JP2009190511A - 車両およびその制御方法 - Google Patents

車両およびその制御方法 Download PDF

Info

Publication number
JP2009190511A
JP2009190511A JP2008031893A JP2008031893A JP2009190511A JP 2009190511 A JP2009190511 A JP 2009190511A JP 2008031893 A JP2008031893 A JP 2008031893A JP 2008031893 A JP2008031893 A JP 2008031893A JP 2009190511 A JP2009190511 A JP 2009190511A
Authority
JP
Japan
Prior art keywords
vehicle
vehicle speed
power
driving force
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008031893A
Other languages
English (en)
Other versions
JP5056453B2 (ja
Inventor
Shinichi Sukai
信一 須貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008031893A priority Critical patent/JP5056453B2/ja
Publication of JP2009190511A publication Critical patent/JP2009190511A/ja
Application granted granted Critical
Publication of JP5056453B2 publication Critical patent/JP5056453B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】車両が比較的高速で走行している際に運転者に違和感を与えることなく車速の上昇に起因して昇温する車載要素をより適正に保護する。
【解決手段】ハイブリッド自動車20では、潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水の何れかが高温状態にあると判断されたときには、実用上の最高車速である上限車速Vlimが、当該何れかの車載要素が高温状態にはないときの実用上の最高車速である第1車速V1よりも低い第2車速V2に制限される(ステップS160)。これにより、車速Vの上昇を抑えることで対象となる車載要素の昇温を抑制すると共に、実用上の最高車速自体を抑えることで高速巡航中に走行用のトルクが運転者に明確に感じ取られるほどに低下してしまうことを抑制することができる。
【選択図】図2

