JP2009192177A - 沸騰冷却装置 - Google Patents

沸騰冷却装置 Download PDF

Info

Publication number
JP2009192177A
JP2009192177A JP2008034981A JP2008034981A JP2009192177A JP 2009192177 A JP2009192177 A JP 2009192177A JP 2008034981 A JP2008034981 A JP 2008034981A JP 2008034981 A JP2008034981 A JP 2008034981A JP 2009192177 A JP2009192177 A JP 2009192177A
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
cooling device
heat exchange
boiling cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008034981A
Other languages
English (en)
Other versions
JP5194868B2 (ja
Inventor
Fumihiko Ishiguro
文彦 石黒
Hideto Kubo
秀人 久保
Takashi Fuji
敬司 藤
Hirohisa Kato
裕久 加藤
Yasunari Akiyama
泰有 秋山
Naomi Ohara
尚己 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2008034981A priority Critical patent/JP5194868B2/ja
Publication of JP2009192177A publication Critical patent/JP2009192177A/ja
Application granted granted Critical
Publication of JP5194868B2 publication Critical patent/JP5194868B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】被冷却流体が順次供給される熱交換部を備えた沸騰冷却装置において、被冷却流体を効率良く冷却する。
【解決手段】沸騰冷却装置10は、被冷却流体が流れる被冷却流体流路15と、被冷却流体を冷却する液冷媒が流れる冷媒流路16とが隔壁17で区画された熱交換部12を備えている。熱交換部12に供給された液冷媒は一部が沸騰した状態で熱交換部12から排出され、冷媒液化部で液化された後、再び冷媒流路16に供給されて循環使用される。冷媒流路16は、熱交換部12の冷媒出口と対応する部分が、熱交換部の冷媒入口と対応する部分より断面積が広く、途中の断面積も冷媒入口と対応する部分の断面積以上に形成されている。
【選択図】図1

