JP2009191962A - サスペンション装置およびビスカスカップリング - Google Patents

サスペンション装置およびビスカスカップリング Download PDF

Info

Publication number
JP2009191962A
JP2009191962A JP2008033655A JP2008033655A JP2009191962A JP 2009191962 A JP2009191962 A JP 2009191962A JP 2008033655 A JP2008033655 A JP 2008033655A JP 2008033655 A JP2008033655 A JP 2008033655A JP 2009191962 A JP2009191962 A JP 2009191962A
Authority
JP
Japan
Prior art keywords
shaft
plate
case body
damping force
suspension device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008033655A
Other languages
English (en)
Inventor
Tetsuyoshi Fukaya
哲義 深谷
Takeshi Yamazaki
毅 山崎
Yoji Yamauchi
洋司 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008033655A priority Critical patent/JP2009191962A/ja
Priority to PCT/IB2009/000100 priority patent/WO2009101493A1/en
Publication of JP2009191962A publication Critical patent/JP2009191962A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/12Devices with one or more rotary vanes turning in the fluid any throttling effect being immaterial, i.e. damping by viscous shear effect only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/22Rotary Damper

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Damping Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

【課題】サスペンション装置にビスカスカップリングを採用する。
【解決手段】サスペンション装置1において、ビスカスカップリング10は、アームに連結されてアームの上下動に応じて回転するシャフト20と、車体に連結されて粘性流体を収容するケース体12と、シャフト20とケース体12の相対回転に応じて減衰力を発生するプレート22、24と、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段とを有する。減衰力上昇度低下手段は、トルクリミッタ26であってよく、またワンウェイクラッチであってもよい。
【選択図】図5

Description

本発明は、サスペンション装置に関し、特にサスペンション装置の減衰力を調整する機構に関する。
従来、ロアアームに左右一対のロッドの外端部が連結され、一対のロッドの内端部間に減衰手段であるロールダンパが設けられたサスペンション装置を開示するものがある。このロールダンパは、中空ケーシングと側板とにより空間を構成し、この空間内において、中空ケーシングの内周面に固着されたアウタープレートと、ロッドの外周面に固着されたインナープレートとが交互に重合され、空間内にシリコンオイルを封入することで、ビスカスカップリングを構成している。このビスカスカップリングにより、左右一対のロッドの相対回転を抑制して、ロールに起因した振動が減衰されるようになっている(特許文献1参照)。
特許2803870号公報
サスペンション性能には、一般にストローク速度に対して減衰力が比例の関係で発生することが要求される。しかしながら、大きいストローク速度に対しても比例の関係で減衰力が発生すると乗り心地が悪化する傾向にあり、またサスペンション装置に過大な負荷がかかることになる。サスペンション装置に従来型のビスカスカップリングを採用すると、ビスカスカップリングにより発生される減衰力はストローク速度に比例するため、特に高域ストローク速度において乗り心地の悪化や過負荷の発生という問題が生じる。また従来型のビスカスカップリングにより発生される減衰力は、同一の差動回転数であれば正回転時でも逆回転時でも同じであり、そのためサスペンション装置に採用した場合には、ストロークの伸び時と縮み時における減衰力特性に差をもたせることはできない。
本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、サスペンション装置に好適に採用可能なビスカスカップリングを提供することにある。
上記課題を解決するために、本発明のある態様のサスペンション装置は、リンク機構のジョイント部にビスカスカップリングを備えたサスペンション装置であって、ビスカスカップリングは、シャフトと、粘性流体を収容するケース体と、シャフトとケース体の相対回転に応じて減衰力を発生するプレートと、シャフトとケース体の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段とを有する。減衰力上昇度低下手段は、メカ的にシャフトとケース体の相対回転に応じてトルク伝達特性を変化させるトルク伝達特性変化機構として構成されてよい。このメカ機構は、外部から制御信号などの供給を受けて動作するのではなく、シャフトとケース体の相対回転に応じて機構状態を変化させることで、トルク伝達特性を自律的に変化させるものであってよい。この態様のサスペンション装置は、減衰力上昇度低下手段を有するビスカスカップリングを備えることで、減衰力の過度な上昇を抑制することが可能となる。
プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有してもよい。減衰力上昇度低下手段は、シャフトとケース体の相対回転速度が所定値以上となった場合に、第1プレートとシャフトとの間のトルク伝達機能、または第2プレートとケース体との間のトルク伝達機能の少なくとも一部を制限するトルク伝達制限手段を有してもよい。これにより、高域ストローク速度での乗り心地の悪化を抑制することが可能となる。
トルク伝達制限手段は、複数のうちの一部の第1プレート、または複数のうちの一部の第2プレートに設けられてもよい。これにより、シャフトとケース体の相対回転速度の増加に応じて、減衰力が常に比例の関係で増加する事態を回避できる。
減衰力上昇度低下手段は複数のトルク伝達制限手段を有してもよい。これにより、減衰力の上昇度の抑制をスムーズに実現することが可能となる。トルク伝達制限手段が設けられた第1プレートまたは第2プレートは、他方のプレートとの間隔がトルク伝達制限手段ごとに異なるように、シャフト側またはケース体側に連結されてもよい。これにより、減衰力の上昇度の抑制をさらにスムーズに実現することが可能となる。トルク伝達制限手段は、トルクリミッタであってもよい。
また、プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有し、減衰力上昇度低下手段は、シャフトとケース体の所定の一方向の回転に対して、第1プレートとシャフトとの連結、または第2プレートとケース体との連結を解除するトルク伝達制限手段を有してもよい。これにより、シャフトとケース体の回転方向に応じて、異なる減衰力特性を実現することが可能となる。
トルク伝達制限手段は、複数のうちの一部の第1プレート、または複数のうちの一部の第2プレートに設けられてもよい。これにより、減衰力特性を所望に調整することが可能となる。
減衰力上昇度低下手段は複数のトルク伝達制限手段を有してもよい。これにより、減衰力の上昇度の抑制をスムーズに実現することが可能となる。トルク伝達制限手段が設けられた第1プレートまたは第2プレートは、他方のプレートとの間隔がトルク伝達制限手段ごとに異なるように、シャフト側またはケース体側に連結されてもよい。これにより、減衰力の上昇度の抑制をさらにスムーズに実現することが可能となる。トルク伝達制限手段は、ワンウェイクラッチであってもよい。
トルク伝達制限手段が設けられた第1プレートまたは第2プレートは、表面積が異なる複数組に分けられてもよい。これにより、プレート間隔を等しく設定した場合であっても、所望の減衰力特性を実現することが可能となる。
また、プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有し、減衰力上昇度低下手段は、シャフトとケース体の相対回転により、1つの第1プレートと、当該1つの第1プレートに隣り合う2つの第2プレートとの間の間隔を等しくする方向に、第1プレートまたは第2プレートを移動するプレート移動手段を有してもよい。これにより、シャフトとケース体の相対回転に応じて、減衰力の上昇度をスムーズに低下させることが可能となる。
プレート移動手段は、シャフトとケース体の相対回転速度が所定値以上となった場合に、第1プレートまたは第2プレートを移動してもよい。これにより、たとえば低速ストローク域では相対回転速度に比例した減衰力を発生させつつ、相対回転速度が所定値以上となった場合に、減衰力の上昇度を低下させることが可能となる。
シャフトまたはケース体は、カム構造またはくさび構造をもつ分割部により分割され、プレート移動手段は、分割部が係合する方向に付勢する付勢手段を有してもよい。プレート移動手段は、シャフトとケース体の相対回転により発生する付勢手段に対する抗力により、分割部が離間する方向に第1プレートまたは第2プレートを移動してもよい。カム構造またはくさび構造を分割部に形成することで、相対回転速度に応じて減衰力の上昇度を低下させることが可能となる。
シャフトは、アームに連結された第1シャフトと、第1シャフトに同軸上に係合される第2シャフトを有してもよい。プレート移動手段は、第2シャフトを第1シャフトに押しつける方向に付勢する付勢手段を有してもよい。付勢手段により第2シャフトが第1シャフトに押しつけられた状態では、1つの第1プレートと、それに隣り合う2つの第2プレートとの間の距離が異なっており、シャフトとケース体の相対回転により付勢手段に対する抗力が発生すると、1つの第1プレートと、それに隣り合う2つの第2プレートとの間の間隔が等しくなる方向に、第1プレートが移動してもよい。シャフトを少なくとも第1シャフトと第2シャフトを有して構成し、第2シャフトを第1シャフトに付勢しておくことで、プレート移動手段を簡易な構造で形成することが可能となる。
プレート移動手段は、シャフトとケース体の相対回転の方向によって、同じ回転速度に対して第1プレートまたは第2プレートの移動距離が異なるように設定されてもよい。これにより、シャフトとケース体の回転方向に応じて、異なる減衰力特性を実現することが可能となる。
本発明の別の態様は、ビスカスカップリングである。このビスカスカップリングは、シャフトと、粘性流体を収容するケース体と、シャフトとケース体の相対回転に応じて減衰力を発生するプレートと、シャフトとケース体の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段とを有する。
本発明によれば、サスペンション装置の減衰力特性を好適に制御できるビスカスカップリングを提供できる。
以下、図面を参照しながら、本発明を実施するための最良の形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。
(第1の実施の形態)
図1は、第1の実施の形態に係るサスペンション装置の取付構造を示す。サスペンション装置1は、車輪3を回転可能に支持するキャリア6と、キャリア6を上下に揺動可能に支持するロアアーム4およびアッパアーム5を備える。車両本体2、ロアアーム4、アッパアーム5およびキャリア6はリンク機構7を構成し、ロアアーム4およびアッパアーム5は、車両本体2に回転可能に取り付けられる。
実施の形態において、サスペンション装置1は、リンク機構7のジョイント部にビスカスカップリング10を備えて構成される。実施の形態におけるリンク機構7は、4節リンク機構を構成しており、ビスカスカップリング10は、車両本体2とロアアーム4のジョイント部8a、車両本体2とアッパアーム5のジョイント部8b、アッパアーム5とキャリア6のジョイント部8c、ロアアーム4とキャリア6のジョイント部8dのいずれに設けられてもよい。図示の例では、ビスカスカップリング10が、車両本体2とロアアーム4のジョイント部8aを構成している。以下、ジョイント部8a〜8dを総称する場合には、「ジョイント部8」と呼ぶ。
ビスカスカップリング10は、ケース体と、ケース体から突設されるシャフトを有する。ケース体が1つのリンクに取り付けられ、またシャフトが当該リンクに隣接するリンクに取り付けられることで、隣り合う2つのリンクを相対回転可能に連結するジョイント部8が構成される。図1に示す例では、ケース体が車両本体2に固定され、またシャフトがロアアーム4に連結されることで、ロアアーム4の上下動に応じてシャフトとケース体とが相対回転し、減衰力を発生する。
なお以下の実施の形態において、リンク機構7の構造は例示であり、サスペンション装置1が他のマルチリンク機構を有してもよい。さらに、図1に示す例ではビスカスカップリング10がジョイント部8aを構成しているが、他のジョイント部8b、8c、8dを構成してもよく、また複数のビスカスカップリング10が複数のジョイント部8を構成してもよい。以下の実施の形態におけるビスカスカップリング10は、シャフトとケース体の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段を備えて構成される。
図2は、第1の実施の形態に係るビスカスカップリング10aの構成を示す。ビスカスカップリング10aは、ロアアーム4に連結されてロアアーム4の上下動に応じて回転するシャフト20と、環状張出部14において車両本体2に連結される円筒状のケース体12を備える。なおシャフト20が車両本体2に連結され、ケース体12がロアアーム4に連結されてもよく、またシャフト20およびケース体12が、リンク機構7における他の隣り合うリンクに連結されてもよい。シャフト20は、軸受18a、18bにより、ケース体12に対して相対回転可能に支持される。シャフト20の外周面とケース体12の内周面との間には粘性流体室16が形成されて、シリコンオイルなどの粘性流体が充填される。シャフト20の外周面には、複数枚のインナープレート24a、24b(以下、総称する場合には「インナープレート24」と呼ぶ)が、シャフト20に直接的または間接的に連結され、またケース体12の内周面には、複数枚のアウタープレート22が連結されている。複数枚のインナープレート24と複数枚のアウタープレート22は交互に間隔をあけて配置される。
車輪3の挙動によりロアアーム4が上下動すると、シャフト20が回転して、シャフト20とケース体12とが相対回転する。これにより、それぞれに連結されている複数枚のインナープレート24とアウタープレート22とが差動回転し、その回転差に応じて粘性流体にせん断力が発生して、トルクが発生する。この発生トルクは、サスペンション装置1における減衰力となる。
図3(a)は、従来型のビスカスカップリングによる差動回転数と発生トルクとの関係を示す。図1に示すようにビスカスカップリングをサスペンション装置に組み込むと、差動回転数はサスペンションストローク速度、発生トルクは減衰力に対応する。
以下、ビスカスカップリングにおける発生トルクの計算式を示す。
Figure 2009191962
Sn:プレート間隔(ピッチ)
N:流体粘度
e:密度
ra:プレート重なり領域の大径
ri:プレート重なり領域の小径
Δn:差動回転(相対回転)数
式1から示されるように、従来型のビスカスカップリングでは、差動回転数に対してトルクがリニアに発生するため、サスペンション装置に組み入れると、差動回転数の低域側では良好な乗り心地を乗員に提供できるが、高域側では乗り心地が悪化するという問題がある。たとえば図3(a)では、差動回転数がRより小さい場合を低域側、R以上の場合を高域側と呼んでいる。したがって本発明者は、差動回転数が高くなったときに発生トルクの上昇度を低下させることで、ビスカスカップリングを好適にサスペンション装置に組み込めるという技術思想を想到するに至った。
図3(b)は、サスペンション装置に好適なビスカスカップリングによる差動回転数と発生トルクの関係を示す。図3(b)に示すように、差動回転数と発生トルクは、差動回転数の低域側では図3(a)に示す比例の関係を維持しながら、高域側ではその傾きを小さくするように設定されることが好ましい。サスペンションストローク速度が大きくなったときに、乗員が感じる減衰力の上昇度を小さくすることで、乗り心地の悪化を解消できる。また、図3(b)に示す減衰力特性を実現すると、サスペンション装置に過度の負荷をかけなくてよいので、サスペンション装置の小型化にも貢献する。
図2に戻って、第1の実施の形態のビスカスカップリング10aは、シャフト20の軸上の一部の領域に、トルクリミッタ26を有している。トルクリミッタ26は、複数枚のうちの一部のインナープレート24に対して設けられる。トルクリミッタ26は、シャフト20に連結し、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段として機能する。なお、本明細書において「減衰力の上昇度」とは、差動回転数の絶対値の所定の増分に対する減衰力の絶対値の増分の比(傾き)を意味する。減衰力上昇度低下手段としてトルクリミッタ26を示すが、インナープレート24とシャフト20との間のトルク伝達機能の少なくとも一部を制限するものであれば、他の構造であってもよい。本実施の形態で採用するトルクリミッタ26は、所定の上限値以上の負荷がかかった場合に、シャフト20に伝達するトルクを上限値に抑える役割を果たし、トルク伝達機能(能力)の一部を制限するトルク伝達制限手段として作用する。すなわち、上限値を超えたトルクの伝達を遮断するものである。ビスカスカップリング10aにおいて、インナープレート24aがシャフト20に直接固定され、一方、インナープレート24bはトルクリミッタ26に固定されて、シャフト20に間接的に連結されている。
シャフト20とケース体12の相対回転速度が所定値に到達するまで、すなわち相対回転数がRに到達するまでは、トルクリミッタ26によるトルクの伝達制限がかからないため、インナープレート24aおよび24bとアウタープレート22の相対回転により生じる減衰力は、相対回転速度に比例して生成される。シャフト20とケース体12の相対回転速度が所定値に到達すると、トルクリミッタ26によるトルクの伝達制限がかかり、トルクリミッタ26は、上限値以上のトルクをシャフト20に伝達しない。これにより、シャフト20とケース体12の相対回転速度が所定値以上に大きくなると、ビスカスカップリング10aの減衰力の上昇分は、シャフト20に固定されたインナープレート24aとアウタープレート22の間で生成される減衰力の上昇分に抑えられる。このように、シャフト20とケース体12の相対回転速度が大きくなったときの減衰力の上昇度を低下させることで、乗員の乗り心地を好適にすることができる。
図4は、ビスカスカップリング10aにより発生される減衰力と、シャフト20とケース体12の相対回転速度の関係を示す。図中、正方向の相対回転速度はサスペンションストロークの伸び側の速度を示し、負方向の相対回転速度はサスペンションストロークの縮み側の速度を示す。図示されるように、高域側の減衰力の上昇度を低下させることで、シャフト20とケース体12の相対回転速度が大きくなったときに、減衰力が過剰に発生して、乗り心地を悪化させる事態を回避することが可能となる。
図5は、第1の実施の形態に係るビスカスカップリング10bの構成の変形例を示す。ビスカスカップリング10bは、シャフト20の軸上の一部の領域に、複数のトルクリミッタ26a、26b、26cを有している。トルクリミッタ26a、26b、26cは、複数枚のうちの一部のインナープレート24に対して設けられる。トルクリミッタ26a、26b、26cは、シャフト20に連結し、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段として機能する。トルクリミッタ26a、26b、26cは、所定の上限値以上の負荷がかかった場合に、シャフト20に伝達するトルクを上限値に抑える役割を果たす。ここで、トルクリミッタ26a、26b、26cがシャフト20に伝達可能なトルク上限値は、互いに等しいものとする。
ビスカスカップリング10bにおいて、インナープレート24cがシャフト20に直接固定される。またインナープレート24dはトルクリミッタ26aに固定され、インナープレート24eはトルクリミッタ26bに固定され、インナープレート24fはトルクリミッタ26cに固定されて、それぞれシャフト20に間接的に連結されている。ビスカスカップリング10bは、図2に示したビスカスカップリング10aと比較すると、複数のトルクリミッタ26a、26b、26cを有し、且つ、それぞれのトルクリミッタに連結されるインナープレート24とアウタープレート22とのピッチに差が設けられている点で相違する。
ビスカスカップリング10bにおいて、トルクリミッタ26a、26b、26cが設けられたインナープレート24d、24e、24fは、それぞれアウタープレート22との間隔がトルクリミッタ26a、26b、26cごとに異なるようにシャフト20側に連結される。具体的に、トルクリミッタ26aに固定されたインナープレート24dとアウタープレート22の間隔(ピッチ)はd2に設定され、トルクリミッタ26bに固定されたインナープレート24eとアウタープレート22のピッチはd3に設定され、トルクリミッタ26cに固定されたインナープレート24fとアウタープレート22のピッチはd4に設定される。ピッチd2、d3、d4は、それぞれ異なるように設定される。たとえば、d2>d3>d4となるようにピッチが設定されてもよい。なお、シャフト20に固定されたインナープレート24cとアウタープレート22のピッチは、d1に設定される。ピッチd1は、ピッチd2、d3、d4と異なってもよいが、いずれかと等しくてもよい。このビスカスカップリング10bでは、d1=d3となるように設定される。
ビスカスカップリング10bでは、ピッチを、d2>d3=d1>d4となるように設定することで、減衰力の上昇度をスムーズに変化させることが可能となる。式1に示したように、減衰力の大きさは、プレート間隔(ピッチ)に反比例し、したがってピッチが大きいほど減衰力は小さく、ピッチが小さいほど減衰力は大きくなる。トルクリミッタ26a、26b、26cの伝達トルク上限値がそれぞれ等しいため、相対回転速度が増加していく状況のもとでは、ピッチの小さいトルクリミッタ26cの発生トルクが最初に上限値に到達し、伝達トルクが上限値に維持される。続いて、トルクリミッタ26bの発生トルクが上限値に到達して、伝達トルクが上限値に維持され、最後にトルクリミッタ26aの発生トルクが上限値に到達して、伝達トルクが上限値に維持される。このように、各トルクリミッタ26におけるピッチに差を設けることで、伝達トルクの上限値への到達時間を変えることができ、段階的にトルクリミッタ26によるトルク制限を発生させることが可能となる。
図6は、ビスカスカップリング10bにより発生される減衰力と、シャフト20とケース体12の相対回転速度の関係を示す。図中、正方向の相対回転速度はサスペンションストロークの伸び側の速度を示し、負方向の相対回転速度はサスペンションストロークの縮み側の速度を示す。図示されるように、減衰力の上昇度を低下させることで、シャフト20とケース体12の相対回転速度が大きくなったときに、減衰力が過剰に発生して、乗り心地を悪化させる事態を回避することが可能となる。また、複数のトルクリミッタ26a、26b、26cが段階的にトルク制限をかけることにより、図4に示す減衰力特性と比較すると、減衰力の上昇度の低下をスムーズに創出でき、乗員の乗り心地を向上させることが可能となる。
なお、上記変形例においては、複数のトルクリミッタ26a、26b、26cが伝達可能なトルクの上限値を等しいものとして説明したが、それぞれのトルクリミッタ26の伝達可能なトルク上限値を異なるように設定してもよい。この場合は、各トルクリミッタ26に連結するインナープレート24とアウタープレート22とのピッチを等しく設定することができ、減衰力の上昇度の低下を段階的に生成することが可能となる。なお、それぞれのトルクリミッタ26の伝達可能なトルク上限値が異なる場合であっても、それぞれに連結するインナープレート24とアウタープレート22とのピッチを異なるように設定してもよい。
また、トルク伝達制限手段であるトルクリミッタ26をシャフト20の外周面に連結することとしたが、ケース体12の内周面に連結して、アウタープレート22を支持させてもよい。この場合、トルクリミッタ26は、シャフト20とケース体12の相対回転速度が所定値以上となった場合に、ケース体12とアウタープレート22との間のトルク伝達機能の少なくとも一部を制限するように作用する。上記実施の形態の説明は、連結対象をシャフト20からケース体12に変更することで、アウタープレート22を支持するトルクリミッタ26の変形例の説明となる。
図7は、第1の実施の形態に係るビスカスカップリング10cの構成の変形例を示す。ビスカスカップリング10cは、シャフト20の軸上の一部の領域に、ワンウェイクラッチ28を有している。ワンウェイクラッチ28は、シャフト20に連結し、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段として機能する。ワンウェイクラッチ28は、一方の回転方向についてシャフト20にトルクを伝達し、他方の回転方向については、クラッチを解除することでシャフト20にトルクを伝達しない役割を果たし、シャフト20とインナープレート24の連結を解除するトルク伝達制限手段として作用する。なお、他方の回転方向については、クラッチの解除に必要な小さいトルク(「クラッチ解除トルク」と呼ぶ)が印加されると、クラッチが解除されるようになる。
ビスカスカップリング10cにおいて、インナープレート24gがシャフト20に直接固定され、一方、インナープレート24hはワンウェイクラッチ28に固定されて、シャフト20に間接的に連結されている。たとえばシャフト20とケース体12との正方向の相対回転に対してはクラッチを繋ぐようにワンウェイクラッチ28が設けられてもよい。この場合、シャフト20とケース体12とが正方向に相対回転すると、インナープレート24gおよびインナープレート24hとアウタープレート22との間の相対回転により減衰力が発生する。一方、逆方向に相対回転すると、クラッチ解除トルクに到達した後は、インナープレート24hとシャフト20との連結が解除され、インナープレート24gおよびアウタープレート22との間の相対回転により減衰力が発生する。以上により、正方向と逆方向の相対回転において減衰力の上昇度を異ならせることができ、サスペンション装置1の減衰力を好適に設定することが可能となる。なお、サスペンションストロークの伸び側、縮み側のいずれの減衰力上昇度を大きくするかは、適宜定めてよい。
図8は、ビスカスカップリング10cにより発生される減衰力と、シャフト20とケース体12の相対回転速度の関係を示す。図中、正方向の相対回転速度はサスペンションストロークの伸び側の速度を示し、負方向の相対回転速度はサスペンションストロークの縮み側の速度を示す。縮み側においては、クラッチ解除トルク(そのときの減衰力がF1となる)に到達した時点で、ワンウェイクラッチ28のクラッチが切られることになる。図示されるように、縮み側の減衰力の上昇度を低下させることで、サスペンションストロークの伸び時、縮み時の減衰力特性を好適に設定でき、乗員の乗り心地を向上させることが可能となる。
図9は、第1の実施の形態に係るビスカスカップリング10dの構成の変形例を示す。ビスカスカップリング10dは、シャフト20の軸上の一部の領域に、ワンウェイクラッチ28a、28b、28cを有している。ワンウェイクラッチ28a、28b、28cは、シャフト20に連結し、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段として機能する。ワンウェイクラッチ28a、28b、28cは、一方の回転方向についてシャフト20にトルクを伝達し、他方の回転方向については、クラッチを解除することでシャフト20にトルクを伝達しない役割を果たす。なお、他方の回転方向については、クラッチの解除に必要な小さいトルク(「クラッチ解除トルク」と呼ぶ)が印加されると、クラッチが解除されるようになる。ここで、ワンウェイクラッチ28a、28b、28cのクラッチ解除トルクは、互いに等しいものとする。
ビスカスカップリング10dにおいて、インナープレート24iがシャフト20に直接固定される。またインナープレート24jはワンウェイクラッチ28aに固定され、インナープレート24kはワンウェイクラッチ28bに固定され、インナープレート24lはワンウェイクラッチ28cに固定されて、それぞれシャフト20に間接的に連結されている。ビスカスカップリング10dは、図7に示したビスカスカップリング10cと比較すると、複数のワンウェイクラッチ28a、28b、28cを有し、且つ、それぞれのワンウェイクラッチに連結されるインナープレート24とアウタープレート22とのピッチに差が設けられている点で相違する。
ビスカスカップリング10dにおいて、ワンウェイクラッチ28a、28b、28cが設けられたインナープレート24j、24k、24lは、それぞれアウタープレート22との間隔がワンウェイクラッチ28a、28b、28cごとに異なるようにシャフト20側に連結される。具体的に、ワンウェイクラッチ28aに固定されたインナープレート24jとアウタープレート22の間隔(ピッチ)はd2に設定され、ワンウェイクラッチ28bに固定されたインナープレート24kとアウタープレート22のピッチはd3に設定され、ワンウェイクラッチ28cに固定されたインナープレート24lとアウタープレート22のピッチはd4に設定される。ピッチd2、d3、d4は、それぞれ異なるように設定される。たとえば、d2>d3>d4となるようにピッチが設定されてもよい。なお、シャフト20に固定されたインナープレート24iとアウタープレート22とのピッチは、d1に設定される。ピッチd1は、ピッチd2、d3、d4と異なってもよいが、いずれかと等しくてもよい。このビスカスカップリング10dでは、d1=d3となるように設定される。
ビスカスカップリング10dでは、ピッチを、d2>d3=d1>d4となるように設定することで、クラッチ解除の際の減衰力の上昇度の変化をスムーズにすることが可能となる。式1に示したように、減衰力の大きさは、プレート間隔(ピッチ)に反比例し、したがってピッチが大きいほど減衰力は小さく、ピッチが小さいほど減衰力は大きくなる。ワンウェイクラッチ28a、28b、28cのクラッチ解除トルクがそれぞれ等しいため、相対回転速度が負方向に増加していく状況のもとでは、ピッチの小さいワンウェイクラッチ28cの発生トルクが最初にクラッチ解除トルクに到達し、クラッチ解除により伝達トルクがゼロとなる。続いて、ワンウェイクラッチ28bの発生トルクがクラッチ解除トルクに到達して、伝達トルクがゼロとなり、最後にワンウェイクラッチ28aの発生トルクがクラッチ解除トルクに到達して、伝達トルクがゼロとなる。このように、各ワンウェイクラッチ28におけるピッチに差を設けることで、発生トルクのクラッチ解除トルクへの到達時間を変えることができ、段階的にクラッチを解除することが可能となる。
図10は、ビスカスカップリング10dにより発生される減衰力と、シャフト20とケース体12の相対回転速度の関係を示す。図中、正方向の相対回転速度はサスペンションストロークの伸び側の速度を示し、負方向の相対回転速度はサスペンションストロークの縮み側の速度を示す。図8に示される原垂直特性と比較すると、クラッチを段階的に解除することで、逆方向の相対回転時における減衰力の上昇度の低下をスムーズに創出でき、乗員の乗り心地を向上させることが可能となる。
なお、上記変形例においては、複数のワンウェイクラッチ28a、28b、28cのクラッチ解除トルクを等しいものとして説明したが、それぞれのワンウェイクラッチ28のクラッチ解除トルクを異なるように設定してもよい。この場合は、各ワンウェイクラッチ28に連結するインナープレート24とアウタープレート22とのピッチを等しく設定することができ、クラッチを段階的に解除することが可能となる。なお、それぞれのワンウェイクラッチ28のクラッチ解除トルクが異なる場合であっても、それぞれに連結するインナープレート24とアウタープレート22とのピッチを異なるように設定してもよい。
また、トルク伝達制限手段であるワンウェイクラッチ28をシャフト20の外周面に連結することとしたが、ケース体12の内周面に連結して、アウタープレート22を支持させてもよい。この場合、ワンウェイクラッチ28は、シャフト20とケース体12の一方向の回転に対して、ケース体12とアウタープレート22との連結を解除するように作用する。上記実施の形態の説明は、連結対象をシャフト20からケース体12に変更することで、アウタープレート22を支持するワンウェイクラッチ28の変形例の説明となる。
第1の実施の形態においては、図5に示すビスカスカップリング10b、図9に示すビスカスカップリング10dにおいて、インナープレート24とアウタープレート22のピッチに差を設けるように各プレートをトルク伝達制限手段に配置する構造を示した。式1を参照すると、発生トルクは、インナープレート24の外径によっても変化する。したがって、ピッチに変化をもたせるかわりに、インナープレート24の外径を変化させることで、同様の効果を実現することができる。具体的には、ビスカスカップリング10bにおいては、インナープレート24dの外径<インナープレート24eの外径<インナープレート24fの外径とすることで、トルクリミッタ26cの発生トルクが最初に上限値に到達し、続いて、トルクリミッタ26bの発生トルクが上限値に到達して、最後にトルクリミッタ26aの発生トルクが上限値に到達する。なお、プレート間の距離(ピッチ)は、全て等しくてよい。同様に、ビスカスカップリング10dにおいては、インナープレート24jの外径<インナープレート24kの外径<インナープレート24lの外径とすることで、ワンウェイクラッチ28cの発生トルクが最初にクラッチ解除トルクに到達し、続いて、ワンウェイクラッチ28bの発生トルクがクラッチ解除トルクに到達して、最後にワンウェイクラッチ28aの発生トルクがクラッチ解除トルクに到達する。なお、プレート間の距離(ピッチ)は、全て等しくてよい。このように、インナープレート24を表面積が異なる複数組に分け、それぞれの組のインナープレート24をトルク伝達制限手段に連結することで、トルク伝達制限を組ごとにかけることが可能となる。
(第2の実施の形態)
図11は、第2の実施の形態に係るビスカスカップリング10eの構成を示す。ビスカスカップリング10eは、ロアアーム4に連結されてロアアーム4の上下動に応じて回転するシャフト20と、環状張出部14において車両本体2に連結される円筒状のケース体12を備える。なおシャフト20が車両本体2に連結され、ケース体12がロアアーム4に連結されてもよく、またシャフト20およびケース体12が、リンク機構7における他の隣り合うリンクに連結されてもよい。サスペンション装置1におけるビスカスカップリング10eの取付構造は図1に示したものと同様である。シャフト20の外周面とケース体12の内周面との間には粘性流体室16が形成されて、シリコンオイルなどの粘性流体が充填される。シャフト20の外周面には、複数枚のインナープレート24mが、シャフト20に直接連結され、またケース体12の内周面には、複数枚のアウタープレート22が連結されている。複数枚のインナープレート24mと複数枚のアウタープレート22は交互に間隔をあけて配置される。ビスカスカップリング10eにおいては、インナープレート24m同士の間隔とアウタープレート22同士の間隔は等しく設定される。
ビスカスカップリング10eは、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段を備えて構成される。具体的に、減衰力上昇度低下手段は、シャフト20とケース体12の相対回転により、1つのインナープレート24mと、そのインナープレート24に隣り合う2つのアウタープレート22との間の間隔を等しくする方向に、インナープレート24mまたはアウタープレート22を移動するプレート移動手段を有する。
ビスカスカップリング10eにおいて、シャフト20は、ロアアーム4に連結されて軸受18aにより回転可能に支持される第1シャフト20aと、第1シャフト20aと同軸上に配置される第2シャフト20bを含む。第2シャフト20bは、図示しない支持部材により保持されて、第1シャフト20aと同軸の姿勢を維持する。第1シャフト20aは、軸受18aにより支持されて軸方向には移動しない固定部材であり、第2シャフト20bは、軸方向にのみ移動する可動部材である。第2シャフト20bの一端は、第1シャフト20aに係合し、第1シャフト20aとともに回転する。第1シャフト20aと第2シャフト20bの分割部には、くさび構造またはカム構造が設けられる。くさび構造では、第1シャフト20a、第2シャフト20bの対向する端面において、それぞれくさび形状の凸部、凹部のいずれかが形成される。またカム構造では、第1シャフト20aまたは第2シャフト20bのいずれかにカム溝やカム面などのカム形状が形成される。くさび構造およびカム構造では、第1シャフト20aと第2シャフト20bが直接または間接的に軸方向に変位するように相対的に摺動することで、第1シャフト20aと第2シャフト20bの接触を保持しながら、離間する方向に相対移動する。
第2シャフト20bの他端は、バネ30により第1シャフト20aに押しつける方向に付勢されている。このバネ30のセット荷重により、1つのインナープレート24mと、それに隣り合う2つのアウタープレート22の間の距離が異なるように配置される。複数枚のインナープレート24mは、第2シャフト20bに結合される。図示の例では、1つのインナープレート24mに対して、左隣のアウタープレート22との間のピッチがS1、右隣のアウタープレート22との間のピッチがS2に設定される(S1>S2)。
ビスカスカップリング10eにおいて、バネ30は、シャフト20とケース体12の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段を構成する。第2の実施の形態では、シャフト20が、第1シャフト20aおよび第2シャフト20bより形成され、シャフト20に所定値以上のトルクが印加されると、第2シャフト20bにかかる軸方向の力がバネ30の付勢力に打ち勝ち、第2シャフト20bが第1シャフト20aから離れる方向に移動する。すなわち、第2シャフト20bおよびバネ30は、1つのインナープレート24mと、それに隣り合う2つのアウタープレート22の間の距離(ピッチ)を等しくする方向に、インナープレート24mを移動するプレート移動手段として機能する。
図12(a)は、バネ30により第2シャフト20bが第1シャフト20aに押しつけられた状態を示す。この状態では、シャフト20およびケース体12の相対回転による軸方向の力がバネ力よりも小さい。2つのアウタープレート22m、22nの間に、1つのインナープレート24mが配置される。インナープレート24mの厚みはt、アウタープレート22nとインナープレート24mの間隔(ピッチ)はS1、アウタープレート22mとインナープレート24mの間隔はS2、2つのアウタープレート22m、22nの間の間隔はS(=S1+S2+t)である。
図12(a)に示す状態では、軸方向において、バネ30側に位置するアウタープレート22nとインナープレート24mのピッチS1の方が、シャフト20a側に位置するアウタープレート22mとインナープレート24mのピッチS2よりも大きい。
図12(b)は、発生トルクにより第2シャフト20bが第1シャフト20aから離れる方向に移動した状態を示す。シャフト20とケース体12の相対回転によりトルクが発生し、軸方向の力がバネ30の付勢力を超えると、第2シャフト20bは、バネ30を押し縮める方向に移動する。第2シャフト20bの移動により、インナープレート24mとアウタープレート22nの間の間隔S1と、インナープレート24mとアウタープレート22mの間の間隔S2との差が減少する。最終的には間隔S1とS2とが等しくなる地点まで第2シャフト20bが移動可能とされてもよい。ピッチS1とピッチS2とが等しくなることで、ビスカスカップリング10eにおいて発生する減衰力の上昇度を最も低下させることができる。
図13は、ピッチS1と減衰力上昇度の関係を示す。図12を参照して、S=5、t=1と設定し、ピッチS1を1〜4の間で変化させたときの減衰力上昇度が示される。この場合、S1+S2=4となる。
式1に示されるように、発生トルクは、1/(ピッチ)に比例する。したがって、インナープレート24mとアウタープレート22nの間の発生トルクは(1/S1)に比例し、インナープレート24mとアウタープレート22mの間の発生トルクは(1/S2)に比例する。図中、S1=S2=2となるときの減衰力上昇度を1とし、S1を1〜4の間で変化させて、(1/S1)の減衰力上昇度を黒四角のプロット点で、(1/S2)の減衰力上昇度を黒三角のプロット点で表現する。黒丸のプロット点は、(1/S1+1/S2)を表現する。
このシミュレーション結果から明らかなように、ピッチS1とピッチS2の差が大きくなるほど、(1/S1+1/S2)で表現される減衰力上昇度は大きくなり、ピッチS1とピッチS2が等しくなると、減衰力上昇度は最小となる。すなわち、ピッチS1とピッチS2の差を小さくするようにインナープレート24mを移動させることで、発生する減衰力の上昇度を低下させることが可能となる。
図14は、回転方向によってくさび構造の角度を設定した例を示す。図14(a)は、シャフト20が正方向に回転するときに係合面21aに印加される力を模式的に示す。係合面21aの切り込み角度はθ1であり、係合面21aに垂直にかかるF1は、軸方向にかかるF2と、軸方向に垂直にかかるF3とに分解される。一方、図14(b)は、シャフト20が逆方向に回転するときに係合面21bに印加される力を模式的に示す。係合面21bの切り込み角度はθ2であり、係合面21bに垂直にかかるF4は、軸方向にかかるF5と、軸方向に垂直にかかるF6とに分解される。
図示されるように、係合面21aの切り込み角度θ1が係合面21bの切り込み角度θ2よりも大きいため、正回転時のF2は、逆回転時のF5と比較して大きくなる。これは、図示されるくさび構造が対称形をとらず、異なる切り込み角度を設定されているためである。このように係合面21の角度を個別に設定することで、正回転時と逆回転時において異なる減衰力特性を創出することが可能となる。また、切り込み角度を調整することで、所望の減衰力特性を創出することも可能である。
図15は、ビスカスカップリング10eにより発生される減衰力と、シャフト20とケース体12の相対回転速度の関係を示す。ここでは、くさび構造の切り込み角度を非対称に設定したシャフト20(図14参照)の減衰力特性を示している。図中、正方向の相対回転速度はサスペンションストロークの伸び側の速度を示し、負方向の相対回転速度はサスペンションストロークの縮み側の速度を示す。
図15において、減衰力T1は、シャフト20とケース体12の正回転時に生じる軸方向の力が、バネ30のセット荷重に釣り合ったときの減衰力を示す。軸方向の力がバネ30のセット荷重に到達するまでは、第2シャフト20bが第1シャフト20aに押しつけられた状態を維持するため、第2シャフト20bは移動しない。軸方向に発生する力がバネ力を超えると、第2シャフト20bが第1シャフト20aから離間する方向に移動する。これにより、インナープレート24mに隣り合う2つのアウタープレート22との間のピッチ差が減少していき、減衰力の上昇度が低下していく。
減衰力T2は、シャフト20とケース体12の逆回転時に生じる軸方向の力が、バネ30のセット荷重に釣り合ったときの減衰力を示す。軸方向の力がバネ30のセット荷重に到達するまでは、第2シャフト20bが第1シャフト20aに押しつけられた状態を維持するため、第2シャフト20bは移動しない。軸方向に発生する力がバネ力を超えると、第2シャフト20bが第1シャフト20aから離間する方向に移動する。これにより、インナープレート24mに隣り合う2つのアウタープレート22との間のピッチ差が減少していき、減衰力の上昇度が低下していく。
係合面21aの切り込み角度θ1が係合面21bの切り込み角度θ2よりも大きいため、正回転時の方が、逆回転時よりも小さい相対回転速度の時点で減衰力の上昇度の低下が始まる。このように、切り込み角度θを調整することで、減衰力の上昇度を低下させるタイミングを任意に設定することができ、また上昇度の調整もすることができる。さらにくさび形状を非対称に形成することで、サスペンションストロークの伸び時と縮み時とで、減衰力の上昇度を低下させるタイミングを替えることも可能となる。これにより、シャフト20とケース体12の相対回転速度が大きくなったときに、減衰力が過剰に発生して、乗り心地を悪化させる事態を回避することが可能となる。
図16、図17は、第1シャフト20aと第2シャフト20bの連結構造の一例を示す。図16(a)は、第1シャフト20aおよび第2シャフト20bの上面透視図であり、図16(b)は、第1シャフト20aおよび第2シャフト20bの斜視透視図である。この例では、第1シャフト20aが内筒部材として形成され、第2シャフト20bが外筒部材として形成されて、カム構造により連結される。第2シャフト20bには、径方向に貫通するピン穴40a、40bが形成される。また第1シャフト20aには、上面側にカム溝42a、下面側にカム溝42bが形成される。カム溝42は円筒部材を貫通し、図示のように対称形に形成されてもよいが、正回転時と逆回転時とで異なる減衰力特性を創出するために、非対称形に形成されてもよい。なお、ある軸中心点を含んだ軸方向に垂直な面において、カム溝42aの一点とカム溝42bの一点とは点対称の位置に形成される。図16(c)は、ピン44を示す。図16(d)は、ピン44が、ピン穴40a、カム溝42a、カム溝42b、ピン穴40bに挿通されて、第1シャフト20aと第2シャフト20bとを係合させた状態を示す。
図17(a)は、図16に示す第2シャフト20bがバネ30により第1シャフト20aに押しつけられている状態を示し、図17(b)は、シャフト20およびケース体12の相対回転により生じた軸方向の力で、第2シャフト20bが第1シャフト20aから離間する方向に移動した状態を示す。図示されるように、バネ力と軸力の釣り合いにより、ピン44がカム溝42内を摺動することで、第2シャフト20bがバネ力に抗して軸方向に移動し、減衰力の上昇度を低下させることが可能となる。
図18は、第1シャフト20aと第2シャフト20bの連結構造の別の例を示す。図18(a)は、第2シャフト20bの斜視図であり、図18(b)は、第1シャフト20aの斜視図である。この例では、第2シャフト20bの係合面48にカム構造が形成され、第1シャフト20aに設けられた一対のローラ46a、46bが係合面48に係合する。第1シャフト20aと第2シャフト20bの径は同一である。なお、軸方向における位置を軸位置とよぶ場合、第2シャフト20bの係合面48では、ある軸位置の軸中心点を含んだ軸方向に垂直な面において、点対称な位置に係合面が存在する。これにより、一対の第1シャフト20aのローラ46a、46bは、第2シャフト20bと同軸上で係合面48に係合することができる。
第2シャフト20bがバネ30により第1シャフト20aに押し付けられている状態では、ローラ46は、係合面48の最も凹んだ軸位置にある端面に係合する。シャフト20およびケース体12の相対回転により生じた軸方向の力で、ローラ46が係合面48の傾斜に沿って動くと、第2シャフト20が第1シャフト20aから離間する方向に移動する。これにより、減衰力の上昇度を低下させることが可能となる。なお、軸ずれを防止するために、第1シャフト20aおよび第2シャフト20bに、軸中心を同じくする円筒状の穴をあけて、シャフトを通してもよい。また、第1シャフト20aの係合面にカム構造が形成され、第2シャフト20bに一対のローラが設けられてもよい。
図19は、第1シャフト20aと第2シャフト20bの連結構造の別の例を示す。図19(a)は、第2シャフト20bの斜視図であり、図19(b)は、第1シャフト20aの斜視図である。この例では、第2シャフト20bの係合面50に凹型のくさび構造が形成され、第1シャフト20aの係合面52に凸型のくさび構造が形成される。このくさび構造は、斜面と平坦面から形成される。凹型の係合面50と凸型の係合面52は、それぞれ凹部54と凸部56とがはまるように形成されることが好ましい。なお、第1シャフト20aの係合面52に凹型のくさび構造が形成され、第2シャフト20bの係合面50に凸型のくさび構造が形成されてもよい。
第2シャフト20bがバネ30により第1シャフト20aに押し付けられている状態では、係合面50の凹部54と係合面52の凸部56とが係合する。シャフト20およびケース体12の相対回転により生じた軸方向の力で、凸部56の斜面が凹部54の斜面に沿って動くと、第2シャフト20が第1シャフト20aから離間する方向に移動する。これにより、減衰力の上昇度を低下させることが可能となる。なお、軸ずれを防止するために、第1シャフト20aおよび第2シャフト20bに、軸中心を同じくする円筒状の穴をあけて、シャフトを通してもよい。
第2の実施の形態では、シャフト20を分割してプレート移動手段をシャフト側に形成したが、ケース体12を分割してプレート移動手段をケース体側に形成してもよい。上記した実施の形態の説明は、分割対象をシャフト20からケース体12に変更し、バネ30の付勢対象をシャフト20からケース体12に変更することで、ケース体12の分割部分をプレート移動手段とした場合の説明となる。
本発明は上述の実施の形態に限定されるものではなく、実施の形態の各要素を適宜組み合わせたものも、本発明の実施の形態として有効である。また、当業者の知識に基づいて各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。
第1の実施の形態に係るサスペンション装置の取付構造を示す図である。 第1の実施の形態に係るビスカスカップリングの構成を示す図である。 (a)は、従来型のビスカスカップリングによる差動回転数と発生トルクとの関係を示す図であり、(b)は、サスペンション装置に好適なビスカスカップリングによる差動回転数と発生トルクの関係を示す図である。 ビスカスカップリングにより発生される減衰力と、シャフトとケース体の相対回転速度の関係を示す図である。 第1の実施の形態に係るビスカスカップリングの構成の変形例を示す図である。 ビスカスカップリングにより発生される減衰力と、シャフトとケース体の相対回転速度の関係を示す図である。 第1の実施の形態に係るビスカスカップリングの構成の変形例を示す図である。 ビスカスカップリングにより発生される減衰力と、シャフトとケース体の相対回転速度の関係を示す図である。 第1の実施の形態に係るビスカスカップリングの構成の変形例を示す図である。 ビスカスカップリングにより発生される減衰力と、シャフトとケース体の相対回転速度の関係を示す図である。 第2の実施の形態に係るビスカスカップリングの構成を示す図である。 第1シャフトと第2シャフトの位置関係を示す図である。 ピッチS1と減衰力上昇度の関係を示す図である。 回転方向によってくさび構造の角度を設定した例を示す図である。 ビスカスカップリングにより発生される減衰力と、シャフトとケース体の相対回転速度の関係を示す図である。 第1シャフトと第2シャフトの連結構造の一例を示す図である。 第1シャフトと第2シャフトの連結構造の一例を示す図である。 第1シャフトと第2シャフトの連結構造の別の例を示す図である。 第1シャフトと第2シャフトの連結構造の別の例を示す図である。
符号の説明
1・・・サスペンション装置、2・・・車両本体、3・・・車輪、4・・・ロアアーム、5・・・アッパアーム、6・・・キャリア、7・・・リンク機構、8a〜8d・・・ジョイント部、10・・・ビスカスカップリング、12・・・ケース体、14・・・環状張出部、16・・・粘性流体室、18・・・軸受、20・・・シャフト、20a・・・第1シャフト、20b・・・第2シャフト、21・・・係合面、22・・・アウタープレート、24・・・インナープレート、26・・・トルクリミッタ、28・・・ワンウェイクラッチ、30・・・バネ、40・・・ピン穴、42・・・カム溝、44・・・ピン、46・・・ローラ、48・・・係合面、50・・・係合面、52・・・係合面、54・・・凹部、56・・・凸部。

Claims (18)

  1. リンク機構のジョイント部にビスカスカップリングを備えたサスペンション装置であって、
    前記ビスカスカップリングは、
    シャフトと、
    粘性流体を収容するケース体と、
    前記シャフトと前記ケース体の相対回転に応じて減衰力を発生するプレートと、
    前記シャフトと前記ケース体の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段と、
    を有することを特徴とするサスペンション装置。
  2. 前記プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有し、
    前記減衰力上昇度低下手段は、前記シャフトと前記ケース体の相対回転速度が所定値以上となった場合に、前記第1プレートと前記シャフトとの間のトルク伝達機能、または前記第2プレートと前記ケース体との間のトルク伝達機能の少なくとも一部を制限するトルク伝達制限手段を有することを特徴とする請求項1に記載のサスペンション装置。
  3. 前記トルク伝達制限手段は、複数のうちの一部の前記第1プレート、または複数のうちの一部の前記第2プレートに設けられることを特徴とする請求項2に記載のサスペンション装置。
  4. 前記減衰力上昇度低下手段は複数のトルク伝達制限手段を有することを特徴とする請求項2または3に記載のサスペンション装置。
  5. 前記トルク伝達制限手段が設けられた前記第1プレートまたは前記第2プレートは、他方のプレートとの間隔が前記トルク伝達制限手段ごとに異なるように、前記シャフト側または前記ケース体側に連結されることを特徴とする請求項4に記載のサスペンション装置。
  6. 前記トルク伝達制限手段は、トルクリミッタであることを特徴とする請求項2から5のいずれかに記載のサスペンション装置。
  7. 前記プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有し、
    前記減衰力上昇度低下手段は、前記シャフトと前記ケース体の所定の一方向の回転に対して、前記第1プレートと前記シャフトとの連結、または前記第2プレートと前記ケース体との連結を解除するトルク伝達制限手段を有することを特徴とする請求項1に記載のサスペンション装置。
  8. 前記トルク伝達制限手段は、複数のうちの一部の前記第1プレート、または複数のうちの一部の前記第2プレートに設けられることを特徴とする請求項7に記載のサスペンション装置。
  9. 前記減衰力上昇度低下手段は複数のトルク伝達制限手段を有することを特徴とする請求項7または8に記載のサスペンション装置。
  10. 前記トルク伝達制限手段が設けられた前記第1プレートまたは前記第2プレートは、他方のプレートとの間隔が前記トルク伝達制限手段ごとに異なるように、前記シャフト側または前記ケース体側に連結されることを特徴とする請求項9に記載のサスペンション装置。
  11. 前記トルク伝達制限手段は、ワンウェイクラッチであることを特徴とする請求項7から10のいずれかに記載のサスペンション装置。
  12. 前記トルク伝達制限手段が設けられた前記第1プレートまたは前記第2プレートは、表面積が異なる複数組に分けられることを特徴とする請求項2から11のいずれかに記載のサスペンション装置。
  13. 前記プレートは、シャフト側に連結された複数の第1プレートと、ケース体側に連結された複数の第2プレートを有し、
    前記減衰力上昇度低下手段は、前記シャフトと前記ケース体の相対回転により、1つの第1プレートと、当該1つの第1プレートに隣り合う2つの前記第2プレートとの間の間隔を等しくする方向に、前記第1プレートまたは前記第2プレートを移動するプレート移動手段を有することを特徴とする請求項1に記載のサスペンション装置。
  14. 前記プレート移動手段は、前記シャフトと前記ケース体の相対回転速度が所定値以上となった場合に、前記第1プレートまたは前記第2プレートを移動することを特徴とする請求項13に記載のサスペンション装置。
  15. 前記シャフトまたは前記ケース体は、カム構造またはくさび構造をもつ分割部により分割され、
    前記プレート移動手段は、前記分割部が係合する方向に付勢する付勢手段を有し、
    前記プレート移動手段は、前記シャフトと前記ケース体の相対回転により発生する前記付勢手段に対する抗力により、前記分割部が離間する方向に前記第1プレートまたは前記第2プレートを移動することを特徴とする請求項13または14に記載のサスペンション装置。
  16. 前記シャフトは、アームに連結された第1シャフトと、前記第1シャフトに同軸上に係合される第2シャフトを有し、
    前記プレート移動手段は、前記第2シャフトを前記第1シャフトに押しつける方向に付勢する付勢手段を有し、
    前記付勢手段により前記第2シャフトが前記第1シャフトに押しつけられた状態では、1つの前記第1プレートと、それに隣り合う2つの前記第2プレートとの間の距離が異なっており、
    前記シャフトと前記ケース体の相対回転により前記付勢手段に対する抗力が発生すると、1つの前記第1プレートと、それに隣り合う2つの前記第2プレートとの間の間隔が等しくなる方向に、前記第1プレートが移動することを特徴とする請求項13から15のいずれかに記載のサスペンション装置。
  17. 前記プレート移動手段は、前記シャフトと前記ケース体の相対回転の方向によって、同じ回転速度に対して前記第1プレートまたは前記第2プレートの移動距離が異なるように設定されることを特徴とする請求項13から16のいずれかに記載のサスペンション装置。
  18. シャフトと、
    粘性流体を収容するケース体と、
    前記シャフトと前記ケース体の相対回転に応じて減衰力を発生するプレートと、
    前記シャフトと前記ケース体の相対回転が所定の状態となった場合に、減衰力の上昇度を低下させる減衰力上昇度低下手段と、
    を有することを特徴とするビスカスカップリング。
JP2008033655A 2008-02-14 2008-02-14 サスペンション装置およびビスカスカップリング Pending JP2009191962A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008033655A JP2009191962A (ja) 2008-02-14 2008-02-14 サスペンション装置およびビスカスカップリング
PCT/IB2009/000100 WO2009101493A1 (en) 2008-02-14 2009-01-22 Suspension apparatus and viscous coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008033655A JP2009191962A (ja) 2008-02-14 2008-02-14 サスペンション装置およびビスカスカップリング

Publications (1)

Publication Number Publication Date
JP2009191962A true JP2009191962A (ja) 2009-08-27

Family

ID=40602703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008033655A Pending JP2009191962A (ja) 2008-02-14 2008-02-14 サスペンション装置およびビスカスカップリング

Country Status (2)

Country Link
JP (1) JP2009191962A (ja)
WO (1) WO2009101493A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173631A (ja) * 2013-03-06 2014-09-22 Honda Motor Co Ltd 四輪駆動車両のトルク伝達装置
JP2016017288A (ja) * 2014-07-04 2016-02-01 立川ブラインド工業株式会社 制動装置、遮蔽装置
JP2016017286A (ja) * 2014-07-04 2016-02-01 立川ブラインド工業株式会社 制動装置、遮蔽装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9494208B2 (en) * 2011-10-19 2016-11-15 Thk Co., Ltd. Damping device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182832A (ja) * 1989-12-11 1991-08-08 Mazda Motor Corp ロールダンパ装置
JPH0882333A (ja) * 1994-09-13 1996-03-26 Unisia Jecs Corp ロータリダンパ
JPH08166033A (ja) * 1994-12-13 1996-06-25 Unisia Jecs Corp ロータリダンパ
JPH1089395A (ja) * 1996-09-13 1998-04-07 Toyota Motor Corp 減衰力可変式緩衝装置
JPH11210799A (ja) * 1998-01-21 1999-08-03 Unisia Jecs Corp ロータリダンパ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3822811A1 (de) * 1987-07-14 1989-02-02 Opel Adam Ag Achsanordnung fuer ein kraftfahrzeug mit viskose-schwingungsdaempfer
JPH01131347A (ja) * 1987-11-16 1989-05-24 Ishii Kogyo Kk ワンウェイロータリーダンパ
JPH01131348A (ja) * 1987-11-16 1989-05-24 Ishii Kogyo Kk ワンウェイロータリーダンパ
FR2659407B1 (fr) * 1990-03-09 1994-07-08 Glaenzer Spicer Sa Amortisseur rotatif a fluide visqueux.
JPH11210801A (ja) * 1998-01-22 1999-08-03 Unisia Jecs Corp ロータリダンパ
JPH11257402A (ja) * 1998-03-09 1999-09-21 Unisia Jecs Corp ロータリダンパ
JP2001260625A (ja) * 2000-03-23 2001-09-26 Viscodrive Japan Ltd スタビライザー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03182832A (ja) * 1989-12-11 1991-08-08 Mazda Motor Corp ロールダンパ装置
JPH0882333A (ja) * 1994-09-13 1996-03-26 Unisia Jecs Corp ロータリダンパ
JPH08166033A (ja) * 1994-12-13 1996-06-25 Unisia Jecs Corp ロータリダンパ
JPH1089395A (ja) * 1996-09-13 1998-04-07 Toyota Motor Corp 減衰力可変式緩衝装置
JPH11210799A (ja) * 1998-01-21 1999-08-03 Unisia Jecs Corp ロータリダンパ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014173631A (ja) * 2013-03-06 2014-09-22 Honda Motor Co Ltd 四輪駆動車両のトルク伝達装置
JP2016017288A (ja) * 2014-07-04 2016-02-01 立川ブラインド工業株式会社 制動装置、遮蔽装置
JP2016017286A (ja) * 2014-07-04 2016-02-01 立川ブラインド工業株式会社 制動装置、遮蔽装置

Also Published As

Publication number Publication date
WO2009101493A1 (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP6513857B2 (ja) 車両のトルク伝達デバイス用の振動ダンパー
JP6534589B2 (ja) トルク変動抑制装置、トルクコンバータ、及び動力伝達装置
US7140966B2 (en) Torsional vibration damper
JP6489228B2 (ja) 振動減衰装置
CN105579738B (zh) 离心力摆装置
WO2011113410A1 (de) Drehschwingungstilger
US10309482B2 (en) Damper for an automobile clutch
JP2009191962A (ja) サスペンション装置およびビスカスカップリング
EP3284969A1 (en) Vibration-damping device
US20090139811A1 (en) Damper device
CN103069184A (zh) 滑动式等速万向接头
JP6328505B2 (ja) トリポード型等速自在継手
US20190226552A1 (en) Vibration damping device and method for designing the same
KR20150020300A (ko) 안정화된 롤링 요소를 갖는 진자 댐핑 장치
CN1571894A (zh) 三角架型等速万向节
JP2011153645A (ja) 無段変速機及び無段変速機の制御装置
JP2017115991A (ja) トルク伝達装置
JP2019178755A (ja) 振動減衰装置
JP6213840B2 (ja) 車両用動力伝達装置
JP2005299742A (ja) スプリングカップリング
JP7487630B2 (ja) 無段変速機
JP7487629B2 (ja) 無段変速機
JP2018059579A (ja) 摩擦伝動装置
JP5768400B2 (ja) トロイダル型無段変速機
JP4965397B2 (ja) 摩擦型遊星動力伝達機構及びその設計方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A977 Report on retrieval

Effective date: 20091224

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100420