (en) * 2008-06-25 2010-01-14 Jsr Corp Radiation sensitive resin composition for forming wiring partition, wiring partition, and its forming method
JP2011515514A (en) * 2008-03-04 2011-05-19 ダウ・コーニング・コーポレイション Silsesquioxane resin
WO2012157543A1 (en) * 2011-05-13 2012-11-22 セントラル硝子株式会社 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition
US20140114002A1 (en) * 2010-12-01 2014-04-24 Xerox Corporation Dielectric composition for thin-film transistors
KR20140091694A (en) 2011-10-12 2014-07-22 샌트랄 글래스 컴퍼니 리미티드 Silane composition and cured film thereof, and method for forming negative resist pattern using same
JP2017137365A (en) * 2016-02-01 2017-08-10 信越化学工業株式会社 Method for producing spherical polymethylphenylsilsesquioxane particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148895A (en) * 1992-11-06 1994-05-27 Toray Ind Inc Photosensitive resin composition and pattern forming method using that
JPH10246960A (en) * 1997-03-05 1998-09-14 Toray Ind Inc Photosensitive resin composition, and pattern forming method using it
WO2000078769A1 (en) * 1999-06-18 2000-12-28 Nihon Yamamura Glass Co., Ltd. Process for producing silicone oligomer solution and organopolysiloxane film formed from the solution
JP2002363493A (en) * 2001-06-11 2002-12-18 Mitsubishi Rayon Co Ltd Coating composition and resin molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148895A (en) * 1992-11-06 1994-05-27 Toray Ind Inc Photosensitive resin composition and pattern forming method using that
JPH10246960A (en) * 1997-03-05 1998-09-14 Toray Ind Inc Photosensitive resin composition, and pattern forming method using it
WO2000078769A1 (en) * 1999-06-18 2000-12-28 Nihon Yamamura Glass Co., Ltd. Process for producing silicone oligomer solution and organopolysiloxane film formed from the solution
JP2002363493A (en) * 2001-06-11 2002-12-18 Mitsubishi Rayon Co Ltd Coating composition and resin molded article

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011515514A (en) * 2008-03-04 2011-05-19 ダウ・コーニング・コーポレイション Silsesquioxane resin
JP2010008603A (en) * 2008-06-25 2010-01-14 Jsr Corp Radiation sensitive resin composition for forming wiring partition, wiring partition, and its forming method
US20140114002A1 (en) * 2010-12-01 2014-04-24 Xerox Corporation Dielectric composition for thin-film transistors
US9058981B2 (en) * 2010-12-01 2015-06-16 Xerox Corporation Dielectric composition for thin-film transistors
WO2012157543A1 (en) * 2011-05-13 2012-11-22 セントラル硝子株式会社 Condensation product, photosensitive composition, method for producing photosensitive composition, and method for forming negative resist pattern using photosensitive composition
KR20140091694A (en) 2011-10-12 2014-07-22 샌트랄 글래스 컴퍼니 리미티드 Silane composition and cured film thereof, and method for forming negative resist pattern using same
US9411231B2 (en) 2011-10-12 2016-08-09 Central Glass Company, Limited Silane composition and cured film thereof, and method for forming negative resist pattern using same
US9638998B2 (en) 2011-10-12 2017-05-02 Central Glass Company, Limited Silane composition and cured film thereof, and method for forming negative resist pattern using same
JP2017137365A (en) * 2016-02-01 2017-08-10 信越化学工業株式会社 Method for producing spherical polymethylphenylsilsesquioxane particles
WO2017135045A1 (en) * 2016-02-01 2017-08-10 信越化学工業株式会社 Method for producing spherical polymethylphenylsilsesquioxane particles

Also Published As

Publication number Publication date
JPWO2008047654A1 (en) 2010-02-25
TW200830052A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5632387B2 (en) Wet-etchable anti-reflection coating
JP2007334036A (en) Photosensitive resin composition, method for producing thin film pattern using the same, protective film for electronic device, transistor, color filter, organic el device, gate insulating film and thin film transistor
JP4687250B2 (en) Photosensitive resin composition
JP2017197757A (en) Siloxane polymer composition and method for using the same
JP2009263522A (en) Polyorganosiloxane compound, resin composition comprising the same, and patterning process of these
WO2008047654A1 (en) Composition for formation of film, method for production of patterned film, and insulation film for electronic device
JP2008019285A (en) Method for producing metal-containing polymer, metal-containing polymer, photosensitive resin composition and semiconductor element
JP2007043055A (en) Thin film transistor and gate insulating film
JPH10246960A (en) Photosensitive resin composition, and pattern forming method using it
JP2007248885A (en) Silicon-containing photosensitive composition, method for producing thin-film pattern using the same, protective film for electronic device, transistor, color filter, organic el element, gate insulating film and thin-film transistor
TWI534548B (en) Photosensitive resin composition and cured product of the same
JP2008003250A (en) Positive photosensitive resin composition, method for producing thin film pattern, and semiconductor device
JP2007256782A (en) Silicon-containing photosensitive composition, method for producing thin film pattern using same, protective film for electronic device, transistor, color filter, organic el device, gate insulating film and thin film transistor
JP2010039053A (en) Photosensitive composition and method of manufacturing pattern film
JP2008034604A (en) Method of manufacturing patterned film, positive photosensitive composition, and semiconductor element
JP2008116747A (en) Positive photosensitive composition, method for producing patterned film and semiconductor device
JP2008015184A (en) Positive photosensitive composition, method for producing patterned film, and semiconductor device
JP2008015187A (en) Positive photosensitive resin composition, method for producing thin film pattern, and semiconductor device
JP3856237B1 (en) Silicon-containing photosensitive composition, method for producing thin film pattern using the same, protective film for electronic device
US20200292940A1 (en) Silsesquioxane composition with both positive and negative photo resist characteristics
JP2008224872A (en) Method for peeling film
TWI842839B (en) Functional polyhydrogensilsesquioxane resin composition, method of producing thereof and the use thereof
JP2008107409A (en) Photosensitive composition, method for producing patterned film using the same and semiconductor device
JP7484710B2 (en) Positive-type photosensitive resin composition, cured film thereof, and optical device having the same
JP2007199252A (en) Photosensitive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539762

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829533

Country of ref document: EP

Kind code of ref document: A1