Description

本発明は、沸騰冷却装置に係り、詳しくは流体を冷却する沸騰冷却装置に関する。
従来、内燃機関の排気ガス中のNOxを減少させる手段として、排気再循環(EGR)装置が広く使用されている。EGR装置では排気ガスの一部を吸気に混合させることにより、排気ガス中のNOxを減少させる。NOx生成量と燃焼温度は関係があり、燃焼温度が低温ほどNOx生成量が少なくなるので、EGRガス温度を低下させてから吸気に混合させる目的で、EGRガスを冷却するEGRクーラーが設けられている。一般にEGRクーラーは、EGRガスをエンジン冷却水の一部を利用して冷却する方式である。
EGRクーラーとして、エンジン冷却系から独立させて、EGRガス冷却用の冷媒を強制循環させずにEGRガスの冷却を行うものが提案されている(特許文献1参照)。特許文献1のEGRクーラーは、図11(a)に示すように、排気系から吸気系に還流されるEGRガスと冷媒を熱交換させる沸騰式のエバポレータ61と、エンジン冷却系から独立して設けられてエバポレータ61で発生した蒸気を外気との熱交換で凝縮させるコンデンサ62とを備えている。また、コンデンサ62をエバポレータ61より高所に配設している。そして、コンデンサ62の底部から延びる復路63の先端をエバポレータ61に接続する一方、エバポレータ61の頂部から延びる往路64の先端を復路63との接続位置より離れた位置においてコンデンサ62に接続している。このEGRクーラーでは、冷媒の蒸発潜熱を利用してEGRガスを冷却する。また、沸騰して蒸気となった冷媒と、液体状態の冷媒の比重差を利用して、エバポレータ61とコンデンサ62との間で、冷媒を自然循環させるようにしている。
また、過度に冷媒量を増量することなく、放熱器に近い発熱体取付け面でのバーンアウトを防止できる沸騰冷却装置が提案されている(特許文献2参照)。特許文献2の沸騰冷却装置は、図11(b)に示すように、横幅寸法(図11(b)の紙面と垂直方向の寸法)より厚み寸法(図11(b)の紙面の上下方向の寸法)が小さい扁平形状に設けられ、内部に液冷媒を貯留する冷媒槽71と、冷媒槽71で発熱体72の熱を受けて沸騰した冷媒蒸気を外部流体(例えば空気)との熱交換によって凝縮液化させる放熱器73とを備えている。冷媒槽71は、厚み方向の上側壁面71aが冷媒槽71の長さ方向で放熱器73側が高くなる傾斜面として設けられ、略水平な下側壁面71bとの距離が冷媒槽71の先端側から放熱器73側に向かって次第に大きくなるテーパ形状に設けられている。冷媒槽71の内部には、2枚の仕切り板74によって冷媒室と液戻り通路とが形成されている。2枚の仕切り板74は、冷媒槽71の下側壁面71bに取り付けられる発熱体72の両外側に設置され、仕切り板74と冷媒槽71の底面との間には所定の隙間75が確保されている。
特開2003−278607号公報 特開2000−65455号公報
沸騰冷却では、冷却すべき対象物、即ち被冷却物を冷却する際に、液冷媒が沸騰して蒸気化しながら冷却するため、液冷媒が沸騰せずに、単に液冷媒と被冷却物との温度差によって冷却を行う方式に比較して冷却装置の体格が同じでも冷却能力が向上する。しかし、沸騰冷却では、冷媒流路が冷媒蒸気により満たされ、熱交換面に液冷媒が供給されない状態になると、著しく熱交換機能(性能)が悪化するといった課題がある。
特許文献1には、エンジン冷却系から独立させて、しかも、EGRガス冷却用の冷媒を強制循環させずにEGRガスの冷却を行う構成については記載されているが、前記の課題に関しては何ら配慮がなされていない。
一方、特許文献2の沸騰冷却装置は、冷媒槽71に放熱器73が連結されるとともに、発熱体72(被冷却体)が冷媒槽71の下側壁面71bに取り付けられる構成である。特許文献2では、発熱体72の熱で沸騰して発生した気泡が順次放熱器73側へ流れて、放熱器73に近い方の発熱体取付け面に気泡が充満することを防止するため、冷媒槽71の放熱器73に近くなる程、下側壁面71bと上側壁面71aとの距離を大きくして冷媒量が多くなるように冷媒槽71を形成している。そして、冷媒槽71の厚さを放熱器73からの距離に関係なく一定にしたのでは、冷媒槽71内の冷媒量が過度に増量するため、放熱器73から遠い方の厚さを小さくしている。
しかしながら、特許文献2は固体の被冷却媒体(発熱体72)を冷却するための装置であり、流体の被冷却媒体を冷却するための装置ではない。
本発明は、前記従来の問題に鑑みてなされたものであって、その目的は、被冷却流体が順次供給される熱交換部を備えた沸騰冷却装置において、被冷却流体を効率良く冷却することができる沸騰冷却装置を提供することにある。
前記の目的を達成するため、請求項1に記載の発明は、被冷却流体が流れる被冷却流体流路と、前記被冷却流体を冷却する液冷媒が流れる冷媒流路とが隔壁で区画された熱交換部を備え、前記熱交換部に供給された液冷媒は一部が沸騰した状態で熱交換部から排出され、冷媒液化部で液化された後、再び前記冷媒流路に供給されて循環使用される沸騰冷却装置である。そして、前記冷媒流路は、前記熱交換部において、前記熱交換部の冷媒出口側が、前記熱交換部の冷媒入口側より断面積が広くなる部分が存在するように形成されている。
この発明では、液冷媒が冷媒流路を流れる間に、被冷却流体の熱により一部が沸騰する状態になる。そして、液状の冷媒と気体状の冷媒とが混合した状態、即ち液冷媒中に気泡が存在する状態で冷媒流路を冷媒出口に向かって移動する。気泡は冷媒流路の下流に行くに従って大きくなったり、数が増えたりする。冷媒流路の断面積が一定の場合、気泡が冷媒流路と被冷却液体流路との隔壁に付着し易くなったり、冷媒出口から気泡が排出され難くなったりする。しかし、冷媒流路は、前記熱交換部において、前記熱交換部の冷媒出口側が、前記熱交換部の冷媒入口側より断面積が広くなる部分が存在するように形成されているため、発生した気泡が冷媒出口から排出され易くなり、気泡が隔壁に付着したままになったり、冷媒流路内が気泡で満たされたりする状態になるのが防止される。したがって、被冷却流体が順次供給される熱交換部を備えた沸騰冷却装置において、被冷却流体を効率良く冷却することができる。
請求項2に記載の発明は、請求項1に記載の発明において、前記冷媒流路は、前記熱交換部において、前記熱交換部の冷媒出口と対応する部分が、前記熱交換部の冷媒入口と対応する部分より断面積が広く、かつ途中の断面積も前記冷媒入口と対応する部分の断面積以上に形成されている。この発明では、冷媒流路の断面積は、冷媒入口と対応する部分の断面積が最も小さくなっているため、発生した気泡が冷媒出口からより排出され易くなり、気泡が隔壁に付着したままになったり、冷媒流路内が気泡で満たされたりする状態になるのが防止される。
請求項3に記載の発明は、請求項1又は請求項2に記載の発明において、前記熱交換部における前記冷媒流路は真っ直ぐな部分において、前記冷媒出口側の断面積が前記冷媒入口側の断面積以上に形成されている。なお、「冷媒流路の真っ直ぐな部分」とは、冷媒流路が例えば折り返したり屈折したりしていない部分のことを指している。さらに、流路断面積が一定であることを示しているわけではなく、ラッパ形状のように流路断面積が下流側に向けて大きくなるものも含めるものとする。したがって、この発明では、冷媒流路は真っ直ぐな部分において、下流側の断面積が上流の断面積と同じか大きくなるため、発生した気泡が冷媒出口から排出され易くなる。
請求項4に記載の発明は、請求項1〜請求項3のいずれか一項に記載の発明において、前記液冷媒は強制循環手段により強制循環されて使用される。液冷媒を熱交換部と冷媒液化部との間で循環使用する場合、熱交換部を冷媒液化部の配置位置より下方に配置し、熱交換部の冷媒入口を冷媒出口より下方に配置することにより、強制循環を行わなくても、液冷媒は熱交換部と冷媒液化部との間を自然循環する。しかし、自然循環では、循環速度を希望の速度にしたり、冷却能力を急に高めたり、低下させたりすることが難しい。この発明では、液冷媒は強制循環手段により強制循環されて使用されるため、循環速度を目的の値に設定したり、循環速度を変更したりすることが容易になる。
請求項5に記載の発明は、請求項1〜請求項4のいずれか一項に記載の発明において、前記熱交換部において、前記冷媒出口側の熱交換面積が前記冷媒入口側の熱交換面積よりも広くなる部分が存在するように形成されている。この発明では、冷媒出口側即ち下流側の熱交換能力も向上させることができる。
請求項6に記載の発明は、請求項1〜請求項5のいずれか一項に記載の発明において、前記冷媒流路は複数設けられている。したがって、冷媒流路が一つの場合に比べて、熱交換部の体積当たりの冷却効率が良くなる。
請求項7に記載の発明は、請求項6に記載の発明において、前記冷媒流路は扁平な冷媒流路が複数、間隔を空けて厚さ方向において隣接する状態で設けられている。この発明では、冷媒流路を複数のパイプで構成する場合に比べて、構成が簡単になる。
請求項8に記載の発明は、請求項7に記載の発明において、前記各冷媒流路は、厚さが一定で幅が変化している。この発明では、熱交換部を高さが一定のケースに収容し易くなる。
請求項9に記載の発明は、請求項7に記載の発明において、前記各冷媒流路は、厚さ及び幅が前記冷媒出口側に向かって大きくなるように変化している。この発明では、冷媒流路内で発生した気泡が、冷媒流路の冷媒出口へ向かって移動し易くなり、冷媒出口からより排出され易くなる。