Description

本発明は、車両およびその制御方法に関し、特に走行用の動力を発生する動力発生源を含む車両およびその制御方法に関する。
従来から、電動機の温度と回転数と出力制限率との関係を予めマップとして記憶しておき、当該マップから得られる電動機の温度と回転数とに応じた出力制限率を用いて電動機の出力を制限する電気自動車が知られている(例えば、特許文献1参照)。この電気自動車では、低回転域では出力制限量を少なくすると共に、高回転域では電動機のロータの温度上昇を考慮して出力制限量を多くすることで、電動機の温度保護と電動機性能の向上とを図っている。
特開2000−184502号公報
しかしながら、上記従来の電気自動車のように、電動機を保護すべくその温度に応じて当該電動機の出力を制限するにあたり、電動機の回転数が高まるほど出力制限量を増大化させると、車両の高速巡航中に走行用の動力が運転者に明確に感じ取られるほどに低下してしまって当該運転者に違和感を与えてしまうおそれがある。
そこで、本発明は、車両が比較的高速で走行している際に運転者に違和感を与えることなく車速の上昇に起因して昇温する車載要素をより適正に保護することを主目的とする。
本発明の車両およびその制御方法は、上述の主目的を達成するために以下の手段を採っている。
本発明による車両は、
走行用の動力を出力する動力発生源を含む車両であって、
車速の上昇に起因して昇温する所定の車載要素が所定の高温状態にあるか否かを判定する判定手段と、
前記判定手段により前記車載要素が前記高温状態にはないと判断されたときには、運転者による駆動力要求操作と前記取得された車速と第1の制約とに基づいて車速が第1車速以下となるように走行に要求される要求駆動力を設定すると共に、前記判定手段により前記車載要素が前記高温状態にあると判断されたときには、前記駆動力要求操作と前記取得された車速と第2の制約とに基づいて車速が前記1車速よりも低い第2車速以下となるように前記要求駆動力を設定する要求駆動力設定手段と、
前記設定された要求駆動力に基づく走行用の動力が得られるように前記動力発生源を制御する制御手段と、
を備えるものである。
この車両では、車速の上昇に起因して昇温する所定の車載要素が所定の高温状態にはないと判断されたときには、運転者による駆動力要求操作と車速取得手段により取得された車速と第1の制約とに基づいて車速が第1車速以下となるように走行に要求される要求駆動力が設定される。また、上記車載要素が高温状態にあると判断されたときには、運転者による駆動力要求操作と車速取得手段により取得された車速と第2の制約とに基づいて車速が第1車速よりも低い第2車速以下となるように要求駆動力が設定される。そして、こうして設定された要求駆動力に基づく走行用の動力が得られるように動力発生源が制御される。このように、この車両では、上記車載要素が高温状態にあると判断されたときには、実用上の最高車速が、上記車載要素が高温状態にはないときの実用上の最高車速である第1車速よりも低い第2車速に制限される。これにより、車速の上昇を抑えることで車載要素の昇温を抑制すると共に、実用上の最高車速自体を抑えることで高速巡航中に走行用の動力が運転者に明確に感じ取られるほどに低下してしまうことを抑制することができる。この結果、この車両では、比較的高速で走行している際に運転者に違和感を与えることなく車速の上昇に起因して昇温する車載要素をより適正に保護することが可能となる。なお、所定の高温状態とは、対象となる車載要素の温度が保護を開始すべき温度に達している状態であってもよく、その後に保護を開始すべき温度に達することが予想される状態であってもよい。
また、前記第1の制約は、前記取得された車速が前記第1車速以下であるときには前記駆動力要求操作に基づく仮要求駆動力を前記要求駆動力とすると共に前記取得された車速が前記第1車速を上回ると該車速が該第1車速以下となるように該取得された車速に応じて前記仮要求駆動力を制限する制約であってもよく、前記第2の制約は、前記取得された車速が前記第2車速以下であるときには前記仮要求駆動力を前記要求駆動力とすると共に前記取得された車速が前記第2車速を上回ると該車速が該第2車速以下となるように該取得された車速に応じて前記仮要求駆動力を制限する制約であってもよい。これにより、車載要素の温度に応じて車速が第1車速または第2車速以下となるように動力発生源をより適正に制御することが可能となる。
更に、前記第2車速は、巡航速度が該第2車速となるときに前記判定手段により前記車載要素が前記高温状態にはないと判断されるように定められてもよい。これにより、車載要素が高温状態になったときに車両の実用上の最高車速を第2車速に制限することで当該車載要素の昇温をより適正に抑制することが可能となる。
また、前記車両は、前記車載要素の温度を取得する温度取得手段を更に備えてもよく、前記判定手段は、前記取得された温度が前記車載要素について定められた所定の基準温度以上であるときに該車載要素が前記高温状態にあると判断するものであってもよい。この場合、温度取得手段は、車載要素の温度を実測するものであってもよく、所定のパラメータに基づいて推定するものであってもよい。
更に、前記車両は、走行用の動力を出力可能な電動機と、前記電動機と電力をやり取り可能な蓄電手段とを更に備えてもよく、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記電動機を制御するものであってもよい。この場合、前記車載要素は、前記電動機、該電動機を駆動制御するための電源回路要素、および前記電動機を含む駆動系の冷却媒体の少なくとも何れか一つであってもよい。そして、前記車両は、電動機に加えて走行用の動力を出力可能な内燃機関を更に備えるハイブリッド車両であってもよく、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関と前記電動機とを制御するものであってもよい。
また、前記動力発生源は、走行用の動力を出力可能な内燃機関であってもよく、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関を制御するものであってもよい。そして、前記車載要素は、前記内燃機関の冷却媒体であってもよい。
加えて、前記車両は、所定の車軸と前記内燃機関の機関軸とに接続されて電力と動力との入出力を伴って前記内燃機関の動力の少なくとも一部を前記車軸側に出力すると共に前記蓄電手段と電力をやり取り可能な電力動力入出力手段を更に備えてもよく、前記電動機は前記車軸または該車軸とは異なる他の車軸に動力を出力可能であってもよく、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関と前記電力動力入出力手段と前記電動機とを制御するものであってもよい。この場合、前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含むものであってもよい。
本発明による車両の制御方法は、
走行用の動力を出力する動力発生源を含む車両の制御方法であって、
(a)車速の上昇に起因して昇温する所定の車載要素が所定の高温状態にあるか否かを判定するステップと、
(b)ステップ(a)にて前記車載要素が前記高温状態にはないと判断されたときには、運転者による駆動力要求操作と車速と第1の制約とに基づいて該車速が第1車速以下となるように走行に要求される要求駆動力を設定すると共に、ステップ(a)にて前記車載要素が前記高温状態にあると判断されたときには、前記駆動力要求操作と前記車速と第2の制約とに基づいて該車速が前記1車速よりも低い第2車速以下となるように前記要求駆動力を設定するステップと、
(c)ステップ(b)にて設定された要求駆動力に基づく走行用の動力が得られるように前記動力発生源を制御するステップと、
を含むものである。
この方法によれば、上記車載要素が高温状態にあると判断されたときには、実用上の最高車速が、上記車載要素が高温状態にはないときの実用上の最高車速である第1車速よりも低い第2車速に制限される。これにより、車速の上昇を抑えることで車載要素の昇温を抑制すると共に、実用上の最高車速自体を抑えることで高速巡航中に走行用の動力が運転者に明確に感じ取られるほどに低下してしまうことを抑制することができる。この結果、比較的高速で走行している際に運転者に違和感を与えることなく車速の上昇に起因して昇温する車載要素をより適正に保護することが可能となる。なお、所定の高温状態とは、対象となる車載要素の温度が保護を開始すべき温度に達している状態であってもよく、その後に保護を開始すべき温度に達することが予想される状態であってもよい。
次に、本発明を実施するための最良の形態を実施例を用いて説明する。
図1は、本発明の実施例に係る車両としてのハイブリッド自動車20の概略構成図である。同図に示すハイブリッド自動車20は、エンジン22と、エンジン22のクランクシャフト(機関軸)26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された車軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35を介してリングギヤ軸32aに接続されたモータMG2と、モータMG1,MG2を潤滑・冷却するための潤滑冷却オイルを供給する機械式オイルポンプ55および電動オイルポンプ56と、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下「ハイブリッドECU」という)70等とを備える。
エンジン22は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジンECU」という)24により燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジンECU24には、例えばエンジン22を冷却するエンジン冷却水の温度Twを検出する水温センサ23のように、エンジン22に対して設けられて当該エンジン22の運転状態を検出する各種センサからの信号が入力される。そして、エンジンECU24は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号や上記センサからの信号等に基づいてエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU70に出力する。
動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行う遊星歯車機構として構成されている。機関側回転要素としてのキャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、車軸側回転要素としてのリングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、動力分配統合機構30は、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側とにそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構37およびデファレンシャルギヤ38を介して最終的に駆動輪である車輪39a,39bに出力される。
モータMG1およびMG2は、何れも発電機として作動すると共に電動機として作動可能な周知の同期発電電動機として構成されており、電源回路要素としてのインバータ41,42を介して二次電池であるバッテリ50と電力のやり取りを行う。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2の何れか一方により発電される電力を他方のモータで消費できるようになっている。従って、バッテリ50は、モータMG1,MG2の何れかから生じた電力や不足する電力により充放電されることになり、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されないことになる。モータMG1,MG2は、何れもモータ用電子制御ユニット(以下、「モータECU」という)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や、図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流等が入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号等が出力される。また、モータECU40は、回転位置検出センサ43,44から入力した信号に基づいて図示しない回転数算出ルーチンを実行し、モータMG1,MG2の回転子の回転数Nm1,Nm2を計算している。更に、モータECU40は、ハイブリッドECU70と通信しており、ハイブリッドECU70からの制御信号等に基づいてモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU70に出力する。なお、インバータ41には、それに含まれる所定の素子の温度であるインバータ温度Tinv1を検出する温度センサ45が設けられており、インバータ42には、それに含まれる所定の素子の温度であるインバータ温度Tinv2を検出する温度センサ46が設けられている。
バッテリ50は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された図示しない電圧センサからの端子間電圧、バッテリ50の出力端子に接続された電力ライン54に取り付けられた図示しない電流センサからの充放電電流、バッテリ50に取り付けられた温度センサ51からのバッテリ温度Tb等が入力されている。バッテリECU52は、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッドECU70やエンジンECU24に出力する。更に、バッテリECU52は、バッテリ50を管理するために、電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを算出したり、当該残容量SOCに基づいてバッテリ50の充放電要求パワーPb*を算出したり、残容量SOCと電池温度Tbとに基づいてバッテリ50の充電に許容される電力である充電許容電力としての入力制限Winとバッテリ50の放電に許容される電力である放電許容電力としての出力制限Woutとを算出したりする。なお、バッテリ50の入出力制限Win,Woutは、バッテリ温度Tbに基づいて入出力制限Win,Woutの基本値を設定すると共に、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定可能である。
機械式オイルポンプ55は、その回転軸がクランクシャフト26に連結されてエンジン22により駆動され、オイルパン57に貯留されている冷却媒体としての潤滑冷却オイル(オートマチックトランスミッションフルード:ATF)を動力分配統合機構30や減速ギヤ35、モータMG1およびMG2等に供給する。また、電動オイルポンプ56は、図示しない補機バッテリからの電力により駆動され、オイルパン57に貯留された潤滑冷却オイルを動力分配統合機構30や減速ギヤ35、モータMG1およびMG2等に供給する。なお、オイルパン57には、そこに貯留されている潤滑冷却オイルの温度である油温Tatfを検出する温度センサ58が設けられている。
ハイブリッドECU70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74やデータを一時的に記憶するRAM76、図示しない入出力ポートおよび通信ポート等を備える。ハイブリッドECU70には、イグニッションスイッチ(スタートスイッチ)80からのイグニッション信号、シフトレバー81の操作位置であるシフトポジションSPを検出するシフトポジションセンサ82からのシフトポジションSP、アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc、ブレーキペダル85の踏み込み量を検出するブレーキペダルストロークセンサ86からのブレーキペダルストロークBS、車速Vを取得する車速センサ87からの車速V、温度センサ45,46からのインバータ温度Tinv1,Tinv2や温度センサ58からの油温Tatf等が入力ポートを介して入力される。そして、ハイブリッドECU70は、上述したように、エンジンECU24やモータECU40、バッテリECU52等と通信ポートを介して接続されており、エンジンECU24やモータECU40、バッテリECU52等と各種制御信号やデータのやり取りを行っている。また、ハイブリッドECU70からは、電動オイルポンプ56への駆動信号等も出力ポートを介して出力される。
上述のように構成された実施例のハイブリッド自動車20では、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて車軸としてのリングギヤ軸32aに出力すべき要求トルクTr*が計算され、この要求トルクTr*に基づくトルクがリングギヤ軸32aに出力されるようにエンジン22とモータMG1およびMG2とが制御される。エンジン22とモータMG1およびMG2との運転制御モードとしては、要求トルクTr*に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1およびMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびMG2を駆動制御するトルク変換運転モードや、要求トルクTr*とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1およびMG2とによるトルク変換を伴って要求トルクTr*に応じたトルクがリングギヤ軸32aに出力されるようモータMG1およびMG2を駆動制御する充放電運転モード等がある。
次に、上述のように構成された実施例のハイブリッド自動車20が比較的高速で走行しているときの動作について説明する。図2は、エンジン22の運転を伴ってハイブリッド自動車20が比較的高速で走行しているときに、実施例のハイブリッドECU70により所定時間毎(例えば、数msec毎)に実行される駆動制御ルーチンの一例を示すフローチャートである。
図2の駆動制御ルーチンの開始に際して、ハイブリッドECU70のCPU72は、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ87からの車速V、モータMG1,MG2の回転数Nm1,Nm2、バッテリ50の充放電要求パワーPb*や入出力制限Win,Wout、温度センサ58からの油温Tatf、温度センサ45,46からのインバータ温度Tinv1,Tinv2、モータMG1,MG2の温度であるモータ温度Tmg1,Tmg2、エンジン冷却水の温度Twといった制御に必要なデータの入力処理を実行する(ステップS100)。ここで、モータMG1,MG2の回転数Nm1,Nm2は、モータECU40から通信により入力するものとし、充放電要求パワーPb*、バッテリ50の入出力制限Win,Woutは、バッテリECU52から通信により入力するものとした。また、モータ温度Tmg1,Tmg2は、油温Tatfに基づいてハイブリッドECU70により推定されて所定の記憶領域に格納されるものである。更に、エンジン冷却水の温度Twは、エンジンECU24から通信により入力するものとした。
ステップS100のデータ入力処理の後、入力した油温Tatfが予め定められた基準油温Tatfref未満であるか否かを判定し(ステップS110)、油温Tatfが基準油温Tatfref未満であれば、更にインバータ温度Tinv1およびTinv2の双方が予め定められた基準インバータ温度Tinvref未満であるか否かを判定する(ステップS120)。また、インバータ温度Tinv1およびTinv2の双方が基準インバータ温度Tinvref未満であれば、モータ温度Tmg1およびTmg2の双方が予め定められた基準モータ温度Tmgref未満であるか否かを判定する(ステップS130)。そして、モータ温度Tmg1およびTmg2の双方が基準モータ温度Tmgref未満であれば、エンジン冷却水の温度Twが予め定められた基準水温Twref未満であるか否かを判定する(ステップS140)。実施例において、ステップS110にて用いられる閾値としての基準油温Tatfref、ステップS120にて用いられる閾値としての基準インバータ温度Tinvref、ステップS130にて用いられる閾値としての基準モータ温度Tmgref、およびステップS140にて用いられる閾値としての基準水温Twrefは、それぞれに対応した潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水といった車速Vの上昇に起因して昇温する車載要素ごとに、当該車載要素あるいはそれに関連した車載部品の保護を開始すべき温度、または当該車載要素あるいはそれに関連した車載部品がその後に保護を開始すべき温度に達することが予想されるときの温度として予め実験・解析を経て定められる。
ステップS110〜S140のすべてにおいて肯定判断がなされた場合には、ハイブリッド自動車20の実用上の最高車速である上限車速Vlimを通常時用の第1車速V1(例えば180km)に設定する(ステップS150)。これに対して、ステップS110〜S140の何れか一つにおいて否定判断がなされて該当する車載要素が高温状態にあると判断された場合には、上限車速Vlimを通常時用の第1車速V1よりも低い第2車速V2(例えば170km)に設定する(ステップS160)。ここで、第2車速V2は、ハイブリッド自動車20の巡航速度が当該第2車速V2となるときに潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水がそれぞれに対応した閾値である基準油温Tatfref、基準インバータ温度Tinvref、基準モータ温度Tmgrefあるいは基準水温Twref未満となるように予め実験・解析を経て定められる。そして、ステップS150またはS160にて上限車速Vlimを設定したならば、当該上限車速VlimとステップS100にて入力した車速Vとに基づいて、ハイブリッド自動車20の実用上の最高車速を上限車速Vlim以下に制限するための要求トルクTr*に対する補正係数Ktを設定する(ステップS170)。実施例では、上限車速Vlimと車速Vと補正係数Ktとの関係が予め定められて補正係数設定用マップとしてROM74に記憶されており、補正係数Ktとしては、ステップS150またはS160にて設定された上限車速VlimとステップS100にて入力した車速Vとに対応したものが当該マップから導出・設定される。図3に補正係数設定用マップの一例を示す。図3の補正係数設定用マップは、車速Vが上限車速Vlim以下である場合には補正係数Ktを値1に設定すると共に、車速Vが上限車速Vlimを上回ると車速Vが上限車速Vlim以下になるように補正係数Ktを車速Vに応じて減じるものであり、補正係数Ktは車速Vが上限車速Vlimよりも所定値(例えば5km)だけ大きくなったときに値0に設定される。従って、ステップS150にて上限車速Vlimが通常時用の第1車速V1に設定されている場合、補正係数Ktは、車速Vが第1車速V1を上回ると車速Vの増加に伴って線形的あるいは非線形的に減少し、車速Vが第1車速V1よりも所定値だけ大きい値V1′になると値0に設定されることになる。また、ステップS160にて上限車速Vlimが通常時用の第1車速V1よりも低い第2車速V2に設定されている場合、補正係数Ktは、車速Vが第2車速V2を上回ると車速Vの増加に伴って線形的あるいは非線形的に減少し、車速Vが第2車速V2よりも所定値だけ大きい値V2′になると値0に設定されることになる。
こうして補正係数Ktを設定したならば、当該補正係数KtとステップS100にて入力したアクセル開度Accおよび車速Vとに基づいて駆動輪たる車輪39a,39bに連結された車軸としてのリングギヤ軸32aに出力すべき要求トルクTr*を設定した上で、車両全体に要求される要求パワーP*を設定する(ステップS180)。実施例では、アクセル開度Accと車速Vと仮要求トルクとの関係が予め定められて図4に例示するような仮要求トルク設定用マップとしてROM74に記憶されており、当該マップから導出されたアクセル開度Accと車速Vとに対応した仮要求トルクにステップS170に設定された補正係数Ktを乗じたものが要求トルクTr*として設定される。従って、ステップS170にて補正係数Ktが値1に設定されている場合には、図4に例示する仮要求トルク設定用マップからアクセル開度Accと車速Vとに対応するものとして導出された仮要求トルクがそのまま要求トルクTr*として設定され、ステップS170にて補正係数Ktが値1よりも小さい値に設定されている場合には、要求トルクTr*は運転者の要求に応じた仮要求トルクよりも小さな値に設定されることになる。また、実施例において、要求パワーP*は、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものと充放電要求パワーPb*(放電側を減じるものとする)とロスLossとの総和として計算される。なお、リングギヤ軸32aの回転数Nrは、図示するようにモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除するか、あるいは車速Vに換算係数kを乗じることによって求めることができる。そして、ここでは、ステップS180にて設定された要求パワーP*のすべてをエンジン22によりまかなうものとして、当該要求パワーP*に基づいてエンジン22の目標運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS190)。実施例では、エンジン22が効率よく運転されるときの回転数およびトルクを要求パワーに対応して規定する運転ポイント設定制約としての動作ラインが予め作成されてROM74に記憶されており、ステップS190では、この動作ラインと要求パワーP*とに基づいてエンジン22の目標回転数Ne*と目標トルクTe*とを設定するものとした。図5に、エンジン22の動作ラインと回転数NeとトルクTeとの相関曲線とを例示する。同図に示すように、目標回転数Ne*と目標トルクTe*は、上記動作ラインと要求パワーP*(Ne*×Te*)が一定となることを示す相関曲線との交点として求めることができる。
続いて、目標回転数Ne*とリングギヤ軸32aの回転数Nr(Nm2/Gr)と動力分配統合機構30のギヤ比ρ(サンギヤ31の歯数/リングギヤ32の歯数)とを用いて次式(1)に従いモータMG1の目標回転数Nm1*を計算した上で、計算した目標回転数Nm1*と現在の回転数Nm1とを用いて次式(2)に従いモータMG1に対するトルク指令Tm1*を設定する(ステップS200)。ここで、式(1)は、動力分配統合機構30の回転要素における力学的な関係式である。また、図6に動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を例示する。図中、左側のS軸はモータMG1の回転数Nm1に一致するサンギヤ31の回転数を示し、中央のC軸はエンジン22の回転数Neに一致するキャリア34の回転数を示し、右側のR軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。また、R軸上の2つの太線矢印は、モータMG1にトルクTm1を出力させたときにこのトルク出力によりリングギヤ軸32aに作用するトルクと、モータMG2にトルクTm2を出力させたときに減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。モータMG1の目標回転数Nm1*を求めるための式(1)は、この共線図における回転数の関係を用いれば容易に導出することができる。そして、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである
Nm1*=Ne*・(1+ρ)/ρ-Nm2/(Gr・ρ) …(1)
Tm1*=-ρ/(1+ρ)・Te*+k1・(Nm1*-Nm1)+k2・∫(Nm1*-Nm1)dt …(2)
ステップS200の処理の後、バッテリ50の入出力制限Win,WoutとモータMG1に対するトルク指令Tm1*とモータMG1,MG2の現在の回転数Nm1,Nm2とを用いてモータMG2から出力してもよいトルクの上下限としてのトルク制限Tmin,Tmaxを次式(3)および式(4)に従い計算する(ステップS210)。更に、要求トルクTr*とトルク指令Tm1*と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとを用いてモータMG2から出力すべきトルクの仮の値である仮モータトルクTm2tmpを次式(5)に従い計算する(ステップS220)。かかるステップS220にて用いられる式(5)も図6の共線図から容易に導出することができる。そして、モータMG2に対するトルク指令Tm2*をトルク制限Tmin,Tmaxで仮モータトルクTm2tmpを制限した値に設定する(ステップS230)。このようにしてモータMG2に対するトルク指令Tm2*を設定することにより、車軸としてのリングギヤ軸32aに出力するトルクをバッテリ50の入出力制限Win,Woutの範囲内に制限することができる。こうしてエンジン22の目標回転数Ne*や目標トルクTe*、モータMG1,MG2に対するトルク指令Tm1*,Tm2*を設定したならば、エンジン22の目標回転数Ne*および目標トルクTe*をエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40にそれぞれ送信し(ステップS240)、再度ステップS100以降の処理を実行する。なお、目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、目標回転数Ne*と目標トルクTe*とを得るための制御を実行する。更に、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*に従ってモータMG1が駆動されると共にトルク指令Tm2*に従ってモータMG2が駆動されるようにインバータ41,42のスイッチング素子のスイッチング制御を行なう。
Tmin=(Win-Tm1*・Nm1)/Nm2 …(3)
Tmax=(Wout-Tm1*・Nm1)/Nm2 …(4)
Tm2tmp=(Tr*+Tm1*/ρ)/Gr …(5)
以上説明したように、実施例のハイブリッド自動車20では、車速Vの上昇に起因して昇温する潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水といった車載要素の温度がそれぞれに対応した閾値である基準油温Tatfref、基準インバータ温度Tinvref、基準モータ温度Tmgrefあるいは基準水温Twref未満であって当該車載要素のすべてが高温状態にはないと判断されたときには、運転者のアクセル操作に応じたアクセル開度Accと車速センサ87により検出された車速Vと上限車速Vlimである第1車速V1に対応した補正係数設定用マップ(第1の制約)とに基づいて車速Vが上限車速Vlim(V1)以下となるように走行に要求される要求トルクTr*が設定される(ステップS150,S170,S180)。また、上記何れかの車載要素が高温状態にあると判断されたときには、アクセル開度Accと車速センサ87により検出された車速Vと上限車速Vlimである第2車速V2(V2<V1)に対応した補正係数設定用マップ(第2の制約)とに基づいて車速Vが上限車速Vlim(V2)以下となるように要求トルクTr*が設定される(ステップS160,S170,S180)。そして、こうして設定された要求トルクTr*に基づくトルクが車軸としてのリングギヤ軸32aに出力されるようにエンジン22とモータMG1およびMG2とが制御される(ステップS190〜S240)。このように、ハイブリッド自動車20では、潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水の何れかが高温状態にあると判断されたときには、実用上の最高車速である上限車速Vlimが、当該何れかの車載要素が高温状態にはないときの実用上の最高車速とされる第1車速V1よりも低い第2車速V2に制限される。これにより、車速Vの上昇を抑えることで対象となる車載要素の昇温を抑制すると共に、実用上の最高車速自体を抑えることで高速巡航中に走行用のトルクが運転者に明確に感じ取られるほどに低下してしまうことを抑制することができる。この結果、実施例のハイブリッド自動車20では、比較的高速で走行している際に運転者に違和感を与えることなく車速Vの上昇に起因して昇温する車載要素をより適正に保護することが可能となる。また、このように、車載要素の温度に応じてハイブリッド自動車20の実用上の最高車速を制限して車載部品の保護を図るようにすれば、当該ハイブリッド自動車20の仕向けが追加・変更されたときに、上記基準温度の見直しを抑制することができる。
更に、上記実施例では、潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水といった車載要素のすべてが高温状態にはなく、上限車速Vlimが第1車速V1に設定されると、車速センサ87により検出された車速Vが第1車速V1以下であるときには補正係数Ktが値1に設定されてアクセル開度Accと車速Vとに基づく仮要求トルクがそのまま要求トルクTr*とされ、車速センサ87により検出された車速Vが第1車速V1を上回ると車速Vが当該第1車速V1以下となるように車速Vの増加に伴って補正係数Ktが減じられ、仮要求トルクよりも小さい値が要求トルクTr*として設定される。また、上記車載要素の何れかが高温状態にあり、上限車速Vlimが第1車速V1よりも低い第2車速V2に設定されると、車速センサ87により検出された車速Vが第2車速V2以下であるときには補正係数Ktが値1に設定されてアクセル開度Accと車速Vとに基づく仮要求トルクがそのまま要求トルクTr*とされ、車速センサ87により検出された車速Vが第2車速V2を上回ると車速Vが当該第2車速V2以下となるように車速Vの増加に伴って補正係数Ktが減じられ、仮要求トルクよりも小さい値が要求トルクTr*として設定される。これにより、ハイブリッド自動車20では、潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水といった車載要素の温度に応じて車速Vが第1車速V1または第2車速V2以下となるようにエンジン22とモータMG1およびMG2とをより適正に制御することが可能となる。更に、上記実施例では、ハイブリッド自動車20の巡航速度が第2車速V2となるときに潤滑冷却オイル、インバータ41,42、モータMG1,MG2、エンジン冷却水がそれぞれに対応した閾値である基準油温Tatfref、基準インバータ温度Tinvref、基準モータ温度Tmgrefあるいは基準水温Twref未満となるように第2車速V2が定められている。これにより、上記車載要素の何れかが高温状態になったときに車両の実用上の最高車速である上限車速Vlimを第2車速V2とすることで当該車載要素の昇温をより適正に抑制することが可能となる。
なお、上記ハイブリッド自動車20では、車軸としてのリングギヤ軸32aとモータMG2とがモータMG2の回転数を減速してリングギヤ軸32aに伝達する減速ギヤ35を介して連結されているが、減速ギヤ35の代わりに、例えばHi,Loの2段の変速段あるいは3段以上の変速段を有し、モータMG2の回転数を変速してリングギヤ軸32aに伝達する変速機を採用してもよい。また、上記ハイブリッド自動車20は、モータMG2の動力を減速ギヤ35により減速して車軸としてのリングギヤ軸32aに出力するものであるが、本発明の適用対象は、これに限られるものではない。すなわち、本発明は、図7に示す変形例としてのハイブリッド自動車120のように、モータMG2の動力をリングギヤ軸32aに接続された車軸(駆動輪である車輪39a,39bが接続された車軸)とは異なる車軸(図7における車輪39c,39dに接続された車軸)に出力するものに適用されてもよい。更に、実施例のハイブリッド自動車20は、エンジン22の動力を動力分配統合機構30を介して駆動輪である車輪39a,39bに接続された車軸としてのリングギヤ軸32aに出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図8に示す変形例としてのハイブリッド自動車220のように、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪である車輪39a,39bに動力を出力する車軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を車軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えたものに適用されてもよい。加えて、本発明は、図9に示す変形例としてのハイブリッド自動車320に適用されてもよい。図9のハイブリッド自動車320では、クラッチC1を介してエンジン22のクランクシャフト26と同期発電電動機であるモータMG(ロータ)とが接続されると共にモータMG(ロータ)が例えば無段変速機(以下「CVT」という)といった自動変速機のインプットシャフトに接続される。そして、自動変速機のアウトプットシャフトからの動力は、デファレンシャルギヤを介して最終的に駆動輪である車輪39a,39bに出力される。また、図示は省略するが、本発明は、モータのみを走行用の動力発生源として備える電気自動車や、エンジンのみを走行用の動力発生源として備える自動車にも適用され得ることはいうまでもない。
ここで、上記実施例および変形例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明しておく。すなわち、走行用の動力を出力可能なエンジン22やモータMG,MG2が「動力発生源」に相当し、潤滑冷却オイルやモータMG1,MG2、インバータ41,42、エンジン冷却水が「車載要素」に相当し、図2のステップS110〜S140の処理を実行するハイブリッドECU70が「判定手段」に相当し、図2のステップS150〜S180の処理を実行するハイブリッドECU70が「要求駆動力設定手段」に相当し、図2のステップS190〜S240の処理を実行するハイブリッドECU70とエンジンECU24とモータECU40との組み合わせが「制御手段」に相当する。また、水温センサ23や温度センサ45,46,58、モータ温度Tmg1,Tmg2を推定するハイブリッドECU70が「温度取得手段」に相当し、モータMG,MG2が「電動機」に相当し、バッテリ50が「蓄電手段」に相当し、エンジン22が「内燃機関」に相当し、モータMG1および動力分配統合機構30や対ロータ電動機230が「電力動力入出力手段」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当し、モータMG1が「発電用電動機」に相当する。
ただし、「車載要素」は、車速の上昇に起因して昇温するものであれば、潤滑冷却オイルやモータMG1,MG2、インバータ41,42、エンジン冷却水以外の他の如何なるものであっても構わない。「要求駆動力設定手段」は、車載要素が高温状態にはないと判断されたときには運転者による駆動力要求操作と取得された車速と第1の制約とに基づいて車速が第1車速以下となるように走行に要求される要求駆動力を設定すると共に、車載要素が高温状態にあると判断されたときには駆動力要求操作と取得された車速と第2の制約とに基づいて車速が第1車速よりも低い第2車速以下となるように要求駆動力を設定するものであれば、ハイブリッドECU70以外の他の如何なる形式のものであっても構わない。「制御手段」は、単一の電子制御ユニットといったようなハイブリッドECU70とエンジンECU24とモータECU40との組み合わせ以外の他の如何なる形式のものであっても構わない。「内燃機関」は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力するエンジン22に限られず、水素エンジンといったような他の如何なる形式のものであっても構わない。「電動機」や「発電用電動機」は、モータMG1,MG2のような同期発電電動機に限られず、誘導電動機といったような他の如何なる形式のものであっても構わない。「温度取得手段」は、車載要素の温度を実測したり、所定のパラメータに基づいて推定したりするものであれば、如何なる形式のものであっても構わない。何れにしても、これら実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎず、課題を解決するための手段の欄に記載した発明の解釈は、その欄の記載に基づいて行なわれるべきものである。
以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。
本発明は、ハイブリッド自動車といったような車両の製造産業等において利用可能である。
本発明の一実施例に係る車両としてのハイブリッド自動車20の概略構成図である。 実施例のハイブリッドECU70により実行される駆動制御ルーチンの一例を示すフローチャートである。 補正係数設定用マップの一例を示す説明図である。 仮要求トルク設定用マップの一例を示す説明図である。 エンジン22の動作ラインと目標回転数Ne*と目標トルクTe*との相関曲線とを例示する説明図である。 動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を例示する共線図である。 変形例に係るハイブリッド自動車120の概略構成図である。 他の変形例に係るハイブリッド自動車220の概略構成図である。 他の変形例に係るハイブリッド自動車320の概略構成図である。
符号の説明
20,120,220,320 ハイブリッド自動車、22 エンジン、23 水温センサ、24 エンジン用電子制御ユニット(エンジンECU)、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、37 ギヤ機構、38 デファレンシャルギヤ、39a〜39d 車輪、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、45,46,51,58 温度センサ、50 バッテリ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、55 機械式オイルポンプ、56 電動オイルポンプ、57 オイルパン、70 ハイブリッド用電子制御ユニット(ハイブリッドECU)、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルストロークセンサ、87 車速センサ、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、C1 クラッチ、MG,MG1,MG2 モータ。

Claims (12)

  1. 走行用の動力を出力する動力発生源を含む車両であって、
    車速の上昇に起因して昇温する所定の車載要素が所定の高温状態にあるか否かを判定する判定手段と、
    前記判定手段により前記車載要素が前記高温状態にはないと判断されたときには、運転者による駆動力要求操作と前記取得された車速と第1の制約とに基づいて車速が第1車速以下となるように走行に要求される要求駆動力を設定すると共に、前記判定手段により前記車載要素が前記高温状態にあると判断されたときには、前記駆動力要求操作と前記取得された車速と第2の制約とに基づいて車速が前記第1車速よりも低い第2車速以下となるように前記要求駆動力を設定する要求駆動力設定手段と、
    前記設定された要求駆動力に基づく走行用の動力が得られるように前記動力発生源を制御する制御手段と、
    を備える車両。
  2. 前記第1の制約は、前記取得された車速が前記第1車速以下であるときには前記駆動力要求操作に基づく仮要求駆動力を前記要求駆動力とすると共に前記取得された車速が前記第1車速を上回ると該車速が該第1車速以下となるように該取得された車速に応じて前記仮要求駆動力を制限する制約であり、前記第2の制約は、前記取得された車速が前記第2車速以下であるときには前記仮要求駆動力を前記要求駆動力とすると共に前記取得された車速が前記第2車速を上回ると該車速が該第2車速以下となるように該取得された車速に応じて前記仮要求駆動力を制限する制約である請求項1に記載の車両。
  3. 前記第2車速は、巡航速度が該第2車速となるときに前記判定手段により前記車載要素が前記高温状態にはないと判断されるように定められる請求項1または2に記載の車両。
  4. 請求項1から3の何れか一項に記載の車両において、
    前記車載要素の温度を取得する温度取得手段を更に備え、
    前記判定手段は、前記取得された温度が前記車載要素について定められた所定の基準温度以上であるときに該車載要素が前記高温状態にあると判断する車両。
  5. 請求項1から4の何れか一項に記載の車両において、
    走行用の動力を出力可能な電動機と、
    前記電動機と電力をやり取り可能な蓄電手段とを更に備え、
    前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記電動機を制御する車両。
  6. 前記車載要素は、前記電動機、該電動機を駆動制御するための電源回路要素、および前記電動機を含む駆動系の冷却媒体の少なくとも何れか一つである請求項5に記載の車両。
  7. 請求項5または6に記載の車両において、
    走行用の動力を出力可能な内燃機関を更に備え、
    前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関と前記電動機とを制御する車両。
  8. 請求項1から4の何れか一項に記載の車両において、
    前記動力発生源は、走行用の動力を出力可能な内燃機関であり、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関を制御する車両。
  9. 前記車載要素は、前記内燃機関の冷却媒体である請求項7または8に記載の車両。
  10. 所定の車軸と前記内燃機関の機関軸とに接続されて電力と動力との入出力を伴って前記内燃機関の動力の少なくとも一部を前記車軸側に出力すると共に前記蓄電手段と電力をやり取り可能な電力動力入出力手段を更に備え、前記電動機は前記車軸または該車軸とは異なる他の車軸に動力を出力可能であり、前記制御手段は、前記設定された要求駆動力に基づく走行用の動力が得られるように前記内燃機関と前記電力動力入出力手段と前記電動機とを制御する請求項7に記載の車両。
  11. 前記電力動力入出力手段は、動力を入出力可能な発電用電動機と、前記車軸と前記内燃機関の前記機関軸と前記発電用電動機の回転軸との3軸に接続され、これら3軸のうちの何れか2軸に入出力される動力に基づく動力を残余の軸に入出力する3軸式動力入出力手段とを含む請求項9に記載の車両。
  12. 走行用の動力を出力する動力発生源を含む車両の制御方法であって、
    (a)車速の上昇に起因して昇温する所定の車載要素が所定の高温状態にあるか否かを判定するステップと、
    (b)ステップ(a)にて前記車載要素が前記高温状態にはないと判断されたときには、運転者による駆動力要求操作と車速と第1の制約とに基づいて該車速が第1車速以下となるように走行に要求される要求駆動力を設定すると共に、ステップ(a)にて前記車載要素が前記高温状態にあると判断されたときには、前記駆動力要求操作と前記車速と第2の制約とに基づいて該車速が前記1車速よりも低い第2車速以下となるように前記要求駆動力を設定するステップと、
    (c)ステップ(b)にて設定された要求駆動力に基づく走行用の動力が得られるように前記動力発生源を制御するステップと、
    を含む車両の制御方法。
JP2008031893A 2008-02-13 2008-02-13 車両およびその制御方法 Expired - Fee Related JP5056453B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031893A JP5056453B2 (ja) 2008-02-13 2008-02-13 車両およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031893A JP5056453B2 (ja) 2008-02-13 2008-02-13 車両およびその制御方法

Publications (2)

Publication Number Publication Date
JP2009190511A true JP2009190511A (ja) 2009-08-27
JP5056453B2 JP5056453B2 (ja) 2012-10-24

Family

ID=41072926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031893A Expired - Fee Related JP5056453B2 (ja) 2008-02-13 2008-02-13 車両およびその制御方法

Country Status (1)

Country Link
JP (1) JP5056453B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218887A (ja) * 2010-04-06 2011-11-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2019127188A (ja) * 2018-01-25 2019-08-01 トヨタ自動車株式会社 ハイブリッド自動車
JP2020044990A (ja) * 2018-09-19 2020-03-26 日立オートモティブシステムズ株式会社 サスペンション制御装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572349B (zh) * 2020-05-18 2021-07-30 安徽江淮汽车集团股份有限公司 电动汽车堵转故障检测方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690507A (ja) * 1992-09-04 1994-03-29 Aisin Aw Co Ltd 電動車両
JP2000006683A (ja) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd 車両用走行速度制御システム
JP2001152942A (ja) * 1999-11-29 2001-06-05 Mitsubishi Motors Corp 内燃機関の制御装置
JP2002155777A (ja) * 2000-11-16 2002-05-31 Toyota Motor Corp 車両駆動装置
JP2003111206A (ja) * 2001-10-01 2003-04-11 Aisin Aw Co Ltd ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動制御方法及びそのプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0690507A (ja) * 1992-09-04 1994-03-29 Aisin Aw Co Ltd 電動車両
JP2000006683A (ja) * 1998-06-17 2000-01-11 Nissan Motor Co Ltd 車両用走行速度制御システム
JP2001152942A (ja) * 1999-11-29 2001-06-05 Mitsubishi Motors Corp 内燃機関の制御装置
JP2002155777A (ja) * 2000-11-16 2002-05-31 Toyota Motor Corp 車両駆動装置
JP2003111206A (ja) * 2001-10-01 2003-04-11 Aisin Aw Co Ltd ハイブリッド型車両駆動制御装置、ハイブリッド型車両駆動制御方法及びそのプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218887A (ja) * 2010-04-06 2011-11-04 Toyota Motor Corp ハイブリッド自動車およびその制御方法
JP2019127188A (ja) * 2018-01-25 2019-08-01 トヨタ自動車株式会社 ハイブリッド自動車
JP2020044990A (ja) * 2018-09-19 2020-03-26 日立オートモティブシステムズ株式会社 サスペンション制御装置
JP7034042B2 (ja) 2018-09-19 2022-03-11 日立Astemo株式会社 サスペンション制御装置

Also Published As

Publication number Publication date
JP5056453B2 (ja) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4172524B1 (ja) 車両およびその制御方法
JP4172523B1 (ja) 車両およびその制御方法
JP4888154B2 (ja) 車両およびその制御方法
JP2009126450A (ja) ハイブリッド車及びハイブリッド車の制御方法
JP2011079409A (ja) ハイブリッド車両およびその制御方法
JP2006217750A (ja) 自動車およびその制御方法
JP2009248732A (ja) ハイブリッド車およびその制御方法
JP2008260428A (ja) 車両およびその制御方法
JP2007118918A (ja) 車両およびその制御方法
JP5056453B2 (ja) 車両およびその制御方法
JP4365354B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2008201383A (ja) ハイブリッド自動車およびその制御方法
JP4254764B2 (ja) 自動車およびその制御方法
JP4345765B2 (ja) 車両およびその制御方法
JP2009298373A (ja) ハイブリッド自動車およびその制御方法
JP2005210841A (ja) 自動車およびその制御方法
JP4992810B2 (ja) ハイブリッド車およびその制御方法
JP5074932B2 (ja) 車両および駆動装置並びにこれらの制御方法
JP4957267B2 (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法
JP2007186005A (ja) 車両およびその制御方法
JP4345738B2 (ja) 車両及びその制御方法
JP4977055B2 (ja) 動力出力装置およびその制御方法並びに車両
JP4812648B2 (ja) 車両およびその制御方法
JP2009023527A (ja) 車両およびその制御方法
JP2010023588A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees