JP2009210854A - スクリーン及び投射システム - Google Patents

スクリーン及び投射システム Download PDF

Info

Publication number
JP2009210854A
JP2009210854A JP2008054464A JP2008054464A JP2009210854A JP 2009210854 A JP2009210854 A JP 2009210854A JP 2008054464 A JP2008054464 A JP 2008054464A JP 2008054464 A JP2008054464 A JP 2008054464A JP 2009210854 A JP2009210854 A JP 2009210854A
Authority
JP
Japan
Prior art keywords
screen
scattering
light
cylindrical lens
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008054464A
Other languages
English (en)
Inventor
Koichi Akiyama
光一 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008054464A priority Critical patent/JP2009210854A/ja
Publication of JP2009210854A publication Critical patent/JP2009210854A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】外光による影響を低減し、明るい部屋等での投影画像のコントラストを改善でき、さらに、スクリーンの周辺側のうち特に左右方向について、投射光を有効に利用し、スクリーン周辺部の画像が暗くなることを抑制できるスクリーン及び投射システムを提供すること。
【解決手段】シリンドリカルレンズCLに入射した投射光PLについて、周辺側から入射した投射光PLは、入射後より下方側へ潜りこむような光路を辿るが、これに対してスクリーン10の散乱面RSは、投射光PL下方に向かうのに合わせて下方にシフトさせている。これにより、周辺側においても投射光PLを的確に散乱・反射させることができる。
【選択図】図6

Description

本発明は、前方のプロジェクタ等の投影装置からの投射光を反射して投影画像を映し出すスクリーン及び当該スクリーンを用いた投射システムに関する。
マイクロレンズと反射面とを集積したものを用いるスクリーンであって、マイクロレンズの背後に配置される反射面の向きをスクリーンの中心法線方向に傾斜させるものが知られており、特にスクリーンの中心部から上下方向に離れるに従って反射面の傾斜角を徐々に変化させるものが知られている(特許文献1参照)。また、スクリーンにレンチキュラーレンズを用いるものとして、拡散性をもたせて視野角を拡大させるものが知られており、例えば拡散性を有するためにスクリーン全体に光拡層を用いるものが知られている(特許文献2参照)。
特開平3−156435号公報 特開平4−322240号公報
しかしながら、前方のプロジェクタ等の投影装置からの投射光を反射して投影画像を映し出す反射型のスクリーンの使用において、スクリーンの中心位置から左右方向に離れた周辺側に行くほど投影装置からの入射光の入射角度が大きくなることにより、入射光が有効に利用されにくくなる。特に、投影画像が横長になる場合(例えばアスペクト比が16:9となる場合)、左右方向について中央側と周辺側とで投射光の入射角度に大きな差がつき、投射光が上記周辺側においてマイクロレンズの背後に配置される散乱面に十分集光されず、結果として、周辺にはずれる程急激に暗い画像となってしまう可能性がある。
また、別の問題として、反射型のスクリーンの使用において、不要光である外光の一部がスクリーンの観察者のいる方向へ反射されてしまう可能性があり、反射された外光が投影画像のコントラスト低下を生じさせる原因となる可能性がある。
そこで、本発明は、外光による影響を低減し、明るい部屋等での投影画像のコントラストを改善でき、さらに、スクリーンの周辺側のうち特に左右方向について、投射光を有効に利用し、スクリーン周辺部の画像が暗くなることを抑制できるスクリーン及び投射システムを提供することを目的とする。
上記課題を解決するために、本発明に係るスクリーンは、(a)長手方向を有するシリンドリカルレンズを複数有し、スクリーン前面側の2次元平面上に、複数のシリンドリカルレンズを長手方向に対して垂直方向に配列して成るレンチキュラーレンズと、(b)レンチキュラーレンズの裏側において各シリンドリカルレンズの長手方向に略沿ってそれぞれ延び、2次元平面に対して傾斜して形成されるとともに、入射する投射光を散乱させつつスクリーン前面側に射出させる複数の散乱面とを備え、(c)複数の散乱面のそれぞれについては、各シリンドリカルレンズの端部側に対応する前記垂直方向の相対位置が、各シリンドリカルレンズの中心側に対応する垂直方向の相対位置よりも、所定のずれ量だけ2次元平面に対する投射光の入射角が小さくなる第1方向側にある。
まず、上記スクリーンでは、レンチキュラーレンズを構成する各シリンドリカルレンズの裏側に、シリンドリカルレンズの配列された平面に対して傾斜し、かつ、シリンドリカルレンズを経た投射光を散乱させつつ反射する散乱面を設けることで、スクリーンに入射する投射光を適切に散乱した状態でシリンドリカルレンズの前方に射出させることができる。この際、各シリンドリカルレンズの端部側に対応する前記垂直方向の相対位置が、各シリンドリカルレンズの中心側に対応する垂直方向の相対位置よりも、所定のずれ量だけ2次元平面に対する投射光の入射角が小さくなる第1方向側にある。このため、各散乱面について、対応する各シリンドリカルレンズに対する相対位置の設定により、シリンドリカルレンズが延びる長手方向に関して、中心側だけでなく周辺側においても、投射光を集光させるものとすることができ、周辺側への投射光も有効に利用して、スクリーン周辺部の画像が暗くなることを抑制できる。
また、本発明の具体的な態様として、複数の散乱面は、所定のずれ量が、2次元平面に対する投射光の入射角度の大きい側にある散乱面と、2次元平面に対する投射光の入射角度の小さい側にある散乱面とで異なる量に設定されている。この場合、スクリーン上の入射位置によって異なる入射角度となる投射光のそれぞれに対応した散乱・反射を行うことができる。
また、本発明の具体的な態様として、複数の散乱面の少なくともひとつは、散乱面の垂直方向の相対位置が、各シリンドリカルレンズの中心側から長手方向に沿って端部側へ離れるに従って、各シリンドリカルレンズの中心側に対応する垂直方向の相対位置に対する第1方向側へのずれ量が大きくなるように設けられている。この場合、例えば、各シリンドリカルレンズの中心位置から長手方向に沿って端部側へ離れるに従って散乱面の第1方向側へのずれ量を徐々に増加させることで、投射光の入射角度の変化に応じて散乱面の配置を調整することができる。
また、本発明の具体的な態様として、複数の散乱面は、各シリンドリカルレンズの裏側において長手方向に対して斜め方向に直線状に延びることによって上記相対位置を変化させている。この場合、複数の散乱面が長手方向に対して斜め方向に直線状に延びた形状であるので、スクリーンの裏側の構造が簡易なものとなる。
また、本発明の具体的な態様として、複数の散乱面は、各シリンドリカルレンズの裏側において曲線状に延びることによって上記相対位置を変化させている。この場合、複数の散乱面を投射光の入射後の光路に応じて曲線状に延ばすことで、より適した散乱面の配置状態で入射光を捉えることができる。
また、本発明の具体的な態様として、複数の散乱面は、各シリンドリカルレンズの裏側において階段状に延びることによって上記相対位置を変化させている。この場合、長手方向に沿って段階的に各散乱面の位置を変えることにより、投射光の入射角度に応じて簡易に散乱面の位置を変化させることができる。
また、本発明の具体的な態様として、複数の散乱面の所定のずれ量が、1つの散乱面について対応する1つのシリンドリカルレンズの上記垂直方向(その短手方向)の幅以内である。この場合、各シリンドリカルレンズに入射する投射光ごとに適した範囲内で複数の散乱面のずれ量を設定することで、適切に投射光を散乱・反射させることができる。
また、本発明の具体的な態様として、複数の散乱面が、入射した光を再び入射方向に反射させる回帰性を有する回帰成分を含む散乱材を有する。ここで、「回帰性」とは、入射した光が再び入射方向へ帰る反射現象を指し、通常の反射のように入射角と反射角が等しくなるものとは異なり、受けた光をそのまま光の発生側にはね返す再帰反射性を意味する。この場合、散乱材が回帰成分を含むことで回帰性が生じ、スクリーンのうちシリンドリカルレンズの長手方向に関しての周辺側に投射される光を正面側に戻す傾向を生じさせ、投射光を有効に利用することが可能となる。
また、本発明の具体的な態様として、複数の散乱面が、レンチキュラーレンズを経た光を再び入射方向に反射させる回帰性を示す凸部及び/又は凹部を有する起伏部をさらに備える。この場合、当該起伏部により、回帰性が生じ、スクリーンのうちシリンドリカルレンズの長手方向に関しての周辺側に投射される光を正面側に戻す傾向を生じさせ、投射光を有効に利用することが可能となる。
また、本発明の具体的な態様として、レンチキュラーレンズの裏側のうち、少なくとも散乱面の周囲に、光吸収性素材により形成される光吸収面をさらに有する。この場合、光吸収面により、外光等の不要光を吸収させて高コントラストな画像を形成することができる。
また、本発明の具体的な態様として、レンチキュラーレンズが、表面に反射防止コートを有する。これにより、スクリーン表面での反射を防止することができる。
また、本発明の具体的な態様として、レンチキュラーレンズが、ロール巻き取り可能となっており、ロールする軸の方向に沿って複数のシリンドリカルレンズの長手方向を配置した構造を有する。これにより、スクリーンをロールして収納した際に、複数のシリンドリカルレンズ間の境界部分が主に曲がるため、シリンドリカルレンズの本体部分の変形量を少なくすることができる。
また、本発明の具体的な態様として、本発明に係る投射システムは、(a)上記いずれかに記載のスクリーンと、(b)スクリーンに投影画像を投射する画像投射装置とを備える。この場合、上記スクリーンを用いることにより、投射システムは、投射光を適切に散乱・反射し、かつ、有効に利用でき、また、外光による影響を低減し、明るい部屋等での投影画像のコントラストを改善できる。
〔第1実施形態〕
以下、本発明の第1実施形態に係るスクリーンについて図面を参照しつつ説明する。図1は、本実施形態に係るスクリーンを模式的に示す側面図である。本実施形態のスクリーン10は、反射型のスクリーンであり、レンチキュラーレンズ1を設けた光透過性のスクリーンシート2と、スクリーンシート2の裏面全体に貼りつけられる光吸収シート3とを備える。
図示のように、投影装置等の有する投射レンズPOの投射光源点Sから投射光PLがスクリーン10上に投射されることにより、画像投影がなされる。投射光源点Sは、スクリーン10に近接した下方位置に設置されている。この結果、スクリーン10の中心位置Oにおいて、投射光源点Sからの投射光PLが、その光束軸AXが入射角度αとなっている状態で、下方から上方に向けて入射している。
図2は、スクリーン全体及び使用状態を説明する斜視図である。投射光PLは、投射光源点Sからスクリーン10までの距離が投射距離dとなっている状態で投射されており、投射光PLの光束軸AXは、中心位置Oを通ってスクリーン10の水平方向即ちx方向に延びる軸HXと垂直に交わるものとなっている。このような所謂フロント投射の場合、左右方向即ちx方向については、スクリーン中心軸LXを基準として、スクリーン中心軸LXから離れて周辺側に行くほど投射光PLの入射角度が大きくなりやすくなる。特に、近接投射を行う場合即ち投射距離dの値が小さい場合、中心側の入射角度αが大きくなるとともに、周辺側に入射する投射光PLの入射角度βがさらに大きくなる。このため、スクリーン10の中心側に入射した投射光PLと左右方向の周辺側に入射した投射光PLとでは、スクリーン10のスクリーンシート2に入射する際の屈折による光路の変化の具合が異なる。従って、従来型の左右に一様なスクリーンでは、中心から外れるほど投射光PLが十分に散乱・反射されなくなり、結果として左右方向についての周辺部での画像が暗くなってしまう傾向が生じる。しかし、本実施形態では、詳しくは後述するが、スクリーン10内部においてこのような傾向を抑えることによって見やすい画像を表示できるようにしている。
図3は、本実施形態に係るスクリーン10の構造を模式的に示した側断面図である。また、図4(a)及び4(b)は、それぞれスクリーン10の表側及び裏側の状態を模式的に示す図である。スクリーンシート2は、表側にシリンドリカルレンズCLを2次元的に配列したレンチキュラーレンズ1と、レンチキュラーレンズ1の裏面側に各シリンドリカルレンズCLに対応して周期的に設けられた溝GTとを有する。なお、スクリーンシート2には、溝GTに散乱材を塗布することで散乱部4が形成されている。
スクリーンシート2の表側に形成されたレンチキュラーレンズ1は、略半円柱状の外形を有し左右のx方向に延びるシリンドリカルレンズCLを要素レンズとして長手方向(x方向)に対して垂直な上下のy方向に多数配列して連ねることにより、全体としてxy面に平行に広がる表面を構成している。つまり、これらのシリンドリカルレンズCLは、スクリーン10全体の表面を構成すべく2次元平面上に配置されている。各シリンドリカルレンズCLは、図1の投射レンズPOからの斜め上向きの投射光PLを入射させて適宜集光させる。また、各シリンドリカルレンズCLは、スクリーン10の内部で後述する散乱面RSによって散乱・反射された投射光PLを、所定の発散角で前方に射出させる。
一方、スクリーンシート2の裏側に形成された溝GTは、シリンドリカルレンズCLに対応して、その長手方向即ちx方向に略沿って延びている。溝GTには、各シリンドリカルレンズCLの配列された上下のy方向に対して略垂直な側面SSが上面側に形成されており、溝GTは、この側面SSと、傾斜した底面FSとによって画定され、yz断面が三角形状となっている。底面FSは、各シリンドリカルレンズCLで集光されて斜め上方向に傾いて入射する投射光PLを正面方向即ち+z方向に反射する傾向を高めるべく、所定の傾斜角度αで傾いている。各散乱部4は、上記のような形状の各溝GTを充填するものであり溝GTの形状を反転した形状を有している。散乱部4は、底面FSから入射する光を+z方向に反射する際、適当な分散特性で散乱させた状態とする。これにより、近接した下方からスクリーン10に入射した投射光PLを正面に一定の広がりをもって導く効果を助長することができる。散乱成分としては、例えば、硫酸バリウムまたは硫酸バリウムに白色の反射性インク(例えば白色のパール系インク)を混ぜたもの等を用いる。以上において、底面FSとその背後に近接する散乱部4の薄膜部(例えば数μm程度の厚さ部分)とは、スクリーン10に入射した光束を正面方向に散乱させつつ反射する機能を有しており、底面FSと当該散乱部4の薄膜部とをまとめて散乱面RSと呼ぶものとする。
また、特に、本実施形態では、図4(a)及び4(b)に示すように、溝GTは、対応する各シリンドリカルレンズCLの長手方向即ちx方向に略沿って延びているが、x方向に完全に平行ではなく、スクリーン10の中心側であるスクリーン中心軸LXから左右の周辺側に向かって対称に斜め下方向に直線状に延びている。これに伴い散乱面RSも周辺側に向かって下がる方向に直線状に延びて形成されている。このため、1つの散乱面RSの上下方向に関する相対的な位置関係について見ると、周辺側の散乱面RSの位置のほうが中心側の散乱面RSの位置よりも投射光PLの入射角が小さくなる第1方向側(即ち下方側)に位置ずれするように所定のずれ量が設けられている。より具体的には、例えばまず、図4(a)に示すシリンドリカルレンズCLのうち最上段に位置するシリンドリカルレンズCLに対応する散乱面RSについて、中心側と周辺側との相対位置CP、LP、RPの3つを比較すると、中心側の相対位置CPに対する周辺側の相対位置LP、RPのほうが、−y方向即ち投射光PLの入射角が小さくなる側に位置ずれし、かつ位置ずれ量が大きくなっている。つまり、シリンドリカルレンズCLの長手方向の中心を通って長手方向に延びる軸CXを基準とした場合、相対位置CPは、軸CXに対して比較的上側であるのに対して、散乱面RSの位置は徐々に軸CXに対して下側に下がっていき、両端にある相対位置LP、RPでは、最も下側に位置している。このとき、中心側の相対位置CPに対する周辺側の相対位置LP、RPの相対的な位置ずれ量が最も大きくなっており、y方向についてkとなっている。このように、各散乱面RSは、それぞれ対応する各シリンドリカルレンズCLの中心位置から長手方向に沿って端部側へ離れるに従ってxy平面に対する投射光PLの入射角の小さくなる側である−y方向にシフトした配置となっており、入射後の投射光PLの光路に対応したものとなっている。
図5は、スクリーン10の一部の背面側を示す斜視図であり、レンチキュラーシート2のうち1つのシリンドリカルレンズCLの左半分を取り出して示したものである。図4(a)及び4(b)を用いて既に説明したとおり、このスクリーン10において、溝GTは、各シリンドリカルレンズCLの中心側から周辺側に向かうほど下方に形成されており、これにより、底面FSの垂直方向の相対位置も周辺側に行くほど下方に位置するものとなっている。なお、図示を省略しているが、シリンドリカルレンズCLの右半分についても、図示した左半分と左右反対で同様の構造となっている。また、散乱面RSの位置ずれ量は、1つの散乱面RSについて対応する1つのシリンドリカルレンズCLの垂直方向の幅即ちシリンドリカルレンズCLの短手方向の幅以内となっている。
図3に戻って、光吸収シート3は、スクリーンシート2の裏面側全体を光吸収性素材で覆うように形成されている。光吸収シート3は、散乱部4の周辺に外光等の不要光を吸収させる光吸収面ASを形成する。なお、スクリーン10全体の厚みは、好ましくは0.3mm〜0.5mm程度である。
以下、図3を用いて投射光PLの光路を説明することにより、スクリーン10における動作について説明する。
まず、図中5つのシリンドリカルレンズCLのうち、例えば真ん中に位置するシリンドリカルレンズCLpに入射した投射光PLは、集光されてシリンドリカルレンズCLpの背後に位置する散乱面RSで散乱・反射される。散乱面RSで散乱・反射された投射光PLは、同一のシリンドリカルレンズCLpを経て適度に発散された状態で前方に射出される。同様に、シリンドリカルレンズCLp以外の各シリンドリカルレンズCLに入射した投射光PLも、同一のシリンドリカルレンズCLから射出される。
しかしながら、図2を用いて説明したように、スクリーン10の中央側に入射した投射光PLと周辺側に入射した投射光PLとでは、スクリーン10上でy方向について同じ高さ位置に入射する光即ち同一のシリンドリカルレンズCLに入射する光であっても入射角度が大きく異なる。従って、スクリーン10に入射した後の光路が異なるものとなる。
図6(a)及び6(b)は、それぞれ図5におけるA−A断面とB−B断面に相当する部分についてのスクリーン10の側断面を模式的に示す図である。つまり、図6(a)及び6(b)は、それぞれスクリーン10の中央側と周辺側とにおける投射光PLの光路を示す図である。なお、比較のため、図6(a)の一部を点線により図6(b)中に示している。
例えば図中同一のシリンドリカルレンズCLqに入射した投射光PLについて、入射後の投射光PLを中央側と周辺側とで比較すると、図6(b)の周辺側に入射する投射光PLのほうが、図6(a)の中心側に入射する投射光PLよりも下方側へ潜りこむような光路を辿る。本実施形態のスクリーン10では、このように投射光PLが周辺側に離れるほどより下方に向かうのに合わせて、散乱面RSの位置を周辺側に向かうに従ってより下方にシフトさせている。これにより、周辺側においても散乱・反射させるべき投射光PLの成分を吸収面ASに吸収させてしまうことがなく、的確に散乱・反射させることができる。
なお、例えば図2及び図3に示す画像投影には不要である外光OLを発生する照明光等は、例えば室内の天井側に設置されて室内を照明する場合が多い。このように、上方から投射される外光OLは、そのほとんどが、スクリーン10のうち、溝GTの上下の側面SSのうちの上方側の面或いは光吸収シート3の光吸収面ASに入射する。溝GTの上の側面SSに入射する外光OLは、上の側面SSの角度から観察者のいるスクリーン10の前方に向かうことなく反射等され、また、光吸収シート3に入射する外光OLも、スクリーン10の前方に向かうことなく吸収される。
また、図3に示すように、レンチキュラーレンズ1の表面を構成する各シリンドリカルレンズCLの表面には反射防止コートであるARコートCTが施されている。これにより、光の反射を防止している。
また、スクリーン10は、図1等に示す矢印AWの方向にロール巻き取り可能となっている。この場合、レンチキュラーレンズ1の各シリンドリカルレンズCL間を繋ぐ境界部分BPが主に曲がることでシリンドリカルレンズCLそのものはあまり変形することなくスクリーン10をロールして収納することができる。
図7(a)、7(b)及び7(c)は、本実施形態のスクリーンの製造方法についての変形例を説明するための図であり、それぞれシリンドリカルレンズCL1つ分即ちスクリーン10の1ピッチ分を模式的に示す側断面図である。なお、スクリーンシート2の製造方法については上記の例と同様であるので説明を省略する。図7(a)、7(b)及び7(c)のうち、まず、図7(a)に示す例では、図2の光吸収シート3に代えて、光吸収膜103が形成されている。つまり、散乱材を塗布することによって溝GTを充填して散乱部4を形成した後、例えばスクリーンシート2の裏面側全体を覆うように光吸収性のインクを塗布することで光吸収膜103が形成されている。図7(b)及び7(c)は、さらに他の製造方法を段階的に示すものである。本変形例では、図7(b)に示すように、まず、散乱部4が塗布されるよりも先にスクリーンシート2の裏面側に光吸収性のインクを塗り、溝GTの位置に開口を有する光吸収膜103を形成する。その後、図7(c)に示すように、溝GTを充填するようにスクリーンシート2の裏面側全体に散乱材を塗布して、散乱部4を形成している。なお、上記はいずれも製造方法の例示であり、同様の構造を有するものであればこれら以外の製造方法であっても構わない。
また、散乱部4については、散乱面RSとして散乱効果をもたせるものであればよく、溝GT全てを散乱材によって充填しなくてもよい。従って、例えば、溝GTのうち底面FSのみに散乱部4として散乱材を塗布することで散乱面RSを形成してもよい。また、散乱材以外にも例えば底面FSに凹凸面をランダムに形成させ散乱効果をもたせることで散乱面RSを形成してもよい。
〔第2実施形態〕
図8(a)及び8(b)は、第2実施形態に係るスクリーンについて説明するためのスクリーン裏面側についての模式的な図である。なお、本実施形態では、図8(a)及び8(b)にそれぞれ示すスクリーン110、210の裏面側における散乱面RSの形状を除いて、第1実施形態と同様であるから、そのほかの部分の説明については省略する。
まず、図8(a)に示すスクリーン110について説明する。スクリーン110において、複数の散乱面RSを形成する複数の溝GTは、それぞれ中心軸LXを中心として左右対称で上側に凸の曲線状に形成されている。即ち、この場合、複数の散乱面RSの垂直方向即ちy方向の位置は、スクリーン110に入射した投射光PLの光路に合わせて徐々に変化している。これにより、散乱面RSでの投射光PLの反射をより適したものとすることができる。
次に、図8(b)に示すスクリーン210について説明する。スクリーン210において、複数の散乱面RSを形成する複数の溝GTは、それぞれ中心軸LXを中心として左右対称で階段状に変化している。つまり、図の場合、各シリンドリカルCLにおいて、x方向について5つの領域D1〜D5に区切り、これらの領域ごとに横のx方向に延びる溝GTを形成している。1つのシリンドリカルレンズCLに対応する溝GTについて、5つの領域のうち、中央にある領域D1の部分が最も上方に位置し、中心軸LXから左右方向に離れるほど溝GTの位置が下方に下がっている。つまり、領域D1の左右に位置する領域D2、3の溝GTの部分は、領域D1の溝GTよりも下方に位置し、領域D2、3の左右に位置する領域4、5の溝GTの部分は、さらに下方に位置している。このように、階段状の溝GTによって形成される散乱面RSの配置は、スクリーン210に入射した後の投射光PLの光路に合わせたものとなっており、散乱面RSの配置を投射光PLの反射により適したものとすることができる。
〔第3実施形態〕
図9は、第3実施形態に係るスクリーンについて説明するためのスクリーン裏面側についての模式的な図である。なお、本実施形態では、図9に示すスクリーン310の裏面側の構造を除いて、第1実施形態と同様であるから、そのほかの部分の説明については省略する。
本実施形態に係るスクリーン310は、上下のy方向(シリンドリカルレンズCLの長手方向に対して垂直方向)に関して3つの領域310a、310b、310cに区切られている。3つの領域310a、310b、310cは複数の散乱面RSa、RSb、RScをそれぞれ有しており、これら3つの散乱面RSa、RSb、RScは互いに異なる形状となっている。つまり、領域単位で散乱面RSa、RSb、RScの形状を変化させている。スクリーン310は、投射光PLの入射角度の差異等に応じて垂直方向について異なる位置ずれ量に設定したパターンの散乱面RSa、RSb、RScを有することにより、スクリーン310の各位置で投射光PLを適切に捉え、散乱反射をするものとなっている。
なお、複数の散乱面RSa、RSb、RScの形状は、種々のものが考えられ、例えば大きさや左右方向の傾き、また、xy平面に対する傾斜角度も適宜設定できる。また、パターン又は領域の数も3つに限らず、例えば4つ以上の多くのパターン又は領域を有するものであってもよい。
また、第2実施形態に示したスクリーン110、210についても同様に、上下方向に複数の異なるパターンの反射面を有する構成としてもよい。
〔第4実施形態〕
図10(a)及び10(b)は、第4実施形態に係るスクリーンについて説明するための模式的な側断面図である。なお、本実施形態において、図10(a)及び10(b)に示すスクリーン410は、裏面側における散乱部404を除いて、第1実施形態等と同様であるから、そのほかの部分の説明については省略する。図10(a)及び10(b)は、それぞれスクリーン410の中央側と周辺側とにおける模式的な側断面図である。
散乱部404は、散乱成分として、例えば、硫酸バリウムまたは硫酸バリウムに白色の反射性インク(例えば白色のパール系インク)を混ぜたもの等を用いており、さらに、回帰成分として、透過性ガラスビーズTBが添加されている。透過性ガラスビーズTBは、略球形であり、入射した光を球状のビーズ内部で反射させることで入射方向に逆行する方向に反射させる回帰性の反射特性を示す。散乱部404は、これらの散乱成分及び回帰成分を含有することにより、散乱性によって適度に散乱された状態の射出光を形成するとともに、回帰性によって入射光に対する光の射出方向を調整することができる。さらに、ここでは、散乱部404は、各シリンドリカルレンズCLの中心位置を基準として長手方向即ちx方向に沿って離れるに従って、回帰成分の量が増加するように調整されている。つまり、図10(a)に示すスクリーン410の中央側では、図10(b)に示すスクリーン410の周辺側よりも散乱部404が薄い状態となっている。これにより、スクリーン410の左右両側に入射した投射光PLを正面に戻す効果を生じさせることができる。なお、図10(a)の溝GTにおいて、散乱部404が薄いため、散乱部404の裏側に光を吸収する光吸収材3aが補填されている。
なお、本実施形態において、スクリーン410の中心側においても散乱部404に回帰成分を含ませているが、回帰成分は、スクリーン410の周辺側にのみ用いるものであってもよい。
〔第5実施形態〕
図11(a)及び11(b)は、第5実施形態に係るスクリーンについて説明するための模式的な図である。なお、本実施形態において、図11(a)及び11(b)に示すスクリーン510は、裏面側におけるスクリーンシート502の底面FSの構造を除いて、第1実施形態等と同様であるから、そのほかの部分の説明については省略する。
図11(a)は、スクリーン10の一部を示す図であり、スクリーンシート502のうちの一部としてシリンドリカルレンズCLの1つ分について取り出して拡大した図である。また、図11(b)は、底面FSの形状を模式的に示す断面図である。
本実施形態に係るスクリーン510は、スクリーンシート502の裏面側に起伏部505が形成されている。起伏部505は、多数の凸部505aにより底面FS上に形成されている。なお、起伏部505を含む底面FSの背後全体に不図示の散乱材が塗布されることにより散乱面が形成される。
起伏部2は、底面FSの面上において、多数の直線形状の凸部505aを底面FSの長手方向に沿って配列することによって全体としてレンチキュラー形状になっている。起伏部505を形成する各凸部505aは、より具体的には、断面半円の柱形状を有しており、スクリーンシート502と同質の素材からなり、スクリーンシート502とともに一体的に成形されたものである。各凸部505aは、底面FSの傾斜に沿って底面FSと同じ傾斜角度αで一直線に上下方向に延びている。各凸部505aは、底面FS上に入射した光の方向を変化させ入射方向に逆行する方向に反射させる回帰性の反射特性を示す。
図11(a)のうち紙面右側がスクリーン510の中心側に相当し、紙面左側が周辺側に相当する。図11(a)から分かるように、各凸部505a間のピッチが周辺側に向かうほど細かくなり、凸部505aが密集した状態となっている。つまり、起伏部505は、シリンドリカルレンズCLの中心側から周辺側に離れるに従って単位面積当たりの凸部505aを多く有する状態となっている。各凸部505aの回帰性により、スクリーン510の左右方向についての周辺側ではより強い回帰性の反射が生じるものとなっている。
なお、図11(b)に示すように、各凸部505aの断面形状は、底面FSから突出した半円形状となっているが、例えば逆に凸部505aに代えて凹部によって起伏部505を形成する、或いは凸部と凹部とを組み合わせて起伏部505を形成することも可能である。
〔第6実施形態〕
図12は、第6実施形態に係るスクリーンを模式的に示す側面図である。本実施形態のスクリーン610は、第1実施形態の図1のスクリーン10と同様に、反射型のスクリーンであり、レンチキュラーレンズ1を有する光透過性のスクリーンシート602と、スクリーンシート602の裏面全体に貼りつけられる光吸収シート3とを備える。
図12の場合も、図1と同様にして、近接した下方位置に配置された投射レンズPOの投射光源点Sから投射光PLがスクリーン610上に投射されるが、ここでは、特に図1の場合に比べて投射光PLの入射角度が非常に大きくなっており、投射光PLの光束軸AXは入射角度α=60°に設定されている。このような場合、入射位置によって投射光PLの入射角度の非常に大きなところと比較的小さなところとでの差が著しく、入射位置に応じて反射のタイプを異なるものにすることが望ましくなる。従って、スクリーン610では、入射角度α=60°を基準として、スクリーン上面側の第1領域610aと、スクリーン下面側の第2領域610bとに分け、第1領域610aと第2領域610bとでは、互いに異なる形状又は配置を有するものとなっている。
図13(a)及び13(b)は、それぞれ上方側の第1領域610aと下方側の第2領域610bにおけるスクリーン110の構造の一例を模式的に示す側断面図である。
図13(a)と図13(b)とを比較して分かるように、両領域610a、610bの溝GTによって形成される散乱面RSの深さが異なり、また、第1領域610aと第2領域610bとにおける散乱面RSは、投射光PLを正面方向即ち+z方向に反射する傾向を高めるべく、投射光PLの入射角度の違いに応じて、それぞれ傾斜角度θと傾斜角度θの異なる角度で傾いている。
第1領域610aと第2領域610bとのうち、図13(b)に示す比較的入射角度の小さな第2領域610bにおけるスクリーン610の構造は、第1実施形態において図3により示したものとなっている。つまり、同一のシリンドリカルレンズCLで投射光PLの散乱・反射を行っている。
これに対して、図13(a)に示す第1領域610aにおけるスクリーン610の構造は、第2領域610bとは異なるタイプの反射態様としている。
以下、図13(a)を用いて第1領域610bにおける投射光PLの光路を説明することにより、スクリーン610における動作について説明する。なお、第2領域610bについては、図3の場合と同様であるので説明を省略する。
第1領域610bにおける各シリンドリカルレンズCLのうち、図中y方向について最下に位置するシリンドリカルレンズCL1に入射した投射光PL1は、シリンドリカルレンズCL1の一つ上側に位置するシリンドリカルレンズCL2から射出される。つまり、投射光PL1は、入射したシリンドリカルレンズCL1の一つ上側に位置するシリンドリカルレンズCL2の背後に位置する散乱面RS2で散乱・反射され、シリンドリカルレンズCL2から射出される。同様に、シリンドリカルレンズCL2に入射した投射光PL2は、散乱面RS3を介してシリンドリカルレンズCL3から射出される。なお、散乱面RS1は、不図示のシリンドリカルレンズCL1の下方に位置するするシリンドリカルレンズより入射した光をシリンドリカルレンズCL1から射出させる。つまり、第1領域610aでは、投射光PLを入射させたシリンドリカルレンズCLに隣接するシリンドリカルレンズCLから当該投射光PLを射出させる態様となっている。これら各散乱面RS1〜RS3の位置についても、上記実施形態と同様に左右方向について中心側から周辺側に向かうに従って下がっている構造を有すことで、投射光PLを適切に捉え、散乱反射をするものとなっている。
以上のように、本実施形態のスクリーン610では、投射光PLの入射角度に応じて第1領域610aと第2領域610bとに領域を分け、それぞれの領域で異なるタイプの反射態様としており、各領域610a、610bいずれにおいても、上記実施形態と同様の構造を有する散乱面RSを用いることができる。これにより、スクリーン610のような近接した投射においても、スクリーン周辺部の画像が暗くなることを抑制できる。
〔第7実施形態〕
図14は、第7実施形態に係る投射システムの一例を示す図であり、第1及び第2実施形態のスクリーン10、110、210、310、410、510、610に画像投射装置としてプロジェクタを用いた場合の投射システムを示している。図13において、プロジェクタ100は、プロジェクタ本体50と、投射レンズ20と、反射ミラーRMとを備える。なお、プロジェクタ100の各機構は、筐体SC内に収容されている。なお、ここでは、スクリーン10〜610及びプロジェクタ100の設置環境として、室内に天吊りされた照明装置200により、上方からの外光OLによる照明がなされており、プロジェクタ100は、スクリーン10〜610の下方から投射を行うものとする。
プロジェクタ50での制御により形成された画像光は、投射レンズ20から射出され、さらに、反射ミラーRMでの反射により、所望の角度が付けられた状態でプロジェクタ100からの投射光PLとして射出される。従って、この場合、プロジェクタ100は、スクリーン10〜610の法線に対して投射光PLの光束軸が傾いた斜め投射が行われる。スクリーン10〜610に投射された投射光PLは、上述したようにスクリーン10〜610上で適度の発散角で正面方向に反射される。この際、上述したように、投射光PLの投射角度に対応してスクリーン10〜610が構成されているため、投影される画像は、外光OLによる影響を低減し、明るい部屋等での投影画像のコントラストを改善できるだけでなく、投射光PLを適切に正面方向へ射出させることができる。
なお、この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
また、光吸収シート3は、レンチキュラーレンズ1の裏面側全体を覆うものとしているが、例えばコントラストをあげるために、散乱部4の塗布された底面FSの周囲等部分的に施すといった必要に応じて設けるものとしてもよい。
また、上記実施形態において、溝GTのピッチについては特に規定していないが、スクリーン10〜610の垂直方向についての溝GTのピッチを投射光PLの入射角度等に応じて徐々に変化させてもよい。
また、上記実施形態において、底面FSの各傾斜角度は一律であるものとしているが、これについてもスクリーン10〜610の溝GTごとに傾斜角度が異なっていてもよい。
上記実施形態では、一般的な投影装置等の使用環境を考慮して、投射光PLについての光束軸AXの方向が下方からであり、これに対応して底面FSの形状等を構成しているが、投射光PLが下方以外から入射する場合には、これに応じて、散乱面RSの構成を異なるものとしてもよい。つまり、例えば、プロジェクタからの投射がスクリーンの側方からなされる場合には、散乱面RSの傾き等を投射光PLの入射方向に対応させて変更してもよい。
第1実施形態に係るスクリーンを模式的に示す側面図である。 投影装置等からスクリーンへの投射について説明する図である。 第1実施形態に係るスクリーンを模式的に示した側断面図である。 (a)、(b)は、スクリーンの表面及び裏面を説明する図である。 スクリーンの裏面側の構造を示す図である。 (a)、(b)は、投射光路について説明するための図である。 (a)〜(c)は、スクリーンの他の製造方法を説明する図である。 (a)、(b)は、第2実施形態に係るスクリーンの模式的な図である。 第3実施形態に係るスクリーンについて説明するための図である。 (a)、(b)は、第4実施形態に係るスクリーンの模式的な図である。 (a)、(b)は、第5実施形態に係るスクリーンの模式的な図である。 第6実施形態に係るスクリーンを模式的に示した側面図である。 (a)、(b)は、スクリーンの一部を説明する側断面図である。 第7実施形態に係る投射システムについての模式図である。
符号の説明
10、110、210、310、410、510、610…スクリーン、 1…レンチキュラーレンズ、 2…スクリーンシート、 3…光吸収シート、 4…散乱部、 CL…シリンドリカルレンズ、 GT…溝、 RS…反射面、 100…プロジェクタ、 200…照明装置

Claims (13)

  1. 長手方向を有するシリンドリカルレンズを複数有し、スクリーン前面側の2次元平面上に、複数のシリンドリカルレンズを前記長手方向に対して垂直方向に配列して成るレンチキュラーレンズと、
    前記レンチキュラーレンズの裏側において各シリンドリカルレンズの長手方向に略沿ってそれぞれ延び、前記2次元平面に対して傾斜して形成されるとともに、入射する投射光を散乱させつつ前記スクリーン前面側に射出させる複数の散乱面と
    を備え、
    前記複数の散乱面のそれぞれは、前記各シリンドリカルレンズの端部側に対応する前記垂直方向の相対位置が、前記各シリンドリカルレンズの中心側に対応する前記垂直方向の相対位置よりも、所定のずれ量だけ前記2次元平面に対する投射光の入射角が小さくなる第1方向側にある、スクリーン。
  2. 前記複数の散乱面は、前記所定のずれ量が、前記2次元平面に対する投射光の入射角度の大きい側にある散乱面と、前記2次元平面に対する投射光の入射角度の小さい側にある散乱面とで異なる量に設定されている、請求項1記載のスクリーン。
  3. 前記複数の散乱面の少なくともひとつは、前記散乱面の前記垂直方向の相対位置が、前記各シリンドリカルレンズの中心側から前記長手方向に沿って端部側へ離れるに従って、前記各シリンドリカルレンズの中心側に対応する前記垂直方向の相対位置に対する前記第1方向側へのずれ量が大きくなるように設けられている、請求項1及び請求項2のいずれか一項記載のスクリーン。
  4. 前記複数の散乱面は、前記各シリンドリカルレンズの裏側において前記長手方向に対して斜め方向に直線状に延びることによって前記相対位置を変化させている、請求項1から請求項3までのいずれか一項記載のスクリーン。
  5. 前記複数の散乱面は、前記各シリンドリカルレンズの裏側において曲線状に延びることによって前記相対位置を変化させている、請求項1から請求項3までのいずれか一項記載のスクリーン。
  6. 前記複数の散乱面は、前記各シリンドリカルレンズの裏側において階段状に延びることによって前記相対位置を変化させている、請求項1及び請求項2のいずれか一項記載のスクリーン。
  7. 前記複数の散乱面の前記所定のずれ量は、1つの散乱面について対応する1つのシリンドリカルレンズの前記垂直方向の幅以内である、請求項1から請求項6までのいずれか一項記載のスクリーン。
  8. 前記複数の散乱面は、入射した光を再び入射方向に反射させる回帰性を有する回帰成分を含む散乱材を有する、請求項1から請求項7までのいずれか一項記載のスクリーン。
  9. 前記複数の散乱面は、前記レンチキュラーレンズを経た光を再び入射方向に反射させる回帰性を示す凸部及び/又は凹部を有する起伏部をさらに備える、請求項1から請求項8までのいずれか一項記載のスクリーン。
  10. 前記レンチキュラーレンズの裏側のうち、少なくとも前記散乱面の周囲に、光吸収性素材により形成される光吸収面をさらに有する、請求項1から請求項9までのいずれか一項記載のスクリーン。
  11. 前記レンチキュラーレンズは、表面に反射防止コートを有する、請求項1から請求項10までのいずれか一項記載のスクリーン。
  12. 前記レンチキュラーレンズは、ロール巻き取り可能となっており、ロールする軸の方向に沿って前記複数のシリンドリカルレンズの長手方向を配置した構造を有する、請求項1から請求項11までのいずれか一項記載のスクリーン。
  13. 請求項1から請求項12までのいずれか一項記載のスクリーンと、
    前記スクリーンに投影画像を投射する画像投射装置と
    を備える投射システム。
JP2008054464A 2008-03-05 2008-03-05 スクリーン及び投射システム Withdrawn JP2009210854A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008054464A JP2009210854A (ja) 2008-03-05 2008-03-05 スクリーン及び投射システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008054464A JP2009210854A (ja) 2008-03-05 2008-03-05 スクリーン及び投射システム

Publications (1)

Publication Number Publication Date
JP2009210854A true JP2009210854A (ja) 2009-09-17

Family

ID=41184071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008054464A Withdrawn JP2009210854A (ja) 2008-03-05 2008-03-05 スクリーン及び投射システム

Country Status (1)

Country Link
JP (1) JP2009210854A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226047A (ja) * 2011-04-18 2012-11-15 Dainippon Printing Co Ltd 反射スクリーン及び反射スクリーンの製造方法
JP2013068676A (ja) * 2011-09-20 2013-04-18 Dainippon Printing Co Ltd 反射スクリーンの製造方法、反射スクリーン
JP2013092695A (ja) * 2011-10-26 2013-05-16 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014092761A (ja) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd スクリーン及びスクリーンの製造方法
CN103809358A (zh) * 2013-08-02 2014-05-21 吴震 屏幕
JP2016006528A (ja) * 2015-08-07 2016-01-14 大日本印刷株式会社 反射スクリーン
JP2016085306A (ja) * 2014-10-24 2016-05-19 大日本印刷株式会社 反射スクリーン、映像表示システム
WO2021187570A1 (ja) * 2020-03-18 2021-09-23 大日本印刷株式会社 反射スクリーン、反射スクリーンユニット及び映像表示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012226047A (ja) * 2011-04-18 2012-11-15 Dainippon Printing Co Ltd 反射スクリーン及び反射スクリーンの製造方法
JP2013068676A (ja) * 2011-09-20 2013-04-18 Dainippon Printing Co Ltd 反射スクリーンの製造方法、反射スクリーン
JP2013092695A (ja) * 2011-10-26 2013-05-16 Dainippon Printing Co Ltd 反射スクリーン、映像表示システム
JP2014092761A (ja) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd スクリーン及びスクリーンの製造方法
CN103809358A (zh) * 2013-08-02 2014-05-21 吴震 屏幕
JP2016085306A (ja) * 2014-10-24 2016-05-19 大日本印刷株式会社 反射スクリーン、映像表示システム
JP2016006528A (ja) * 2015-08-07 2016-01-14 大日本印刷株式会社 反射スクリーン
WO2021187570A1 (ja) * 2020-03-18 2021-09-23 大日本印刷株式会社 反射スクリーン、反射スクリーンユニット及び映像表示装置
JP7435095B2 (ja) 2020-03-18 2024-02-21 大日本印刷株式会社 反射スクリーン、反射スクリーンユニット及び映像表示装置

Similar Documents

Publication Publication Date Title
JP4525769B2 (ja) スクリーン及び投射システム
JP2009210854A (ja) スクリーン及び投射システム
JP4539738B2 (ja) スクリーン及び投射システム並びにスクリーンの製造方法
JPWO2007049584A1 (ja) 反射型スクリーンおよび前方投影システム
JPWO2004049059A1 (ja) 透過型スクリーンおよび投写型表示装置
JP2004110002A (ja) 透過型スクリーン用の拡散シート及び透過型スクリーン
KR20040068926A (ko) 프레넬렌즈시트 및 이를 구비한 투과형스크린
US20100290114A1 (en) Transmission-type screen, projection-type display device, and image displaying method
JP5250978B2 (ja) 反射型スクリーン
JP4978436B2 (ja) スクリーン及び投射システム
JP7146965B2 (ja) 光源装置およびそれを利用した電子装置
KR100538419B1 (ko) 투과형 스크린 및 배면 투사형 표시장치
JP2009139612A (ja) スクリーン及び投射システム
JP2009192874A (ja) スクリーン及び投射システム
JP7324919B2 (ja) 車両
JP2009169037A (ja) 反射型スクリーン及びその製造方法
JP2009223104A (ja) スクリーン及び投射システム
JP2009047883A (ja) スクリーン
JP2023127243A (ja) 面状照明装置
JP2021156925A (ja) 光制御部材、反射型スクリーン、映像表示装置
JP2007121627A (ja) 透過型スクリーン
JP4954296B2 (ja) 透過型スクリーン、投写型表示装置および画像表示方法
JP2006195011A (ja) フレネルレンズシート、透過型スクリーンおよび投射型ディスプレイ
JP2006011117A (ja) フレネルレンズ、透過型スクリーン及び背面投射型ディスプレイ装置
JP2021063889A (ja) スクリーン、映像表示装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510