請求項10に記載の発明は、請求項1〜請求項9のいずれか一項に記載の発明において、前記各冷媒流路は、前記冷媒入口から前記冷媒出口に至る経路の途中に折り返し部を有する。したがって、この発明では、冷媒流路を直線状に形成する場合に比べて、装置全体をコンパクトに形成することができる。
請求項11に記載の発明は、請求項1〜請求項10のいずれか一項に記載の発明において、前記冷媒流路の冷媒入口に連結されている入口配管は、冷媒出口に連結されている出口配管より径が小さく形成されている。冷媒流路の冷媒入口は、冷媒出口に比べて小さく形成される。冷媒入口及び冷媒出口の大きさが異なっても同じ径の配管を使用する場合もあるが、その場合は入口部分で乱流が生じ易くなる。この発明では、入口配管及び出口配管に同じ径の配管を使用する場合に比べて、入口部分で乱流が生じ難くなる。
請求項12に記載の発明は、請求項6に記載の発明において、前記冷媒流路は複数の管で構成され、前記被冷却流体流路が前記複数の管の周囲を囲繞するように設けられている。この発明では、冷媒流路の断面積が同じ場合、冷媒流路を1本の管で形成した場合に比べて、冷媒流路と被冷却流体流路との隔壁の表面積が大きくなり、熱交換効率が向上し易くなる。
本発明によれば、被冷却流体が順次供給される熱交換部を備えた沸騰冷却装置において、被冷却流体を効率良く冷却することができる。
(第1の実施形態)
以下、本発明を具体化した第1の実施形態を図1〜図3にしたがって説明する。
図1(a)に示すように、沸騰冷却装置10は、ハウジング11内に熱交換部12が設けられている。図1(b)に示すように、ハウジング11は、略直方体状に形成されている。ハウジング11には、熱交換部12を挟んで第1端部側に被冷却流体導入部13が設けられ、第2端部側に被冷却流体排出部14が設けられている。被冷却流体導入部13には図示しない被冷却流体供給源に接続される導入配管13aが設けられており、被冷却流体排出部14には冷却された被冷却流体を排出する排出配管14aが設けられている。
熱交換部12は、被冷却流体が流れる被冷却流体流路15と、被冷却流体を冷却する液冷媒が流れる冷媒流路16とが隔壁17で区画されている。
冷媒流路16は複数(この実施形態では5つ)設けられている。この実施形態では、冷媒流路16は扁平に形成され、かつ各冷媒流路16が間隔を空けて厚さ方向において隣接する状態で設けられている。詳述すると、冷媒流路16は、ハウジング11内に熱交換部12を区画するように設けられた前壁18と後壁19との間に、扁平な四角筒体20を一定間隔を置いて平行に密閉状態で固着することにより形成されている。四角筒体20の固着は、例えば溶接により行われている。
前壁18には、被冷却流体導入部13を前壁18と後壁19との間の空間に連通させる長孔18aが各四角筒体20の固定位置を挟むようにそれぞれ平行に形成されている。後壁19には、被冷却流体排出部14を前壁18と後壁19との間の空間に連通させる長孔19aが各四角筒体20の固定位置を挟むようにそれぞれ平行に形成されている。そして、被冷却流体導入部13に導入された被冷却流体が長孔18aを介して熱交換部12に流入し、長孔19aを介して被冷却流体排出部14へ流出するようになっている。即ち、前壁18と後壁19との間の空間のうち四角筒体20の外側部分が被冷却流体流路15を構成する。また、各四角筒体20が被冷却流体流路15と冷媒流路16とを区画する隔壁17を構成する。
図2(a),(b)に示すように、四角筒体20の一方の側壁には、前壁18に近接して冷媒入口21が形成され、他方の側壁には冷媒出口22が形成されている。冷媒入口21は冷媒出口22より小さく形成されている。各冷媒入口21には入口配管23が連結され、冷媒出口22には出口配管24が連結されている。入口配管23及び出口配管24は、それぞれ径が冷媒入口21あるいは冷媒出口22の径に対応する大きさに形成されている。即ち、冷媒流路16の冷媒入口21に連結されている入口配管23は、冷媒出口22に連結されている出口配管24より径が小さく形成されている。
図2(a)に示すように、入口配管23は、冷媒液化部25の出口に連結された冷媒配管26aに連結されるようになっている。また、各出口配管24は、冷媒液化部25の入口に連結された冷媒配管26bに連結されるようになっている。図1(b)及び図2(a)に示すように、入口配管23及び出口配管24は、それぞれ冷媒配管26a及び冷媒配管26bに連結される部分から分岐された状態に形成されている。冷媒液化部25には、例えば公知の構成のコンデンサが使用される。また、冷媒配管26bの途中には、液冷媒を沸騰冷却装置10と冷媒液化部25との間で強制循環させる強制循環手段27が設けられている。強制循環手段27は例えばポンプが使用される。
各四角筒体20は厚さが一定に形成されている。また、各四角筒体20の内側には、図2(b)に示すように、冷媒流路16の幅が冷媒出口22側に向かって大きくなるように変化させる区画プレート28が設けられている。冷媒流路16は、冷媒入口21から冷媒出口22に至る経路の途中に折り返し部16aを有するように区画プレート28で区画されている。即ち、冷媒流路16は、熱交換部12の冷媒出口22と対応する部分(図2(b)の区画プレート28の基端と冷媒出口22で挟まれた部分)が、熱交換部の冷媒入口21と対応する部分(同じく区画プレート28基端と冷媒入口21で挟まれた部分)より断面積が広く、かつ途中の断面積も冷媒入口21と対応する部分の断面積以上に形成されている。また、熱交換部12における冷媒流路16は、真っ直ぐな部分において、冷媒出口22側の断面積が冷媒入口21側の断面積以上に形成されている。「冷媒流路の真っ直ぐな部分」とは、冷媒流路が例えば折り返したり屈折したりしていない部分のことを指している。即ち、熱交換部12において、冷媒出口22側(上流側)の熱交換面積が冷媒入口21側(下流側)の熱交換面積よりも広くなる部分が存在するように形成されている。
次に前記のように構成された沸騰冷却装置10を、例えば、ディーゼルエンジン車のEGR装置におけるEGRクーラーとして使用する場合の作用を説明する。
沸騰冷却装置10は、EGR通路の途中に、導入配管13aがEGR通路入口側に連結され、排出配管14aがEGR通路出口側に連結されて使用される。また、冷媒の循環経路を構成する冷媒配管26aに入口配管23が連結され、冷媒配管26bに出口配管24が連結される。冷媒として例えば水が使用される。
車両が運転されると、エンジンの排気ガスの一部がEGR通路にEGRガスとして供給され、EGRガスが沸騰冷却装置10に供給される。EGRガスは、導入配管13aから被冷却流体導入部13に導入された後、前壁18の長孔18aから熱交換部12の被冷却流体流路15内に流入する。そして、被冷却流体流路15内を後壁19の長孔19aに向かって進み、長孔19aから被冷却流体排出部14に流出するまでの間に、熱の一部が冷媒流路16の隔壁17を介して液冷媒に奪われて冷却される。冷却されたEGRガスは、排出配管14a及びEGR通路を介して吸気系に供給される。
一方、冷媒は、沸騰冷却装置10と冷媒液化部25との間を冷媒循環路を介して循環する。冷媒は強制循環手段27により強制的に循環される。冷媒液化部25から送り出された液状の冷媒、即ち液冷媒は、冷媒配管26aを介して沸騰冷却装置10へ導かれ、分岐部及び入口配管23を介して冷媒入口21から熱交換部12の冷媒流路16に流入する。図3に示すように、液冷媒は、冷媒流路16を流れる間に、被冷却流体の熱により一部が沸騰する状態になり、液状の冷媒と気体状の冷媒とが混合した状態、即ち液冷媒中に気泡29が存在する状態で冷媒流路16を冷媒出口22に向かって移動する。そして、気泡29が存在する状態の液冷媒が冷媒出口22から排出され、出口配管24及び冷媒配管26bを介して冷媒液化部25へ移動し、冷媒液化部25で蒸気が凝縮されて液冷媒になり、沸騰冷却装置10へ再循環される。
液冷媒は隔壁17を介して被冷却流体から熱を奪う。液冷媒は隔壁17と接触している部分が沸騰して蒸気となり、その蒸発潜熱として被冷却流体から熱を奪う。したがって、単純に被冷却液体と液冷媒との温度差で被冷却液体から液冷媒に熱が奪われる場合に比較して、効率良く被冷却液体が冷却される。冷媒の一部が蒸気になることにより、液冷媒中に気泡29が存在する状態になる。気泡29は冷媒流路16の下流に行くに従って大きくなったり、数が増えたりする。冷媒流路16の断面積が一定の場合、発生した気泡29が冷媒流路16と被冷却流体流路15との隔壁17に付着し易くなったり、冷媒出口22から気泡29が排出され難くなったりする。冷媒出口22から気泡29が排出され難くなると、冷媒流路16内の圧力が上昇し、冷媒の沸点が上昇して冷媒が沸騰し難くなり、蒸発潜熱で隔壁17を介して被冷却流体から熱を奪い難くなる。また、冷媒流路16内の気泡29の割合が多くなったり、気泡29が隔壁17に付着し易くなったりすると、熱交換面である隔壁17の表面に液冷媒が供給され難くなり、液冷媒が蒸発し難くなって蒸発潜熱として奪われる熱量が少なくなり、熱交換部12における熱交換機能が低下する。
しかし、この実施形態では、冷媒流路16は冷媒出口22と対応する部分が、熱交換部の冷媒入口21と対応する部分より断面積が広く、かつ途中の断面積も冷媒入口21と対応する部分の断面積以上に形成されている。そのため、発生した気泡29が冷媒出口22から排出され易くなり、気泡29が隔壁17に付着したままになったり、冷媒流路16内が気泡29で満たされる状態になったりするのが防止される。したがって、熱交換部12における熱交換が良好に行われる。
