JP2009198412A - 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料 - Google Patents

透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料 Download PDF

Info

Publication number
JP2009198412A
JP2009198412A JP2008042398A JP2008042398A JP2009198412A JP 2009198412 A JP2009198412 A JP 2009198412A JP 2008042398 A JP2008042398 A JP 2008042398A JP 2008042398 A JP2008042398 A JP 2008042398A JP 2009198412 A JP2009198412 A JP 2009198412A
Authority
JP
Japan
Prior art keywords
sample
transmission electron
reinforcing layer
electron microscope
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008042398A
Other languages
English (en)
Inventor
Koji Iwasaki
浩二 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SII NanoTechnology Inc filed Critical SII NanoTechnology Inc
Priority to JP2008042398A priority Critical patent/JP2009198412A/ja
Publication of JP2009198412A publication Critical patent/JP2009198412A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】試料の薄膜化が進む中、試料の湾曲を押さえて所望の極薄の試料を作製することができ、しかも、観察領域も失われない。
【解決手段】薄膜状の試料1の一面側からイオンビームを照射して、試料の一面を観察面12aが露出するまで削り加工する工程と、試料の削り加工した一面に試料を補強するための補強層2を形成する工程と、試料1の他面側からイオンビームを照射して、試料の他面を観察面が露出するまで削り加工する工程とを備える。
【選択図】図1

Description

本発明は、集束イオンビーム(FIB)を用いて透過電子顕微鏡用試料を作製する透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料に関する。
透過電子顕微鏡用試料用試料(以下、TEM用試料と呼ぶ場合がある)は、観察箇所を電子ビームの透過が可能な薄さとなるまで薄膜状に加工する必要がある。
ところで、TEM用試料となる例えば半導体や磁気ヘッド等の微細パターン試料は、近年、微細化がより進む傾向にあり、試料厚さが50nm程度のものが出現している。このように厚さが薄くなると、イオンビームによって試料を削る際に、試料自体が応力によって湾曲し、この場合、必要な厚さまで試料を削り込むことができなくなる問題が生じる。つまり、ラインスキャンによってイオンビームを照射するときに、試料自体が湾曲するため、イオンビームが当たる箇所と該ビームが当たらない箇所が生じてしまい、それ以上イオンビームによる削り加工が行えなくなる問題が生じる。
このような問題に応えるものとして、従来、後述する特許文献1に記載されたように、湾曲部分にスリットを入れて試料の湾曲を押さえる技術が提案されている。
特開2000−35391号公報
ところで、上記特許文献1に記載された技術であると、厚さがせいぜい50nm程度の場合には試料の湾曲を有効に押さえて作製できるものの、より薄い試料、例えば、厚さが30nm程度の試料を作製する場合には湾曲を押さえることができなくなり、結局、試料を製作することができないという問題があった。
また、試料の湾曲を押さえるためスリットの数を増やすことも考えられるが、この場合、観察領域が狭められてしまい、必要箇所の観察ができなくなるという新たな問題が生じてしまう。
本発明は上記事情に鑑みてなされたもので、その目的とするところは、試料の薄膜化が進む中、試料の湾曲を押さえて所望の極薄の試料を作製することができ、しかも、観察領域も失われることがない、透過電子顕微鏡用試料の作製方法及びこの方法によって作製される透過電子顕微鏡用試料を提供することにある。
上記問題を解決するために、本発明の透過電子顕微鏡用試料の作製方法では、薄膜状の試料の一面に該試料を補強するための補強層を形成する工程と、前記試料の他面側からイオンビームを照射して、該試料の他面を観察面が露出するまで削り加工する工程と、を備えることを特徴とする。
本発明によれば、薄膜状の試料の一面に補強層を形成し、この補強層によって試料自体の補強を行っている。このため、例え試料厚さを薄く削ったところで、試料が湾曲せず平板状に保たれる。したがって、試料の他面側にイオンビームを照射して、該試料の他面を削リ加工する際に、所望の観察面まで達するように、スムースに削り加工することができる。この結果、例えば厚さが30nm程度の所望の極薄の試料を作製することができる。
上記問題を解決するために、本発明の透過電子顕微鏡用試料の作製方法では、薄膜状の試料の一面側からイオンビームを照射して、該試料の一面を観察面が露出するまで削り加工する工程と、該試料の削り加工した一面に該試料を補強するための補強層を形成する工程と、前記試料の他面側からイオンビームを照射して、該試料の他面を観察面が露出するまで削り加工する工程と、を備えることを特徴とする。
本発明によれば、試料の一面側からイオンビームを照射して、該試料の一面を削り加工し、この削った面上に補強層を形成して補強し、この状態で、試料の他面側からイオンビームを照射して、該試料の他面を削り加工する。このときも、試料自体を補強層により補強しているので、試料の厚さが薄くなる際に試料が不用意に湾曲するのを防止することができる。また、この作製方法では、試料の一面側と他面側の両面から削り加工するので、試料に対して所定箇所にある観察部位が得られるよう、所望の削り加工が行える。
本発明では、請求項1または2に記載の透過電子顕微鏡用試料の作製方法において、前記補強層を形成する工程が、電子ビームまたはアルゴンイオンビームの照射によるデポジションによって、前記試料の一面に炭素からなる補強層を形成することが好ましい。
この場合、炭素によって補強層を形成しており、炭素は電子の透過性がよいため、数百kvの電圧をかけて行う通常の透過電子顕微鏡による観察を行う際に支障を来たさない。また、電子ビームまたはアルゴンイオンビームによるデポジションであるため、イオン源としてガリウムを利用する集束イオンビームを用いる場合に比べて、ガリウム等のような比較的重い元素が補強層に侵入することがなく、この点においても、透過電子顕微鏡による観察に支障を来たさない。ちなみに、ガリウム等の重い元素では、炭素等の軽い元素に比べて電子の透過性が劣る。
また、本発明では、請求項1〜3のいずれか1項記載の透過電子顕微鏡用試料の作製方法において、前記試料の他面を削り加工する工程の後に、前記補強層を除去する工程を備えることが好ましい。
この場合、透過電子顕微鏡による観察時において、残存する補強層が画像のコントラストを悪化させる際には、この補強層を取り除くことができ、観察時においてより鮮明な画像を得ることができる。
本発明の透過電子顕微鏡用試料では、互いに平行をなすように形成された一面側及び他面側に対してそれぞれ観察面が露出するよう削り加工された薄膜状の試料と、該試料の一面側に形成された観察面に形成された補強層と、を備えることを特徴とする。
本発明によれば、薄膜状の試料の一面に補強層を形成し、この補強層によって試料自体を補強しているため、例え試料厚さを薄く削ったところで、試料は湾曲せず平板状に保たれる。したがって、例えば厚さが30nm程度の所望の極薄の試料を作製することができる。
また、本発明では、請求項5記載の透過電子顕微鏡用試料において、前記補強層が、電子ビームまたはアルゴンイオンビームが照射されることによって形成された炭素から構成されることが好ましい。
この場合、補強層にガリウム等の比較的重い元素が侵入することがなく、しかも、炭素は電子の透過性が良いため、当該試料を透過電子顕微鏡によって観察する際に、補強層が残存することによる影響を軽減できる。
また、本発明では、請求項6記載の透過電子顕微鏡用試料において、前記補強層が、前記試料の一面側の観察面全域に渡って形成されていることが好ましい。
この場合、観察面全域に渡って補強層を形成するため、補強層の形成が容易である。
また、本発明では、請求項6記載の透過電子顕微鏡用試料において、前記補強層が、前記試料の一面側の観察面の外周部に沿ってリブ状に形成されていることが好ましい。
この場合、必要な部分だけをリブ状の補強層により補強するため、透過電子顕微鏡によって観察する際に、補強層が残存することの影響をより軽減することができる。
本発明によれば、例え試料厚さを薄く削ったところで、試料は湾曲せず平板状に保たれる。この結果、試料を所望する薄さ、例えば厚さが30nm程度となるまで削り加工することができる。また、試料にスリットを設けないため、観察領域が失われることもない。
以下、本発明の透過電子顕微鏡用試料及び透過電子顕微鏡用試料の作製方法の実施の形態を図面を参照しつつ説明する。
図1は本実施形態の透過電子顕微鏡用試料の平面図、図2は透過電子顕微鏡用試料の正面図であって、(a)は補強層を薄膜状の試料の一面側全域に形成した例を示す図、(b)は補強層を薄膜状の試料の一面側の一部分に形成した例を示す図である。
図1に示すように、本実施形態の透過電子顕微鏡用試料100は、薄膜状の試料1と薄膜状の試料の一面側に形成された補強層2とを有する。
薄膜状の試料1は、例えば、半導体や磁気ヘッド等の微細パターンから所要範囲を削りだされて構成されるものである。この薄膜状の試料1は、左右両側端にある厚肉部11,11と中央に薄く形成された薄肉部12とを備える。薄膜状の試料1の深さDは、例えば5μm〜10μmに設定される。
厚肉部11は被把持部分であって、この部分を図示せぬ極小のピンセット等で把持されることにより、当該試料1が削りだされた箇所から図示せぬホルダまで移動される。また、厚肉部11は、薄肉部12を平板状に保つ機能も併せ持つ。厚肉部11の厚さTは、例えば0.5μm〜3μm程度に設定される。
薄肉部12は、透過電子顕微鏡によって観察される部分である。この薄肉部12の一面側及び他面側には、互いに平行をなす観察面12a、12bがそれぞれように形成されている。これら観察面12a、12bは、当初略直方体状に形成された試料が、その一面側及び他面側を、観察したい部位の極近傍まで至るように、それぞれ集束イオンビームによってエッチング(削り)加工が施されることにより形成される部分である。この薄肉部12の厚さSは50nm〜100nm程度に設定され、また幅Wは3μm〜10μm程度に設定される。
図2に示すように、該試料1の一面側に形成された観察面12a上には前記補強層2が形成されている。補強層2は、電子ビームまたはアルゴンイオンビームが照射されることによって形成されたカーボンデポジションから構成される。補強層2の厚さMは、例えば30nm〜50nm程度に設定される。補強層2としては、図2(a)に示すように、試料1の一面側の観察面12a全域に渡って形成される場合と、図2(b)に示すように、試料1の一面側の観察面12aの一部のみに形成される場合とがある。図2(b)の例では、観察面12aの外周部に沿ってリブ状に形成されているが、観察面12aの一部に形成される場合は、これに限られることなく、リブ状部分が互いに所定間隔をかけて縞状を形成するように、あるいは格子状を形成するように設けられても良い。
次に、上記透過電子顕微鏡用試料の作製方法について説明する。透過電子顕微鏡用試料の作製方法を説明する前に、この制作方法に用いられる集束イオンビーム装置について説明する。図3は、集束イオンビーム加工装置の概要を示し、図において符号21はイオン源、22はイオンビーム、23は静電光学系、24は試料ホルダ、25は試料ステージをそれぞれ示す。試料ホルダ24には透過電子顕微鏡用試料100が固定される。26は電子源、27は電子ビーム、28は電磁光学系、29はガス銃、31は二次荷電粒子、32は二次荷電粒子検出器をそれぞれ示す。また、34はSEM/SIM切換器、35はディスプレイを示す。ここでSEMとは走査電子顕微鏡であり、SIMは走査イオン顕微鏡を意味している。
次いで、透過電子顕微鏡用試料100の具体的な作製方法について説明する。まず、半導体や磁気ヘッド等の微細パターンから所要範囲を削り出されてなる、加工対象である薄膜状の試料1を、図示せぬホルダを介して試料ホルダ24上に載置する。次いで、試料室が図示しない真空装置によって真空に引かれる。これと同時に、図示しない駆動機構によって試料ステージ25が所望の位置角度に設定される。駆動機構は一般にX.Y.Z方向変位とイオンビーム軸回転とイオンビーム軸に対する角度調整が出来るものとなっている。
薄膜状の試料1に対して加工領域が決定されると、試料1の左右両側端にある厚肉部11となる部分のイオンビームによる損傷防止のため、その部分にガス銃29からCVDガスを吹き付けると共にイオンビームを照射して金属保護膜を成膜する。
次に、図4に示すように、試料1の一面側および他面側のそれぞれの加工領域にイオンビーム22を照射させてスパッタリングによって、削り加工を施す。その際のイオンビーム22と試料1の相対変位は静電光学系23の偏向手段によるイオンビームの走査によって行い、駆動装置は使わない。この理由は、加工がミクロンメートルオーダーの精密加工であるためである。最初は加工時間を短くするためイオンビーム電流を大きくとりスパッタレートを大きくして荒削りの粗加工をし、最終的にサンプルとなる領域近傍でイオン電流を下げ精密加工を施す。
このように試料1を両面側から削り加工するとき、試料1の一面側は観察面12aが露出するまで、つまり、削り加工する最終段階まで加工する。一方、試料1の他面側は、観察面12bが露出する手前まで、つまり最終の削り加工を残した状態で一旦停止する(図5参照)。このときの試料の厚さは例えば50nm〜100nm程度である。
次に、図6に示すように、試料1の観察面12aが露出する一面側に、試料を補強するための補強層2を形成する。この補強層2の形成は、フェナントレンC1410等のようなCVDガスを吹き付けながら電子ビームの照射によるカーボンのデポジションによって形成する。なお、電子ビームに代わりアルゴン等の不活性ガスイオンビームを照射し、カーボンのデポジションによって補強層2を形成してもよい。この場合、装置としては、アルゴンイオン等を照射するための鏡筒が別途必要になる。
補強層2は、図2(a)に示すように、試料1の一面側の観察面12a全域に渡って形成してもよく、また、図2(b)に示すように、試料1の一面側の観察面12aの一部のみに形成してもよい。
次に、図7に示すように、試料1の削り加工を一旦停止した他面側に、イオンビームを照射させてスパッタリングにより、観察面12bが露出するまで、つまり最終段階まで削り加工する。このとき、このとき、前述したように、試料1の一面側に補強層2を形成し、この補強層2によって試料1自体の補強を行っている。このため、例え試料厚さを薄く削リ込んだところで、試料1が湾曲せず平板状に保たれる。したがって、試料の他面側をイオンビームにより削り加工する際に、所望の観察面12bまで達するように、スムースに削り加工することができる。この結果、図1、図2に示したように、例えば厚さが30nm程度の所望の極薄の試料1を作製することができる。
また、上記集束イオンビーム装置の場合、試料面の観察用にイオンビームとは異なる方向から電子ビームを試料に照射できるようになっており、これによってイオンビームによる損傷が問題となる透過電子顕微鏡用の試料100には電子ビーム27を走査して二次荷電粒子検出器32により二次荷電粒子(電子)31を検出し電子顕微鏡像を装置から取り出すことなく観察できる。また、SEM像とSIM像は試料から放出される二次荷電粒子の種類が異なるため、異なる解像度の映像が得られるので、双方の像をディスプレイ34上に比較表示することもできる。
ここで、透過電子顕微鏡用の試料100のSEM像を得るにあたり該試料100に電子を照射し透過し観察するときに、補強層2は炭素によって構成されていて、電子の透過性がよいため、該補強層2が残存することによる影響は極めて少ない。加えて、補強層2を形成するのに、ガリウムのイオンビームを照射するのではなく、電子ビームまたはアルゴンイオンビームを照射することによって形成しているため、補強層2にガリウム等の比較的重い元素が侵入することがなく、この点においても、当該試料100を透過電子顕微鏡によって観察する際に、補強層2が残存することによる影響を軽減できる。
なお、補強層が透過電子顕微鏡による観察時において、残存する補強層が画像のコントラストを悪化させる際には、この補強層2を取り除くこともできる。この場合、公知のイオンクリーナで除去すればよい。
なお、上述した実施形態はあくまで本発明の例示であり、発明の要旨を逸脱しない範囲で適宜変更可能である。
例えば、前記実施形態では、補強層2を炭素(カーボン)で形成したが、これに限られることなく、プラチナあるいはシリコン酸化物によって補強層2を形成してもよい。この場合、補強層の材料として重い元素を利用する場合には、図2(b)に示すようなリブ状の補強層とするのが好ましい。
また、補強層2を形成するのに、電子ビームや不活性ガスイオンビームを利用したが、これに限られることなく、集束イオンビームを用いてもよい。この場合にも、図2(b)に示すようなリブ状の補強層とするのが好ましい。
また、図7に示す状態から、さらに薄膜状の試料1の他面側を削り加工する場合には、該試料の他面側に新たに補強層を形成し、この状態で、試料1の一面側にイオンビームを照射して削り加工すればよい。
本発明に係る実施形態の透過電子顕微鏡用試料を示す平面図である。 本発明に係る実施形態の透過電子顕微鏡用試料を示し、(a)は補強層を薄膜状の試料の一面側全域に形成した例を示す図、(b)は補強層を薄膜状の試料の一面側の一部分に形成した例を示す図である。 本発明に係る実施形態の透過電子顕微鏡用試料の作製方法を実施する上で用いる集束イオンビーム装置を示す断面図である 本発明に係る実施形態の透過電子顕微鏡用試料の作製方法を説明する工程図である。 本発明に係る実施形態の透過電子顕微鏡用試料の作製方法を説明する工程図である。 本発明に係る実施形態の透過電子顕微鏡用試料の作製方法を説明する工程図である。 本発明に係る実施形態の透過電子顕微鏡用試料の作製方法を説明する工程図である。
符号の説明
1 薄膜状の試料
2 補強層
12a 観察面
12b 観察面
22 イオンビーム
27 電子ビーム
100 透過電子顕微鏡用試料

Claims (8)

  1. 薄膜状の試料の一面に該試料を補強するための補強層を形成する工程と、
    前記試料の他面側からイオンビームを照射して、該試料の他面を観察面が露出するまで削り加工する工程と、
    を備えることを特徴とする透過電子顕微鏡用試料の作製方法。
  2. 薄膜状の試料の一面側からイオンビームを照射して、該試料の一面を観察面が露出するまで削り加工する工程と、
    該試料の削り加工した一面に該試料を補強するための補強層を形成する工程と、
    前記試料の他面側からイオンビームを照射して、該試料の他面を観察面が露出するまで削り加工する工程と、
    を備えることを特徴とする透過電子顕微鏡用試料の作製方法。
  3. 前記補強層を形成する工程が、電子ビームまたはアルゴンイオンビームの照射によるデポジションによって、前記試料の一面に炭素からなる補強層を形成することを特徴とする請求項1または2記載の透過電子顕微鏡用試料の作製方法。
  4. 前記試料の他面を削り加工する工程の後に、前記補強層を除去する工程を備えることを特徴とする請求項1〜3のいずれか1項記載の透過電子顕微鏡用試料の作製方法。
  5. 互いに平行をなすように形成された一面側及び他面側に対してそれぞれ観察面が露出するよう削り加工された薄膜状の試料と、
    該試料の一面側の観察面に形成された補強層と、
    を備えることを特徴とする透過電子顕微鏡用試料。
  6. 前記補強層は、電子ビームまたはアルゴンイオンビームが照射されることによって形成された炭素から構成されることを特徴とする請求項5記載の透過電子顕微鏡用試料。
  7. 前記補強層は、前記試料の一面側の観察面全域に渡って形成されていることを特徴とする請求項6記載の透過電子顕微鏡用試料。
  8. 前記補強層は、前記試料の一面側の観察面の外周部に沿ってリブ状に形成されていることを特徴とする請求項6記載の透過電子顕微鏡用試料。
JP2008042398A 2008-02-25 2008-02-25 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料 Pending JP2009198412A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042398A JP2009198412A (ja) 2008-02-25 2008-02-25 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042398A JP2009198412A (ja) 2008-02-25 2008-02-25 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料

Publications (1)

Publication Number Publication Date
JP2009198412A true JP2009198412A (ja) 2009-09-03

Family

ID=41142044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042398A Pending JP2009198412A (ja) 2008-02-25 2008-02-25 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料

Country Status (1)

Country Link
JP (1) JP2009198412A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466577A (zh) * 2010-11-03 2012-05-23 中芯国际集成电路制造(上海)有限公司 物理检测样品制取方法
JP2012252004A (ja) * 2011-06-03 2012-12-20 Fei Co Tem画像化用の薄い試料を作製する方法
CN103196718A (zh) * 2013-03-14 2013-07-10 上海华力微电子有限公司 Tem样品的制备方法
JP2013164345A (ja) * 2012-02-10 2013-08-22 Hitachi High-Tech Science Corp Tem観察用試料作製方法
DE102013102537A1 (de) 2012-03-22 2013-09-26 Hitachi High-Tech Science Corp. Proben-vorbereitungsverfahren
US8822921B2 (en) 2011-06-03 2014-09-02 Fei Company Method for preparing samples for imaging
JP2014216365A (ja) * 2013-04-23 2014-11-17 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法
US8912490B2 (en) 2011-06-03 2014-12-16 Fei Company Method for preparing samples for imaging
CN104422605A (zh) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 一种tem样品的制备方法
JP2016504599A (ja) * 2013-01-11 2016-02-12 エフ・イ−・アイ・カンパニー エッチング速度を変化させるためのイオン注入
JP2017096735A (ja) * 2015-11-24 2017-06-01 日本電子株式会社 薄膜試料加工方法
JP2017187387A (ja) * 2016-04-06 2017-10-12 住友ゴム工業株式会社 薄膜試料調製方法
CN107860620A (zh) * 2016-09-22 2018-03-30 中芯国际集成电路制造(上海)有限公司 一种透射电子显微镜样品及其制备方法
JP2018165647A (ja) * 2017-03-28 2018-10-25 株式会社日立ハイテクサイエンス 試料トレンチ埋込方法
CN110579495A (zh) * 2019-10-23 2019-12-17 长江存储科技有限责任公司 一种tem样品及其制备方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102466577A (zh) * 2010-11-03 2012-05-23 中芯国际集成电路制造(上海)有限公司 物理检测样品制取方法
US8859963B2 (en) 2011-06-03 2014-10-14 Fei Company Methods for preparing thin samples for TEM imaging
JP2012252004A (ja) * 2011-06-03 2012-12-20 Fei Co Tem画像化用の薄い試料を作製する方法
US9111720B2 (en) 2011-06-03 2015-08-18 Fei Company Method for preparing samples for imaging
US9279752B2 (en) 2011-06-03 2016-03-08 Fei Company Method for preparing thin samples for TEM imaging
US8912490B2 (en) 2011-06-03 2014-12-16 Fei Company Method for preparing samples for imaging
EP2530700A3 (en) * 2011-06-03 2014-02-26 FEI Company Method for preparing thin samples for TEM imaging
US8822921B2 (en) 2011-06-03 2014-09-02 Fei Company Method for preparing samples for imaging
JP2013164345A (ja) * 2012-02-10 2013-08-22 Hitachi High-Tech Science Corp Tem観察用試料作製方法
JP2013195380A (ja) * 2012-03-22 2013-09-30 Hitachi High-Tech Science Corp 試料作製方法
DE102013102537A1 (de) 2012-03-22 2013-09-26 Hitachi High-Tech Science Corp. Proben-vorbereitungsverfahren
US9260782B2 (en) 2012-03-22 2016-02-16 Hitachi High-Tech Science Corporation Sample preparation method
DE102013102537B4 (de) 2012-03-22 2022-10-06 Hitachi High-Tech Science Corp. Proben-vorbereitungsverfahren
US10325754B2 (en) 2013-01-11 2019-06-18 Fei Company Ion implantation to alter etch rate
JP2016504599A (ja) * 2013-01-11 2016-02-12 エフ・イ−・アイ・カンパニー エッチング速度を変化させるためのイオン注入
CN103196718B (zh) * 2013-03-14 2015-06-17 上海华力微电子有限公司 Tem样品的制备方法
CN103196718A (zh) * 2013-03-14 2013-07-10 上海华力微电子有限公司 Tem样品的制备方法
JP2014216365A (ja) * 2013-04-23 2014-11-17 大日本印刷株式会社 ナノインプリントリソグラフィ用マスクの製造方法
CN104422605A (zh) * 2013-08-27 2015-03-18 中芯国际集成电路制造(上海)有限公司 一种tem样品的制备方法
JP2017096735A (ja) * 2015-11-24 2017-06-01 日本電子株式会社 薄膜試料加工方法
JP2017187387A (ja) * 2016-04-06 2017-10-12 住友ゴム工業株式会社 薄膜試料調製方法
CN107860620A (zh) * 2016-09-22 2018-03-30 中芯国际集成电路制造(上海)有限公司 一种透射电子显微镜样品及其制备方法
CN107860620B (zh) * 2016-09-22 2020-07-28 中芯国际集成电路制造(上海)有限公司 一种透射电子显微镜样品及其制备方法
JP2018165647A (ja) * 2017-03-28 2018-10-25 株式会社日立ハイテクサイエンス 試料トレンチ埋込方法
CN110579495A (zh) * 2019-10-23 2019-12-17 长江存储科技有限责任公司 一种tem样品及其制备方法

Similar Documents

Publication Publication Date Title
JP2009198412A (ja) 透過電子顕微鏡用試料の作製方法及び透過電子顕微鏡用試料
US7002152B2 (en) Sample preparation for transmission electron microscopy
US7276691B2 (en) Ion beam device and ion beam processing method
US6417512B1 (en) Sample distortion removing method in thin piece forming
JP4699168B2 (ja) 電子顕微鏡用試料の作製方法
JP2010230672A (ja) 試料をミリングしながら像を生成する方法
KR102056507B1 (ko) 하전 입자 빔 장치 및 시료 관찰 방법
US9082587B2 (en) Method and apparatus for ion beam polishing
CN104737266B (zh) 带电粒子束装置以及试样制作方法
US20040129897A1 (en) Sample manufacturing apparatus
JP3711018B2 (ja) Tem試料薄片化加工方法
US20010045525A1 (en) Shaped and low density focused ion beams
JP6974820B2 (ja) 荷電粒子ビーム装置、試料加工方法
JP2007193977A (ja) 荷電ビーム装置及び荷電ビーム加工方法
US6527967B1 (en) Thin piece forming method
JP5323405B2 (ja) Tem試料作製方法、及びtem試料
US7317188B2 (en) TEM sample preparation from a circuit layer structure
US7180061B2 (en) Method for electron beam-initiated coating for application of transmission electron microscopy
JP3333731B2 (ja) 透過形電子顕微鏡用薄片試料作製方法
JP2011222426A (ja) 複合荷電粒子ビーム装置
JP4170048B2 (ja) イオンビーム装置およびイオンビーム加工方法
JP5862405B2 (ja) 透過電子顕微鏡用微小薄膜試料作製方法
EP3023763B1 (en) Specimen preparation device
JP2004191358A (ja) 複合荷電粒子ビームによる試料作製方法および装置
JP3106846U (ja) 荷電粒子線装置用試料ホールダ