JP2009182052A - 半導体レーザ素子 - Google Patents

半導体レーザ素子 Download PDF

Info

Publication number
JP2009182052A
JP2009182052A JP2008018005A JP2008018005A JP2009182052A JP 2009182052 A JP2009182052 A JP 2009182052A JP 2008018005 A JP2008018005 A JP 2008018005A JP 2008018005 A JP2008018005 A JP 2008018005A JP 2009182052 A JP2009182052 A JP 2009182052A
Authority
JP
Japan
Prior art keywords
film
laser element
conductive film
semiconductor laser
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008018005A
Other languages
English (en)
Inventor
Hiroyuki Ichikawa
弘之 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008018005A priority Critical patent/JP2009182052A/ja
Publication of JP2009182052A publication Critical patent/JP2009182052A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】発振波長における端面コーティング膜の反射特性を維持しつつ、素子端面の放熱性を向上させることができる半導体レーザ素子を提供する。
【解決手段】半導体レーザ素子1では、レーザ素体Pの端面20と反射防止膜10との間に、Alからなる熱伝導性膜22が形成されている。熱伝導性膜22の厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対する熱伝導性膜22の屈折率をnとしたときに、T=λ/2nを満たすようになっている。このような構成により、半導体レーザ素子1では、活性層12での光吸収などによって発生した熱が熱伝導性膜22を介して速やかに外部に伝導し、放熱性の向上が図られる。このことは、半導体レーザ素子1の信頼性の向上に寄与する。
【選択図】図3

Description

本発明は、端面コーティング膜が形成された半導体レーザ素子に関する。
半導体レーザ素子の端面に形成するARコート膜やHRコート膜といった端面コーティング膜には、屈折率の異なる誘電体膜を交互に積層してなる誘電体多層膜が用いられている。端面コーティング膜では、半導体レーザ素子の発振波長に対する透過(又は反射)スペクトル幅が十分に大きくなるように膜設計がなされている。このような膜設計においては、半導体レーザ素子の端面と接する面に熱伝導率の低い誘電体膜が配置されることが多く、光吸収によって活性層で発生する熱の放熱性が問題となっていた。
半導体レーザ素子の放熱性に着目した技術として、例えば特許文献1に記載の半導体レーザでは、素子端面において活性層を含む局所的な領域にのみ端面コーティング膜を形成している。また、例えば特許文献2に記載の半導体レーザでは、屈折率が異なる2つの誘電体膜のうち、熱伝導率が高い方の膜を他方よりも厚く形成している。
特開平6−204602号公報 特開平6−224514号公報
しかしながら、上述した特許文献1のように、素子端面の局所的な領域に端面コーティング膜を形成する手法は、形状や膜厚の制御が困難であり、製造プロセス上、現実的なものではない。また、特許文献2のように誘電体膜の膜厚を変化させると、放熱性が向上したとしても、半導体レーザ素子の発振波長における端面コーティング膜の反射特性が変化してしまうおそれがある。
本発明は、上記課題の解決のためになされたものであり、発振波長における端面コーティング膜の反射特性を維持しつつ、素子端面の放熱性を向上させることができる半導体レーザ素子を提供することを目的とする。
上記課題の解決のため、本発明に係る半導体レーザ素子は、レーザ光を発生させる活性層を含んで構成されたレーザ素体と、レーザ素体においてレーザ光の出射方向の端面に形成され、互いに屈折率が異なる誘電体膜を交互に積層してなる端面コーティング膜とを備え、レーザ素体の端面と端面コーティング膜との間には、Alからなる熱伝導性膜が形成されており、レーザ光の波長をλ、熱伝導性膜の屈折率をnとしたときに、熱伝導性膜の厚さがλ/2nを満たしていることを特徴としている。
この半導体レーザ素子では、レーザ素体の端面と端面コーティング膜との間に、熱伝導率が十分に高いAlからなる熱伝導性膜を形成している。このため、活性層での光吸収などによって発生した熱が熱伝導性膜を介して速やかに外部に伝導し、放熱性の向上が図られる。このことは、半導体レーザ素子の信頼性の向上に寄与する。また、熱伝導性膜の厚さは、レーザ光の波長をλ、熱伝導性膜の屈折率をnとしたときに、λ/2nを満たすように設定されている。これにより、発振波長における端面コーティング膜の反射特性の変動が抑えられる。
また、端面コーティング膜は、TiO膜とAl膜とを交互に積層してなり、熱伝導性膜は、TiO膜と接していることが好ましい。端面コーティング膜がARコートである場合に、発振波長におけるARコートの反射特性の変動を抑えつつ、放熱性の向上が図られる。
また、端面コーティング膜は、SiO膜とSi膜とを交互に積層してなり、熱伝導性膜は、SiO膜と接していることが好ましい。端面コーティング膜がHRコートである場合に、発振波長におけるHRコートの反射特性の変動を抑えつつ、放熱性の向上が図られる。
本発明に係る半導体レーザ素子によれば、端面コーティング膜の反射特性を維持しつつ、素子端面の放熱性を向上させることができる。
以下、図面を参照しながら、本発明に係る半導体レーザ素子の好適な実施形態について詳細に説明する。図1は、本発明に係る半導体レーザ素子の一実施形態を示す断面図である。また、図2は、図1におけるII−II線断面図である。
図1及び図2に示す半導体レーザ素子1は、安定した単一モード性が要求される長距離光通信システムの光源として用いられる分布帰還型半導体レーザである。半導体レーザ素子1は、所定波長のレーザ光を発生させるレーザ素体Pを備えている。
レーザ素体Pは、略直方体形状をなしており、半導体基板2と、半導体基板2の一面側において、所定の方向に延在する半導体メサ部3と、半導体メサ部3の両側部を覆うように形成された埋め込み層4,5と、半導体メサ部3及び埋め込み層4,5の表面に形成されたクラッド層6と、クラッド層6の表面に形成されたコンタクト層7とによって構成されている。
また、レーザ素体Pにおいて、コンタクト層7の表面及び半導体基板2の他面側には、電極層8,9がそれぞれ形成されており、半導体メサ部3の延在方向(導波路方向)の両端面20,20には、反射防止膜(端面コーティング膜)21,21がそれぞれ形成されている。
半導体基板2は、例えばSnがドープされたn型InP基板である。半導体基板2の厚みは、約100μmとなっている。半導体メサ部3は、半導体基板2側から順に、クラッド層11、活性層12、回折格子形成層13、クラッド層14が積層されて構成されている。半導体メサ部3は、活性層12を含む半導体領域を積層方向にエッチングで切り出すことにより、ストライプ状に形成されている。
活性層12は、例えばInGaAsP層である。活性層12は、例えば多重量子井戸(MQW)構造を有している。活性層12には、クラッド層11及びクラッド層6,14からキャリアが注入され、このキャリアが再結合することによって光が発生する。
半導体メサ部3のクラッド層11は、例えばSiがドープされたn型InP層である。また、クラッド層14は、例えばZnがドープされたp型InP層である。クラッド層11,14の屈折率は、活性層12よりも小さくなっており、これにより、クラッド層11,14は、活性層12で発生した光を閉じ込める層として機能する。
回折格子形成層13は、例えばZnがドープされたInGaAsP層である。回折格子形成層13には、図2に示すように、導波路方向に沿った周期的な凹凸パターンからなる回折格子Gが形成されている。凹凸パターンにおける各凹部の深さは例えば30nmとなっており、その間隔は、例えば120nmとなっている。
このような回折格子形成層13は、半導体メサ部3の長手方向に沿って活性層12の内部を進行する光の一部を、進行方向とは反対の方向に反射させる。これにより、活性層12の内部では、回折格子Gにおける凹凸パターンの周期で決まる波長の光が帰還される。
埋込層4は、例えばZnがドープされたp型InP層である。埋込層4は、半導体メサ部3の側部に近づくにつれて厚みが増し、クラッド層14の側部までを覆っている。一方、埋込層5は、例えばFeがドープされたp型InGaAs層である。埋込層5は、埋込層4の表面を覆うように形成され、埋込層5の表面は、フラットな状態になっている。
クラッド層6は、例えばZnがドープされたp型InP層である。クラッド層6は、半導体メサ部3のクラッド層14及び埋込層4,5を覆うように形成されており、クラッド層14との協働によって、活性層12の内部の光の閉じ込め効果を高めている。
コンタクト層7は、例えばZnがドープされたp型InGaAs層である。コンタクト層7は、電極層8とクラッド層6との間でのオーミック接触を実現する。電極層8及び電極層9は、例えばAuめっき層であり、厚みは10μm程度となっている。電極層8は、コンタクト層7の表面に形成されており、電極層9は、半導体基板2の他面に形成されている。
反射防止膜10,10は、互いに屈折率が異なる誘電体膜を交互に積層してなる誘電体多層膜である。この反射防止膜10は、レーザ素体Pにおける導波路方向の両端面20,20での反射の影響を低減させる機能を有している。反射防止膜10は、図3に示すように、レーザ素体P側から見て、例えばTiO膜10aとAl膜10bとがこの順に交互に積層されて構成されている。
TiO膜10aの厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対するTiO膜10aの屈折率をnとしたときに、T=λ/4nを満たすようになっている。λが1.31μmである場合、nは約2.3であり、Tは約145nmとなる。TiOのバルクでの熱伝導率は、約6.5W/(m・K)である。
Al膜10bの厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対するAl膜10bの屈折率をnとしたときに、T=λ/4nを満たすようになっている。λが1.31μmである場合、nは約1.67であり、Tは約70nmとなる。Alのバルクでの熱伝導率は、約30.3W/(m・K)である。
ところで、反射防止膜では、半導体レーザ素子の発振波長に対する透過スペクトル幅が十分に大きくなるように膜設計がなされている。このような膜設計においては、半導体レーザ素子の端面と接する面に熱伝導率の低い誘電体膜が配置されることが多く、光吸収によって活性層で発生する熱の放熱性が問題となっていた。
上述した半導体レーザ素子1についても、レーザ素体Pの端面20に最も近い膜はTiO膜10aであり、TiO膜10aの熱伝導率は、Al膜10bの熱伝導率と比較して1/5程度となっている。
これに対し、半導体レーザ素子1では、図3に示すように、レーザ素体Pの端面20と反射防止膜10との間に、Alからなる熱伝導性膜22が形成されている。熱伝導性膜22は、反射防止膜10を構成する誘電体膜のうち、TiO膜10aと接している。熱伝導性膜22の厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対する熱伝導性膜22の屈折率をnとしたときに、T=λ/2nを満たすようになっている。λが1.31μmである場合、nは約1.67であり、Tは約140nmとなる。
このような構成により、半導体レーザ素子1では、活性層12での光吸収などによって発生した熱が熱伝導性膜22を介して速やかに外部に伝導し、放熱性の向上が図られる。このことは、半導体レーザ素子1の信頼性の向上に寄与する。熱伝導性膜22は、例えば真空蒸着といった反射防止膜10の製造プロセスにおいて、Al膜10bと厚さが異なる膜を一層追加することで形成できるので、半導体レーザ素子1の製造工程の複雑化を招くこともない。
また、熱伝導性膜22の厚さTは、T=λ/2nを満たすように設定されている。ここで、図4は、熱伝導性膜22が介在する場合と介在しない場合とにおいて、反射防止膜10のスペクトルのシミュレーション結果を示した図である。
レーザ素体Pの端面20と反射防止膜10との間に熱伝導性膜22が介在しない場合では、図4(a)に示すように、反射防止膜10の特性は、発振波長1.31μmにおいて反射率0%であり、同波長における反射率の許容値を0.5%とすれば、許容帯域は、約0.25μmとなっている。
一方、レーザ素体Pの端面20と反射防止膜10との間に熱伝導性膜22が介在する場合では、図4(b)に示すように、反射防止膜10の特性は、発振波長1.31μmにおいて反射率0.03%であり、許容帯域は、約0.06μmとなっている。以上の結果から、T=λ/2nを満たす熱伝導性膜22では、熱伝導性膜22がない場合に比べて反射防止膜10の許容帯域がやや狭くなるものの、発振波長λにおける反射防止膜10の反射特性の変動は、わずか0.03%に抑えられることが確認できる。
また、図5は、熱伝導性膜22の厚さの許容範囲に関するシミュレーション結果を示した図である。同図に示すように、熱伝導性膜22の厚さTをλ/2nからシフトさせると、これに伴って反射防止膜10の反射スペクトルが短波長側又は長波長側にシフトする。発振波長1.31μmに対する反射率の許容値を上述のように0.5%とすれば、熱伝導性膜22の厚さTの許容範囲は、λ/2n±3%と見積もられる。
上述した実施形態では、端面コーティング膜として反射防止膜10を例示しているが、端面コーティング膜は、反射膜であってもよい。このような反射膜30は、図6に示すように、レーザ素体P側から見て、例えばSiO膜30aとSi膜30bとがこの順に交互に積層されて構成される。
SiO膜30aの厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対するSiO膜30aの屈折率をnとしたときに、T=λ/4nを満たすようになっている。λが1.55μmである場合、nは約1.45であり、Tは約265nmとなる。SiOのバルクでの熱伝導率は、約1.4W/(m・K)である。
Si膜30bの厚さTは、半導体レーザ素子1の発振波長をλ、波長λに対するSi膜30bの屈折率をnとしたときに、T=λ/4nを満たすようになっている。λが1.55μmである場合、nは約3.32であり、Tは約116nmとなる。Si(アモルファス)のバルクでの熱伝導率は、約145W/(m・K)である。
反射膜30をレーザ素体Pの端面20に形成する場合であっても、端面20と反射膜30との間に、SiO膜30aに接するように、Alからなる熱伝導性膜22を形成すると、活性層12での光吸収などによって発生した熱が熱伝導性膜22を介して速やかに外部に伝導し、放熱性の向上が図られる。また、熱伝導性膜22の厚さTが、λ/2nを満たすことにより、発振波長における反射膜30の反射特性の変動が抑えられる。
図7は、熱伝導性膜22が介在する場合と介在しない場合とにおいて、反射膜30のスペクトル特性のシミュレーション結果を示した図である。レーザ素体Pの端面20と反射膜30との間に熱伝導性膜22が介在しない場合では、図7(a)に示すように、反射膜30の特性は、発振波長1.55μmにおいて反射率90.8%であり、同波長における反射率の許容値を90%とすれば、許容帯域は、約0.35μmとなっている。
一方、レーザ素体Pの端面20と反射膜30との間に熱伝導性膜22が介在する場合では、図7(b)に示すように、反射膜30の特性は、発振波長1.55μmにおいて反射率90.8%であり、許容帯域は、約0.2μmとなっている。以上の結果から、T=λ/2nを満たす熱伝導性膜22では、熱伝導性膜22がない場合に比べて反射膜30の許容帯域がやや狭くなるものの、発振波長λにおける反射膜30の反射特性の変動は、殆ど生じないことが確認できる。
また、図8は、熱伝導性膜22の厚さの許容範囲に関するシミュレーション結果を示した図である。同図に示すように、熱伝導性膜22の厚さTをλ/2nからシフトさせると、これに伴って反射膜30の反射スペクトルが短波長側又は長波長側にシフトする。発振波長1.55μmに対する反射率の許容値を上述のように90.0%とすれば、熱伝導性膜22の厚さTの許容範囲は、λ/2n±11%と見積もられる。
本発明は、上記実施形態に限られるものではない。熱伝導性膜22を適用する半導体レーザ素子は、DFBレーザに限られず、他の端面発光型半導体レーザ素子であってもよい。また、熱伝導性膜22を適用する端面コーティング膜における誘電体膜の組み合わせは、上述したTiO/Al、SiO/Siのほか、例えばTa/SiO、SiO/TiO、TiO/MgFなどであってもよい。
本発明に係る半導体レーザ素子の一実施形態を示す断面図である。 図1におけるII−II線断面図である。 レーザ素体の端面近傍の構成を示した図である。 熱伝導性膜が介在する場合と介在しない場合とにおいて、反射防止膜のスペクトルのシミュレーション結果を示した図である。 実施例について、熱伝導性膜の厚さの許容範囲に関するシミュレーション結果を示した図である。 変形例について、レーザ素体の端面近傍の構成を示した図である。 熱伝導性膜が介在する場合と介在しない場合とにおいて、反射膜のスペクトルのシミュレーション結果を示した図である。 変形例について、熱伝導性膜の厚さの許容範囲に関するシミュレーション結果を示した図である。
符号の説明
1…半導体レーザ素子、P…レーザ素体、12…活性層、20…端面、10…反射防止膜(端面コーティング膜)、10a…TiO膜、10b…Al膜、22…熱伝導性膜、30…反射膜(端面コーティング膜)、30a…SiO膜、30b…Si膜。

Claims (3)

  1. レーザ光を発生させる活性層を含んで構成されたレーザ素体と、
    前記レーザ素体において前記レーザ光の出射方向の端面に形成され、互いに屈折率が異なる誘電体膜を交互に積層してなる端面コーティング膜とを備え、
    前記レーザ素体の前記端面と前記端面コーティング膜との間には、Alからなる熱伝導性膜が形成されており、
    前記レーザ光の波長をλ、前記熱伝導性膜の屈折率をnとしたときに、前記熱伝導性膜の厚さがλ/2nを満たしていることを特徴とする半導体レーザ素子。
  2. 前記端面コーティング膜は、TiO膜とAl膜とを交互に積層してなり、前記熱伝導性膜は、前記TiO膜と接していることを特徴とする請求項1記載の半導体レーザ素子。
  3. 前記端面コーティング膜は、SiO膜とSi膜とを交互に積層してなり、前記熱伝導性膜は、前記SiO膜と接していることを特徴とする請求項1記載の半導体レーザ素子。
JP2008018005A 2008-01-29 2008-01-29 半導体レーザ素子 Pending JP2009182052A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008018005A JP2009182052A (ja) 2008-01-29 2008-01-29 半導体レーザ素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008018005A JP2009182052A (ja) 2008-01-29 2008-01-29 半導体レーザ素子

Publications (1)

Publication Number Publication Date
JP2009182052A true JP2009182052A (ja) 2009-08-13

Family

ID=41035810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008018005A Pending JP2009182052A (ja) 2008-01-29 2008-01-29 半導体レーザ素子

Country Status (1)

Country Link
JP (1) JP2009182052A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332674A (ja) * 2002-05-10 2003-11-21 Fuji Photo Film Co Ltd 半導体レーザ素子
JP2004327581A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 半導体レーザ装置
JP2005072488A (ja) * 2003-08-27 2005-03-17 Mitsubishi Electric Corp 半導体レーザ装置
JP2007073631A (ja) * 2005-09-05 2007-03-22 Mitsubishi Electric Corp 半導体レーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003332674A (ja) * 2002-05-10 2003-11-21 Fuji Photo Film Co Ltd 半導体レーザ素子
JP2004327581A (ja) * 2003-04-23 2004-11-18 Mitsubishi Electric Corp 半導体レーザ装置
JP2005072488A (ja) * 2003-08-27 2005-03-17 Mitsubishi Electric Corp 半導体レーザ装置
JP2007073631A (ja) * 2005-09-05 2007-03-22 Mitsubishi Electric Corp 半導体レーザ装置

Similar Documents

Publication Publication Date Title
US8705583B2 (en) Semiconductor laser
JP4312239B2 (ja) 光素子及びその製造方法
JP5182362B2 (ja) 光素子及びその製造方法
US10770863B2 (en) Semiconductor laser device
US20080107145A1 (en) Structure having photonic crystal and surface-emitting laser using the same
JP2003264333A (ja) 半導体レーザ素子
US20140098831A1 (en) Semiconductor laser device
JP2000077774A (ja) 分布帰還型半導体レーザ
US8233514B2 (en) Semiconductor laser device
JP2014017347A (ja) 半導体レーザ
US20060093005A1 (en) Semiconductor laser
JP5310533B2 (ja) 光半導体装置
US9093821B2 (en) Substrate-emitting transverse magnetic polarized laser employing a metal/semiconductor distributed feedback grating for symmetric-mode operation
JP2008227169A (ja) 半導体レーザ素子
EP0549123B1 (en) Semiconductor laser having reduced temperature dependence
JP2010045249A (ja) 半導体発光素子およびその製造方法
JP2001196685A (ja) 半導体光素子装置
JP2009182052A (ja) 半導体レーザ素子
JP4447222B2 (ja) 分布帰還型半導体レーザ
JP2004356571A (ja) 分布帰還型半導体レーザ装置
JPH10303495A (ja) 半導体レーザ
JPWO2008117527A1 (ja) 高輝度発光ダイオード
JP3595677B2 (ja) 光アイソレータ、分布帰還型レーザ及び光集積素子
JP2003218462A (ja) 分布帰還型半導体レーザ装置
TW201803239A (zh) 端面射出型半導體雷射

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Effective date: 20120110

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508