冷媒流路16を流れる冷媒中の気泡率が体積として80%以上になると、熱交換効率が急速に低下するため、気泡率が80%を超えないように、好ましくは70%以下になるように、冷媒流路16の長さ、形状あるいは冷媒の循環速度が設定されている。
この実施形態によれば、以下に示す効果を得ることができる。
(1)沸騰冷却装置10は、被冷却流体が流れる被冷却流体流路15と、被冷却流体を冷却する液冷媒が流れる冷媒流路16とが隔壁17で区画された熱交換部12を備え、熱交換部12に供給された液冷媒は一部が沸騰した状態で熱交換部12から排出され、冷媒液化部25で液化された後、再び冷媒流路16に供給されて循環使用される。そして、冷媒流路16は、熱交換部12において、冷媒出口22と対応する部分が、熱交換部12の冷媒入口21と対応する部分より断面積が広く、かつ途中の断面積も冷媒入口21と対応する部分の断面積以上に形成されている。したがって、冷媒流路16を流れる間に液冷媒の一部が沸騰して気泡29が発生しても、発生した気泡29が冷媒出口22から排出され易くなり、気泡29が隔壁17に付着したままになったり、冷媒流路16内が気泡29で満たされる状態になったりするのが防止され、被冷却流体を効率良く冷却することができる。
(2)液冷媒を熱交換部12と冷媒液化部25との間で循環使用する場合、熱交換部12を冷媒液化部25の配置位置より下方に配置し、熱交換部12の冷媒入口21を冷媒出口22より下方に配置することにより、液冷媒を熱交換部12と冷媒液化部25との間で自然循環させることは可能である。自然循環では、循環速度を希望の速度にしたり、冷却能力を急に高めたり、低下させたりすることが難しい。しかし、この実施形態では、沸騰冷却装置10は、液冷媒が強制循環手段27により強制循環されて使用されるため、循環速度を目的の値に設定したり、循環速度を変更したりすることが容易になる。
(3)沸騰冷却装置10には冷媒流路16が複数設けられている。したがって、冷媒流路16が一つの場合に比べて、熱交換部12の体積当たりの冷却効率が良くなる。
(4)冷媒流路16は扁平な冷媒流路16が複数、間隔を空けて厚さ方向において隣接する状態で設けられている。したがって、冷媒流路16を複数のパイプで構成する場合に比べて、構成が簡単になる。
(5)各冷媒流路16は、厚さが一定で幅が変化するように形成されているため、熱交換部12を高さが一定のケース(ハウジング11)に収容し易くなる。
(6)各冷媒流路16は、冷媒入口21から冷媒出口22に至る経路の途中に折り返し部16aを有する。したがって、冷媒流路16を直線状に形成する場合に比べて、沸騰冷却装置10全体をコンパクトに形成することができる。
(7)冷媒流路16の冷媒入口21に連結されている入口配管23は、冷媒出口22に連結されている出口配管24より径が小さく形成されている。冷媒流路16の冷媒入口21は、冷媒出口22に比べて小さく形成される。冷媒入口21及び冷媒出口22の大きさが異なっても同じ径の配管を使用する場合もあるが、その場合は入口部分で乱流が生じ易くなる。しかし、入口配管23の径を出口配管24の径より小さく形成した場合は、入口配管23及び出口配管24に同じ径の配管を使用する場合に比べて、入口部分で乱流が生じ難くなる。
(8)複数の冷媒流路16は、ハウジング11内に設けられた前壁18と後壁19との間に、扁平な四角筒体20を一定間隔を置いて平行に密閉状態で固着することにより形成されている。したがって、扁平な複数の冷媒流路16を、間隔を空けて冷媒流路16の厚さ方向において隣接する状態で設ける構成が容易にできる。
(9)沸騰冷却装置10は、車両のEGRクーラーに使用されているため、EGRガスを吸気系に低温で供給することができ、NOxの低減効果を向上させることができる。
(第2の実施形態)
次に第2の実施形態を図4〜図6にしたがって説明する。この実施形態では、冷媒流路16の形状及び配置が前記第1の実施形態と大きく異なっている。また、ハウジング11の形状も第1の実施形態と異なっている。第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。
図4及び図5に示すように、ハウジング11は、熱交換部12に対応する部分が円錐台状に形成され、熱交換部12を挟んで被冷却流体導入部13及び被冷却流体排出部14が設けられている。前壁18は円錐台形状のハウジング11の小径側端部に設けられ、後壁19はハウジング11の大径側端部に設けられている。前壁18と後壁19との間には、被冷却流体流路15を構成する複数(この実施形態では7本)の管(パイプ)30が、第1端部が被冷却流体導入部13に連通し、第2端部が被冷却流体排出部14に連通する状態で設けられている。各管30は径が一定に形成されている。そして、導入配管13aから被冷却流体導入部13に流入した被冷却流体は、管30を通って被冷却流体排出部14で合流し、排出配管14aを経て沸騰冷却装置10外へ排出されるようになっている。
ハウジング11の内側で前壁18及び後壁19に挟まれた空間のうち、管30の外側部分が冷媒流路16を構成する。即ち、冷媒流路16は、被冷却流体流路15を囲繞するように設けられている。この実施形態では管30が、被冷却流体流路15と冷媒流路16とを区画する隔壁17を構成する。管30が一定径で、熱交換部12が円錐台形状に形成されているため、冷媒流路16は、その断面積が、前壁18側から後壁19に向かって次第に増大するように形成されている。ハウジング11には、前壁18に近接して冷媒入口21が形成され、後壁19に近接して冷媒出口22が形成されている。即ち、冷媒流路16は、その断面積が、冷媒入口21側から冷媒出口22側に向かって次第に増大するように形成されている。即ち、冷媒流路16は冷媒出口22と対応する部分が、熱交換部の冷媒入口21と対応する部分より断面積が広く、かつ途中の断面積も冷媒入口21と対応する部分の断面積より広く形成されている。
冷媒入口21は冷媒出口22より小さく形成されている。冷媒入口21には入口配管23が連結され、冷媒出口22には出口配管24が連結されている。入口配管23及び出口配管24は、それぞれ径が冷媒入口21あるいは冷媒出口22の径に対応する大きさに形成されている。
この実施形態の沸騰冷却装置10も、前記第1の実施形態と同様に、EGR通路の途中において、導入配管13aがEGR通路入口側に連結され、排出配管14aがEGR通路出口側に連結されて使用される。また、冷媒の循環経路を構成する冷媒配管26aに入口配管23が連結され、冷媒配管26bに出口配管24が連結される。冷媒として例えば水が使用される。
図6に示すように、液冷媒は、入口配管23を介して冷媒入口21から冷媒流路16に流入した後、被冷却流体流路15の周囲を通って冷媒出口22側に向かって流れる。液冷媒は、冷媒流路16を流れる間に、管30に接触している部分が、被冷却流体の熱により一部が沸騰する状態になり、液冷媒中に気泡29が存在する状態で冷媒流路16を冷媒出口22に向かって移動する。そして、気泡29が存在する状態の液冷媒が冷媒出口22から排出され、出口配管24及び冷媒配管26bを介して冷媒液化部25へ移動し、冷媒液化部25で蒸気が凝縮されて液冷媒になり、沸騰冷却装置10へ再循環される。
この第2の実施形態によれば、第1の実施形態の(1),(2),(7),(9)の効果に加えて以下の効果を得ることができる。
(10)被冷却流体流路15は複数の管30で構成され、冷媒流路16が複数の管30の周囲を囲繞するように設けられている。したがって、被冷却流体流路15の断面積が同じ場合、被冷却流体流路15を1本の管で形成した場合に比べて、冷媒流路16と被冷却流体流路15との隔壁17の表面積が大きくなり、熱交換効率が向上し易くなる。
(11)各被冷却流体流路15を構成する管30として、一定径のパイプが使用されているため各管30として、径が第1端部から第2端部に向かって次第に大きくなるパイプを設ける場合に比べて構成が簡単になる。
(第3の実施形態)
次に第3の実施形態を図7及び図8にしたがって説明する。この実施形態では、複数の冷媒流路16が扁平に形成されている点は第1の実施形態と同じである。しかし、冷媒流路16の厚さが冷媒入口21側端部から冷媒出口22側端部に向かって次第に厚くなるように形成されることにより、熱交換部12の冷媒出口22と対応する部分が、熱交換部12の冷媒入口21と対応する部分より断面積が広く形成されている点が異なる。第1の実施形態と基本的に同一部分は同一符号を付して詳しい説明を省略する。
図7(a)に示すように、前壁18及び後壁19間には、幅が一定で、厚さが第1端部から第2端部に向かって次第に厚くなる四角筒体20が設けられている。図7(b)及び図8(a)に示すように、各四角筒体20の一方の側壁には、前壁18に近接して冷媒入口21が形成され、他方の側壁には後壁19に近接して冷媒出口22が形成されている。冷媒入口21は冷媒出口22より小さく形成されている。各冷媒入口21には入口配管23が連結され、冷媒出口22には出口配管24が連結されている。また、図8(a)に示すように、各四角筒体20には冷媒流路16を途中で折り返すように区画する区画プレート28は設けられていない。
この実施形態の沸騰冷却装置10も、前記第1の実施形態と同様にして使用される。そして、図8(a),(b)に示すように、冷媒入口21から冷媒流路16に流入した液冷媒は、冷媒流路16を流れる間に、被冷却流体の熱により一部が沸騰する状態になり、液状の冷媒と気体状の冷媒とが混合した状態、即ち液冷媒中に気泡29が存在する状態で冷媒流路16を冷媒出口22に向かって移動する。冷媒流路16に折り返し部16aが存在しないため、発生した気泡は各冷媒流路16内を冷媒流路16の断面積が小さい側(図8(a),(b)の左側)から断面積が大きい側に向かって流れ、冷媒出口22から出口配管24へ排出される。そして、気泡29が存在する状態の液冷媒が、出口配管24及び冷媒配管26bを介して冷媒液化部25へ移動し、冷媒液化部25で蒸気が凝縮されて液冷媒になり、沸騰冷却装置10へ再循環される。
この第2の実施形態によれば、第1の実施形態の(1)〜(4),(7),(9)の効果に加えて以下の効果を得ることができる。
(12)冷媒流路16は、幅が一定で厚さが、冷媒入口21側から冷媒出口22側に向かって次第に厚くなる形状で、途中に折り返し部16aが存在せずに真っ直ぐに形成されている。したがって、液冷媒中の気泡29が円滑に冷媒出口22に向かって移動し易くなる。
実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ 第2及び第3の実施形態のように、冷媒流路16に折り返し部16aが存在せず、冷媒が冷媒流路16内を熱交換部12の第1端部側から第2端部側に向かって進む構成において、冷媒の流れる方向が被冷却流体の流れる方向と逆方向になる構成にしてもよい。例えば、第2の実施形態の沸騰冷却装置10と同じ構造の沸騰冷却装置10において、図9(a)に示すように、熱交換部12の大径側に隣接する空間を被冷却流体導入部13とし、熱交換部12の小径側に隣接する空間を被冷却流体排出部14とする。この構成でも、冷媒入口21は熱交換部12の小径側端部に設けられ、冷媒出口22は熱交換部12の大径側端部に設けられる。したがって、冷媒流路16は、第2の実施形態と同様に、その断面積が、冷媒入口21と対応する部分から冷媒出口22と対応する部分に向かって次第に増大するように形成されている。この場合、第2の実施形態と同様の効果が得られる。また、第3の実施形態の沸騰冷却装置10を同様に、被冷却流体の沸騰冷却装置10に対する導入方向及び排出方向を逆に使用しても同様である。
○ 第2の実施形態のように、前壁18及び後壁19間に被冷却流体導入部13及び被冷却流体排出部14と連通するように管30を設けて被冷却流体流路15を構成するとともに、管30の外側を冷媒流路16とする構成において、ハウジング11を円筒状に形成し、管30を径が第1端部から第2端部に向かって小さくなる形状にする。そして、図9(b)に示すように、冷媒入口21を被冷却流体導入部13寄りに設け、冷媒出口22を被冷却流体排出部14寄りに設ける。この構成でも、冷媒流路16は、その断面積が、冷媒入口21と対応する部分から冷媒出口22と対応する部分に向かって次第に増大するように形成されているため、発生した気泡29が冷媒出口22から排出され易くなり、被冷却流体を効率良く冷却することができる。また、同じ冷却能力の熱交換部12を構成するのに必要なスペースを小さくできる。
○ 第2の実施形態のように被冷却流体流路15が複数の管30で形成された構成の沸騰冷却装置10と同様な構成で、図10に示すように、冷媒と被冷却流体の流れる流路を反対にした構成としてもよい。即ち、熱交換部12の第1端部側に冷媒導入部31を設け、第2端部側に冷媒排出部32を設ける。そして、前壁18と後壁19との間に管33を、第1端部が冷媒導入部31に連通し、第2端部が冷媒排出部32に連通する状態で設けて、複数の冷媒流路16を構成する。各管33は、第1端部が小径で第2端部が大径となるテーパ状に形成されており、各管33の第1端部が冷媒入口21になり、第2端部が冷媒出口22になる。前壁18及び後壁19で挟まれた空間のうち管33の外側部分が被冷却流体流路15を構成するため、被冷却流体流路15は1つになる。前壁18寄りに被冷却流体を被冷却流体流路15内に導入する導入配管13aが設けられ、後壁19寄りに排出配管14aが設けられる。
○ 図10に示すような、冷媒導入部31に導入された冷媒が複数の管33を通って排出される構成の場合、冷媒は、ハウジング11の中央付近に配置された管33を流れ易く、ハウジング11の壁面近くに配置された管33の流れが遅くなり易い。冷媒が全ての管33で均等に流れ易くなるように、図10に二点鎖線で示すように、案内部材34を設けてもよい。被冷却流体が被冷却流体導入部13を経て複数の管30を通る構成の場合も同様に、案内部材34を設けてもよい。
○ 第1の実施形態のように、扁平な四角筒体20の内部に区画プレート28を設けて冷媒流路16を折り返し状で、かつその幅が冷媒入口21側より冷媒出口22側が大きくなる構成にする場合、四角筒体20の厚さを一定ではなく、冷媒入口21側に比べて冷媒出口22側が厚くなるように構成してもよい。この場合、厚さ及び幅の一方のみ変化するようにした構成に比べて、気泡29が冷媒出口22から排出され易くなる。
○ 四角筒体20を前壁18と後壁19との間に固着する代わりに、前壁18、後壁19及びハウジング11の側壁に周囲を密封状態で固定した一対の平板と側壁とで1つの冷媒流路16を構成してもよい。そして、平板を複数対設けて複数の冷媒流路16を構成してもよい。しかし、四角筒体20を設ける方が組み付けが容易である。
○ 沸騰冷却装置10が、第1及び第3の実施形態のように、四角筒体20あるいは平板を用いて、複数の被冷却流体流路15及び複数の冷媒流路16を交互に積層状態となる構成の場合、被冷却流体導入部13及び被冷却流体排出部14を設けずに、各被冷却流体流路15毎に配管を連結して、被冷却流体の導入及び排出を行うようにしてもよい。
○ 冷媒入口21が冷媒出口22より小さく形成されている場合であっても、入口配管23及び出口配管24として冷媒出口22に合った同じ径の配管を使用してもよい。この場合、冷媒入口21及び冷媒出口22の径に合わせてそれぞれ異なる径の配管を準備する必要がない。
○ 冷媒流路16は、熱交換部12の冷媒出口22と対応する部分が、熱交換部12の冷媒入口21と対応する部分より断面積が広く、かつ途中の断面積も冷媒入口21と対応する部分の断面積以上に形成されていればよく、冷媒入口21を冷媒出口22より小さくする必要はなく、同じ大きさにしてもよい。
○ 第2の実施形態のように、複数の被冷却流体流路15を囲繞するように冷媒流路16が1つだけ設けられた構成の場合、冷媒入口21を1つではなく複数設ける方が、各被冷却流体流路15の周囲に均等に冷媒を供給し易い。
○ 扁平な四角筒体20あるいは一対の平板で冷媒流路16を構成する場合、冷媒流路16は複数に限らず、1つとしてもよい。
○ 管30,33は円筒状に限らず、例えば、三角筒状、四角筒状等の多角筒状あるいは楕円筒状であってもよい。
○ 管30,33は全て同じ物を使用する構成に限らない。例えば、冷媒流路16を構成する管33の場合、断面積が第1端部側(冷媒入口21側)から第2端部側(冷媒出口22側)に向かって大きくなる管であれば、断面積の異なる物を混合して使用したり、形状の異なる物を混合して使用したりしてもよい。また、被冷却流体流路15を構成する管30の場合、形状の異なる物を混合したり、断面積の異なる物を混合したり、テーパ状の管と一定径の管を混合したりしてもよい。
○ 冷媒は水に限らない。冷媒は被冷却流体の熱で沸騰する必要があるため、熱交換部12において被冷却流体の温度より低い沸点でなければならない。そして、冷却すべき被冷却流体の温度や目的の温度に冷却するために被冷却流体から除去すべき熱量によって、適切な冷媒が選択される。例えば、水に代えて、アルコールを使用したり、水とアルコールの混合液を使用したりしてもよい。
○ 沸騰冷却装置10は、EGRクーラーとして使用する場合に限らず、冷却を必要とする気体の冷却、あるいは液体の冷却に使用してもよい。
○ 冷媒流路16は下流に向うに連れて連続して断面積が順次大きくなる構成に限定されず、段階的に大きくなっても良い。
○ 冷媒流路16は冷媒出口付近で断面積が小さくなっても良い。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1〜請求項5のいずれか一項に記載の発明において、前記被冷却流体流路は複数の管で構成され、前記冷媒流路が前記複数の管の周囲を囲繞するように設けられている。
(2)請求項1〜請求項12及び前記技術的思想(1)のいずれか一項に記載の発明の沸騰冷却装置は車両のEGRクーラーである。
(a)は第1の実施形態における沸騰冷却装置の模式断面図、(b)は概略斜視図。 (a)は図1(b)のA−A線断面図、(b)は図1(b)のB−B線断面図。 冷媒の流れを示す模式図。 第2の実施形態における沸騰冷却装置の概略斜視図。 同じく模式断面図。 冷媒流路における気泡の状態を示す模式図。 (a)は第3の実施形態における沸騰冷却装置の模式断面図、(b)は(a)のC−C線断面図。 (a),(b)は冷媒流路における気泡の状態を示す模式図。 (a),(b)はそれぞれ別の実施形態における冷媒流路と被冷却流体流路の関係を示す模式図。 別の実施形態における冷媒流路と被冷却流体流路の関係を示す模式図。 (a)は従来技術の正面図、(b)は別の従来技術の側面図。
符号の説明
10…沸騰冷却装置、12…熱交換部、15…被冷却流体流路、16…冷媒流路、16a…折り返し部、17…隔壁、21…冷媒入口、22…冷媒出口、23…入口配管、24…出口配管、25…冷媒液化部、27…強制循環手段、33…管。

Claims (12)

  1. 被冷却流体が流れる被冷却流体流路と、前記被冷却流体を冷却する液冷媒が流れる冷媒流路とが隔壁で区画された熱交換部を備え、前記熱交換部に供給された液冷媒は一部が沸騰した状態で熱交換部から排出され、冷媒液化部で液化された後、再び前記冷媒流路に供給されて循環使用される沸騰冷却装置であって、
    前記冷媒流路は、前記熱交換部において、前記熱交換部の冷媒出口側が、前記熱交換部の冷媒入口側より断面積が広くなる部分が存在するように形成されていることを特徴とする沸騰冷却装置。
  2. 前記冷媒流路は、前記熱交換部において、前記熱交換部の冷媒出口と対応する部分が、前記熱交換部の冷媒入口と対応する部分より断面積が広く、かつ途中の断面積も前記冷媒入口と対応する部分の断面積以上に形成されている請求項1に記載の沸騰冷却装置。
  3. 前記熱交換部における前記冷媒流路は真っ直ぐな部分において、前記冷媒出口側の断面積が前記冷媒入口側の断面積以上に形成されている請求項1又は請求項2に記載の沸騰冷却装置。
  4. 前記液冷媒は強制循環手段により強制循環されて使用される請求項1〜請求項3のいずれか一項に記載の沸騰冷却装置。
  5. 前記熱交換部において、前記冷媒出口側の熱交換面積が前記冷媒入口側の熱交換面積よりも広くなる部分が存在するように形成されている請求項1〜請求項4のいずれか一項に記載の沸騰冷却装置。
  6. 前記冷媒流路は複数設けられている請求項1〜請求項5のいずれか一項に記載の沸騰冷却装置。
  7. 前記冷媒流路は扁平な冷媒流路が複数、間隔を空けて厚さ方向において隣接する状態で設けられている請求項6に記載の沸騰冷却装置。
  8. 前記各冷媒流路は、厚さが一定で幅が変化している請求項7に記載の沸騰冷却装置。
  9. 前記各冷媒流路は、厚さ及び幅が前記冷媒出口側に向かって大きくなるように変化している請求項7に記載の沸騰冷却装置。
  10. 前記各冷媒流路は、前記冷媒入口から前記冷媒出口に至る経路の途中に折り返し部を有する請求項1〜請求項9のいずれか一項に記載の沸騰冷却装置。
  11. 前記冷媒流路の冷媒入口に連結されている入口配管は、冷媒出口に連結されている出口配管より径が小さく形成されている請求項1〜請求項10のいずれか一項に記載の沸騰冷却装置。
  12. 前記冷媒流路は複数の管で構成され、前記被冷却流体流路が前記複数の管の周囲を囲繞するように設けられている請求項6に記載の沸騰冷却装置。
JP2008034981A 2008-02-15 2008-02-15 沸騰冷却装置 Expired - Fee Related JP5194868B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008034981A JP5194868B2 (ja) 2008-02-15 2008-02-15 沸騰冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008034981A JP5194868B2 (ja) 2008-02-15 2008-02-15 沸騰冷却装置

Publications (2)

Publication Number Publication Date
JP2009192177A true JP2009192177A (ja) 2009-08-27
JP5194868B2 JP5194868B2 (ja) 2013-05-08

Family

ID=41074355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008034981A Expired - Fee Related JP5194868B2 (ja) 2008-02-15 2008-02-15 沸騰冷却装置

Country Status (1)

Country Link
JP (1) JP5194868B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058924A1 (ja) * 2009-11-11 2011-05-19 株式会社 豊田自動織機 沸騰冷却式熱交換器
JP2011099598A (ja) * 2009-11-05 2011-05-19 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011122499A (ja) * 2009-12-10 2011-06-23 Hino Motors Ltd Egrクーラ
JP2011185511A (ja) * 2010-03-08 2011-09-22 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011220622A (ja) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011220623A (ja) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011226679A (ja) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011226678A (ja) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
WO2015005530A1 (ko) * 2013-07-12 2015-01-15 한국전력공사 다중 통로 교류 열교환기
JP2016180580A (ja) * 2015-03-13 2016-10-13 ゼネラル・エレクトリック・カンパニイ クロスフロー導管熱交換器内の管
CN108766946A (zh) * 2018-07-24 2018-11-06 苏州汇川联合动力系统有限公司 液冷散热装置及电机控制器
CN114577042A (zh) * 2022-01-22 2022-06-03 合肥工业大学 一种微小多通道沸腾换热式均温冷却板

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390235A (ja) * 1989-08-31 1991-04-16 Daikin Ind Ltd シェルアンドチューブ型熱交換器およびその製造方法
JPH04254170A (ja) * 1991-01-31 1992-09-09 Nippondenso Co Ltd 積層型冷媒蒸発器
JPH04122985U (ja) * 1991-04-24 1992-11-05 石川島播磨重工業株式会社 縦型蒸発器
JP2000065455A (ja) * 1998-08-20 2000-03-03 Denso Corp 沸騰冷却装置
JP2000283663A (ja) * 1999-03-30 2000-10-13 Toyota Motor Corp 排気冷却装置
JP2001027157A (ja) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Egrクーラの構造
JP2001041677A (ja) * 1999-08-03 2001-02-16 Mitsubishi Heavy Ind Ltd 熱交換器
JP2001141379A (ja) * 1999-11-11 2001-05-25 Showa Alum Corp 複式熱交換器
JP2003278607A (ja) * 2002-03-19 2003-10-02 Hino Motors Ltd Egrクーラ
JP3099876U (ja) * 2003-08-14 2004-04-22 鄭 炳輝 放熱器の改良構造

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390235A (ja) * 1989-08-31 1991-04-16 Daikin Ind Ltd シェルアンドチューブ型熱交換器およびその製造方法
JPH04254170A (ja) * 1991-01-31 1992-09-09 Nippondenso Co Ltd 積層型冷媒蒸発器
JPH04122985U (ja) * 1991-04-24 1992-11-05 石川島播磨重工業株式会社 縦型蒸発器
JP2000065455A (ja) * 1998-08-20 2000-03-03 Denso Corp 沸騰冷却装置
JP2000283663A (ja) * 1999-03-30 2000-10-13 Toyota Motor Corp 排気冷却装置
JP2001027157A (ja) * 1999-07-13 2001-01-30 Mitsubishi Motors Corp Egrクーラの構造
JP2001041677A (ja) * 1999-08-03 2001-02-16 Mitsubishi Heavy Ind Ltd 熱交換器
JP2001141379A (ja) * 1999-11-11 2001-05-25 Showa Alum Corp 複式熱交換器
JP2003278607A (ja) * 2002-03-19 2003-10-02 Hino Motors Ltd Egrクーラ
JP3099876U (ja) * 2003-08-14 2004-04-22 鄭 炳輝 放熱器の改良構造

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099598A (ja) * 2009-11-05 2011-05-19 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
US20120211215A1 (en) * 2009-11-11 2012-08-23 Kabushiki Kaisha Toyota Jidoshokki Vapor cooling heat exchanger
JP2011102681A (ja) * 2009-11-11 2011-05-26 Toyota Industries Corp 沸騰冷却式熱交換器
CN102597681B (zh) * 2009-11-11 2014-07-30 株式会社丰田自动织机 沸腾冷却式热交换器
WO2011058924A1 (ja) * 2009-11-11 2011-05-19 株式会社 豊田自動織機 沸騰冷却式熱交換器
CN102597681A (zh) * 2009-11-11 2012-07-18 株式会社丰田自动织机 沸腾冷却式热交换器
JP2011122499A (ja) * 2009-12-10 2011-06-23 Hino Motors Ltd Egrクーラ
JP2011185511A (ja) * 2010-03-08 2011-09-22 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011220622A (ja) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011220623A (ja) * 2010-04-12 2011-11-04 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011226678A (ja) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
JP2011226679A (ja) * 2010-04-16 2011-11-10 Kawasaki Thermal Engineering Co Ltd 流体加熱装置
WO2015005530A1 (ko) * 2013-07-12 2015-01-15 한국전력공사 다중 통로 교류 열교환기
JP2016180580A (ja) * 2015-03-13 2016-10-13 ゼネラル・エレクトリック・カンパニイ クロスフロー導管熱交換器内の管
CN108766946A (zh) * 2018-07-24 2018-11-06 苏州汇川联合动力系统有限公司 液冷散热装置及电机控制器
CN108766946B (zh) * 2018-07-24 2024-03-19 苏州汇川联合动力系统股份有限公司 液冷散热装置及电机控制器
CN114577042A (zh) * 2022-01-22 2022-06-03 合肥工业大学 一种微小多通道沸腾换热式均温冷却板
CN114577042B (zh) * 2022-01-22 2024-01-23 合肥工业大学 一种微小多通道沸腾换热式均温冷却板

Also Published As

Publication number Publication date
JP5194868B2 (ja) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5194868B2 (ja) 沸騰冷却装置
SE533908C2 (sv) Kylanordning för en fluid i en förbränningsmotor och användning därav
JP2007271197A (ja) 吸収式冷凍装置
RU117588U1 (ru) Теплообменный блок, содержащий несколько теплообменников
JP5531570B2 (ja) 沸騰冷却式熱交換器
US20170122666A1 (en) Integral heat exchanger
JP2010164248A (ja) 吸収ヒートポンプ
JPH10176874A (ja) 熱交換器
JP2010010204A (ja) 沸騰冷却装置
JP2015007518A (ja) 蓄冷熱交換器
JP2014020755A (ja) 流下液膜式蒸発器
JP4701147B2 (ja) 2段吸収冷凍機
KR20160009409A (ko) 통합형 열교환기
JP2011196620A (ja) 沸騰冷却式熱交換器
JP2020085311A (ja) 沸騰冷却装置
JP2011196632A (ja) 沸騰冷却装置
KR102687578B1 (ko) 열교환기
CN208380690U (zh) 一种高效的汽车发动机散热装置
WO2019093065A1 (ja) 蒸発器
WO2012067086A1 (ja) 蒸発器
WO2017203973A1 (ja) 熱電発電装置
CN215986868U (zh) 光源散热系统和投影设备
JP2011149671A (ja) 沸騰冷却式熱交換器
JP2018080907A (ja) 吸収器及び吸収ヒートポンプ
JP5252230B2 (ja) 自然循環式沸騰冷却装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees